Deep-learned generators of porosity distributions produced during metal Additive Manufacturing

Laser Powder Bed Fusion has become a widely adopted method for metal Additive Manufacturing (AM) due to its ability to mass produce complex parts with increased local control. However, AM produced parts can be subject to undesirable porosity, negatively influencing the properties of printed componen...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 60; no. PA; p. 103250
Main Authors Ogoke, Odinakachukwu Francis, Johnson, Kyle, Glinsky, Michael, Laursen, Chris, Kramer, Sharlotte, Barati Farimani, Amir
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laser Powder Bed Fusion has become a widely adopted method for metal Additive Manufacturing (AM) due to its ability to mass produce complex parts with increased local control. However, AM produced parts can be subject to undesirable porosity, negatively influencing the properties of printed components. Thus, controlling porosity is integral for creating effective parts. A precise understanding of the porosity distribution is crucial for accurately simulating potential fatigue and failure zones. Previous research on generating synthetic porous microstructures have succeeded in generating parts with high density, isotropic porosity distributions but are often inapplicable to cases with sparser, boundary-dependent pore distributions. Our work bridges this gap by providing a method that considers these constraints by deconstructing the generation problem into its constitutive parts. A framework is introduced that combines Generative Adversarial Networks with Mallat Scattering Transform-based autocorrelation methods to construct novel realizations of the individual pore geometries and surface roughness, then stochastically reconstruct them to form realizations of a porous printed part. The generated parts are compared to the existing experimental porosity distributions based on statistical and dimensional metrics, such as nearest neighbor distances, pore volumes, pore anisotropies and scattering transform based auto-correlations.
AbstractList Laser Powder Bed Fusion has become a widely adopted method for metal Additive Manufacturing (AM) due to its ability to mass produce complex parts with increased local control. However, AM produced parts can be subject to undesirable porosity, negatively influencing the properties of printed components. Thus, controlling porosity is integral for creating effective parts. A precise understanding of the porosity distribution is crucial for accurately simulating potential fatigue and failure zones. Previous research on generating synthetic porous microstructures have succeeded in generating parts with high density, isotropic porosity distributions but are often inapplicable to cases with sparser, boundary-dependent pore distributions. Our work bridges this gap by providing a method that considers these constraints by deconstructing the generation problem into its constitutive parts. A framework is introduced that combines Generative Adversarial Networks with Mallat Scattering Transform-based autocorrelation methods to construct novel realizations of the individual pore geometries and surface roughness, then stochastically reconstruct them to form realizations of a porous printed part. The generated parts are compared to the existing experimental porosity distributions based on statistical and dimensional metrics, such as nearest neighbor distances, pore volumes, pore anisotropies and scattering transform based auto-correlations.
ArticleNumber 103250
Author Barati Farimani, Amir
Glinsky, Michael
Kramer, Sharlotte
Laursen, Chris
Johnson, Kyle
Ogoke, Odinakachukwu Francis
Author_xml – sequence: 1
  givenname: Odinakachukwu Francis
  orcidid: 0000-0002-2432-7783
  surname: Ogoke
  fullname: Ogoke, Odinakachukwu Francis
  organization: Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
– sequence: 2
  givenname: Kyle
  surname: Johnson
  fullname: Johnson, Kyle
  organization: Sandia National Laboratories, 1515 Eubank Avenue, Albuquerque, 87185, NM, USA
– sequence: 3
  givenname: Michael
  surname: Glinsky
  fullname: Glinsky, Michael
  organization: Sandia National Laboratories, 1515 Eubank Avenue, Albuquerque, 87185, NM, USA
– sequence: 4
  givenname: Chris
  surname: Laursen
  fullname: Laursen, Chris
  organization: Sandia National Laboratories, 1515 Eubank Avenue, Albuquerque, 87185, NM, USA
– sequence: 5
  givenname: Sharlotte
  orcidid: 0000-0001-6015-8385
  surname: Kramer
  fullname: Kramer, Sharlotte
  organization: Sandia National Laboratories, 1515 Eubank Avenue, Albuquerque, 87185, NM, USA
– sequence: 6
  givenname: Amir
  orcidid: 0000-0002-2952-8576
  surname: Barati Farimani
  fullname: Barati Farimani, Amir
  email: barati@cmu.edu
  organization: Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
BackLink https://www.osti.gov/biblio/1899193$$D View this record in Osti.gov
BookMark eNqFkMtOAyEUhompidcncDNxP5XLXGDhwtRronGjW8kRDpWmhQaoiW_vjO3Kha4gnP8j5_-OyCTEgIScMTpllHUXiylYu4Ipp5wPL4K3dI8ccs6aupeMTnZ32dHmgJzmvKCUslb0SvJD8naNuK6XCCmgreYYMEGJKVfRVeuYYvblq7I-l-TfN8XHkKt1inZjhrTdJB_m1QoLLKsra33xn1g9Qdg4MOVneEL2HSwznu7OY_J6e_Myu68fn-8eZlePtRF9W-qWCwnONcII23StoIwbcL0RrVSG90wI6qy1CqWUBlQrHLO9oiA470BYEMfkfPtvzMXrbHxB82FiCGiKZlIppsQQUtuQGXrlhE4PORhLlQR-qRnVo1C90D9C9ShUb4UOrPjFrpNfQfr6h7rcUjh0__SYxtUwDPJ8Gjez0f_JfwMr05Mp
CitedBy_id crossref_primary_10_1115_1_4065457
crossref_primary_10_1109_TCSS_2024_3417388
crossref_primary_10_1002_adfm_202404165
crossref_primary_10_1080_24725854_2024_2443592
Cites_doi 10.3847/1538-4357/abe46d
10.1038/srep15880
10.1007/s00339-019-3092-9
10.1016/j.msea.2019.04.101
10.1093/mnras/staa3165
10.1016/j.msea.2019.138525
10.1007/s11661-010-0397-x
10.1016/j.commatsci.2017.11.015
10.1016/0021-9797(84)90481-8
10.1016/S1005-0302(12)60016-4
10.1146/annurev-matsci-070115-032024
10.1038/s41524-020-0340-7
10.3390/ma13061397
10.1016/j.matdes.2015.07.147
10.1016/j.petrol.2013.10.005
10.1016/j.petrol.2019.106794
10.1063/5.0010781
10.1002/cpa.21413
10.1016/j.commatsci.2015.09.015
10.1146/annurev-matsci-070115-032158
10.1108/13552541311302932
10.1016/j.acha.2021.01.003
10.1021/ac60214a047
10.1080/21663831.2017.1340911
10.1002/admt.201900981
10.1016/j.optlastec.2018.08.042
10.1103/PhysRevE.98.043310
10.1016/j.msea.2015.10.068
10.1016/j.earscirev.2013.04.003
10.1016/j.matdes.2017.11.021
10.1016/j.ijmecsci.2020.105428
10.1103/PhysRevE.57.495
10.1103/PhysRevE.96.043309
10.1016/j.jpowsour.2012.05.121
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
OTOTI
DOI 10.1016/j.addma.2022.103250
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 1899193
10_1016_j_addma_2022_103250
S221486042200639X
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
OTOTI
ID FETCH-LOGICAL-c375t-5238aff43c3d4653012caf7c3589c271330fddd9e888ca953f1d790a3226a3da3
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Fri May 19 02:26:14 EDT 2023
Tue Jul 01 01:47:13 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri Feb 23 02:38:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue PA
Keywords Deep learning
0000
1111
Microstructural analysis
Generative Adversarial Networks
Additive Manufacturing
Porosity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-5238aff43c3d4653012caf7c3589c271330fddd9e888ca953f1d790a3226a3da3
Notes NA0003525
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0002-2952-8576
0000-0002-2432-7783
0000-0001-6015-8385
0000000224327783
0000000229528576
0000000160158385
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S221486042200639X
ParticipantIDs osti_scitechconnect_1899193
crossref_citationtrail_10_1016_j_addma_2022_103250
crossref_primary_10_1016_j_addma_2022_103250
elsevier_sciencedirect_doi_10_1016_j_addma_2022_103250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Additive manufacturing
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mallat (b39) 2012; 65
Mosser, Dubrule, Blunt (b30) 2017; 96
Moran, Warner, Soltani-Tehrani, Shamsaei, Phan (b45) 2021; 47
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b27) 2014; 27
Mower, Long (b4) 2016; 651
Moussaoui, Laurencin, Gavet, Delette, Hubert, Cloetens, Le Bihan, Debayle (b24) 2018; 143
Mirza, Osindero (b28) 2014
Tang, Pistorius, Beuth (b15) 2017; 14
Glinsky, Moore, Lewis, Weis, Jennings, Ampleford, Knapp, Harding, Gomez, Harvey-Thompson (b37) 2020; 27
Arjovsky, Chintala, Bottou (b46) 2017
Gong, Rafi, Gu, Janaki Ram, Starr, Stucker (b14) 2015; 86
Al-Bermani, Blackmore, Zhang, Todd (b10) 2010; 41
Vilardell, Fredriksson, Yadroitsev, Krakhmalev (b12) 2019; 109
J. Wu, C. Zhang, T. Xue, W.T. Freeman, J.B. Tenenbaum, Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, pp. 82–90.
Kok, Tan, Wang, Nai, Loh, Liu, Tor (b7) 2018; 139
Salarian, Asgari, Vlasea (b42) 2020; 769
Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (b9) 2012; 28
Wang, Arns, Rahman, Arns (b25) 2018; 98
Hasanabadi, Baniassadi, Abrinia, Safdari, Garmestani (b21) 2016; 111
Gerke, Karsanina, Mallants (b22) 2015; 5
Shams, Masihi, Boozarjomehry, Blunt (b33) 2020; 186
Li, Feng, Hao, Huang, Xin, Wang, Bilotti, Essa, Zhang, Li (b1) 2020; 5
Zhu, Lou, Majewski (b47) 2020; 36
Janssens, Huysmans, Swennen (b32) 2020; 13
Mallat, Zhang, Rochette (b40) 2018
Siddique, Salehi, Liu (b18) 2012; 217
Reijonen, Revuelta, Riipinen, Ruusuvuori, Puukko (b44) 2020; 32
Andreau, Pessard, Koutiri, Penot, Dupuy, Saintier, Peyre (b13) 2019; 757
Savitzky, Golay (b41) 1964; 36
Cunningham, Nicolas, Madsen, Fodran, Anagnostou, Sangid, Rollett (b3) 2017; 5
Saydjari, Portillo, Slepian, Kahraman, Burkhart, Finkbeiner (b35) 2021; 910
Yao, Wang, Yang, Hu, Wang (b26) 2013; 110
Markl, Körner (b11) 2016; 46
Lewandowski, Seifi (b6) 2016; 46
Farimani, Gomes, Pande (b29) 2017
A. Gayon-Lombardo, L. Mosser, N.P. Brandon, S.J. Cooper, ARTICLE Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries
Reeves, Tuck, Hague (b2) 2011
Yeong, Torquato (b23) 1998; 57
.
Spierings, Starr, Wegener (b5) 2013
Ning, Sievers, Garmestani, Liang (b17) 2020; 172
Li, Yang, Brinson, Choudhary, Agrawal, Chen (b34) 2018
Quiblier (b19) 1984; 98
Zhang, Mallat (b38) 2021; 53
Ning, Wang, Zamorano, Liang (b16) 2019; 125
Cnudde, Boone (b20) 2013; 123
Mani, Feng, Lane, Donmez, Moylan, Fesperman (b8) 2015
Cheng, Ting, Ménard, Bruna (b36) 2020; 499
Mallat (10.1016/j.addma.2022.103250_b39) 2012; 65
Mower (10.1016/j.addma.2022.103250_b4) 2016; 651
Cheng (10.1016/j.addma.2022.103250_b36) 2020; 499
Salarian (10.1016/j.addma.2022.103250_b42) 2020; 769
Vilardell (10.1016/j.addma.2022.103250_b12) 2019; 109
Ning (10.1016/j.addma.2022.103250_b17) 2020; 172
Hasanabadi (10.1016/j.addma.2022.103250_b21) 2016; 111
10.1016/j.addma.2022.103250_b43
Spierings (10.1016/j.addma.2022.103250_b5) 2013
Zhang (10.1016/j.addma.2022.103250_b38) 2021; 53
Siddique (10.1016/j.addma.2022.103250_b18) 2012; 217
Moran (10.1016/j.addma.2022.103250_b45) 2021; 47
Shams (10.1016/j.addma.2022.103250_b33) 2020; 186
Tang (10.1016/j.addma.2022.103250_b15) 2017; 14
Saydjari (10.1016/j.addma.2022.103250_b35) 2021; 910
Ning (10.1016/j.addma.2022.103250_b16) 2019; 125
Arjovsky (10.1016/j.addma.2022.103250_b46) 2017
Janssens (10.1016/j.addma.2022.103250_b32) 2020; 13
Cnudde (10.1016/j.addma.2022.103250_b20) 2013; 123
Gerke (10.1016/j.addma.2022.103250_b22) 2015; 5
Andreau (10.1016/j.addma.2022.103250_b13) 2019; 757
Quiblier (10.1016/j.addma.2022.103250_b19) 1984; 98
Cunningham (10.1016/j.addma.2022.103250_b3) 2017; 5
Yeong (10.1016/j.addma.2022.103250_b23) 1998; 57
Zhu (10.1016/j.addma.2022.103250_b47) 2020; 36
Reeves (10.1016/j.addma.2022.103250_b2) 2011
Lewandowski (10.1016/j.addma.2022.103250_b6) 2016; 46
Kok (10.1016/j.addma.2022.103250_b7) 2018; 139
Wang (10.1016/j.addma.2022.103250_b25) 2018; 98
Markl (10.1016/j.addma.2022.103250_b11) 2016; 46
Mirza (10.1016/j.addma.2022.103250_b28) 2014
10.1016/j.addma.2022.103250_b31
Glinsky (10.1016/j.addma.2022.103250_b37) 2020; 27
Mosser (10.1016/j.addma.2022.103250_b30) 2017; 96
Al-Bermani (10.1016/j.addma.2022.103250_b10) 2010; 41
Moussaoui (10.1016/j.addma.2022.103250_b24) 2018; 143
Li (10.1016/j.addma.2022.103250_b34) 2018
Goodfellow (10.1016/j.addma.2022.103250_b27) 2014; 27
Yao (10.1016/j.addma.2022.103250_b26) 2013; 110
Mallat (10.1016/j.addma.2022.103250_b40) 2018
Savitzky (10.1016/j.addma.2022.103250_b41) 1964; 36
Farimani (10.1016/j.addma.2022.103250_b29) 2017
Mani (10.1016/j.addma.2022.103250_b8) 2015
Gong (10.1016/j.addma.2022.103250_b14) 2015; 86
Li (10.1016/j.addma.2022.103250_b1) 2020; 5
Murr (10.1016/j.addma.2022.103250_b9) 2012; 28
Reijonen (10.1016/j.addma.2022.103250_b44) 2020; 32
References_xml – volume: 143
  start-page: 262
  year: 2018
  end-page: 276
  ident: b24
  article-title: Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions
  publication-title: Comput. Mater. Sci.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 12
  ident: b22
  article-title: Universal stochastic multiscale image fusion: An example application for shale rock
  publication-title: Sci. Rep.
– volume: 651
  start-page: 198
  year: 2016
  end-page: 213
  ident: b4
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater. Sci. Eng. A
– volume: 5
  start-page: 516
  year: 2017
  end-page: 525
  ident: b3
  article-title: Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V
  publication-title: Mater. Res. Lett.
– volume: 53
  start-page: 199
  year: 2021
  end-page: 230
  ident: b38
  article-title: Maximum entropy models from phase harmonic covariances
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b41
  article-title: Smoothing and differentiation of data by simplified least squares procedures.
  publication-title: Anal. Chem.
– volume: 5
  year: 2020
  ident: b1
  article-title: A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties
  publication-title: Adv. Mater. Technol.
– volume: 910
  start-page: 122
  year: 2021
  ident: b35
  article-title: Classification of magnetohydrodynamic simulations using wavelet scattering transforms
  publication-title: Astrophys. J.
– year: 2013
  ident: b5
  article-title: Fatigue performance of additive manufactured metallic parts
  publication-title: Rapid Prototyp. J.
– year: 2015
  ident: b8
  article-title: Measurement science needs for real-time control of additive manufacturing powder bed fusion processes
– volume: 186
  year: 2020
  ident: b33
  article-title: Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media
  publication-title: J. Pet. Sci. Eng.
– volume: 86
  start-page: 545
  year: 2015
  end-page: 554
  ident: b14
  article-title: Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting
  publication-title: Mater. Des.
– year: 2017
  ident: b29
  article-title: Deep learning the physics of transport phenomena
– volume: 47
  year: 2021
  ident: b45
  article-title: Spatial inhomogeneity of build defects across the build plate in laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 96
  year: 2017
  ident: b30
  article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks
  publication-title: Phys. Rev. E
– start-page: 214
  year: 2017
  end-page: 223
  ident: b46
  article-title: Wasserstein generative adversarial networks
  publication-title: International Conference on Machine Learning
– volume: 57
  start-page: 495
  year: 1998
  ident: b23
  article-title: Reconstructing random media
  publication-title: Phys. Rev. E
– reference: J. Wu, C. Zhang, T. Xue, W.T. Freeman, J.B. Tenenbaum, Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, pp. 82–90.
– volume: 98
  year: 2018
  ident: b25
  article-title: Three-dimensional porous structure reconstruction based on structural local similarity via sparse representation on micro-computed-tomography images
  publication-title: Phys. Rev. E
– volume: 125
  start-page: 1
  year: 2019
  end-page: 11
  ident: b16
  article-title: Analytical modeling of lack-of-fusion porosity in metal additive manufacturing
  publication-title: Appl. Phys. A
– volume: 14
  start-page: 39
  year: 2017
  end-page: 48
  ident: b15
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
– volume: 110
  start-page: 263
  year: 2013
  end-page: 267
  ident: b26
  article-title: The construction of carbonate digital rock with hybrid superposition method
  publication-title: J. Pet. Sci. Eng.
– volume: 46
  start-page: 93
  year: 2016
  end-page: 123
  ident: b11
  article-title: Multiscale modeling of powder bed–based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
– year: 2014
  ident: b28
  article-title: Conditional generative adversarial nets
– volume: 13
  start-page: 1397
  year: 2020
  ident: b32
  article-title: Computed Tomography 3D Super-Resolution with Generative Adversarial Neural Networks: Implications on Unsaturated and Two-Phase Fluid Flow
  publication-title: Materials
– volume: 98
  start-page: 84
  year: 1984
  end-page: 102
  ident: b19
  article-title: A new three-dimensional modeling technique for studying porous media
  publication-title: J. Colloid Interface Sci.
– volume: 123
  start-page: 1
  year: 2013
  end-page: 17
  ident: b20
  article-title: High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications
  publication-title: Earth-Sci. Rev.
– volume: 27
  year: 2020
  ident: b37
  article-title: Quantification of MagLIF morphology using the Mallat scattering transformation
  publication-title: Phys. Plasmas
– volume: 65
  start-page: 1331
  year: 2012
  end-page: 1398
  ident: b39
  article-title: Group invariant scattering
  publication-title: Comm. Pure Appl. Math.
– year: 2018
  ident: b40
  article-title: Phase harmonics and correlation invariants in convolutional neural networks
– volume: 769
  year: 2020
  ident: b42
  article-title: Pore space characteristics and corresponding effect on tensile properties of inconel 625 fabricated via laser powder bed fusion
  publication-title: Mater. Sci. Eng. A
– volume: 32
  year: 2020
  ident: b44
  article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– start-page: 275
  year: 2011
  end-page: 289
  ident: b2
  article-title: Additive manufacturing for mass customization
  publication-title: Mass Customization
– volume: 172
  year: 2020
  ident: b17
  article-title: Analytical modeling of part porosity in metal additive manufacturing
  publication-title: Int. J. Mech. Sci.
– reference: A. Gayon-Lombardo, L. Mosser, N.P. Brandon, S.J. Cooper, ARTICLE Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries,
– reference: .
– volume: 139
  start-page: 565
  year: 2018
  end-page: 586
  ident: b7
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
  publication-title: Mater. Des.
– volume: 41
  start-page: 3422
  year: 2010
  end-page: 3434
  ident: b10
  article-title: The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V
  publication-title: Metall. Mater. Trans. A
– volume: 27
  year: 2014
  ident: b27
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 1
  year: 2012
  end-page: 14
  ident: b9
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
– volume: 217
  start-page: 437
  year: 2012
  end-page: 443
  ident: b18
  article-title: Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries
  publication-title: J. Power Sources
– volume: 109
  start-page: 608
  year: 2019
  end-page: 615
  ident: b12
  article-title: Fracture mechanisms in the as-built and stress-relieved laser powder bed fusion Ti6Al4V ELI alloy
  publication-title: Opt. Laser Technol.
– volume: 111
  start-page: 107
  year: 2016
  end-page: 115
  ident: b21
  article-title: 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: A modified phase-recovery algorithm
  publication-title: Comput. Mater. Sci.
– volume: 36
  year: 2020
  ident: b47
  article-title: Characterisation and correlation of areal surface texture with processing parameters and porosity of high speed sintered parts
  publication-title: Addit. Manuf.
– volume: 46
  year: 2016
  ident: b6
  article-title: Metal additive manufacturing: a review of mechanical properties
  publication-title: Annu. Rev. Mater. Res.
– year: 2018
  ident: b34
  article-title: A Deep Adversarial Learning Methodology for Designing Microstructural Material Systems
– volume: 499
  start-page: 5902
  year: 2020
  end-page: 5914
  ident: b36
  article-title: A new approach to observational cosmology using the scattering transform
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 757
  start-page: 146
  year: 2019
  end-page: 159
  ident: b13
  article-title: A competition between the contour and hatching zones on the high cycle fatigue behaviour of a 316L stainless steel: Analyzed using X-ray computed tomography
  publication-title: Mater. Sci. Eng. A
– year: 2014
  ident: 10.1016/j.addma.2022.103250_b28
– volume: 910
  start-page: 122
  issue: 2
  year: 2021
  ident: 10.1016/j.addma.2022.103250_b35
  article-title: Classification of magnetohydrodynamic simulations using wavelet scattering transforms
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/abe46d
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.addma.2022.103250_b22
  article-title: Universal stochastic multiscale image fusion: An example application for shale rock
  publication-title: Sci. Rep.
  doi: 10.1038/srep15880
– volume: 125
  start-page: 1
  issue: 11
  year: 2019
  ident: 10.1016/j.addma.2022.103250_b16
  article-title: Analytical modeling of lack-of-fusion porosity in metal additive manufacturing
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3092-9
– volume: 757
  start-page: 146
  year: 2019
  ident: 10.1016/j.addma.2022.103250_b13
  article-title: A competition between the contour and hatching zones on the high cycle fatigue behaviour of a 316L stainless steel: Analyzed using X-ray computed tomography
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.04.101
– year: 2017
  ident: 10.1016/j.addma.2022.103250_b29
– volume: 499
  start-page: 5902
  issue: 4
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b36
  article-title: A new approach to observational cosmology using the scattering transform
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa3165
– volume: 769
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b42
  article-title: Pore space characteristics and corresponding effect on tensile properties of inconel 625 fabricated via laser powder bed fusion
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138525
– volume: 41
  start-page: 3422
  issue: 13
  year: 2010
  ident: 10.1016/j.addma.2022.103250_b10
  article-title: The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0397-x
– volume: 143
  start-page: 262
  year: 2018
  ident: 10.1016/j.addma.2022.103250_b24
  article-title: Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.11.015
– volume: 32
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b44
  article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 98
  start-page: 84
  issue: 1
  year: 1984
  ident: 10.1016/j.addma.2022.103250_b19
  article-title: A new three-dimensional modeling technique for studying porous media
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(84)90481-8
– volume: 28
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.addma.2022.103250_b9
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 46
  year: 2016
  ident: 10.1016/j.addma.2022.103250_b6
  article-title: Metal additive manufacturing: a review of mechanical properties
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032024
– year: 2018
  ident: 10.1016/j.addma.2022.103250_b40
– ident: 10.1016/j.addma.2022.103250_b31
  doi: 10.1038/s41524-020-0340-7
– volume: 47
  year: 2021
  ident: 10.1016/j.addma.2022.103250_b45
  article-title: Spatial inhomogeneity of build defects across the build plate in laser powder bed fusion
  publication-title: Addit. Manuf.
– year: 2018
  ident: 10.1016/j.addma.2022.103250_b34
– start-page: 275
  year: 2011
  ident: 10.1016/j.addma.2022.103250_b2
  article-title: Additive manufacturing for mass customization
– year: 2015
  ident: 10.1016/j.addma.2022.103250_b8
– volume: 14
  start-page: 39
  year: 2017
  ident: 10.1016/j.addma.2022.103250_b15
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
– volume: 13
  start-page: 1397
  issue: 6
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b32
  article-title: Computed Tomography 3D Super-Resolution with Generative Adversarial Neural Networks: Implications on Unsaturated and Two-Phase Fluid Flow
  publication-title: Materials
  doi: 10.3390/ma13061397
– volume: 86
  start-page: 545
  year: 2015
  ident: 10.1016/j.addma.2022.103250_b14
  article-title: Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.147
– volume: 110
  start-page: 263
  year: 2013
  ident: 10.1016/j.addma.2022.103250_b26
  article-title: The construction of carbonate digital rock with hybrid superposition method
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.10.005
– volume: 186
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b33
  article-title: Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106794
– volume: 27
  issue: 11
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b37
  article-title: Quantification of MagLIF morphology using the Mallat scattering transformation
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0010781
– volume: 65
  start-page: 1331
  issue: 10
  year: 2012
  ident: 10.1016/j.addma.2022.103250_b39
  article-title: Group invariant scattering
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21413
– volume: 111
  start-page: 107
  year: 2016
  ident: 10.1016/j.addma.2022.103250_b21
  article-title: 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: A modified phase-recovery algorithm
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.09.015
– volume: 46
  start-page: 93
  year: 2016
  ident: 10.1016/j.addma.2022.103250_b11
  article-title: Multiscale modeling of powder bed–based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032158
– ident: 10.1016/j.addma.2022.103250_b43
– year: 2013
  ident: 10.1016/j.addma.2022.103250_b5
  article-title: Fatigue performance of additive manufactured metallic parts
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541311302932
– volume: 53
  start-page: 199
  year: 2021
  ident: 10.1016/j.addma.2022.103250_b38
  article-title: Maximum entropy models from phase harmonic covariances
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2021.01.003
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.addma.2022.103250_b41
  article-title: Smoothing and differentiation of data by simplified least squares procedures.
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 5
  start-page: 516
  issue: 7
  year: 2017
  ident: 10.1016/j.addma.2022.103250_b3
  article-title: Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2017.1340911
– start-page: 214
  year: 2017
  ident: 10.1016/j.addma.2022.103250_b46
  article-title: Wasserstein generative adversarial networks
– volume: 5
  issue: 6
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b1
  article-title: A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900981
– volume: 109
  start-page: 608
  year: 2019
  ident: 10.1016/j.addma.2022.103250_b12
  article-title: Fracture mechanisms in the as-built and stress-relieved laser powder bed fusion Ti6Al4V ELI alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.08.042
– volume: 98
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2022.103250_b25
  article-title: Three-dimensional porous structure reconstruction based on structural local similarity via sparse representation on micro-computed-tomography images
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.043310
– volume: 27
  year: 2014
  ident: 10.1016/j.addma.2022.103250_b27
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 651
  start-page: 198
  year: 2016
  ident: 10.1016/j.addma.2022.103250_b4
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.10.068
– volume: 123
  start-page: 1
  year: 2013
  ident: 10.1016/j.addma.2022.103250_b20
  article-title: High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2013.04.003
– volume: 139
  start-page: 565
  year: 2018
  ident: 10.1016/j.addma.2022.103250_b7
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.021
– volume: 172
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b17
  article-title: Analytical modeling of part porosity in metal additive manufacturing
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105428
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2022.103250_b47
  article-title: Characterisation and correlation of areal surface texture with processing parameters and porosity of high speed sintered parts
  publication-title: Addit. Manuf.
– volume: 57
  start-page: 495
  issue: 1
  year: 1998
  ident: 10.1016/j.addma.2022.103250_b23
  article-title: Reconstructing random media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.495
– volume: 96
  issue: 4
  year: 2017
  ident: 10.1016/j.addma.2022.103250_b30
  article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.043309
– volume: 217
  start-page: 437
  year: 2012
  ident: 10.1016/j.addma.2022.103250_b18
  article-title: Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.05.121
SSID ssj0001537982
Score 2.3262796
Snippet Laser Powder Bed Fusion has become a widely adopted method for metal Additive Manufacturing (AM) due to its ability to mass produce complex parts with...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103250
SubjectTerms Additive Manufacturing
Deep learning
Generative Adversarial Networks
Microstructural analysis
Porosity
Title Deep-learned generators of porosity distributions produced during metal Additive Manufacturing
URI https://dx.doi.org/10.1016/j.addma.2022.103250
https://www.osti.gov/biblio/1899193
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpSqDwwYlo_0tRjVagKqF2gUicixw9UBGkF6cDCb8fnJFAkxMCYxJdEZ_se1nffIXRm044zMrWEOimIoJYTxZ0kinWcTHvGsUClNJ50R1NxM4tmNTSoamEAVlna_sKmB2td3mmX2mwv5_P2HWMUOigJxoKfnUEFu4hhlV980O9zlojHMvSMgvEEBCryoQDz8vs78A8xBvXnDOrvf3dQ9YXfc2u-Z7iDtsugEfeL_9pFNZvtoa01KsF99HBp7ZKEHhDW4MdAJg2NdPDCYR9iAzTrHRtgyS0bXL3hZSB79aOLUkX8YnP4iDEBToTHKltB2UN4eICmw6v7wYiUvROI5nGUQ37ZU84JrrkBCjXvh7RyseZRT2oGmamfI2Ok9RmwVjLijppYdpTf313FjeKHqJ4tMnuEsI58SGeZNbGwQgGhXhqnMU2pdRTIVBuIVQpLdEksDv0tnpMKQfaUBC0noOWk0HIDnX8JLQtejb-Hd6uZSH4sj8Rb_r8FmzBvIASkuBrQQ16K-jTTh67H_31tE23CVYFrOUH1_HVlT310kqetsPxaaKN_fTuafAL4_eQJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BegAOVctDQNqyB3rDJLtrx9lDD1VpFAjh0iDlhFnvA4EgiSCoyoU_xR_szNqGVEIckLh6d9b27Hh2xpr5PoBdlze9VbmLuFdxFHMnIy29irRoepW3rRcBSql_0uqexkfDZLgAj1UvDJVVlr6_8OnBW5dXGqU2G5PLy8YfITgxKMVChHN2WFZW9tzsL-Ztdz8OD3CTvwvR-T341Y1KaoHIyDSZUvrV1t7H0khLCGPopo32qZFJWxlBiRu-grXKYYJotEqk5zZVTY3m39LSaonrLsKHGN0F0SbsP_DnHzuJTFUgqaIHjOgJK7SjUFeGDiUAHglBDe-CGv5fPhFrY_zI5w67zif4WEap7GehiM-w4EarsDKHXbgGZwfOTaJAOuEsuwjo1cTcw8aeYUxPtWAzZgmWt2TUumOTgC6Ls4veSHbjpnQTa0P9Euvr0T31WYTBdTh9F41uQG00HrlNYCbBGNIJZ9PYxZoQ_PI0T3nOneeE3roFolJYZkokcyLUuM6qkrWrLGg5Iy1nhZa3YO9JaFIAebw-vVXtRPafPWZ41LwuWKd9IyFC4TVUroRSHPNajJW337rsDix1B_3j7PjwpFeHZRopimq-QG16e---Ymg0zb8FU2Rw_t62_w9Xdh8i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learned+generators+of+porosity+distributions+produced+during+metal+Additive+Manufacturing&rft.jtitle=Additive+manufacturing&rft.au=Ogoke%2C+Odinakachukwu+Francis&rft.au=Johnson%2C+Kyle&rft.au=Glinsky%2C+Michael&rft.au=Laursen%2C+Chris&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=60&rft.issue=PA&rft_id=info:doi/10.1016%2Fj.addma.2022.103250&rft.externalDocID=1899193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon