Green synthesis and studies on citrus medica leaf extract-mediated Au–ZnO nanocomposites: A sustainable approach for efficient photocatalytic degradation of rhodamine B dye in aqueous media

Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible wavelengths. In this study, the photocatalytic degradation of rhodamine B (RhB) dye was studied as a model for environmental pollution in aque...

Full description

Saved in:
Bibliographic Details
Published inGreen processing and synthesis Vol. 13; no. 1; pp. 85 - 53
Main Authors Ibrahim, Tiba, Ali, Luma Hakim, Muslim, Wisam Aqeel, Salem, Karrar Hazim, Mohammed, Kahtan A., Zabibah, Rahman S., Alkhafaji, Mohammed Ayad, Khudair, Zahraa Falah, Sharma, Shubham, Makki, Emad, Abbas, Mohamed
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 15.05.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible wavelengths. In this study, the photocatalytic degradation of rhodamine B (RhB) dye was studied as a model for environmental pollution in aqueous media. This study describes the use of photodegradation catalysts, including gold (Au), ZnO, and Au–ZnO nanocomposites (prepared in ratios of 90:10 and 95:5) using the extract of Citrus medica leaves. X-ray diffraction (XRD) findings have shown that ZnO nanoparticles (NPs) have a hexagonal wurtzite structure. Field emission-scanning electron microscopy findings have depicted that ZnO NPs have diverse shapes, including spherical, quasi-spherical, hexagonal, and anisotropic, with some clumping. Au exhibits consistent spherical shapes and sizes with even distribution. Au–ZnO (90:10) shows quasi-spherical NPs with interconnected spherical Au, forming a porous and uneven surface. Au–ZnO (95:5) has spherical gold nanoparticles (Au NPs) dispersed on a textured ZnO surface, with some clustering and size variation as evident from the transmission electron microscopy, atomic force microscopy, and diffuse reflectance UV-visible spectroscopy analysis. The characterization results have demonstrated the uniform distribution of Au across the ZnO lattice. Additionally, the XRD patterns confirmed the hexagonal wurtzite structure of ZnO. Furthermore, energy-dispersive analysis of X-ray (EDX)-mapping verified the inclusion of zinc, oxygen, and Au in the hybrid Au–ZnO nanocomposites and their effective distribution. The topological analysis revealed a rough surface for the generated nanostructures. By comparing the results of various techniques, EDX analysis using atomic and weight ratios confirmed the presence of oxygen and Au in the nanocomposite. Additionally, the surface area analysis (BET) test has reported that the adsorption and desorption of nitrogen follow a Type III isotherm. The presence of an H3-type hysteresis loop further confirms the mesoporous nature of the composites, which reports the presence of wedge-shaped pores. The Au–ZnO (90:10) nanocomposite exhibits a higher surface roughness compared to other composites. In addition, this UV-visible diffuse reflectance spectroscopy has enumerated the band gaps of various nanomaterials using UV-visible spectroscopy. Moreover, the analysis has unveiled that combining ZnO with Au NPs (doping) improved the photocatalytic performance of ZnO. This improvement is attributed to the formation of additional energy levels within the ZnO band gap due to the presence of Au ions. Experimental investigation of the breakdown of RhB dye under visible light irradiation revealed superior photocatalytic activity for the Au–ZnO (90:10) nanocomposite compared to both Au–ZnO (95:5) and pure ZnO and Au counterparts. Multiple experiments confirmed the effective photodegradation and removal of RhB dye from the aqueous medium using the nanocatalyst under visible light irradiation. Under optimal conditions (1.0 g·L photocatalyst, 10 ppm RhB, and pH 10), 99% photodegradation efficiency was reached within 50 min of irradiation. Investigation of reactive species revealed that the increased effectiveness of photodegradation in Au–ZnO (90:10) stems from the presence of photogenerated holes and hydroxyl radicals. The study also analyzed the reaction kinetics and order, and the reusability of the best photocatalyst Au–ZnO (90:10)) was confirmed through five consecutive cycles, demonstrating its sustained effectiveness in photodegradation. These findings highlight the potential of Au–ZnO (90:10) nanocomposite as a promising material for photocatalytic degradation of organic dyes.
AbstractList Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible wavelengths. In this study, the photocatalytic degradation of rhodamine B (RhB) dye was studied as a model for environmental pollution in aqueous media. This study describes the use of photodegradation catalysts, including gold (Au), ZnO, and Au–ZnO nanocomposites (prepared in ratios of 90:10 and 95:5) using the extract of Citrus medica leaves. X-ray diffraction (XRD) findings have shown that ZnO nanoparticles (NPs) have a hexagonal wurtzite structure. Field emission-scanning electron microscopy findings have depicted that ZnO NPs have diverse shapes, including spherical, quasi-spherical, hexagonal, and anisotropic, with some clumping. Au exhibits consistent spherical shapes and sizes with even distribution. Au–ZnO (90:10) shows quasi-spherical NPs with interconnected spherical Au, forming a porous and uneven surface. Au–ZnO (95:5) has spherical gold nanoparticles (Au NPs) dispersed on a textured ZnO surface, with some clustering and size variation as evident from the transmission electron microscopy, atomic force microscopy, and diffuse reflectance UV-visible spectroscopy analysis. The characterization results have demonstrated the uniform distribution of Au across the ZnO lattice. Additionally, the XRD patterns confirmed the hexagonal wurtzite structure of ZnO. Furthermore, energy-dispersive analysis of X-ray (EDX)-mapping verified the inclusion of zinc, oxygen, and Au in the hybrid Au–ZnO nanocomposites and their effective distribution. The topological analysis revealed a rough surface for the generated nanostructures. By comparing the results of various techniques, EDX analysis using atomic and weight ratios confirmed the presence of oxygen and Au in the nanocomposite. Additionally, the surface area analysis (BET) test has reported that the adsorption and desorption of nitrogen follow a Type III isotherm. The presence of an H3-type hysteresis loop further confirms the mesoporous nature of the composites, which reports the presence of wedge-shaped pores. The Au–ZnO (90:10) nanocomposite exhibits a higher surface roughness compared to other composites. In addition, this UV-visible diffuse reflectance spectroscopy has enumerated the band gaps of various nanomaterials using UV-visible spectroscopy. Moreover, the analysis has unveiled that combining ZnO with Au NPs (doping) improved the photocatalytic performance of ZnO. This improvement is attributed to the formation of additional energy levels within the ZnO band gap due to the presence of Au ions. Experimental investigation of the breakdown of RhB dye under visible light irradiation revealed superior photocatalytic activity for the Au–ZnO (90:10) nanocomposite compared to both Au–ZnO (95:5) and pure ZnO and Au counterparts. Multiple experiments confirmed the effective photodegradation and removal of RhB dye from the aqueous medium using the nanocatalyst under visible light irradiation. Under optimal conditions (1.0 g·L photocatalyst, 10 ppm RhB, and pH 10), 99% photodegradation efficiency was reached within 50 min of irradiation. Investigation of reactive species revealed that the increased effectiveness of photodegradation in Au–ZnO (90:10) stems from the presence of photogenerated holes and hydroxyl radicals. The study also analyzed the reaction kinetics and order, and the reusability of the best photocatalyst Au–ZnO (90:10)) was confirmed through five consecutive cycles, demonstrating its sustained effectiveness in photodegradation. These findings highlight the potential of Au–ZnO (90:10) nanocomposite as a promising material for photocatalytic degradation of organic dyes.
Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible wavelengths. In this study, the photocatalytic degradation of rhodamine B (RhB) dye was studied as a model for environmental pollution in aqueous media. This study describes the use of photodegradation catalysts, including gold (Au), ZnO, and Au–ZnO nanocomposites (prepared in ratios of 90:10 and 95:5) using the extract of Citrus medica leaves. X-ray diffraction (XRD) findings have shown that ZnO nanoparticles (NPs) have a hexagonal wurtzite structure. Field emission-scanning electron microscopy findings have depicted that ZnO NPs have diverse shapes, including spherical, quasi-spherical, hexagonal, and anisotropic, with some clumping. Au exhibits consistent spherical shapes and sizes with even distribution. Au–ZnO (90:10) shows quasi-spherical NPs with interconnected spherical Au, forming a porous and uneven surface. Au–ZnO (95:5) has spherical gold nanoparticles (Au NPs) dispersed on a textured ZnO surface, with some clustering and size variation as evident from the transmission electron microscopy, atomic force microscopy, and diffuse reflectance UV-visible spectroscopy analysis. The characterization results have demonstrated the uniform distribution of Au across the ZnO lattice. Additionally, the XRD patterns confirmed the hexagonal wurtzite structure of ZnO. Furthermore, energy-dispersive analysis of X-ray (EDX)-mapping verified the inclusion of zinc, oxygen, and Au in the hybrid Au–ZnO nanocomposites and their effective distribution. The topological analysis revealed a rough surface for the generated nanostructures. By comparing the results of various techniques, EDX analysis using atomic and weight ratios confirmed the presence of oxygen and Au in the nanocomposite. Additionally, the surface area analysis (BET) test has reported that the adsorption and desorption of nitrogen follow a Type III isotherm. The presence of an H3-type hysteresis loop further confirms the mesoporous nature of the composites, which reports the presence of wedge-shaped pores. The Au–ZnO (90:10) nanocomposite exhibits a higher surface roughness compared to other composites. In addition, this UV-visible diffuse reflectance spectroscopy has enumerated the band gaps of various nanomaterials using UV-visible spectroscopy. Moreover, the analysis has unveiled that combining ZnO with Au NPs (doping) improved the photocatalytic performance of ZnO. This improvement is attributed to the formation of additional energy levels within the ZnO band gap due to the presence of Au ions. Experimental investigation of the breakdown of RhB dye under visible light irradiation revealed superior photocatalytic activity for the Au–ZnO (90:10) nanocomposite compared to both Au–ZnO (95:5) and pure ZnO and Au counterparts. Multiple experiments confirmed the effective photodegradation and removal of RhB dye from the aqueous medium using the nanocatalyst under visible light irradiation. Under optimal conditions (1.0 g·L−1 photocatalyst, 10 ppm RhB, and pH 10), 99% photodegradation efficiency was reached within 50 min of irradiation. Investigation of reactive species revealed that the increased effectiveness of photodegradation in Au–ZnO (90:10) stems from the presence of photogenerated holes and hydroxyl radicals. The study also analyzed the reaction kinetics and order, and the reusability of the best photocatalyst Au–ZnO (90:10)) was confirmed through five consecutive cycles, demonstrating its sustained effectiveness in photodegradation. These findings highlight the potential of Au–ZnO (90:10) nanocomposite as a promising material for photocatalytic degradation of organic dyes.
Abstract Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible wavelengths. In this study, the photocatalytic degradation of rhodamine B (RhB) dye was studied as a model for environmental pollution in aqueous media. This study describes the use of photodegradation catalysts, including gold (Au), ZnO, and Au–ZnO nanocomposites (prepared in ratios of 90:10 and 95:5) using the extract of Citrus medica leaves. X-ray diffraction (XRD) findings have shown that ZnO nanoparticles (NPs) have a hexagonal wurtzite structure. Field emission-scanning electron microscopy findings have depicted that ZnO NPs have diverse shapes, including spherical, quasi-spherical, hexagonal, and anisotropic, with some clumping. Au exhibits consistent spherical shapes and sizes with even distribution. Au–ZnO (90:10) shows quasi-spherical NPs with interconnected spherical Au, forming a porous and uneven surface. Au–ZnO (95:5) has spherical gold nanoparticles (Au NPs) dispersed on a textured ZnO surface, with some clustering and size variation as evident from the transmission electron microscopy, atomic force microscopy, and diffuse reflectance UV-visible spectroscopy analysis. The characterization results have demonstrated the uniform distribution of Au across the ZnO lattice. Additionally, the XRD patterns confirmed the hexagonal wurtzite structure of ZnO. Furthermore, energy-dispersive analysis of X-ray (EDX)-mapping verified the inclusion of zinc, oxygen, and Au in the hybrid Au–ZnO nanocomposites and their effective distribution. The topological analysis revealed a rough surface for the generated nanostructures. By comparing the results of various techniques, EDX analysis using atomic and weight ratios confirmed the presence of oxygen and Au in the nanocomposite. Additionally, the surface area analysis (BET) test has reported that the adsorption and desorption of nitrogen follow a Type III isotherm. The presence of an H3-type hysteresis loop further confirms the mesoporous nature of the composites, which reports the presence of wedge-shaped pores. The Au–ZnO (90:10) nanocomposite exhibits a higher surface roughness compared to other composites. In addition, this UV-visible diffuse reflectance spectroscopy has enumerated the band gaps of various nanomaterials using UV-visible spectroscopy. Moreover, the analysis has unveiled that combining ZnO with Au NPs (doping) improved the photocatalytic performance of ZnO. This improvement is attributed to the formation of additional energy levels within the ZnO band gap due to the presence of Au ions. Experimental investigation of the breakdown of RhB dye under visible light irradiation revealed superior photocatalytic activity for the Au–ZnO (90:10) nanocomposite compared to both Au–ZnO (95:5) and pure ZnO and Au counterparts. Multiple experiments confirmed the effective photodegradation and removal of RhB dye from the aqueous medium using the nanocatalyst under visible light irradiation. Under optimal conditions (1.0 g·L −1 photocatalyst, 10 ppm RhB, and pH 10), 99% photodegradation efficiency was reached within 50 min of irradiation. Investigation of reactive species revealed that the increased effectiveness of photodegradation in Au–ZnO (90:10) stems from the presence of photogenerated holes and hydroxyl radicals. The study also analyzed the reaction kinetics and order, and the reusability of the best photocatalyst Au–ZnO (90:10)) was confirmed through five consecutive cycles, demonstrating its sustained effectiveness in photodegradation. These findings highlight the potential of Au–ZnO (90:10) nanocomposite as a promising material for photocatalytic degradation of organic dyes.
Author Alkhafaji, Mohammed Ayad
Sharma, Shubham
Abbas, Mohamed
Ibrahim, Tiba
Ali, Luma Hakim
Mohammed, Kahtan A.
Khudair, Zahraa Falah
Salem, Karrar Hazim
Makki, Emad
Zabibah, Rahman S.
Muslim, Wisam Aqeel
Author_xml – sequence: 1
  givenname: Tiba
  surname: Ibrahim
  fullname: Ibrahim, Tiba
  organization: Department of Chemistry, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq
– sequence: 2
  givenname: Luma Hakim
  surname: Ali
  fullname: Ali, Luma Hakim
  organization: Department of the General Directorate of Education in Babil Province, Babylon, Iraq
– sequence: 3
  givenname: Wisam Aqeel
  surname: Muslim
  fullname: Muslim, Wisam Aqeel
  organization: Department of the General Directorate of Education in Diwaniyah Province, Diwaniyah, Iraq
– sequence: 4
  givenname: Karrar Hazim
  surname: Salem
  fullname: Salem, Karrar Hazim
  organization: College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq
– sequence: 5
  givenname: Kahtan A.
  surname: Mohammed
  fullname: Mohammed, Kahtan A.
  email: kahtan444@gmail.com
  organization: Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Najaf, Iraq
– sequence: 6
  givenname: Rahman S.
  surname: Zabibah
  fullname: Zabibah, Rahman S.
  organization: Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
– sequence: 7
  givenname: Mohammed Ayad
  surname: Alkhafaji
  fullname: Alkhafaji, Mohammed Ayad
  organization: Department of the Scientific Affairs, National University of Science and Technology, Dhi qar, Iraq
– sequence: 8
  givenname: Zahraa Falah
  surname: Khudair
  fullname: Khudair, Zahraa Falah
  organization: Department of Chemistry, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq
– sequence: 9
  givenname: Shubham
  surname: Sharma
  fullname: Sharma, Shubham
  email: shubham543sharma@gmail.com
  organization: Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
– sequence: 10
  givenname: Emad
  orcidid: 0000-0002-2089-9776
  surname: Makki
  fullname: Makki, Emad
  email: eamakki@uqu.edu.sa
  organization: Department of Mechanical Engineering, College of Engineering and Architecture, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
– sequence: 11
  givenname: Mohamed
  surname: Abbas
  fullname: Abbas, Mohamed
  email: mabas@kku.edu.sa
  organization: Electrical Engineering Department, College of Engineering, King Khalid University, Abha City, 61421, Saudi Arabia
BookMark eNptUcFu1DAQjVCRKKVH7pY4B-zYbmxuSwWlUqVe4MLFmtiTXa-ydrAdwd74Bz6If-FLcNgKOGCN5NHozZs38542ZyEGbJrnjL5kkslX2zm3He14S5nWj5rzjmnWainp2T_5k-Yy5z2tT63Bz5sfNwkxkHwMZYfZZwLBkVwW5zGTGIj1JS2ZHNB5C2RCGAl-LQlsadcaFHRks_z89v1TuCcBQrTxMMfsC-bXZEPykgv4AMOEBOY5RbA7MsZEcBy99RgKmXexRAsFpmPxljjcJnBQfB0eR5J20cHBByRviDsi8YHA5wXjgyZ41jweYcp4-fBfNB_fvf1w_b69u7-5vd7ctZb3srSSs0E4LnqOahwECCroACMfXW-VVYNC0esrpjuHSlEhB0exF73slBR0ZJJfNLcnXhdhb-bkD5COJoI3vwsxbQ2kqn9CI68QxUAlBa2EZkJ3qHQ_DFJ1mgLqyvXixFXvUXfJxezjkkKVbziVUmjFWF9R7QllU8w54fhnKqNmtdxUy81quVktr3h1wn-BqWBa77gca_KX_L99jDP-C8IXt1Y
Cites_doi 10.1021/acsanm.9b01864
10.1134/S0022476618070302
10.1016/j.surfin.2021.101561
10.1088/2053-1591/aab2e3
10.1109/JSEN.2020.3002967
10.1016/j.apsusc.2020.146237
10.1016/j.jclepro.2020.125637
10.53350/pjmhs22164427
10.1016/j.jenvman.2021.112404
10.1021/acs.jpcc.0c10149
10.1021/acsanm.2c03995
10.1049/mnl.2020.0189
10.3390/min12010085
10.1016/j.jece.2020.104725
10.1016/j.jclepro.2020.125632
10.3390/nano11010233
10.1007/s00339-021-04707-2
10.1016/j.jallcom.2021.158734
10.1016/j.snb.2019.02.089
10.1134/S0022476618070296
10.31838/ijpr/2020.12.01.040
10.1016/j.ceramint.2021.09.014
10.1039/D1MA00798J
10.1016/j.matchemphys.2020.122767
10.1109/TNB.2021.3082856
10.1016/j.jece.2021.105277
10.1080/03067319.2023.2289172
10.1016/j.apcata.2021.118318
10.3390/antibiotics9050260
10.1016/j.apsusc.2020.146420
10.1007/s00339-020-03909-4
10.1016/j.heliyon.2021.e07402
10.1088/1742-6596/1795/1/012041
10.1016/j.jphotochem.2020.112433
10.1016/j.jorganchem.2023.122815
10.1080/01411594.2021.1931205
10.1039/C9NA00285E
10.1007/s10876-020-01955-9
10.1007/s00339-020-04083-3
10.1021/acsanm.8b00272
10.1016/j.jelechem.2021.115424
10.1186/s11671-020-3273-7
10.1039/C7NP00052A
10.1016/j.scib.2019.07.017
10.1002/aoc.7053
10.1016/j.jphotochem.2021.113621
10.1016/j.mssp.2021.106390
10.1016/j.chemosphere.2022.137515
10.53350/pjmhs22163581
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
DOA
DOI 10.1515/gps-2023-0199
DatabaseName CrossRef
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-9550
EndPage 53
ExternalDocumentID oai_doaj_org_article_56ee4b050a98491492e897bb58290ae9
10_1515_gps_2023_0199
10_1515_gps_2023_0199131
GroupedDBID 0R~
4.4
AAFPC
AAFWJ
AAQCX
AASQH
AAXMT
ABAOT
ABAQN
ABFKT
ABIQR
ABLVI
ABUVI
ABXMZ
ACGFS
ACPRK
ACXLN
ACZBO
ADBBV
ADGQD
ADGYE
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFCXV
AFPKN
AFQUK
AFRAH
AHGSO
AIERV
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALSKA
BAKPI
BBCWN
BBDJO
BCNDV
EBS
GROUPED_DOAJ
HZ~
IY9
O9-
OK1
QD8
RDG
AAYXX
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-c375t-531b4d3473e8fb4a4040baf3fd7c8c8b8e4796192de88045bd0e747528540f153
IEDL.DBID DOA
ISSN 2191-9550
2191-9542
IngestDate Tue Oct 22 15:16:43 EDT 2024
Thu Oct 10 21:01:24 EDT 2024
Fri Aug 23 01:25:42 EDT 2024
Wed May 22 07:12:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-531b4d3473e8fb4a4040baf3fd7c8c8b8e4796192de88045bd0e747528540f153
ORCID 0000-0002-2089-9776
OpenAccessLink https://doaj.org/article/56ee4b050a98491492e897bb58290ae9
PQID 3055498117
PQPubID 2031348
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_56ee4b050a98491492e897bb58290ae9
proquest_journals_3055498117
crossref_primary_10_1515_gps_2023_0199
walterdegruyter_journals_10_1515_gps_2023_0199131
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Green processing and synthesis
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024051611382017335_j_gps-2023-0199_ref_010
2024051611382017335_j_gps-2023-0199_ref_054
2024051611382017335_j_gps-2023-0199_ref_011
2024051611382017335_j_gps-2023-0199_ref_055
2024051611382017335_j_gps-2023-0199_ref_052
2024051611382017335_j_gps-2023-0199_ref_053
2024051611382017335_j_gps-2023-0199_ref_050
2024051611382017335_j_gps-2023-0199_ref_051
2024051611382017335_j_gps-2023-0199_ref_007
2024051611382017335_j_gps-2023-0199_ref_008
2024051611382017335_j_gps-2023-0199_ref_005
2024051611382017335_j_gps-2023-0199_ref_049
2024051611382017335_j_gps-2023-0199_ref_006
2024051611382017335_j_gps-2023-0199_ref_003
2024051611382017335_j_gps-2023-0199_ref_047
2024051611382017335_j_gps-2023-0199_ref_004
2024051611382017335_j_gps-2023-0199_ref_048
2024051611382017335_j_gps-2023-0199_ref_001
2024051611382017335_j_gps-2023-0199_ref_045
2024051611382017335_j_gps-2023-0199_ref_002
2024051611382017335_j_gps-2023-0199_ref_046
2024051611382017335_j_gps-2023-0199_ref_009
2024051611382017335_j_gps-2023-0199_ref_043
2024051611382017335_j_gps-2023-0199_ref_044
2024051611382017335_j_gps-2023-0199_ref_041
2024051611382017335_j_gps-2023-0199_ref_042
2024051611382017335_j_gps-2023-0199_ref_040
2024051611382017335_j_gps-2023-0199_ref_038
2024051611382017335_j_gps-2023-0199_ref_039
2024051611382017335_j_gps-2023-0199_ref_036
2024051611382017335_j_gps-2023-0199_ref_037
2024051611382017335_j_gps-2023-0199_ref_034
2024051611382017335_j_gps-2023-0199_ref_035
2024051611382017335_j_gps-2023-0199_ref_032
2024051611382017335_j_gps-2023-0199_ref_033
2024051611382017335_j_gps-2023-0199_ref_030
2024051611382017335_j_gps-2023-0199_ref_031
2024051611382017335_j_gps-2023-0199_ref_029
2024051611382017335_j_gps-2023-0199_ref_027
2024051611382017335_j_gps-2023-0199_ref_028
2024051611382017335_j_gps-2023-0199_ref_025
2024051611382017335_j_gps-2023-0199_ref_026
2024051611382017335_j_gps-2023-0199_ref_023
2024051611382017335_j_gps-2023-0199_ref_024
2024051611382017335_j_gps-2023-0199_ref_021
2024051611382017335_j_gps-2023-0199_ref_022
2024051611382017335_j_gps-2023-0199_ref_020
2024051611382017335_j_gps-2023-0199_ref_018
2024051611382017335_j_gps-2023-0199_ref_019
2024051611382017335_j_gps-2023-0199_ref_016
2024051611382017335_j_gps-2023-0199_ref_017
2024051611382017335_j_gps-2023-0199_ref_014
2024051611382017335_j_gps-2023-0199_ref_015
2024051611382017335_j_gps-2023-0199_ref_012
2024051611382017335_j_gps-2023-0199_ref_013
References_xml – ident: 2024051611382017335_j_gps-2023-0199_ref_040
– ident: 2024051611382017335_j_gps-2023-0199_ref_038
  doi: 10.1021/acsanm.9b01864
– ident: 2024051611382017335_j_gps-2023-0199_ref_041
  doi: 10.1134/S0022476618070302
– ident: 2024051611382017335_j_gps-2023-0199_ref_014
  doi: 10.1016/j.surfin.2021.101561
– ident: 2024051611382017335_j_gps-2023-0199_ref_029
  doi: 10.1088/2053-1591/aab2e3
– ident: 2024051611382017335_j_gps-2023-0199_ref_033
  doi: 10.1109/JSEN.2020.3002967
– ident: 2024051611382017335_j_gps-2023-0199_ref_023
  doi: 10.1016/j.apsusc.2020.146237
– ident: 2024051611382017335_j_gps-2023-0199_ref_031
  doi: 10.1016/j.jclepro.2020.125637
– ident: 2024051611382017335_j_gps-2023-0199_ref_015
  doi: 10.53350/pjmhs22164427
– ident: 2024051611382017335_j_gps-2023-0199_ref_005
  doi: 10.1016/j.jenvman.2021.112404
– ident: 2024051611382017335_j_gps-2023-0199_ref_044
– ident: 2024051611382017335_j_gps-2023-0199_ref_048
– ident: 2024051611382017335_j_gps-2023-0199_ref_028
  doi: 10.1021/acs.jpcc.0c10149
– ident: 2024051611382017335_j_gps-2023-0199_ref_049
  doi: 10.1021/acsanm.2c03995
– ident: 2024051611382017335_j_gps-2023-0199_ref_042
  doi: 10.1049/mnl.2020.0189
– ident: 2024051611382017335_j_gps-2023-0199_ref_001
  doi: 10.3390/min12010085
– ident: 2024051611382017335_j_gps-2023-0199_ref_025
  doi: 10.1016/j.jece.2020.104725
– ident: 2024051611382017335_j_gps-2023-0199_ref_045
  doi: 10.1016/j.jclepro.2020.125632
– ident: 2024051611382017335_j_gps-2023-0199_ref_016
  doi: 10.3390/nano11010233
– ident: 2024051611382017335_j_gps-2023-0199_ref_050
  doi: 10.1007/s00339-021-04707-2
– ident: 2024051611382017335_j_gps-2023-0199_ref_008
  doi: 10.1016/j.jallcom.2021.158734
– ident: 2024051611382017335_j_gps-2023-0199_ref_019
  doi: 10.1016/j.snb.2019.02.089
– ident: 2024051611382017335_j_gps-2023-0199_ref_043
  doi: 10.1134/S0022476618070296
– ident: 2024051611382017335_j_gps-2023-0199_ref_006
  doi: 10.31838/ijpr/2020.12.01.040
– ident: 2024051611382017335_j_gps-2023-0199_ref_020
– ident: 2024051611382017335_j_gps-2023-0199_ref_034
  doi: 10.1016/j.ceramint.2021.09.014
– ident: 2024051611382017335_j_gps-2023-0199_ref_053
  doi: 10.1039/D1MA00798J
– ident: 2024051611382017335_j_gps-2023-0199_ref_039
  doi: 10.1016/j.matchemphys.2020.122767
– ident: 2024051611382017335_j_gps-2023-0199_ref_027
  doi: 10.1109/TNB.2021.3082856
– ident: 2024051611382017335_j_gps-2023-0199_ref_004
  doi: 10.1016/j.jece.2021.105277
– ident: 2024051611382017335_j_gps-2023-0199_ref_054
  doi: 10.1007/s00339-021-04707-2
– ident: 2024051611382017335_j_gps-2023-0199_ref_007
  doi: 10.1080/03067319.2023.2289172
– ident: 2024051611382017335_j_gps-2023-0199_ref_030
  doi: 10.1016/j.apcata.2021.118318
– ident: 2024051611382017335_j_gps-2023-0199_ref_026
  doi: 10.3390/antibiotics9050260
– ident: 2024051611382017335_j_gps-2023-0199_ref_036
  doi: 10.1016/j.apsusc.2020.146420
– ident: 2024051611382017335_j_gps-2023-0199_ref_035
  doi: 10.1007/s00339-020-03909-4
– ident: 2024051611382017335_j_gps-2023-0199_ref_017
  doi: 10.1016/j.heliyon.2021.e07402
– ident: 2024051611382017335_j_gps-2023-0199_ref_011
  doi: 10.1088/1742-6596/1795/1/012041
– ident: 2024051611382017335_j_gps-2023-0199_ref_021
  doi: 10.1016/j.jphotochem.2020.112433
– ident: 2024051611382017335_j_gps-2023-0199_ref_032
  doi: 10.1016/j.jorganchem.2023.122815
– ident: 2024051611382017335_j_gps-2023-0199_ref_047
  doi: 10.1080/01411594.2021.1931205
– ident: 2024051611382017335_j_gps-2023-0199_ref_051
– ident: 2024051611382017335_j_gps-2023-0199_ref_055
  doi: 10.1039/C9NA00285E
– ident: 2024051611382017335_j_gps-2023-0199_ref_010
  doi: 10.1007/s10876-020-01955-9
– ident: 2024051611382017335_j_gps-2023-0199_ref_052
  doi: 10.1007/s00339-020-04083-3
– ident: 2024051611382017335_j_gps-2023-0199_ref_037
  doi: 10.1021/acsanm.8b00272
– ident: 2024051611382017335_j_gps-2023-0199_ref_024
  doi: 10.1016/j.jelechem.2021.115424
– ident: 2024051611382017335_j_gps-2023-0199_ref_022
  doi: 10.1186/s11671-020-3273-7
– ident: 2024051611382017335_j_gps-2023-0199_ref_002
  doi: 10.1039/C7NP00052A
– ident: 2024051611382017335_j_gps-2023-0199_ref_012
  doi: 10.1016/j.scib.2019.07.017
– ident: 2024051611382017335_j_gps-2023-0199_ref_046
  doi: 10.1002/aoc.7053
– ident: 2024051611382017335_j_gps-2023-0199_ref_003
  doi: 10.1016/j.jphotochem.2021.113621
– ident: 2024051611382017335_j_gps-2023-0199_ref_009
  doi: 10.1016/j.mssp.2021.106390
– ident: 2024051611382017335_j_gps-2023-0199_ref_013
  doi: 10.1016/j.chemosphere.2022.137515
– ident: 2024051611382017335_j_gps-2023-0199_ref_018
  doi: 10.53350/pjmhs22163581
SSID ssj0000800803
Score 2.3417242
Snippet Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include visible...
Abstract Incorporating narrow band gap oxide semiconductors and metals into zinc oxide (ZnO) nanostructures broadens the range of light sensitivity to include...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 85
SubjectTerms Aqueous solutions
Atomic force microscopy
Atomic properties
Catalysts
Catalytic activity
Clustering
Dyes
eco-friendly
Effectiveness
Electron microscopy
Energy gap
Energy levels
Field emission
Free radicals
Gold
Heavy metals
Hydroxyl radicals
Hysteresis loops
Irradiation
Leaves
Light irradiation
Microscopy
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
Oxygen
Photocatalysis
Photocatalysts
Photodegradation
Plant extracts
Radiation
Reaction kinetics
Reflectance
Rhodamine
rhodamine B dye
Scanning electron microscopy
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Surface roughness
Transmission electron microscopy
Ultraviolet radiation
Wavelengths
X-ray diffraction
Zinc oxide
Zinc oxides
ZnO nanocomposite
Title Green synthesis and studies on citrus medica leaf extract-mediated Au–ZnO nanocomposites: A sustainable approach for efficient photocatalytic degradation of rhodamine B dye in aqueous media
URI http://www.degruyter.com/doi/10.1515/gps-2023-0199
https://www.proquest.com/docview/3055498117
https://doaj.org/article/56ee4b050a98491492e897bb58290ae9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqnuih4qeIhYLmgLhFTdZ2YnPbIqoKifZCpaoXy47H_RE4q2YrtDfegQfiXXgSxk6W3SIkLlwjKxrnG49nMjPfMPa6DnVlG5QFF94WQrpQaKU9HTzthCjdNOTs-ceT-vhMfDiX5xujvlJN2EAPPHy4A1kjClfK0molNPnzU1S6cU6mDKDFoXWvkhvB1M3oB6mSj6SadGcfXM77Io0Kp9g587yuL6HM1X_Pwdz9mlPVHi9v75aLVWo03zhHD9nu6CrCbBDxEdvC-JjtbBAIPmE_ctkM9MtIflx_3YONHvqhNBC6CG3uqYCcQLfwGW0AMsapMarILSPkbsLs7ue37xfxFKKNXaowT2Vc2L-FGfTr7ipYkY8DebmAmXiC7iuYX3WLLv8DWpKYkDZjhzFN0AW4veq8_ULywiH4JcJ1BEu770aZ7B47O3r_6d1xMY5kKFreyEVBJ9YJz0XDUQUnrCAb4GzgwTetapVTKBqdYjKPZBgIel8iBSwy9WmWgazrU7Ydu4jPGHARPEpPYLZclMrrqS11wKr1tlWhnk7YmxVGZj4wb5gUsRCYhsA0CUyTwJyww4Tg70WJMDs_IDUyoxqZf6nRhO2v8DfjKe5NYkMTOrXiTlj1h06sV_1VqIpXz_-HXC_YA3qnSPUKldxn26Q1-JLcoIV7lTX-Fx4QCeE
link.rule.ids 315,786,790,870,2115,27955,27956,67513,69297
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagPQCHil91ocAcELdok42T2Ny2iLJAfw60EuJi2bG9W6m1V5us0N54Bx6Id-FJGDvZbQucuCZxMs78eMYz85mQV6UtM1mZIsmplgktlE044xoVjytKUzWyMXt-dFxOzujHL8W6mrDpyyq1mS6Wq7ZDSB1qXy_DRtkGawBX4OF03iTh4G-MhDkfztrLi9tku8SlHuOv7fHk_eeTzUZLcIlYmvf4mn8NvrEeRdj-G77mzreYtd6QdG3xObhPdnqvEcYdmx-QW8Y9JPeuYQk-Ij9jBQ00K4cuXXPegHQamq5KELyDOrZXQMylS7gw0gLa5dAjlcTuEfQ8Ybz89f3HV3cCTjofis1DRZdp3sAYmqtGK1jjkAM6vGAiBgX-OZjPfOvjdtAKyYQwGdmd2ATewmLmtbxEemEf9MrAuQOJs_c9TfIxOTt4d_p2kvSnMyR1XhVtgsqrqM5plRtmFZUUzYGSNre6qlnNFDO04iE80wZtBEqBTg3GLkVo2UwtGtonZMt5Z3YJ5NRqU2jGqzqnKdN8JFNuTVZrWTNbjgbk9ZpHYt6BcIgQvCAzBTJTBGaKwMwB2Q8c3DwUsLPjBb-Yil4VRVEaQ1VapJIzyjFCHBn8slJFyClLgy_ZW_Nf9ArdiACMRnnoyh2Q7A-ZuHrqn0Rlefb0P8a8JHcmp0eH4vDD8adn5C7eoqFqISv2yBYKjHmOzlCrXvTi_htFIgzv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZgV0JwWPGrLSwwB8QtatLYic2tC5Tyt4sEK624WHZsd1cCu2paod54Bx6Id-FJGLtptwucuCZxMs78eMYz85mQJ5WrClVblpXUqIwy7TLBhUHFE5rSXA9cyp6_P6rGJ_TNKTvd6uKPZZXGTmaL5XyFkNo3oVnEjbIN1gCuwP3JtM3iwd8YCQvRnxp3leyi61ugpO8Ox68-Hm_2WaJHxPOyg9f8a-yl5Sih9l9yNfe-paT1hqKttWd0k-x1TiMMV1y-Ra5Yf5vc2IISvEN-pgIaaJcePbr2vAXlDbSrIkEIHprUXQEpla7gi1UO0CzHFqksNY-g4wnDxa_vPz77Y_DKh1hrHgu6bPsMhtBe9FnBGoYc0N8FmyAo8MfB9CzMQ9oNWiKZECejVgc2QXAwOwtGfUV64RDM0sK5B4WzDx1N6i45Gb389HycdYczZE1Zs3mGuqupKWldWu40VRStgVaudKZueMM1t7QWMTozFk0ECoHJLYYuLHZs5g7t7D2y44O3-wRK6oxlhou6KWnOjRioXDhbNEY13FWDHnm65pGcrjA4ZIxdkJkSmSkjM2VkZo8cRg5uHorQ2elCmE1kp4mSVdZSnbNcCU4FBogDi1_WmsWUsrL4koM1_2Wnz62MuGhUxKbcHin-kImLp_5JVFEW9_9jzGNy7cOLkXz3-ujtA3Id79BYs1CwA7KD8mIfois01486af8NfGEMDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+synthesis+and+studies+on+citrus+medica+leaf+extract-mediated+Au%E2%80%93ZnO+nanocomposites%3A+A+sustainable+approach+for+efficient+photocatalytic+degradation+of+rhodamine+B+dye+in+aqueous+media&rft.jtitle=Green+processing+and+synthesis&rft.au=Tiba+Ibrahim&rft.au=Luma+Hakim+Ali&rft.au=Wisam+Aqeel+Muslim&rft.au=Karrar%2C+Hazim+Salem&rft.date=2024-05-15&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2191-9542&rft.eissn=2191-9550&rft.issue=1&rft_id=info:doi/10.1515%2Fgps-2023-0199&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-9550&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-9550&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-9550&client=summon