Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source

The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditi...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 271; p. 111006
Main Authors Policastro, Grazia, Luongo, Vincenzo, Fabbricino, Massimiliano
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L−1 of hydrogen and 203 mg L−1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L−1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source. •Photofermentation of winery wastewater allows contextual H2 and PHB production.•Use of mixed PNSB cultures is beneficial to contrast the effect of toxic compounds.•Nitrogen source affects photofermentation development pathway.•N-Glutamate enhances both H2 production and PHB concentration.•Inorganic nitrogen enhances PHB accumulation by PNSB.
AbstractList The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L-1 of hydrogen and 203 mg L-1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L-1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source.The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L-1 of hydrogen and 203 mg L-1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L-1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source.
The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L−1 of hydrogen and 203 mg L−1 of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L−1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source. •Photofermentation of winery wastewater allows contextual H2 and PHB production.•Use of mixed PNSB cultures is beneficial to contrast the effect of toxic compounds.•Nitrogen source affects photofermentation development pathway.•N-Glutamate enhances both H2 production and PHB concentration.•Inorganic nitrogen enhances PHB accumulation by PNSB.
The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L⁻¹ of hydrogen and 203 mg L⁻¹ of poly-β-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L⁻¹. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-β-hydroxybutyrate occurred when glutamate was used as the nitrogen source.
ArticleNumber 111006
Author Luongo, Vincenzo
Policastro, Grazia
Fabbricino, Massimiliano
Author_xml – sequence: 1
  givenname: Grazia
  surname: Policastro
  fullname: Policastro, Grazia
  email: grazia.policastro@unina.it
  organization: Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
– sequence: 2
  givenname: Vincenzo
  surname: Luongo
  fullname: Luongo, Vincenzo
  email: vincenzo.luongo@unina.it
  organization: Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples, Italy
– sequence: 3
  givenname: Massimiliano
  surname: Fabbricino
  fullname: Fabbricino, Massimiliano
  email: massimiliano.fabbricino@unina.it
  organization: Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
BookMark eNqFkU1uFDEQhS0UJCaBIyB5yaYH_7Tb3bBAEIUfKRIbWFu2u0w86rEH253Qt-AsHIQz4ZnOis0srJKqvlclv3eJLkIMgNBLSraU0O71bruDcL_XYcsIqz1KCemeoA0lg2j6jpMLtCGc0KaVg3yGLnPeEUI4o3KDfn_w8W4ZU_wBAesw4kOclubvn-bU_LWYuSxJF8CHFMfZFh8DNgt-8AFSLToXeKjjhA93sUQHaQ-h6CP2Bt84B7bg6HCeTS6nNTYGW4l0Qk4Hgy_r9RznZOE5eur0lOHFY71C3z_efLv-3Nx-_fTl-v1tY7kUpRGybx2FzvTcEN5q0vXMubHXRsIIdaKN4YwPtjPgWtdLqWHQTICwYux6wa_Qq3Vv_djPGXJRe58tTJMOEOesmGBtfWSg59GWs16IYZAVFStqU8w5gVOH5Pc6LYoSdQxL7dRjWOoYllrDqrq3_-msX22sVvnprPrdqoZq2L2HpLL1UI0efaoJqDH6Mxv-ATeAu_M
CitedBy_id crossref_primary_10_3390_catal11050547
crossref_primary_10_1007_s11157_021_09575_z
crossref_primary_10_1016_j_jece_2024_114774
crossref_primary_10_1016_j_ijhydene_2024_09_132
crossref_primary_10_1016_j_scitotenv_2020_143729
crossref_primary_10_1016_j_biortech_2021_125595
crossref_primary_10_1016_j_eti_2023_103058
crossref_primary_10_1016_j_scitotenv_2023_168899
crossref_primary_10_3390_w15061110
crossref_primary_10_1016_j_biteb_2024_101823
crossref_primary_10_1016_j_ijhydene_2022_07_063
crossref_primary_10_1149_1945_7111_ad40d6
crossref_primary_10_1016_j_biteb_2024_101945
crossref_primary_10_1007_s11157_021_09597_7
crossref_primary_10_1016_j_ijhydene_2023_04_208
crossref_primary_10_1016_j_jenvman_2021_113371
crossref_primary_10_1016_j_rser_2022_112687
crossref_primary_10_2139_ssrn_3999284
crossref_primary_10_1007_s10311_024_01722_6
crossref_primary_10_3390_fermentation8110620
crossref_primary_10_3934_mbe_2023321
crossref_primary_10_3390_molecules29071679
crossref_primary_10_1007_s40726_025_00343_z
crossref_primary_10_1016_j_clwas_2022_100043
crossref_primary_10_1016_j_ijhydene_2021_10_028
crossref_primary_10_1016_j_fpsl_2025_101454
crossref_primary_10_3390_polym14112141
crossref_primary_10_1007_s12010_020_03428_1
crossref_primary_10_1186_s40643_025_00856_x
crossref_primary_10_3390_ma14113027
crossref_primary_10_1016_j_bej_2022_108715
crossref_primary_10_1016_j_ijhydene_2023_11_179
crossref_primary_10_1002_bab_2292
crossref_primary_10_1007_s40710_023_00657_4
crossref_primary_10_1016_j_biortech_2020_124610
crossref_primary_10_3390_w14010095
crossref_primary_10_1016_j_ijhydene_2024_10_216
crossref_primary_10_1016_j_jenvman_2020_111793
crossref_primary_10_1016_j_fuel_2022_126645
crossref_primary_10_1007_s13399_021_01333_z
crossref_primary_10_1002_clen_202300112
crossref_primary_10_1016_j_biteb_2022_101196
crossref_primary_10_3390_polym16233255
Cites_doi 10.3390/su11123330
10.1016/j.ijhydene.2009.08.040
10.1016/j.biortech.2012.04.011
10.1016/j.ijhydene.2018.11.082
10.1021/acs.jafc.7b04942
10.1099/mic.0.26235-0
10.1016/j.scitotenv.2020.136633
10.1078/0944-5013-00104
10.1016/j.biortech.2016.12.079
10.1016/j.jenvman.2018.11.058
10.1016/j.jhazmat.2014.12.043
10.1016/j.ijhydene.2010.01.126
10.1016/B978-0-444-64203-5.00006-X
10.1007/s12010-018-2812-5
10.1016/j.ijhydene.2013.09.050
10.1016/S0360-3199(00)00027-6
10.1016/j.ijhydene.2009.10.094
10.1016/j.mib.2008.02.007
10.1038/nrmicro1932-c2
10.1016/j.scitotenv.2019.07.051
10.1016/j.copbio.2010.02.012
10.1016/S0378-1097(02)00559-1
10.1016/S0360-3199(03)00110-1
10.1021/bm8013796
10.1016/j.ijhydene.2015.05.067
10.1016/j.biortech.2014.03.065
10.1007/BF00166854
10.1016/j.ijhydene.2011.12.002
10.1016/j.biortech.2013.03.155
10.1016/j.biombioe.2015.07.023
10.1016/j.enconman.2016.09.001
10.1017/S0956792518000165
10.1016/S0005-2728(98)00145-5
10.1016/j.apenergy.2015.01.045
10.1111/j.1365-2672.2009.04314.x
10.1016/j.biortech.2012.01.090
10.1016/j.biortech.2008.01.076
10.1007/s00253-006-0528-x
10.1016/j.biortech.2018.03.128
10.1016/j.biortech.2018.06.099
10.1128/JB.183.10.3050-3054.2001
10.1016/j.ijhydene.2011.09.043
10.3155/1047-3289.60.4.454
10.1016/j.biortech.2018.12.064
10.1016/j.biortech.2016.03.017
10.1016/j.chroma.2005.02.020
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2020.111006
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 10_1016_j_jenvman_2020_111006
S0301479720309348
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
7X8
7S9
L.6
ID FETCH-LOGICAL-c375t-5784f1e6b83b034a0682ffd8ab7edef1eabb3239c6bef4f877ae9a25e5c5d6853
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Fri Jul 11 03:07:45 EDT 2025
Fri Jul 11 14:01:51 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Tue Jul 01 02:39:59 EDT 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Winery wastewater
Biorefinery
PHB
Hydrogen
Mixed PNSB culture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-5784f1e6b83b034a0682ffd8ab7edef1eabb3239c6bef4f877ae9a25e5c5d6853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2432855997
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524252091
proquest_miscellaneous_2432855997
crossref_primary_10_1016_j_jenvman_2020_111006
crossref_citationtrail_10_1016_j_jenvman_2020_111006
elsevier_sciencedirect_doi_10_1016_j_jenvman_2020_111006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of environmental management
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ferraro, Massini, Mazzurco Miritana, Signorini, Race, Fabbricino (bib18) 2019; 691
Luongo, Ghimire, Frunzo, Fabbricino, d'Antonio, Pirozzi, Esposito (bib35) 2017; 228
Oehmen, Keller-Lehmann, Zeng, Yuan, Keller (bib41) 2005; 1070
Kim, Kim, Cha, Lee (bib34) 2012; 116
Oh, Seol, Kim, Park (bib42) 2004; 29
Montiel-Corona, Revah, Morales (bib40) 2015; 40
Yetis, Gündüz, Eroglu, Yücel, Türker (bib56) 2000; 25
Görke, Stülke (bib24) 2008; 6
Deutscher (bib13) 2008; 11
Pontoni, Panico, Matanò, Van Hullebusch, Fabbricino, Esposito, Pirozzi (bib46) 2017; 65
Eroğlu, Gündüz, Yücel, Türker, Eroğlu (bib16) 2004; 29
Özgür, Mars, Peksel, Louwerse, Yücel, Gündüz, Claassen, Eroğlu (bib43) 2010; 35
Crocamo, Di Bernardino, Di Giovanni, Fabbricino, Martins-Dias (bib10) 2015; 81
Cross, Lloyd, Poole, Moir (bib11) 2001; 183
Hari, Duc, Ravindran (bib27) 2019; 45
Yakunin, Hallenbeck (bib55) 1998; 1409
Gouda, Swellam, Omar (bib25) 2001; 156
Sharma, Basu, Shetti, Aminabhavi (bib51) 2020; 713
Costa, Ganzerli, Rugiero, Pellizzari, Pedrini, Tamburini (bib9) 2017; 9
Androga, Özgür, Eroglu, Gündüz, Yücel (bib3) 2011; 36
D'Acunto, Frunzo, Luongo, Mattei (bib12) 2018; 29
Seifert, Waligorska, Laniecki (bib50) 2010; 35
Maharaj, Mattei, Frunzo, Hullebusch, Esposito (bib37) 2019; 276
Waligórska, Seifert, Górecki, Moritz, Łaniecki (bib53) 2009; 107
Hustede, Steinbüchel, Schlegel (bib28) 1993; 39
Ioannou, Puma, Fatta-Kassinos (bib29) 2015; 286
Eroğlu, Eroğlu, Gündüz, Yücel (bib15) 2008; 99
Akköse, Gündüz, Yücel, Eroglu (bib2) 2009; 34
Jiang, Ge, Lin, Zhang, Liu, Hu, Zhang (bib30) 2019
Johnson, Jiang, Kleerebezem, Muyzer, Van Loosdrecht (bib31) 2009; 10
Rupprecht, Hankamer, Mussgnug, Ananyev, Dismukes, Kruse (bib48) 2006; 72
Wu, Liou, Lee (bib54) 2012; 113
Kars, Alparslan (bib32) 2013; 38
McKinlay, Harwood (bib39) 2010; 21
Frunzo, Fermoso, Luongo, Mattei, Esposito (bib19) 2019; 241
Ghimire, Valentino, Frunzo, Pirozzi, Lens, Esposito (bib22) 2016; 217
Sağır (bib49) 2019
Carrillo-Reyes, Albarrán-Contreras, Buitrón (bib7) 2019; 187
Reungsang, Zhong, Yang, Sittijunda, Xia, Liao (bib47) 2018
Ferraro, Dottorini, Massini, Mazzurco Miritana, Signorini, Lembo, Fabbricino (bib17) 2018; 260
Ghosh, Dairkee, Chowdhury, Bhattacharya (bib23) 2017; 141
Khatipov, Miyake, Miyake, Asada (bib33) 1998; 162
Hakobyan, Gabrielyan, Trchounian (bib26) 2019; 44
Luongo, Policastro, Ghimire, Pirozzi, Fabbricino (bib36) 2019; 11
Tawfik, El-Bery, Kumari, Bux (bib52) 2014; 168
Padovani, Pintucci, Carlozzi (bib44) 2013; 138
Ghimire, Frunzo, Pirozzi, Trably, Escudie, Lens, Esposito (bib20) 2015; 144
Adessi, De Philippis (bib1) 2012
Brückner, Titgemeyer (bib5) 2002; 209
Chatzilazarou, Katsoyannos, Gortzi, Lalas, Paraskevopoulos, Dourtoglou, Tsaknis (bib8) 2010; 60
Buitrón, Muñoz-Páez, Quijano, Carrillo-Reyes, Albarrán-Contreras (bib6) 2019
Maharaj, Mattei, Frunzo, van Hullebusch, Esposito (bib38) 2018; 267
Aurand (bib4) 2018
Ghimire, Frunzo, Salzano, Panico, Lens, Pirozzi (bib21) 2015; 43
Pattanamanee, Choorit, Deesan, Sirisansaneeyakul, Chisti (bib45) 2012; 37
Drepper, Groß, Yakunin, Hallenbeck, Masepohl, Klipp (bib14) 2003; 149
Gouda (10.1016/j.jenvman.2020.111006_bib25) 2001; 156
Ghosh (10.1016/j.jenvman.2020.111006_bib23) 2017; 141
Eroğlu (10.1016/j.jenvman.2020.111006_bib15) 2008; 99
Frunzo (10.1016/j.jenvman.2020.111006_bib19) 2019; 241
Akköse (10.1016/j.jenvman.2020.111006_bib2) 2009; 34
Yetis (10.1016/j.jenvman.2020.111006_bib56) 2000; 25
Tawfik (10.1016/j.jenvman.2020.111006_bib52) 2014; 168
Deutscher (10.1016/j.jenvman.2020.111006_bib13) 2008; 11
Maharaj (10.1016/j.jenvman.2020.111006_bib37) 2019; 276
Ghimire (10.1016/j.jenvman.2020.111006_bib20) 2015; 144
Cross (10.1016/j.jenvman.2020.111006_bib11) 2001; 183
Jiang (10.1016/j.jenvman.2020.111006_bib30) 2019
Adessi (10.1016/j.jenvman.2020.111006_bib1) 2012
Androga (10.1016/j.jenvman.2020.111006_bib3) 2011; 36
Sharma (10.1016/j.jenvman.2020.111006_bib51) 2020; 713
Johnson (10.1016/j.jenvman.2020.111006_bib31) 2009; 10
Crocamo (10.1016/j.jenvman.2020.111006_bib10) 2015; 81
Montiel-Corona (10.1016/j.jenvman.2020.111006_bib40) 2015; 40
Pontoni (10.1016/j.jenvman.2020.111006_bib46) 2017; 65
Kim (10.1016/j.jenvman.2020.111006_bib34) 2012; 116
Eroğlu (10.1016/j.jenvman.2020.111006_bib16) 2004; 29
Görke (10.1016/j.jenvman.2020.111006_bib24) 2008; 6
Ferraro (10.1016/j.jenvman.2020.111006_bib17) 2018; 260
Sağır (10.1016/j.jenvman.2020.111006_bib49) 2019
Reungsang (10.1016/j.jenvman.2020.111006_bib47) 2018
Hari (10.1016/j.jenvman.2020.111006_bib27) 2019; 45
Oehmen (10.1016/j.jenvman.2020.111006_bib41) 2005; 1070
Luongo (10.1016/j.jenvman.2020.111006_bib36) 2019; 11
Oh (10.1016/j.jenvman.2020.111006_bib42) 2004; 29
Wu (10.1016/j.jenvman.2020.111006_bib54) 2012; 113
D'Acunto (10.1016/j.jenvman.2020.111006_bib12) 2018; 29
Brückner (10.1016/j.jenvman.2020.111006_bib5) 2002; 209
Ghimire (10.1016/j.jenvman.2020.111006_bib22) 2016; 217
Padovani (10.1016/j.jenvman.2020.111006_bib44) 2013; 138
Seifert (10.1016/j.jenvman.2020.111006_bib50) 2010; 35
Luongo (10.1016/j.jenvman.2020.111006_bib35) 2017; 228
Pattanamanee (10.1016/j.jenvman.2020.111006_bib45) 2012; 37
Buitrón (10.1016/j.jenvman.2020.111006_bib6) 2019
Ioannou (10.1016/j.jenvman.2020.111006_bib29) 2015; 286
Hustede (10.1016/j.jenvman.2020.111006_bib28) 1993; 39
Kars (10.1016/j.jenvman.2020.111006_bib32) 2013; 38
Özgür (10.1016/j.jenvman.2020.111006_bib43) 2010; 35
Chatzilazarou (10.1016/j.jenvman.2020.111006_bib8) 2010; 60
Khatipov (10.1016/j.jenvman.2020.111006_bib33) 1998; 162
Costa (10.1016/j.jenvman.2020.111006_bib9) 2017; 9
Carrillo-Reyes (10.1016/j.jenvman.2020.111006_bib7) 2019; 187
Aurand (10.1016/j.jenvman.2020.111006_bib4) 2018
Waligórska (10.1016/j.jenvman.2020.111006_bib53) 2009; 107
Ghimire (10.1016/j.jenvman.2020.111006_bib21) 2015; 43
Hakobyan (10.1016/j.jenvman.2020.111006_bib26) 2019; 44
McKinlay (10.1016/j.jenvman.2020.111006_bib39) 2010; 21
Rupprecht (10.1016/j.jenvman.2020.111006_bib48) 2006; 72
Yakunin (10.1016/j.jenvman.2020.111006_bib55) 1998; 1409
Ferraro (10.1016/j.jenvman.2020.111006_bib18) 2019; 691
Drepper (10.1016/j.jenvman.2020.111006_bib14) 2003; 149
Maharaj (10.1016/j.jenvman.2020.111006_bib38) 2018; 267
References_xml – start-page: 221
  year: 2018
  end-page: 317
  ident: bib47
  article-title: Hydrogen from photo fermentation
  publication-title: Bioreactors for Microbial Biomass and Energy Conversion
– volume: 11
  start-page: 87
  year: 2008
  end-page: 93
  ident: bib13
  article-title: The mechanisms of carbon catabolite repression in bacteria
  publication-title: Curr. Opin. Microbiol.
– year: 2019
  ident: bib30
  article-title: Continuous photo-fermentative hydrogen production in a tubular photobioreactor using corn stalk pith hydrolysate with a consortium
  publication-title: Int. J. Hydrogen Energy
– volume: 260
  start-page: 364
  year: 2018
  end-page: 373
  ident: bib17
  article-title: Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw
  publication-title: Bioresour. Technol.
– volume: 162
  start-page: 39
  year: 1998
  end-page: 45
  ident: bib33
  article-title: Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates
  publication-title: FEMS Microbiol. Lett.
– year: 2019
  ident: bib6
  article-title: Biohydrogen production from winery effluents: control of the homoacetogenesis through the headspace gas recirculation
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 267
  start-page: 666
  year: 2018
  end-page: 676
  ident: bib38
  article-title: ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes
  publication-title: Bioresour. Technol.
– volume: 209
  start-page: 141
  year: 2002
  end-page: 148
  ident: bib5
  article-title: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization
  publication-title: FEMS Microbiol. Lett.
– volume: 29
  start-page: 163
  year: 2004
  end-page: 171
  ident: bib16
  article-title: Photobiological hydrogen production by using olive mill wastewater as a sole substrate source
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 15583
  year: 2011
  end-page: 15594
  ident: bib3
  article-title: Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 72
  start-page: 442
  year: 2006
  end-page: 449
  ident: bib48
  article-title: Perspectives and advances of biological H2 production in microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
– start-page: 141
  year: 2019
  end-page: 157
  ident: bib49
  article-title: Photofermentative hydrogen production
  publication-title: Biohydrogen
– volume: 99
  start-page: 6799
  year: 2008
  end-page: 6808
  ident: bib15
  article-title: Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 9096
  year: 2015
  end-page: 9105
  ident: bib40
  article-title: Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 14488
  year: 2013
  end-page: 14494
  ident: bib32
  article-title: Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept
  publication-title: Int. J. Hydrogen Energy
– volume: 1070
  start-page: 131
  year: 2005
  end-page: 136
  ident: bib41
  article-title: Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems
  publication-title: J. Chromatogr. A
– volume: 10
  start-page: 670
  year: 2009
  end-page: 676
  ident: bib31
  article-title: Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity
  publication-title: Biomacromolecules
– volume: 39
  start-page: 87
  year: 1993
  end-page: 93
  ident: bib28
  article-title: Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 65
  start-page: 10666
  year: 2017
  end-page: 10672
  ident: bib46
  article-title: Modified sample preparation approach for the determination of the phenolic and humic-like substances in natural organic materials by the Folin Ciocalteu method
  publication-title: J. Agric. Food Chem.
– volume: 144
  start-page: 73
  year: 2015
  end-page: 95
  ident: bib20
  article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
  publication-title: Appl. Energy
– volume: 113
  start-page: 44
  year: 2012
  end-page: 50
  ident: bib54
  article-title: Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 674
  year: 2019
  end-page: 679
  ident: bib26
  article-title: Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: mixed vs. sole carbon sources enhance bacterial growth and H2 production
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 1079
  year: 2018
  end-page: 1109
  ident: bib12
  article-title: Invasion moving boundary problem for a biofilm reactor model
  publication-title: Eur. J. Appl. Math.
– volume: 25
  start-page: 1035
  year: 2000
  end-page: 1041
  ident: bib56
  article-title: Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001
  publication-title: Int. J. Hydrogen Energy
– volume: 276
  start-page: 253
  year: 2019
  end-page: 259
  ident: bib37
  article-title: ADM1 based mathematical model of trace element complexation in anaerobic digestion processes
  publication-title: Bioresour. Technol.
– volume: 29
  start-page: 1115
  year: 2004
  end-page: 1121
  ident: bib42
  article-title: Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4
  publication-title: Int. J. Hydrogen Energy
– volume: 1409
  start-page: 39
  year: 1998
  end-page: 49
  ident: bib55
  article-title: Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 168
  start-page: 119
  year: 2014
  end-page: 126
  ident: bib52
  article-title: Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent
  publication-title: Bioresour. Technol.
– volume: 691
  start-page: 885
  year: 2019
  end-page: 895
  ident: bib18
  article-title: A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bib4
  article-title: State of the Viticulture Global Market
– volume: 6
  start-page: 954
  year: 2008
  ident: bib24
  article-title: Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon? Reply from Görke and Stülke
  publication-title: Nat. Rev. Microbiol.
– volume: 35
  start-page: 511
  year: 2010
  end-page: 517
  ident: bib43
  article-title: Biohydrogen production from beet molasses by sequential dark and photofermentation
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 5840
  year: 2019
  end-page: 5853
  ident: bib27
  article-title: ScienceDirect Simultaneous biohydrogen ( H 2 ) and bioplastic ( poly- b -hydroxybutyrate-PHB ) productions under dark , photo , and subsequent dark and photo fermentation utilizing various wastes
  publication-title: Int. J. Hydrogen Energy
– volume: 713
  start-page: 136633
  year: 2020
  ident: bib51
  article-title: Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy
  publication-title: Sci. Total Environ.
– volume: 286
  start-page: 343
  year: 2015
  end-page: 368
  ident: bib29
  article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review
  publication-title: J. Hazard Mater.
– volume: 43
  start-page: 391
  year: 2015
  end-page: 396
  ident: bib21
  article-title: Biomass enrichment and scale-up implications for dark fermentation hydrogen production with mixed cultures
  publication-title: Chem. Eng. Trans.
– volume: 34
  start-page: 8818
  year: 2009
  end-page: 8827
  ident: bib2
  article-title: Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001
  publication-title: Int. J. Hydrogen Energy
– volume: 116
  start-page: 179
  year: 2012
  end-page: 183
  ident: bib34
  article-title: Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131
  publication-title: Bioresour. Technol.
– volume: 138
  start-page: 172
  year: 2013
  end-page: 179
  ident: bib44
  article-title: Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production
  publication-title: Bioresour. Technol.
– volume: 217
  start-page: 157
  year: 2016
  end-page: 164
  ident: bib22
  article-title: Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures
  publication-title: Bioresour. Technol.
– start-page: 53
  year: 2012
  end-page: 75
  ident: bib1
  article-title: Hydrogen production: photofermentation
  publication-title: Microbial Technologies in Advanced Biofuels Production
– volume: 37
  start-page: 4077
  year: 2012
  end-page: 4087
  ident: bib45
  article-title: Photofermentive production of biohydrogen from oil palm waste hydrolysate
  publication-title: Int. J. Hydrogen Energy
– volume: 183
  start-page: 3050
  year: 2001
  end-page: 3054
  ident: bib11
  article-title: Enzymatic removal of nitric oxide catalyzed by cytochrome c′ in Rhodobacter capsulatus
  publication-title: J. Bacteriol.
– volume: 21
  start-page: 244
  year: 2010
  end-page: 251
  ident: bib39
  article-title: Photobiological production of hydrogen gas as a biofuel
  publication-title: Curr. Opin. Biotechnol.
– volume: 81
  start-page: 288
  year: 2015
  end-page: 293
  ident: bib10
  article-title: An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides
  publication-title: Biomass Bioenergy
– volume: 11
  start-page: 3330
  year: 2019
  ident: bib36
  article-title: Repeated-batch fermentation of cheese whey for semi-continuous lactic acid production using mixed cultures at uncontrolled pH
  publication-title: Sustainability
– volume: 241
  start-page: 587
  year: 2019
  end-page: 602
  ident: bib19
  article-title: ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes
  publication-title: J. Environ. Manag.
– volume: 107
  start-page: 1308
  year: 2009
  end-page: 1318
  ident: bib53
  article-title: Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions
  publication-title: J. Appl. Microbiol.
– volume: 9
  year: 2017
  ident: bib9
  article-title: Potential of Rhodobacter capsulatus grown in anaerobic-light or aerobic-dark conditions as bioremediation agent for biological wastewater treatments
  publication-title: Water (Switzerland)
– volume: 156
  start-page: 201
  year: 2001
  end-page: 207
  ident: bib25
  article-title: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources
  publication-title: Microbiol. Res.
– volume: 228
  start-page: 171
  year: 2017
  end-page: 175
  ident: bib35
  article-title: Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products
  publication-title: Bioresour. Technol.
– volume: 187
  start-page: 140
  year: 2019
  end-page: 151
  ident: bib7
  article-title: Influence of added nutrients and substrate concentration in biohydrogen production from winery wastewaters coupled to methane production
  publication-title: Appl. Biochem. Biotechnol.
– volume: 149
  start-page: 2203
  year: 2003
  end-page: 2212
  ident: bib14
  article-title: Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus
  publication-title: Microbiology
– volume: 141
  start-page: 299
  year: 2017
  end-page: 314
  ident: bib23
  article-title: Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – a review
  publication-title: Energy Convers. Manag.
– volume: 35
  start-page: 4085
  year: 2010
  end-page: 4091
  ident: bib50
  article-title: Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001
  publication-title: Int. J. Hydrogen Energy
– volume: 60
  start-page: 454
  year: 2010
  end-page: 459
  ident: bib8
  article-title: Removal of polyphenols from wine sludge using cloud point extraction
  publication-title: J. Air Waste Manag. Assoc.
– volume: 11
  start-page: 3330
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib36
  article-title: Repeated-batch fermentation of cheese whey for semi-continuous lactic acid production using mixed cultures at uncontrolled pH
  publication-title: Sustainability
  doi: 10.3390/su11123330
– volume: 34
  start-page: 8818
  year: 2009
  ident: 10.1016/j.jenvman.2020.111006_bib2
  article-title: Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.040
– volume: 116
  start-page: 179
  year: 2012
  ident: 10.1016/j.jenvman.2020.111006_bib34
  article-title: Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.011
– volume: 44
  start-page: 674
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib26
  article-title: Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: mixed vs. sole carbon sources enhance bacterial growth and H2 production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.082
– volume: 65
  start-page: 10666
  year: 2017
  ident: 10.1016/j.jenvman.2020.111006_bib46
  article-title: Modified sample preparation approach for the determination of the phenolic and humic-like substances in natural organic materials by the Folin Ciocalteu method
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04942
– volume: 149
  start-page: 2203
  year: 2003
  ident: 10.1016/j.jenvman.2020.111006_bib14
  article-title: Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus
  publication-title: Microbiology
  doi: 10.1099/mic.0.26235-0
– volume: 713
  start-page: 136633
  year: 2020
  ident: 10.1016/j.jenvman.2020.111006_bib51
  article-title: Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136633
– volume: 156
  start-page: 201
  year: 2001
  ident: 10.1016/j.jenvman.2020.111006_bib25
  article-title: Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources
  publication-title: Microbiol. Res.
  doi: 10.1078/0944-5013-00104
– volume: 228
  start-page: 171
  year: 2017
  ident: 10.1016/j.jenvman.2020.111006_bib35
  article-title: Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.12.079
– volume: 241
  start-page: 587
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib19
  article-title: ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.11.058
– volume: 286
  start-page: 343
  year: 2015
  ident: 10.1016/j.jenvman.2020.111006_bib29
  article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2014.12.043
– volume: 35
  start-page: 4085
  year: 2010
  ident: 10.1016/j.jenvman.2020.111006_bib50
  article-title: Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.126
– start-page: 141
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib49
  article-title: Photofermentative hydrogen production
  publication-title: Biohydrogen
  doi: 10.1016/B978-0-444-64203-5.00006-X
– volume: 187
  start-page: 140
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib7
  article-title: Influence of added nutrients and substrate concentration in biohydrogen production from winery wastewaters coupled to methane production
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-018-2812-5
– volume: 38
  start-page: 14488
  year: 2013
  ident: 10.1016/j.jenvman.2020.111006_bib32
  article-title: Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.050
– volume: 25
  start-page: 1035
  year: 2000
  ident: 10.1016/j.jenvman.2020.111006_bib56
  article-title: Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(00)00027-6
– volume: 35
  start-page: 511
  year: 2010
  ident: 10.1016/j.jenvman.2020.111006_bib43
  article-title: Biohydrogen production from beet molasses by sequential dark and photofermentation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.10.094
– volume: 29
  start-page: 1115
  year: 2004
  ident: 10.1016/j.jenvman.2020.111006_bib42
  article-title: Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 87
  year: 2008
  ident: 10.1016/j.jenvman.2020.111006_bib13
  article-title: The mechanisms of carbon catabolite repression in bacteria
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2008.02.007
– start-page: 221
  year: 2018
  ident: 10.1016/j.jenvman.2020.111006_bib47
  article-title: Hydrogen from photo fermentation
– volume: 6
  start-page: 954
  year: 2008
  ident: 10.1016/j.jenvman.2020.111006_bib24
  article-title: Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon? Reply from Görke and Stülke
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1932-c2
– volume: 691
  start-page: 885
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib18
  article-title: A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.051
– start-page: 53
  year: 2012
  ident: 10.1016/j.jenvman.2020.111006_bib1
  article-title: Hydrogen production: photofermentation
– year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib6
  article-title: Biohydrogen production from winery effluents: control of the homoacetogenesis through the headspace gas recirculation
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 21
  start-page: 244
  year: 2010
  ident: 10.1016/j.jenvman.2020.111006_bib39
  article-title: Photobiological production of hydrogen gas as a biofuel
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.02.012
– volume: 162
  start-page: 39
  year: 1998
  ident: 10.1016/j.jenvman.2020.111006_bib33
  article-title: Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates
  publication-title: FEMS Microbiol. Lett.
– volume: 209
  start-page: 141
  year: 2002
  ident: 10.1016/j.jenvman.2020.111006_bib5
  article-title: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(02)00559-1
– volume: 29
  start-page: 163
  year: 2004
  ident: 10.1016/j.jenvman.2020.111006_bib16
  article-title: Photobiological hydrogen production by using olive mill wastewater as a sole substrate source
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00110-1
– volume: 10
  start-page: 670
  year: 2009
  ident: 10.1016/j.jenvman.2020.111006_bib31
  article-title: Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity
  publication-title: Biomacromolecules
  doi: 10.1021/bm8013796
– volume: 40
  start-page: 9096
  year: 2015
  ident: 10.1016/j.jenvman.2020.111006_bib40
  article-title: Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.05.067
– volume: 168
  start-page: 119
  year: 2014
  ident: 10.1016/j.jenvman.2020.111006_bib52
  article-title: Use of mixed culture bacteria for photofermentive hydrogen of dark fermentation effluent
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.065
– year: 2018
  ident: 10.1016/j.jenvman.2020.111006_bib4
– volume: 9
  year: 2017
  ident: 10.1016/j.jenvman.2020.111006_bib9
  article-title: Potential of Rhodobacter capsulatus grown in anaerobic-light or aerobic-dark conditions as bioremediation agent for biological wastewater treatments
  publication-title: Water (Switzerland)
– volume: 39
  start-page: 87
  year: 1993
  ident: 10.1016/j.jenvman.2020.111006_bib28
  article-title: Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00166854
– volume: 37
  start-page: 4077
  year: 2012
  ident: 10.1016/j.jenvman.2020.111006_bib45
  article-title: Photofermentive production of biohydrogen from oil palm waste hydrolysate
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.12.002
– volume: 138
  start-page: 172
  year: 2013
  ident: 10.1016/j.jenvman.2020.111006_bib44
  article-title: Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.155
– volume: 81
  start-page: 288
  year: 2015
  ident: 10.1016/j.jenvman.2020.111006_bib10
  article-title: An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2015.07.023
– volume: 141
  start-page: 299
  year: 2017
  ident: 10.1016/j.jenvman.2020.111006_bib23
  article-title: Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – a review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.09.001
– volume: 29
  start-page: 1079
  year: 2018
  ident: 10.1016/j.jenvman.2020.111006_bib12
  article-title: Invasion moving boundary problem for a biofilm reactor model
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792518000165
– volume: 1409
  start-page: 39
  year: 1998
  ident: 10.1016/j.jenvman.2020.111006_bib55
  article-title: Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/S0005-2728(98)00145-5
– volume: 144
  start-page: 73
  year: 2015
  ident: 10.1016/j.jenvman.2020.111006_bib20
  article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.045
– volume: 107
  start-page: 1308
  year: 2009
  ident: 10.1016/j.jenvman.2020.111006_bib53
  article-title: Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2009.04314.x
– volume: 113
  start-page: 44
  year: 2012
  ident: 10.1016/j.jenvman.2020.111006_bib54
  article-title: Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.090
– year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib30
  article-title: Continuous photo-fermentative hydrogen production in a tubular photobioreactor using corn stalk pith hydrolysate with a consortium
  publication-title: Int. J. Hydrogen Energy
– volume: 99
  start-page: 6799
  year: 2008
  ident: 10.1016/j.jenvman.2020.111006_bib15
  article-title: Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.01.076
– volume: 45
  start-page: 5840
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib27
  article-title: ScienceDirect Simultaneous biohydrogen ( H 2 ) and bioplastic ( poly- b -hydroxybutyrate-PHB ) productions under dark , photo , and subsequent dark and photo fermentation utilizing various wastes
  publication-title: Int. J. Hydrogen Energy
– volume: 72
  start-page: 442
  year: 2006
  ident: 10.1016/j.jenvman.2020.111006_bib48
  article-title: Perspectives and advances of biological H2 production in microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0528-x
– volume: 260
  start-page: 364
  year: 2018
  ident: 10.1016/j.jenvman.2020.111006_bib17
  article-title: Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.03.128
– volume: 267
  start-page: 666
  year: 2018
  ident: 10.1016/j.jenvman.2020.111006_bib38
  article-title: ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.06.099
– volume: 183
  start-page: 3050
  year: 2001
  ident: 10.1016/j.jenvman.2020.111006_bib11
  article-title: Enzymatic removal of nitric oxide catalyzed by cytochrome c′ in Rhodobacter capsulatus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.10.3050-3054.2001
– volume: 43
  start-page: 391
  year: 2015
  ident: 10.1016/j.jenvman.2020.111006_bib21
  article-title: Biomass enrichment and scale-up implications for dark fermentation hydrogen production with mixed cultures
  publication-title: Chem. Eng. Trans.
– volume: 36
  start-page: 15583
  year: 2011
  ident: 10.1016/j.jenvman.2020.111006_bib3
  article-title: Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.043
– volume: 60
  start-page: 454
  year: 2010
  ident: 10.1016/j.jenvman.2020.111006_bib8
  article-title: Removal of polyphenols from wine sludge using cloud point extraction
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.3155/1047-3289.60.4.454
– volume: 276
  start-page: 253
  year: 2019
  ident: 10.1016/j.jenvman.2020.111006_bib37
  article-title: ADM1 based mathematical model of trace element complexation in anaerobic digestion processes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.12.064
– volume: 217
  start-page: 157
  year: 2016
  ident: 10.1016/j.jenvman.2020.111006_bib22
  article-title: Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.017
– volume: 1070
  start-page: 131
  year: 2005
  ident: 10.1016/j.jenvman.2020.111006_bib41
  article-title: Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.02.020
SSID ssj0003217
Score 2.5119607
Snippet The applicability and convenience of biohydrogen and poly-β-hydroxybutyrate production through single-stage photofermentation of winery wastewater is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111006
SubjectTerms biochemical pathways
biohydrogen
Biorefinery
chemical oxygen demand
environmental management
glutamic acid
Hydrogen
hydrogen production
Mixed PNSB culture
nitrogen
PHB
phenolic compounds
wastewater
Winery wastewater
Title Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source
URI https://dx.doi.org/10.1016/j.jenvman.2020.111006
https://www.proquest.com/docview/2432855997
https://www.proquest.com/docview/2524252091
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoALgkJF-amMxNW7WduJE26larWA6AUq9WbZia3uqiRRkwVy4Rl4Fh6EZ2ImdliBEJU4RUls2fKMxzO2v28IeQGLtvVcGJYl1jHwbxfM2jRjeZkoY7LU2AqBwu_OsuW5fHORXuyQ4wkLg9cqo-0PNn201vHLPI7mvF2t5u_HaEAVeI4IYblEwK-UCrV89nV7zUPwMesuFsZdJLVF8czXs7WrP300SIPKR-ORYOKjv69Pf1jqcfk5vUfuRr-RHoWu3Sc7rt4jtydYcbdH9k-2kDUoGOds94B8e7VqLofqugFVoaauaNtcDezHdzZ-_DLYTT8gXwRtA_krCIragX5GVCA8TIfbazD6tL1s-saDJY9wpfolDdzHtPG0AwM0Et3SEoGQdWTjHRsEqxFaDycFD8n56cmH4yWLeRhYKVTaM5jU0i9cZnNhEyFNkuXc-yo3VrnKwR9jreCiKDPrvPS5UsYVhqcuLdMqA39gn-zWTe0eESrcQpnKFD6xEJiXi8I64yHisQWvijwzB0ROo6_LSFKOuTKu9HQbba2j0DQKTQehHZDZr2ptYOm4qUI-iVb_pm4aVpKbqj6fVEHDVMTzFVO7ZtNpLgXPkcFN_aNMijEeBy_t8f934Qm5g2_hTuFTsttfb9wz8I16ezgq_yG5dfT67fLsJ84gFhc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKOZQLgkJF-TUSV-9m7cROuEHVaoG2F1qpN8tObHVXbRI1WdpceAaehQfhmRj_hBUIUYlTJMeWLY_nz575BqE3oLS1pUwRnmhDwL6dEa0zTvIyEUrxTOnKJQofHfP5afrxLDvbQHtjLowLq4yyP8h0L61jyzTu5rRdLKafvTcgCveOCG55mt9Bd1NgX1fGYPJ1HefBqC-763q7aySxTuOZLidLU3-5VA4HlXrpkbjKR39XUH-Iaq9_Dh6g-9FwxO_C2h6iDVNvo60xr7jbRjv765w16BiZtnuEvr1fNOdDddXAWcGqrnDbXAzkx3fiG28GveoHBxiB24D-CpTCesDXLi0QPqpz92uw_bg9b_rGgiiP-Ur1WxzAj3FjcQcSyCPd4tJlQtYRjtdPCGIjzB6eCh6j04P9k705iYUYSMlE1hPg6tTODNc50wlLVcJzam2VKy1MZeCP0ppRVpRcG5vaXAhlCkUzk5VZxcEg2EGbdVObJwgzMxOqUoVNNHjm5azQRllweXRBqyLnahel4-7LMqKUu2IZF3IMR1vKSDTpiCYD0XbR5NewNsB03DYgH0krfztvElTJbUNfj0dBAi-6BxZVm2bVSZoymjsIN_GPPplz8iiYaU__fwmv0Nb85OhQHn44_vQM3XN_QoDhc7TZX63MCzCUev3SM8JP-dEXpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biohydrogen+and+poly-%CE%B2-hydroxybutyrate+production+by+winery+wastewater+photofermentation%3A+Effect+of+substrate+concentration+and+nitrogen+source&rft.jtitle=Journal+of+environmental+management&rft.au=Policastro%2C+Grazia&rft.au=Luongo%2C+Vincenzo&rft.au=Fabbricino%2C+Massimiliano&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=271&rft_id=info:doi/10.1016%2Fj.jenvman.2020.111006&rft.externalDocID=S0301479720309348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon