Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source
The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditi...
Saved in:
Published in | Journal of environmental management Vol. 271; p. 111006 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L−1 of hydrogen and 203 mg L−1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L−1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source.
•Photofermentation of winery wastewater allows contextual H2 and PHB production.•Use of mixed PNSB cultures is beneficial to contrast the effect of toxic compounds.•Nitrogen source affects photofermentation development pathway.•N-Glutamate enhances both H2 production and PHB concentration.•Inorganic nitrogen enhances PHB accumulation by PNSB. |
---|---|
AbstractList | The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L-1 of hydrogen and 203 mg L-1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L-1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source.The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L-1 of hydrogen and 203 mg L-1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L-1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source. The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L−1 of hydrogen and 203 mg L−1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L−1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source. •Photofermentation of winery wastewater allows contextual H2 and PHB production.•Use of mixed PNSB cultures is beneficial to contrast the effect of toxic compounds.•Nitrogen source affects photofermentation development pathway.•N-Glutamate enhances both H2 production and PHB concentration.•Inorganic nitrogen enhances PHB accumulation by PNSB. The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L⁻¹ of hydrogen and 203 mg L⁻¹ of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L⁻¹. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source. |
ArticleNumber | 111006 |
Author | Luongo, Vincenzo Policastro, Grazia Fabbricino, Massimiliano |
Author_xml | – sequence: 1 givenname: Grazia surname: Policastro fullname: Policastro, Grazia email: grazia.policastro@unina.it organization: Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy – sequence: 2 givenname: Vincenzo surname: Luongo fullname: Luongo, Vincenzo email: vincenzo.luongo@unina.it organization: Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples, Italy – sequence: 3 givenname: Massimiliano surname: Fabbricino fullname: Fabbricino, Massimiliano email: massimiliano.fabbricino@unina.it organization: Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy |
BookMark | eNqFkU1uFDEQhS0UJCaBIyB5yaYH_7Tb3bBAEIUfKRIbWFu2u0w86rEH253Qt-AsHIQz4ZnOis0srJKqvlclv3eJLkIMgNBLSraU0O71bruDcL_XYcsIqz1KCemeoA0lg2j6jpMLtCGc0KaVg3yGLnPeEUI4o3KDfn_w8W4ZU_wBAesw4kOclubvn-bU_LWYuSxJF8CHFMfZFh8DNgt-8AFSLToXeKjjhA93sUQHaQ-h6CP2Bt84B7bg6HCeTS6nNTYGW4l0Qk4Hgy_r9RznZOE5eur0lOHFY71C3z_efLv-3Nx-_fTl-v1tY7kUpRGybx2FzvTcEN5q0vXMubHXRsIIdaKN4YwPtjPgWtdLqWHQTICwYux6wa_Qq3Vv_djPGXJRe58tTJMOEOesmGBtfWSg59GWs16IYZAVFStqU8w5gVOH5Pc6LYoSdQxL7dRjWOoYllrDqrq3_-msX22sVvnprPrdqoZq2L2HpLL1UI0efaoJqDH6Mxv-ATeAu_M |
CitedBy_id | crossref_primary_10_3390_catal11050547 crossref_primary_10_1007_s11157_021_09575_z crossref_primary_10_1016_j_jece_2024_114774 crossref_primary_10_1016_j_ijhydene_2024_09_132 crossref_primary_10_1016_j_scitotenv_2020_143729 crossref_primary_10_1016_j_biortech_2021_125595 crossref_primary_10_1016_j_eti_2023_103058 crossref_primary_10_1016_j_scitotenv_2023_168899 crossref_primary_10_3390_w15061110 crossref_primary_10_1016_j_biteb_2024_101823 crossref_primary_10_1016_j_ijhydene_2022_07_063 crossref_primary_10_1149_1945_7111_ad40d6 crossref_primary_10_1016_j_biteb_2024_101945 crossref_primary_10_1007_s11157_021_09597_7 crossref_primary_10_1016_j_ijhydene_2023_04_208 crossref_primary_10_1016_j_jenvman_2021_113371 crossref_primary_10_1016_j_rser_2022_112687 crossref_primary_10_2139_ssrn_3999284 crossref_primary_10_1007_s10311_024_01722_6 crossref_primary_10_3390_fermentation8110620 crossref_primary_10_3934_mbe_2023321 crossref_primary_10_3390_molecules29071679 crossref_primary_10_1007_s40726_025_00343_z crossref_primary_10_1016_j_clwas_2022_100043 crossref_primary_10_1016_j_ijhydene_2021_10_028 crossref_primary_10_1016_j_fpsl_2025_101454 crossref_primary_10_3390_polym14112141 crossref_primary_10_1007_s12010_020_03428_1 crossref_primary_10_1186_s40643_025_00856_x crossref_primary_10_3390_ma14113027 crossref_primary_10_1016_j_bej_2022_108715 crossref_primary_10_1016_j_ijhydene_2023_11_179 crossref_primary_10_1002_bab_2292 crossref_primary_10_1007_s40710_023_00657_4 crossref_primary_10_1016_j_biortech_2020_124610 crossref_primary_10_3390_w14010095 crossref_primary_10_1016_j_ijhydene_2024_10_216 crossref_primary_10_1016_j_jenvman_2020_111793 crossref_primary_10_1016_j_fuel_2022_126645 crossref_primary_10_1007_s13399_021_01333_z crossref_primary_10_1002_clen_202300112 crossref_primary_10_1016_j_biteb_2022_101196 crossref_primary_10_3390_polym16233255 |
Cites_doi | 10.3390/su11123330 10.1016/j.ijhydene.2009.08.040 10.1016/j.biortech.2012.04.011 10.1016/j.ijhydene.2018.11.082 10.1021/acs.jafc.7b04942 10.1099/mic.0.26235-0 10.1016/j.scitotenv.2020.136633 10.1078/0944-5013-00104 10.1016/j.biortech.2016.12.079 10.1016/j.jenvman.2018.11.058 10.1016/j.jhazmat.2014.12.043 10.1016/j.ijhydene.2010.01.126 10.1016/B978-0-444-64203-5.00006-X 10.1007/s12010-018-2812-5 10.1016/j.ijhydene.2013.09.050 10.1016/S0360-3199(00)00027-6 10.1016/j.ijhydene.2009.10.094 10.1016/j.mib.2008.02.007 10.1038/nrmicro1932-c2 10.1016/j.scitotenv.2019.07.051 10.1016/j.copbio.2010.02.012 10.1016/S0378-1097(02)00559-1 10.1016/S0360-3199(03)00110-1 10.1021/bm8013796 10.1016/j.ijhydene.2015.05.067 10.1016/j.biortech.2014.03.065 10.1007/BF00166854 10.1016/j.ijhydene.2011.12.002 10.1016/j.biortech.2013.03.155 10.1016/j.biombioe.2015.07.023 10.1016/j.enconman.2016.09.001 10.1017/S0956792518000165 10.1016/S0005-2728(98)00145-5 10.1016/j.apenergy.2015.01.045 10.1111/j.1365-2672.2009.04314.x 10.1016/j.biortech.2012.01.090 10.1016/j.biortech.2008.01.076 10.1007/s00253-006-0528-x 10.1016/j.biortech.2018.03.128 10.1016/j.biortech.2018.06.099 10.1128/JB.183.10.3050-3054.2001 10.1016/j.ijhydene.2011.09.043 10.3155/1047-3289.60.4.454 10.1016/j.biortech.2018.12.064 10.1016/j.biortech.2016.03.017 10.1016/j.chroma.2005.02.020 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jenvman.2020.111006 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1095-8630 |
ExternalDocumentID | 10_1016_j_jenvman_2020_111006 S0301479720309348 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEN SEW SSH UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c375t-5784f1e6b83b034a0682ffd8ab7edef1eabb3239c6bef4f877ae9a25e5c5d6853 |
IEDL.DBID | .~1 |
ISSN | 0301-4797 1095-8630 |
IngestDate | Fri Jul 11 03:07:45 EDT 2025 Fri Jul 11 14:01:51 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Tue Jul 01 02:39:59 EDT 2025 Fri Feb 23 02:48:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Winery wastewater Biorefinery PHB Hydrogen Mixed PNSB culture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-5784f1e6b83b034a0682ffd8ab7edef1eabb3239c6bef4f877ae9a25e5c5d6853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2432855997 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524252091 proquest_miscellaneous_2432855997 crossref_primary_10_1016_j_jenvman_2020_111006 crossref_citationtrail_10_1016_j_jenvman_2020_111006 elsevier_sciencedirect_doi_10_1016_j_jenvman_2020_111006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of environmental management |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ferraro, Massini, Mazzurco Miritana, Signorini, Race, Fabbricino (bib18) 2019; 691 Luongo, Ghimire, Frunzo, Fabbricino, d'Antonio, Pirozzi, Esposito (bib35) 2017; 228 Oehmen, Keller-Lehmann, Zeng, Yuan, Keller (bib41) 2005; 1070 Kim, Kim, Cha, Lee (bib34) 2012; 116 Oh, Seol, Kim, Park (bib42) 2004; 29 Montiel-Corona, Revah, Morales (bib40) 2015; 40 Yetis, Gündüz, Eroglu, Yücel, Türker (bib56) 2000; 25 Görke, Stülke (bib24) 2008; 6 Deutscher (bib13) 2008; 11 Pontoni, Panico, Matanò, Van Hullebusch, Fabbricino, Esposito, Pirozzi (bib46) 2017; 65 Eroğlu, Gündüz, Yücel, Türker, Eroğlu (bib16) 2004; 29 Özgür, Mars, Peksel, Louwerse, Yücel, Gündüz, Claassen, Eroğlu (bib43) 2010; 35 Crocamo, Di Bernardino, Di Giovanni, Fabbricino, Martins-Dias (bib10) 2015; 81 Cross, Lloyd, Poole, Moir (bib11) 2001; 183 Hari, Duc, Ravindran (bib27) 2019; 45 Yakunin, Hallenbeck (bib55) 1998; 1409 Gouda, Swellam, Omar (bib25) 2001; 156 Sharma, Basu, Shetti, Aminabhavi (bib51) 2020; 713 Costa, Ganzerli, Rugiero, Pellizzari, Pedrini, Tamburini (bib9) 2017; 9 Androga, Özgür, Eroglu, Gündüz, Yücel (bib3) 2011; 36 D'Acunto, Frunzo, Luongo, Mattei (bib12) 2018; 29 Seifert, Waligorska, Laniecki (bib50) 2010; 35 Maharaj, Mattei, Frunzo, Hullebusch, Esposito (bib37) 2019; 276 Waligórska, Seifert, Górecki, Moritz, Łaniecki (bib53) 2009; 107 Hustede, Steinbüchel, Schlegel (bib28) 1993; 39 Ioannou, Puma, Fatta-Kassinos (bib29) 2015; 286 Eroğlu, Eroğlu, Gündüz, Yücel (bib15) 2008; 99 Akköse, Gündüz, Yücel, Eroglu (bib2) 2009; 34 Jiang, Ge, Lin, Zhang, Liu, Hu, Zhang (bib30) 2019 Johnson, Jiang, Kleerebezem, Muyzer, Van Loosdrecht (bib31) 2009; 10 Rupprecht, Hankamer, Mussgnug, Ananyev, Dismukes, Kruse (bib48) 2006; 72 Wu, Liou, Lee (bib54) 2012; 113 Kars, Alparslan (bib32) 2013; 38 McKinlay, Harwood (bib39) 2010; 21 Frunzo, Fermoso, Luongo, Mattei, Esposito (bib19) 2019; 241 Ghimire, Valentino, Frunzo, Pirozzi, Lens, Esposito (bib22) 2016; 217 Sağır (bib49) 2019 Carrillo-Reyes, Albarrán-Contreras, Buitrón (bib7) 2019; 187 Reungsang, Zhong, Yang, Sittijunda, Xia, Liao (bib47) 2018 Ferraro, Dottorini, Massini, Mazzurco Miritana, Signorini, Lembo, Fabbricino (bib17) 2018; 260 Ghosh, Dairkee, Chowdhury, Bhattacharya (bib23) 2017; 141 Khatipov, Miyake, Miyake, Asada (bib33) 1998; 162 Hakobyan, Gabrielyan, Trchounian (bib26) 2019; 44 Luongo, Policastro, Ghimire, Pirozzi, Fabbricino (bib36) 2019; 11 Tawfik, El-Bery, Kumari, Bux (bib52) 2014; 168 Padovani, Pintucci, Carlozzi (bib44) 2013; 138 Ghimire, Frunzo, Pirozzi, Trably, Escudie, Lens, Esposito (bib20) 2015; 144 Adessi, De Philippis (bib1) 2012 Brückner, Titgemeyer (bib5) 2002; 209 Chatzilazarou, Katsoyannos, Gortzi, Lalas, Paraskevopoulos, Dourtoglou, Tsaknis (bib8) 2010; 60 Buitrón, Muñoz-Páez, Quijano, Carrillo-Reyes, Albarrán-Contreras (bib6) 2019 Maharaj, Mattei, Frunzo, van Hullebusch, Esposito (bib38) 2018; 267 Aurand (bib4) 2018 Ghimire, Frunzo, Salzano, Panico, Lens, Pirozzi (bib21) 2015; 43 Pattanamanee, Choorit, Deesan, Sirisansaneeyakul, Chisti (bib45) 2012; 37 Drepper, Groß, Yakunin, Hallenbeck, Masepohl, Klipp (bib14) 2003; 149 Gouda (10.1016/j.jenvman.2020.111006_bib25) 2001; 156 Ghosh (10.1016/j.jenvman.2020.111006_bib23) 2017; 141 Eroğlu (10.1016/j.jenvman.2020.111006_bib15) 2008; 99 Frunzo (10.1016/j.jenvman.2020.111006_bib19) 2019; 241 Akköse (10.1016/j.jenvman.2020.111006_bib2) 2009; 34 Yetis (10.1016/j.jenvman.2020.111006_bib56) 2000; 25 Tawfik (10.1016/j.jenvman.2020.111006_bib52) 2014; 168 Deutscher (10.1016/j.jenvman.2020.111006_bib13) 2008; 11 Maharaj (10.1016/j.jenvman.2020.111006_bib37) 2019; 276 Ghimire (10.1016/j.jenvman.2020.111006_bib20) 2015; 144 Cross (10.1016/j.jenvman.2020.111006_bib11) 2001; 183 Jiang (10.1016/j.jenvman.2020.111006_bib30) 2019 Adessi (10.1016/j.jenvman.2020.111006_bib1) 2012 Androga (10.1016/j.jenvman.2020.111006_bib3) 2011; 36 Sharma (10.1016/j.jenvman.2020.111006_bib51) 2020; 713 Johnson (10.1016/j.jenvman.2020.111006_bib31) 2009; 10 Crocamo (10.1016/j.jenvman.2020.111006_bib10) 2015; 81 Montiel-Corona (10.1016/j.jenvman.2020.111006_bib40) 2015; 40 Pontoni (10.1016/j.jenvman.2020.111006_bib46) 2017; 65 Kim (10.1016/j.jenvman.2020.111006_bib34) 2012; 116 Eroğlu (10.1016/j.jenvman.2020.111006_bib16) 2004; 29 Görke (10.1016/j.jenvman.2020.111006_bib24) 2008; 6 Ferraro (10.1016/j.jenvman.2020.111006_bib17) 2018; 260 Sağır (10.1016/j.jenvman.2020.111006_bib49) 2019 Reungsang (10.1016/j.jenvman.2020.111006_bib47) 2018 Hari (10.1016/j.jenvman.2020.111006_bib27) 2019; 45 Oehmen (10.1016/j.jenvman.2020.111006_bib41) 2005; 1070 Luongo (10.1016/j.jenvman.2020.111006_bib36) 2019; 11 Oh (10.1016/j.jenvman.2020.111006_bib42) 2004; 29 Wu (10.1016/j.jenvman.2020.111006_bib54) 2012; 113 D'Acunto (10.1016/j.jenvman.2020.111006_bib12) 2018; 29 Brückner (10.1016/j.jenvman.2020.111006_bib5) 2002; 209 Ghimire (10.1016/j.jenvman.2020.111006_bib22) 2016; 217 Padovani (10.1016/j.jenvman.2020.111006_bib44) 2013; 138 Seifert (10.1016/j.jenvman.2020.111006_bib50) 2010; 35 Luongo (10.1016/j.jenvman.2020.111006_bib35) 2017; 228 Pattanamanee (10.1016/j.jenvman.2020.111006_bib45) 2012; 37 Buitrón (10.1016/j.jenvman.2020.111006_bib6) 2019 Ioannou (10.1016/j.jenvman.2020.111006_bib29) 2015; 286 Hustede (10.1016/j.jenvman.2020.111006_bib28) 1993; 39 Kars (10.1016/j.jenvman.2020.111006_bib32) 2013; 38 Özgür (10.1016/j.jenvman.2020.111006_bib43) 2010; 35 Chatzilazarou (10.1016/j.jenvman.2020.111006_bib8) 2010; 60 Khatipov (10.1016/j.jenvman.2020.111006_bib33) 1998; 162 Costa (10.1016/j.jenvman.2020.111006_bib9) 2017; 9 Carrillo-Reyes (10.1016/j.jenvman.2020.111006_bib7) 2019; 187 Aurand (10.1016/j.jenvman.2020.111006_bib4) 2018 Waligórska (10.1016/j.jenvman.2020.111006_bib53) 2009; 107 Ghimire (10.1016/j.jenvman.2020.111006_bib21) 2015; 43 Hakobyan (10.1016/j.jenvman.2020.111006_bib26) 2019; 44 McKinlay (10.1016/j.jenvman.2020.111006_bib39) 2010; 21 Rupprecht (10.1016/j.jenvman.2020.111006_bib48) 2006; 72 Yakunin (10.1016/j.jenvman.2020.111006_bib55) 1998; 1409 Ferraro (10.1016/j.jenvman.2020.111006_bib18) 2019; 691 Drepper (10.1016/j.jenvman.2020.111006_bib14) 2003; 149 Maharaj (10.1016/j.jenvman.2020.111006_bib38) 2018; 267 |
