Intrinsic Effects of Gold Nanoparticles on Oxygen–Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons

This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to...

Full description

Saved in:
Bibliographic Details
Published inNeurochemical research Vol. 44; no. 7; pp. 1549 - 1566
Main Authors Zheng, Yafei, Wu, Yuyun, Liu, Ying, Guo, Zhirui, Bai, Tingting, Zhou, Ping, Wu, Jin, Yang, Qin, Liu, Zhengxia, Lu, Xiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-019-02776-7