References_xml | – start-page: 221 year: 2018 end-page: 317 ident: bib47 article-title: Hydrogen from photo fermentation publication-title: Bioreactors for Microbial Biomass and Energy Conversion – volume: 11 start-page: 87 year: 2008 end-page: 93 ident: bib13 article-title: The mechanisms of carbon catabolite repression in bacteria publication-title: Curr. Opin. Microbiol. – year: 2019 ident: bib30 article-title: Continuous photo-fermentative hydrogen production in a tubular photobioreactor using corn stalk pith hydrolysate with a consortium publication-title: Int. J. Hydrogen Energy – volume: 260 start-page: 364 year: 2018 end-page: 373 ident: bib17 article-title: Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw publication-title: Bioresour. Technol. – volume: 162 start-page: 39 year: 1998 end-page: 45 ident: bib33 article-title: Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates publication-title: FEMS Microbiol. Lett. – year: 2019 ident: bib6 article-title: Biohydrogen production from winery effluents: control of the homoacetogenesis through the headspace gas recirculation publication-title: J. Chem. Technol. Biotechnol. – volume: 267 start-page: 666 year: 2018 end-page: 676 ident: bib38 article-title: ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes publication-title: Bioresour. Technol. – volume: 209 start-page: 141 year: 2002 end-page: 148 ident: bib5 article-title: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization publication-title: FEMS Microbiol. Lett. – volume: 29 start-page: 163 year: 2004 end-page: 171 ident: bib16 article-title: Photobiological hydrogen production by using olive mill wastewater as a sole substrate source publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 15583 year: 2011 end-page: 15594 ident: bib3 article-title: Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 72 start-page: 442 year: 2006 end-page: 449 ident: bib48 article-title: Perspectives and advances of biological H2 production in microorganisms publication-title: Appl. Microbiol. Biotechnol. – start-page: 141 year: 2019 end-page: 157 ident: bib49 article-title: Photofermentative hydrogen production publication-title: Biohydrogen – volume: 99 start-page: 6799 year: 2008 end-page: 6808 ident: bib15 article-title: Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater publication-title: Bioresour. Technol. – volume: 40 start-page: 9096 year: 2015 end-page: 9105 ident: bib40 article-title: Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 14488 year: 2013 end-page: 14494 ident: bib32 article-title: Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept publication-title: Int. J. Hydrogen Energy – volume: 1070 start-page: 131 year: 2005 end-page: 136 ident: bib41 article-title: Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems publication-title: J. Chromatogr. A – volume: 10 start-page: 670 year: 2009 end-page: 676 ident: bib31 article-title: Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity publication-title: Biomacromolecules – volume: 39 start-page: 87 year: 1993 end-page: 93 ident: bib28 article-title: Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria publication-title: Appl. Microbiol. Biotechnol. – volume: 65 start-page: 10666 year: 2017 end-page: 10672 ident: bib46 article-title: Modified sample preparation approach for the determination of the phenolic and humic-like substances in natural organic materials by the Folin Ciocalteu method publication-title: J. Agric. Food Chem. – volume: 144 start-page: 73 year: 2015 end-page: 95 ident: bib20 article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products publication-title: Appl. Energy – volume: 113 start-page: 44 year: 2012 end-page: 50 ident: bib54 article-title: Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5 publication-title: Bioresour. Technol. – volume: 44 start-page: 674 year: 2019 end-page: 679 ident: bib26 article-title: Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: mixed vs. sole carbon sources enhance bacterial growth and H2 production publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 1079 year: 2018 end-page: 1109 ident: bib12 article-title: Invasion moving boundary problem for a biofilm reactor model publication-title: Eur. J. Appl. Math. – volume: 25 start-page: 1035 year: 2000 end-page: 1041 ident: bib56 article-title: Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001 publication-title: Int. J. Hydrogen Energy – volume: 276 start-page: 253 year: 2019 end-page: 259 ident: bib37 article-title: ADM1 based mathematical model of trace element complexation in anaerobic digestion processes publication-title: Bioresour. Technol. – volume: 29 start-page: 1115 year: 2004 end-page: 1121 ident: bib42 article-title: Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4 publication-title: Int. J. Hydrogen Energy – volume: 1409 start-page: 39 year: 1998 end-page: 49 ident: bib55 article-title: Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 168 start-page: 119 year: 2014 end-page: 126 ident: bib52 article-title: Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent publication-title: Bioresour. Technol. – volume: 691 start-page: 885 year: 2019 end-page: 895 ident: bib18 article-title: A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data publication-title: Sci. Total Environ. – year: 2018 ident: bib4 article-title: State of the Viticulture Global Market – volume: 6 start-page: 954 year: 2008 ident: bib24 article-title: Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon? Reply from Görke and Stülke publication-title: Nat. Rev. Microbiol. – volume: 35 start-page: 511 year: 2010 end-page: 517 ident: bib43 article-title: Biohydrogen production from beet molasses by sequential dark and photofermentation publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 5840 year: 2019 end-page: 5853 ident: bib27 article-title: ScienceDirect Simultaneous biohydrogen ( H 2 ) and bioplastic ( poly- b -hydroxybutyrate-PHB ) productions under dark , photo , and subsequent dark and photo fermentation utilizing various wastes publication-title: Int. J. Hydrogen Energy – volume: 713 start-page: 136633 year: 2020 ident: bib51 article-title: Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy publication-title: Sci. Total Environ. – volume: 286 start-page: 343 year: 2015 end-page: 368 ident: bib29 article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review publication-title: J. Hazard Mater. – volume: 43 start-page: 391 year: 2015 end-page: 396 ident: bib21 article-title: Biomass enrichment and scale-up implications for dark fermentation hydrogen production with mixed cultures publication-title: Chem. Eng. Trans. – volume: 34 start-page: 8818 year: 2009 end-page: 8827 ident: bib2 article-title: Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001 publication-title: Int. J. Hydrogen Energy – volume: 116 start-page: 179 year: 2012 end-page: 183 ident: bib34 article-title: Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131 publication-title: Bioresour. Technol. – volume: 138 start-page: 172 year: 2013 end-page: 179 ident: bib44 article-title: Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production publication-title: Bioresour. Technol. – volume: 217 start-page: 157 year: 2016 end-page: 164 ident: bib22 article-title: Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures publication-title: Bioresour. Technol. – start-page: 53 year: 2012 end-page: 75 ident: bib1 article-title: Hydrogen production: photofermentation publication-title: Microbial Technologies in Advanced Biofuels Production – volume: 37 start-page: 4077 year: 2012 end-page: 4087 ident: bib45 article-title: Photofermentive production of biohydrogen from oil palm waste hydrolysate publication-title: Int. J. Hydrogen Energy – volume: 183 start-page: 3050 year: 2001 end-page: 3054 ident: bib11 article-title: Enzymatic removal of nitric oxide catalyzed by cytochrome c′ in Rhodobacter capsulatus publication-title: J. Bacteriol. – volume: 21 start-page: 244 year: 2010 end-page: 251 ident: bib39 article-title: Photobiological production of hydrogen gas as a biofuel publication-title: Curr. Opin. Biotechnol. – volume: 81 start-page: 288 year: 2015 end-page: 293 ident: bib10 article-title: An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides publication-title: Biomass Bioenergy – volume: 11 start-page: 3330 year: 2019 ident: bib36 article-title: Repeated-batch fermentation of cheese whey for semi-continuous lactic acid production using mixed cultures at uncontrolled pH publication-title: Sustainability – volume: 241 start-page: 587 year: 2019 end-page: 602 ident: bib19 article-title: ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes publication-title: J. Environ. Manag. – volume: 107 start-page: 1308 year: 2009 end-page: 1318 ident: bib53 article-title: Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions publication-title: J. Appl. Microbiol. – volume: 9 year: 2017 ident: bib9 article-title: Potential of Rhodobacter capsulatus grown in anaerobic-light or aerobic-dark conditions as bioremediation agent for biological wastewater treatments publication-title: Water (Switzerland) – volume: 156 start-page: 201 year: 2001 end-page: 207 ident: bib25 article-title: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources publication-title: Microbiol. Res. – volume: 228 start-page: 171 year: 2017 end-page: 175 ident: bib35 article-title: Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products publication-title: Bioresour. Technol. – volume: 187 start-page: 140 year: 2019 end-page: 151 ident: bib7 article-title: Influence of added nutrients and substrate concentration in biohydrogen production from winery wastewaters coupled to methane production publication-title: Appl. Biochem. Biotechnol. – volume: 149 start-page: 2203 year: 2003 end-page: 2212 ident: bib14 article-title: Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus publication-title: Microbiology – volume: 141 start-page: 299 year: 2017 end-page: 314 ident: bib23 article-title: Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – a review publication-title: Energy Convers. Manag. – volume: 35 start-page: 4085 year: 2010 end-page: 4091 ident: bib50 article-title: Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001 publication-title: Int. J. Hydrogen Energy – volume: 60 start-page: 454 year: 2010 end-page: 459 ident: bib8 article-title: Removal of polyphenols from wine sludge using cloud point extraction publication-title: J. Air Waste Manag. Assoc. – volume: 11 start-page: 3330 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib36 article-title: Repeated-batch fermentation of cheese whey for semi-continuous lactic acid production using mixed cultures at uncontrolled pH publication-title: Sustainability doi: 10.3390/su11123330 – volume: 34 start-page: 8818 year: 2009 ident: 10.1016/j.jenvman.2020.111006_bib2 article-title: Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.040 – volume: 116 start-page: 179 year: 2012 ident: 10.1016/j.jenvman.2020.111006_bib34 article-title: Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.011 – volume: 44 start-page: 674 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib26 article-title: Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: mixed vs. sole carbon sources enhance bacterial growth and H2 production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.082 – volume: 65 start-page: 10666 year: 2017 ident: 10.1016/j.jenvman.2020.111006_bib46 article-title: Modified sample preparation approach for the determination of the phenolic and humic-like substances in natural organic materials by the Folin Ciocalteu method publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04942 – volume: 149 start-page: 2203 year: 2003 ident: 10.1016/j.jenvman.2020.111006_bib14 article-title: Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus publication-title: Microbiology doi: 10.1099/mic.0.26235-0 – volume: 713 start-page: 136633 year: 2020 ident: 10.1016/j.jenvman.2020.111006_bib51 article-title: Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136633 – volume: 156 start-page: 201 year: 2001 ident: 10.1016/j.jenvman.2020.111006_bib25 article-title: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources publication-title: Microbiol. Res. doi: 10.1078/0944-5013-00104 – volume: 228 start-page: 171 year: 2017 ident: 10.1016/j.jenvman.2020.111006_bib35 article-title: Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.079 – volume: 241 start-page: 587 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib19 article-title: ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.11.058 – volume: 286 start-page: 343 year: 2015 ident: 10.1016/j.jenvman.2020.111006_bib29 article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.12.043 – volume: 35 start-page: 4085 year: 2010 ident: 10.1016/j.jenvman.2020.111006_bib50 article-title: Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.126 – start-page: 141 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib49 article-title: Photofermentative hydrogen production publication-title: Biohydrogen doi: 10.1016/B978-0-444-64203-5.00006-X – volume: 187 start-page: 140 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib7 article-title: Influence of added nutrients and substrate concentration in biohydrogen production from winery wastewaters coupled to methane production publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-018-2812-5 – volume: 38 start-page: 14488 year: 2013 ident: 10.1016/j.jenvman.2020.111006_bib32 article-title: Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.050 – volume: 25 start-page: 1035 year: 2000 ident: 10.1016/j.jenvman.2020.111006_bib56 article-title: Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(00)00027-6 – volume: 35 start-page: 511 year: 2010 ident: 10.1016/j.jenvman.2020.111006_bib43 article-title: Biohydrogen production from beet molasses by sequential dark and photofermentation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.10.094 – volume: 29 start-page: 1115 year: 2004 ident: 10.1016/j.jenvman.2020.111006_bib42 article-title: Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 87 year: 2008 ident: 10.1016/j.jenvman.2020.111006_bib13 article-title: The mechanisms of carbon catabolite repression in bacteria publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2008.02.007 – start-page: 221 year: 2018 ident: 10.1016/j.jenvman.2020.111006_bib47 article-title: Hydrogen from photo fermentation – volume: 6 start-page: 954 year: 2008 ident: 10.1016/j.jenvman.2020.111006_bib24 article-title: Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon? Reply from Görke and Stülke publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1932-c2 – volume: 691 start-page: 885 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib18 article-title: A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.051 – start-page: 53 year: 2012 ident: 10.1016/j.jenvman.2020.111006_bib1 article-title: Hydrogen production: photofermentation – year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib6 article-title: Biohydrogen production from winery effluents: control of the homoacetogenesis through the headspace gas recirculation publication-title: J. Chem. Technol. Biotechnol. – volume: 21 start-page: 244 year: 2010 ident: 10.1016/j.jenvman.2020.111006_bib39 article-title: Photobiological production of hydrogen gas as a biofuel publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.02.012 – volume: 162 start-page: 39 year: 1998 ident: 10.1016/j.jenvman.2020.111006_bib33 article-title: Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates publication-title: FEMS Microbiol. Lett. – volume: 209 start-page: 141 year: 2002 ident: 10.1016/j.jenvman.2020.111006_bib5 article-title: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization publication-title: FEMS Microbiol. Lett. doi: 10.1016/S0378-1097(02)00559-1 – volume: 29 start-page: 163 year: 2004 ident: 10.1016/j.jenvman.2020.111006_bib16 article-title: Photobiological hydrogen production by using olive mill wastewater as a sole substrate source publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(03)00110-1 – volume: 10 start-page: 670 year: 2009 ident: 10.1016/j.jenvman.2020.111006_bib31 article-title: Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity publication-title: Biomacromolecules doi: 10.1021/bm8013796 – volume: 40 start-page: 9096 year: 2015 ident: 10.1016/j.jenvman.2020.111006_bib40 article-title: Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.05.067 – volume: 168 start-page: 119 year: 2014 ident: 10.1016/j.jenvman.2020.111006_bib52 article-title: Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.065 – year: 2018 ident: 10.1016/j.jenvman.2020.111006_bib4 – volume: 9 year: 2017 ident: 10.1016/j.jenvman.2020.111006_bib9 article-title: Potential of Rhodobacter capsulatus grown in anaerobic-light or aerobic-dark conditions as bioremediation agent for biological wastewater treatments publication-title: Water (Switzerland) – volume: 39 start-page: 87 year: 1993 ident: 10.1016/j.jenvman.2020.111006_bib28 article-title: Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00166854 – volume: 37 start-page: 4077 year: 2012 ident: 10.1016/j.jenvman.2020.111006_bib45 article-title: Photofermentive production of biohydrogen from oil palm waste hydrolysate publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.12.002 – volume: 138 start-page: 172 year: 2013 ident: 10.1016/j.jenvman.2020.111006_bib44 article-title: Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.155 – volume: 81 start-page: 288 year: 2015 ident: 10.1016/j.jenvman.2020.111006_bib10 article-title: An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.07.023 – volume: 141 start-page: 299 year: 2017 ident: 10.1016/j.jenvman.2020.111006_bib23 article-title: Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – a review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.09.001 – volume: 29 start-page: 1079 year: 2018 ident: 10.1016/j.jenvman.2020.111006_bib12 article-title: Invasion moving boundary problem for a biofilm reactor model publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792518000165 – volume: 1409 start-page: 39 year: 1998 ident: 10.1016/j.jenvman.2020.111006_bib55 article-title: Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/S0005-2728(98)00145-5 – volume: 144 start-page: 73 year: 2015 ident: 10.1016/j.jenvman.2020.111006_bib20 article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.045 – volume: 107 start-page: 1308 year: 2009 ident: 10.1016/j.jenvman.2020.111006_bib53 article-title: Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04314.x – volume: 113 start-page: 44 year: 2012 ident: 10.1016/j.jenvman.2020.111006_bib54 article-title: Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.090 – year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib30 article-title: Continuous photo-fermentative hydrogen production in a tubular photobioreactor using corn stalk pith hydrolysate with a consortium publication-title: Int. J. Hydrogen Energy – volume: 99 start-page: 6799 year: 2008 ident: 10.1016/j.jenvman.2020.111006_bib15 article-title: Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.01.076 – volume: 45 start-page: 5840 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib27 article-title: ScienceDirect Simultaneous biohydrogen ( H 2 ) and bioplastic ( poly- b -hydroxybutyrate-PHB ) productions under dark , photo , and subsequent dark and photo fermentation utilizing various wastes publication-title: Int. J. Hydrogen Energy – volume: 72 start-page: 442 year: 2006 ident: 10.1016/j.jenvman.2020.111006_bib48 article-title: Perspectives and advances of biological H2 production in microorganisms publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0528-x – volume: 260 start-page: 364 year: 2018 ident: 10.1016/j.jenvman.2020.111006_bib17 article-title: Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.03.128 – volume: 267 start-page: 666 year: 2018 ident: 10.1016/j.jenvman.2020.111006_bib38 article-title: ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.06.099 – volume: 183 start-page: 3050 year: 2001 ident: 10.1016/j.jenvman.2020.111006_bib11 article-title: Enzymatic removal of nitric oxide catalyzed by cytochrome c′ in Rhodobacter capsulatus publication-title: J. Bacteriol. doi: 10.1128/JB.183.10.3050-3054.2001 – volume: 43 start-page: 391 year: 2015 ident: 10.1016/j.jenvman.2020.111006_bib21 article-title: Biomass enrichment and scale-up implications for dark fermentation hydrogen production with mixed cultures publication-title: Chem. Eng. Trans. – volume: 36 start-page: 15583 year: 2011 ident: 10.1016/j.jenvman.2020.111006_bib3 article-title: Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.043 – volume: 60 start-page: 454 year: 2010 ident: 10.1016/j.jenvman.2020.111006_bib8 article-title: Removal of polyphenols from wine sludge using cloud point extraction publication-title: J. Air Waste Manag. Assoc. doi: 10.3155/1047-3289.60.4.454 – volume: 276 start-page: 253 year: 2019 ident: 10.1016/j.jenvman.2020.111006_bib37 article-title: ADM1 based mathematical model of trace element complexation in anaerobic digestion processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.12.064 – volume: 217 start-page: 157 year: 2016 ident: 10.1016/j.jenvman.2020.111006_bib22 article-title: Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.017 – volume: 1070 start-page: 131 year: 2005 ident: 10.1016/j.jenvman.2020.111006_bib41 article-title: Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.02.020 |
SSID | ssj0003217 |
Score | 2.5119607 |
Snippet | The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111006 |
SubjectTerms | biochemical pathways biohydrogen Biorefinery chemical oxygen demand environmental management glutamic acid Hydrogen hydrogen production Mixed PNSB culture nitrogen PHB phenolic compounds wastewater Winery wastewater |
Title | Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source |
URI | https://dx.doi.org/10.1016/j.jenvman.2020.111006 https://www.proquest.com/docview/2432855997 https://www.proquest.com/docview/2524252091 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoALgkJF-amMxNW7WduJE26larWA6AUq9WbZia3uqiRRkwVy4Rl4Fh6EZ2ImdliBEJU4RUls2fKMxzO2v28IeQGLtvVcGJYl1jHwbxfM2jRjeZkoY7LU2AqBwu_OsuW5fHORXuyQ4wkLg9cqo-0PNn201vHLPI7mvF2t5u_HaEAVeI4IYblEwK-UCrV89nV7zUPwMesuFsZdJLVF8czXs7WrP300SIPKR-ORYOKjv69Pf1jqcfk5vUfuRr-RHoWu3Sc7rt4jtydYcbdH9k-2kDUoGOds94B8e7VqLofqugFVoaauaNtcDezHdzZ-_DLYTT8gXwRtA_krCIragX5GVCA8TIfbazD6tL1s-saDJY9wpfolDdzHtPG0AwM0Et3SEoGQdWTjHRsEqxFaDycFD8n56cmH4yWLeRhYKVTaM5jU0i9cZnNhEyFNkuXc-yo3VrnKwR9jreCiKDPrvPS5UsYVhqcuLdMqA39gn-zWTe0eESrcQpnKFD6xEJiXi8I64yHisQWvijwzB0ROo6_LSFKOuTKu9HQbba2j0DQKTQehHZDZr2ptYOm4qUI-iVb_pm4aVpKbqj6fVEHDVMTzFVO7ZtNpLgXPkcFN_aNMijEeBy_t8f934Qm5g2_hTuFTsttfb9wz8I16ezgq_yG5dfT67fLsJ84gFhc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOZQLgkJF-TUSV-9m7cROuEHVaoG2F1qpN8tObHVXbRI1WdpceAaehQfhmRj_hBUIUYlTJMeWLY_nz575BqE3oLS1pUwRnmhDwL6dEa0zTvIyEUrxTOnKJQofHfP5afrxLDvbQHtjLowLq4yyP8h0L61jyzTu5rRdLKafvTcgCveOCG55mt9Bd1NgX1fGYPJ1HefBqC-763q7aySxTuOZLidLU3-5VA4HlXrpkbjKR39XUH-Iaq9_Dh6g-9FwxO_C2h6iDVNvo60xr7jbRjv765w16BiZtnuEvr1fNOdDddXAWcGqrnDbXAzkx3fiG28GveoHBxiB24D-CpTCesDXLi0QPqpz92uw_bg9b_rGgiiP-Ur1WxzAj3FjcQcSyCPd4tJlQtYRjtdPCGIjzB6eCh6j04P9k705iYUYSMlE1hPg6tTODNc50wlLVcJzam2VKy1MZeCP0ppRVpRcG5vaXAhlCkUzk5VZxcEg2EGbdVObJwgzMxOqUoVNNHjm5azQRllweXRBqyLnahel4-7LMqKUu2IZF3IMR1vKSDTpiCYD0XbR5NewNsB03DYgH0krfztvElTJbUNfj0dBAi-6BxZVm2bVSZoymjsIN_GPPplz8iiYaU__fwmv0Nb85OhQHn44_vQM3XN_QoDhc7TZX63MCzCUev3SM8JP-dEXpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biohydrogen+and+poly-%CE%B2-hydroxybutyrate+production+by+winery+wastewater+photofermentation%3A+Effect+of+substrate+concentration+and+nitrogen+source&rft.jtitle=Journal+of+environmental+management&rft.au=Policastro%2C+Grazia&rft.au=Luongo%2C+Vincenzo&rft.au=Fabbricino%2C+Massimiliano&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=271&rft_id=info:doi/10.1016%2Fj.jenvman.2020.111006&rft.externalDocID=S0301479720309348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |