DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting

Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 29; no. 11; p. 358
Main Authors Ahmed, Mukhtar, Gupta, Manoj Kumar, Ansari, Azaj
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1610-2940
0948-5023
0948-5023
DOI10.1007/s00894-023-05765-4

Cover

Loading…
Abstract Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. Methods All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.
AbstractList ContextSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.MethodsAll DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.
Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. Methods All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.
Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.
Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.CONTEXTSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.METHODSAll DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.
ArticleNumber 358
Author Gupta, Manoj Kumar
Ahmed, Mukhtar
Ansari, Azaj
Author_xml – sequence: 1
  givenname: Mukhtar
  surname: Ahmed
  fullname: Ahmed, Mukhtar
  organization: Department of Chemistry, Central University of Haryana
– sequence: 2
  givenname: Manoj Kumar
  surname: Gupta
  fullname: Gupta, Manoj Kumar
  organization: Department of Chemistry, Central University of Haryana
– sequence: 3
  givenname: Azaj
  surname: Ansari
  fullname: Ansari, Azaj
  email: ajaz.alam2@gmail.com
  organization: Department of Chemistry, Central University of Haryana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37919553$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vGyEQhlGVKnGT_IEcKqReetl2-NzlWCVNWylSL-4ZsSxrE61hC7iJ_32xnaZSDpEQjOB5Z4Z536GTEIND6IrAJwLQfs4AneINUNaAaKVo-Bu0AMW7RtS7E7QgkkBDFYczdJnzPQAQKqSg9BSdsVYRJQRboPnmdolNGPDyZh-5x3mKyRQfA66rrB1OcXI4jnjeJT_sJjz5VeUzfvBljW2cZ5dwiQ8mDbiPYfBhhU2enS35kLfi64LXJv1xudTHC_R2NFN2l0_nOfp1-3V5_b25-_ntx_WXu8ayVpSG27b-gysAZ4w0YIbRKGador01ZoRR9s4qpkhv-o5KKYHVvRWkp3wkgrNz9PGYd07x97bW1hufrZsmE1zcZk27TjIGhKmKfniB3sdtCrW7PSWEIlyKSr1_orb9xg16Tn5j0k7_m2UF6BGwKeac3PiMENB7z_TRM1390QfP9L7N7oXI-nKYf0nGT69L2VGaa52wcul_26-o_gKb4qn9
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_109208
crossref_primary_10_1039_D4SE00406J
crossref_primary_10_1007_s11082_024_08026_7
crossref_primary_10_1016_j_saa_2024_125407
crossref_primary_10_1007_s00894_024_05912_5
crossref_primary_10_1007_s00894_025_06296_w
crossref_primary_10_1016_j_mtcomm_2024_110182
Cites_doi 10.1007/s00894-016-3084-z
10.1039/C9DT01527B
10.1039/c5dt02638e
10.1021/ct300329h
10.3389/fphar.2022.982484
10.1039/b508541a
10.1016/j.molstruc.2021.130878
10.1063/1.448800
10.1039/B314148A
10.1007/s11224-020-01690-x
10.1039/C7CS00680B
10.1016/j.compbiolchem.2020.107265
10.1007/s11224-022-02119-3
10.1016/j.ica.2018.04.017
10.3389/fchem.2020.00157
10.1021/acscatal.9b02326
10.1007/s11224-022-02030-x
10.1039/C5SC01565K
10.1016/j.jscs.2020.101193
10.1039/C9NJ04374H
10.1016/0010-8545(94)80072-3
10.1063/1.476576
10.1007/s12039-016-1048-6
10.1039/c6ra27757h
10.1063/1.467943
10.1016/j.saa.2022.121774
10.1063/1.448799
10.1103/physrevb.37.785
10.1016/j.jinorgbio.2011.07.012
10.1063/1.448975
10.1002/jcc.20495
10.1063/1.466059
10.1039/b817735j
10.1021/acsomega.1c00906
10.1007/s00894-012-1488-y
10.1063/1.462066
10.1016/j.molstruc.2022.133251
10.1021/ja204820d
10.1039/C7SC01070B
10.1021/acsomega.3c02878
10.1021/acs.cgd.7b01256
10.3390/molecules28124777
10.1063/1.1674902
10.1038/nature01650
10.1039/C3CP55430A
10.1021/acs.inorgchem.5b00872
10.3390/molecules20034042
10.1016/j.ccr.2015.05.016
10.1039/c5sc01729g
10.5012/bkcs.2011.32.2.673
10.1016/j.poly.2009.08.021
10.1016/j.saa.2022.121331
10.1038/s41467-017-00776-1
10.1016/j.molstruc.2021.132209
10.1007/s11224-021-01775-1
10.1021/ja307077f
10.1002/ange.200352596
10.1038/s41598-019-55793-5
10.1039/C5CS00391A
10.1039/C5DT03663A
10.1016/j.molstruc.2018.03.132
10.1016/j.bioorg.2019.103561
10.1002/ejic.201801041
10.1002/wcms.1327
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s00894-023-05765-4
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
ExternalDocumentID 37919553
10_1007_s00894_023_05765_4
Genre Journal Article
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
7X8
ID FETCH-LOGICAL-c375t-4c75024900eaa6a0adfa93ce92bcaaf0f6bec9391bab8266603266751b24f1543
IEDL.DBID U2A
ISSN 1610-2940
0948-5023
IngestDate Thu Jul 10 22:18:50 EDT 2025
Fri Jul 25 11:12:05 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 02:46:04 EDT 2025
Fri Feb 21 02:43:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords MEP map
Role of polypyridyl ligands
NBO
DFT/TDDFT
Electronic structures
Copper complexes
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-4c75024900eaa6a0adfa93ce92bcaaf0f6bec9391bab8266603266751b24f1543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37919553
PQID 2885591465
PQPubID 2043656
ParticipantIDs proquest_miscellaneous_2886330139
proquest_journals_2885591465
pubmed_primary_37919553
crossref_primary_10_1007_s00894_023_05765_4
crossref_citationtrail_10_1007_s00894_023_05765_4
springer_journals_10_1007_s00894_023_05765_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Computational Chemistry - Life Science - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationTitleAlternate J Mol Model
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Shultz, Sarjeant, Farha (CR9) 2011; 133
Bhalla, Tomer, Goel (CR5) 2022; 1264
Abdel-Rahman, Basha, Al-Farhan (CR23) 2023; 28
Chocholoušová, Špirko, Hobza (CR46) 2004; 6
Keypour, Rezaeivala, Valencia (CR3) 2009; 28
Yusuf Tunde, Oladipo, Zamisa (CR24) 2021; 6
Ansari, Rajaraman (CR35) 2014; 16
Mullaney, Goux-Capes, Price (CR13) 2017; 8
Weigend, Ahlrichs (CR45) 2005; 7
Sumrra, Atif, Zafar (CR63) 2018; 1166
Tanak, Koysal, Isik (CR65) 2011; 32
van Lenthe, Baerends, Snijders (CR49) 1994; 101
Naqi Ahamad, Iman, Raza (CR1) 2020; 95
Kitaura, Onoyama, Sakamoto (CR8) 2004; 116
Vardhan, Yusubov, Verpoort (CR10) 2016; 306
Kerru, Gummidi, Bhaskaruni (CR60) 2019; 9
Jangir, Ansari, Kaleeswaran (CR40) 2019; 9
Beddoe, Lonergan, Pitak (CR21) 2019; 48
Lawal, Govender, Maguire (CR59) 2016; 22
Elgrishi, Chambers, Wang, Fontecave (CR14) 2017; 46
Yadav, Kumar, Mittal (CR38) 2022; 13
Kumar, Gupta, Rizvi, Ansari (CR57) 2023; 34
Wadt, Hay (CR43) 1985; 82
Yadav, Ansari, Ansari (CR53) 2022; 278
Huang, Chen, Hsu (CR31) 2017; 7
Kepp (CR37) 2011; 105
Lonsdale, Harvey, Mulholland (CR33) 2012; 8
Jayapal, Ansari, Rajaraman (CR36) 2015; 54
Ditchfield, Hehre, Pople (CR41) 1971; 54
Sutradhar, Alegria, Tannistha (CR26) 2020; 8
Monika (CR58) 2023; 34
Hay, Wadt (CR44) 1985; 82
van Lenthe, Baerends, Snijders (CR48) 1993; 99
Monika, Chauhan, Ansari (CR61) 2021; 32
Xing, Zeng, Chen (CR4) 2022; 1253
Anastasiadis, Polyzou, Kostakis (CR15) 2015; 44
Poynton, Bright, Blasco (CR18) 2017; 46
Cardin, Kelly, Quinn (CR19) 2017; 8
Grimme (CR29) 2006; 27
Kumar, Ansari, Ansari (CR54) 2023; 284
Gray, Tsybizova, Roithova (CR30) 2015; 6
Lee, Yang, Parr (CR50) 1988; 37
Yaghi, O’Keeffe, Ockwig (CR12) 2003; 423
Tisato, Refosco, Bandoli (CR7) 1994; 135–136
Becke (CR51) 1992; 96
Beddoe, Fitzpatrick, Price (CR20) 2017; 17
Da Silva, Pennifold, Harvey, Rocha (CR39) 2016; 45
CR52
Hay, Wadt (CR42) 1985; 82
Irfan, Al-Sehemi (CR56) 2012; 18
Vishwakarma, Mir, Maurya (CR25) 2016; 128
Mantasha, Shahid, Kumar (CR2) 2020; 44
van Wüllen (CR47) 1998; 109
Koley, Parsekar, Duraipandy (CR22) 2018; 478
Mulrooney, Clements, Ericsson (CR16) 2018; 2018
Ansari, Kaushik, Rajaraman (CR34) 2013; 135
Yadav, Ansari, Ansari (CR64) 2021; 32
CR28
Maza, Haring, Ahrenholtz (CR17) 2016; 7
Tranchemontagne, Mendoza-Cortés, O’Keeffe, Yaghi (CR11) 2009; 38
Alshammari, Platts (CR32) 2020; 86
Drissi, Benhalima, Megrouss (CR62) 2015; 20
Shahid, Mantasha, Khan (CR6) 2021; 1244
Chavez-Urias, López-González, Plascencia-Martínez (CR27) 2023; 8
Sahu, Mohapatra, Al-Resayes (CR55) 2021; 25
OM Yaghi (5765_CR12) 2003; 423
DJ Tranchemontagne (5765_CR11) 2009; 38
N Alshammari (5765_CR32) 2020; 86
C van Wüllen (5765_CR47) 1998; 109
PJ Hay (5765_CR42) 1985; 82
J Chocholoušová (5765_CR46) 2004; 6
SVF Beddoe (5765_CR21) 2019; 48
SH Sumrra (5765_CR63) 2018; 1166
5765_CR52
C Lee (5765_CR50) 1988; 37
O Yadav (5765_CR38) 2022; 13
R Ditchfield (5765_CR41) 1971; 54
A Gray (5765_CR30) 2015; 6
AA Monika (5765_CR58) 2023; 34
P Bhalla (5765_CR5) 2022; 1264
WK Huang (5765_CR31) 2017; 7
M Kumar (5765_CR57) 2023; 34
DZT Mulrooney (5765_CR16) 2018; 2018
JCS Da Silva (5765_CR39) 2016; 45
R Kitaura (5765_CR8) 2004; 116
M Sutradhar (5765_CR26) 2020; 8
A Ansari (5765_CR34) 2013; 135
O Yadav (5765_CR53) 2022; 278
R Lonsdale (5765_CR33) 2012; 8
N Kerru (5765_CR60) 2019; 9
YO Monika (5765_CR61) 2021; 32
FE Poynton (5765_CR18) 2017; 46
M Naqi Ahamad (5765_CR1) 2020; 95
H Tanak (5765_CR65) 2011; 32
LH Abdel-Rahman (5765_CR23) 2023; 28
P Jayapal (5765_CR36) 2015; 54
R Sahu (5765_CR55) 2021; 25
AD Becke (5765_CR51) 1992; 96
BR Mullaney (5765_CR13) 2017; 8
S Grimme (5765_CR29) 2006; 27
PJ Hay (5765_CR44) 1985; 82
WR Wadt (5765_CR43) 1985; 82
AM Shultz (5765_CR9) 2011; 133
N Elgrishi (5765_CR14) 2017; 46
O Yadav (5765_CR64) 2021; 32
R Jangir (5765_CR40) 2019; 9
E van Lenthe (5765_CR48) 1993; 99
IF Chavez-Urias (5765_CR27) 2023; 8
A Xing (5765_CR4) 2022; 1253
A Irfan (5765_CR56) 2012; 18
PK Vishwakarma (5765_CR25) 2016; 128
M Drissi (5765_CR62) 2015; 20
KP Kepp (5765_CR37) 2011; 105
SVF Beddoe (5765_CR20) 2017; 17
MK Koley (5765_CR22) 2018; 478
E van Lenthe (5765_CR49) 1994; 101
I Mantasha (5765_CR2) 2020; 44
L Yusuf Tunde (5765_CR24) 2021; 6
WA Maza (5765_CR17) 2016; 7
5765_CR28
M Kumar (5765_CR54) 2023; 284
CJ Cardin (5765_CR19) 2017; 8
H Keypour (5765_CR3) 2009; 28
M Shahid (5765_CR6) 2021; 1244
MM Lawal (5765_CR59) 2016; 22
A Ansari (5765_CR35) 2014; 16
NC Anastasiadis (5765_CR15) 2015; 44
H Vardhan (5765_CR10) 2016; 306
F Weigend (5765_CR45) 2005; 7
F Tisato (5765_CR7) 1994; 135–136
References_xml – volume: 22
  start-page: 235
  year: 2016
  ident: CR59
  article-title: Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study
  publication-title: J Mol Model
  doi: 10.1007/s00894-016-3084-z
– volume: 48
  start-page: 15553
  year: 2019
  end-page: 15559
  ident: CR21
  article-title: All about that base: investigating the role of ligand basicity in pyridyl complexes derived from a copper-Schiff base coordination polymer
  publication-title: Dalton Trans
  doi: 10.1039/C9DT01527B
– volume: 45
  start-page: 2492
  year: 2016
  end-page: 2504
  ident: CR39
  article-title: A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective
  publication-title: Dalton Trans
  doi: 10.1039/c5dt02638e
– volume: 8
  start-page: 4637
  year: 2012
  end-page: 4645
  ident: CR33
  article-title: Effects of dispersion in density functional based quantum mechanical/molecular mechanical calculations on cytochrome p450 catalyzed reactions
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300329h
– volume: 13
  year: 2022
  ident: CR38
  article-title: Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases
  publication-title: Front pharmacol
  doi: 10.3389/fphar.2022.982484
– volume: 7
  start-page: 3297
  year: 2005
  ident: CR45
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b508541a
– volume: 1244
  year: 2021
  ident: CR6
  article-title: Elucidating the contribution of solvent on the catecholase activity in a mononuclear Cu(II) system: an experimental and theoretical approach
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2021.130878
– volume: 82
  start-page: 284
  year: 1985
  end-page: 298
  ident: CR43
  article-title: effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
  publication-title: J Chem Phys
  doi: 10.1063/1.448800
– volume: 6
  start-page: 37
  year: 2004
  end-page: 41
  ident: CR46
  article-title: First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H⋯O and improper blue-shifted C–H⋯O hydrogen bonds
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B314148A
– volume: 32
  start-page: 1473
  year: 2021
  end-page: 1488
  ident: CR61
  article-title: Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination
  publication-title: Struct Chem
  doi: 10.1007/s11224-020-01690-x
– volume: 46
  start-page: 7706
  year: 2017
  end-page: 7756
  ident: CR18
  article-title: The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00680B
– volume: 86
  year: 2020
  ident: CR32
  article-title: Theoretical study of copper binding to GHK peptide
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2020.107265
– volume: 34
  start-page: 1565
  year: 2023
  end-page: 1575
  ident: CR57
  article-title: Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight
  publication-title: Struct Chem
  doi: 10.1007/s11224-022-02119-3
– volume: 478
  start-page: 211
  year: 2018
  end-page: 221
  ident: CR22
  article-title: DNA binding and cytotoxicity of two Cu(II) complexes containing a Schiff base ligand along with 1,10-phenanthroline or imidazole as a coligand
  publication-title: Inorganica Chim Acta
  doi: 10.1016/j.ica.2018.04.017
– volume: 8
  start-page: 157
  year: 2020
  end-page: 157
  ident: CR26
  article-title: 1D Copper(II)-aroylhydrazone coordination polymers: magnetic properties and microwave assisted oxidation of a secondary alcohol
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.00157
– volume: 9
  start-page: 10940
  year: 2019
  end-page: 10950
  ident: CR40
  article-title: Unprecedented copper (II) complex with a topoquinone-like moiety as a structural and functional mimic for copper amine oxidase: role of copper(II) in the genesis and amine oxidase activity
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b02326
– volume: 34
  start-page: 825
  year: 2023
  end-page: 835
  ident: CR58
  article-title: Electronic structures and energetic of metal(II)-superoxo species: a DFT exploration
  publication-title: Struct Chem
  doi: 10.1007/s11224-022-02030-x
– volume: 7
  start-page: 719
  year: 2016
  end-page: 727
  ident: CR17
  article-title: Ruthenium(II)-polypyridyl zirconium(IV) metal–organic frameworks as a new class of sensitized solar cells
  publication-title: Chem Sci
  doi: 10.1039/C5SC01565K
– volume: 25
  year: 2021
  ident: CR55
  article-title: An efficient synthesis towards the core of Crinipellin: TD-DFT and docking studies
  publication-title: J Saudi Chem Soc
  doi: 10.1016/j.jscs.2020.101193
– volume: 44
  start-page: 1371
  year: 2020
  end-page: 1388
  ident: CR2
  article-title: Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach
  publication-title: New J Chem
  doi: 10.1039/C9NJ04374H
– volume: 135–136
  start-page: 325
  year: 1994
  end-page: 397
  ident: CR7
  article-title: Structural survey of technetium complexes
  publication-title: Coord Chem Rev
  doi: 10.1016/0010-8545(94)80072-3
– volume: 109
  start-page: 392
  year: 1998
  end-page: 399
  ident: CR47
  article-title: Molecular density functional calculations in the regular relativistic approximation: method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations
  publication-title: Chem Phys
  doi: 10.1063/1.476576
– volume: 128
  start-page: 511
  year: 2016
  end-page: 522
  ident: CR25
  article-title: Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities
  publication-title: J Chem Sci
  doi: 10.1007/s12039-016-1048-6
– volume: 7
  start-page: 4912
  year: 2017
  end-page: 4920
  ident: CR31
  article-title: Cross C-S coupling reaction catalyzed by copper(I) N-heterocyclic carbene complexes
  publication-title: RSC Adv
  doi: 10.1039/c6ra27757h
– volume: 101
  start-page: 9783
  year: 1994
  end-page: 9792
  ident: CR49
  article-title: Relativistic total energy using regular approximations
  publication-title: Phys Rev B
  doi: 10.1063/1.467943
– volume: 284
  year: 2023
  ident: CR54
  article-title: Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: a theoretical study
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2022.121774
– volume: 82
  start-page: 270
  year: 1985
  end-page: 283
  ident: CR42
  article-title: effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
  publication-title: J Chem Phys
  doi: 10.1063/1.448799
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  ident: CR50
  article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
  publication-title: Phys Rev B
  doi: 10.1103/physrevb.37.785
– volume: 105
  start-page: 1286
  year: 2011
  end-page: 1292
  ident: CR37
  article-title: The ground states of iron (III) porphines: role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2011.07.012
– volume: 82
  start-page: 299
  year: 1985
  end-page: 310
  ident: CR44
  article-title: effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
  publication-title: J Chem Phys
  doi: 10.1063/1.448975
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR29
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20495
– volume: 99
  start-page: 4597
  year: 1993
  end-page: 4610
  ident: CR48
  article-title: Relativistic regular two-component Hamiltonians
  publication-title: Phys Rev B
  doi: 10.1063/1.466059
– volume: 38
  start-page: 1257
  year: 2009
  ident: CR11
  article-title: Secondary building units, nets and bonding in the chemistry of metal–organic frameworks
  publication-title: Chem Soc Rev
  doi: 10.1039/b817735j
– volume: 6
  start-page: 13704
  year: 2021
  end-page: 13718
  ident: CR24
  article-title: Design of new Schiff-base copper(II) complexes: synthesis, crystal structures, DFT study, and binding potency toward cytochrome P450 3A4
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00906
– volume: 18
  start-page: 4893
  year: 2012
  end-page: 4900
  ident: CR56
  article-title: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection
  publication-title: J Mol Model
  doi: 10.1007/s00894-012-1488-y
– volume: 96
  start-page: 2155
  year: 1992
  end-page: 2160
  ident: CR51
  article-title: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction
  publication-title: J Chem Phys
  doi: 10.1063/1.462066
– volume: 1264
  year: 2022
  ident: CR5
  article-title: Chemoselective detection based on experimental and theoretical calculations of Cu ions via deprotonation of chromone derived probe and its application
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2022.133251
– volume: 133
  start-page: 13252
  year: 2011
  end-page: 13255
  ident: CR9
  article-title: Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials
  publication-title: J Am Chem Soc
  doi: 10.1021/ja204820d
– volume: 8
  start-page: 4705
  year: 2017
  end-page: 4723
  ident: CR19
  article-title: Photochemically active DNA-intercalating ruthenium and related complexes–insights by combining crystallography and transient spectroscopy
  publication-title: Chem Sci
  doi: 10.1039/C7SC01070B
– volume: 8
  start-page: 24601
  year: 2023
  end-page: 24614
  ident: CR27
  article-title: l-Isoleucine-Schiff base copper(II) coordination polymers: crystal structure, spectroscopic, hirshfeld surface, and dft analyses
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c02878
– volume: 17
  start-page: 6603
  year: 2017
  end-page: 6612
  ident: CR20
  article-title: A bridge too far: testing the limits of polypyridyl ligands in bridging soluble subunits of a coordination polymer
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.7b01256
– volume: 28
  start-page: 4777
  year: 2023
  end-page: 4777
  ident: CR23
  article-title: Synthesis, Characterization, DFT studies of novel Cu(II), Zn(II), VO(II), Cr(III), and La(III) chloro-substituted Schiff base complexes: aspects of its antimicrobial, antioxidant, anti-inflammatory, and photodegradation of methylene blue
  publication-title: Molecules
  doi: 10.3390/molecules28124777
– volume: 54
  start-page: 724
  year: 1971
  end-page: 728
  ident: CR41
  article-title: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
  publication-title: J Chem Phys
  doi: 10.1063/1.1674902
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  ident: CR12
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 16
  start-page: 14601
  year: 2014
  end-page: 14613
  ident: CR35
  article-title: ortho-Hydroxylation of aromatic acids by a non-heme Fe =O species: how important is the ligand design?
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C3CP55430A
– volume: 54
  start-page: 11077
  year: 2015
  end-page: 11082
  ident: CR36
  article-title: Computational examination on the active site structure of a (peroxo) diiron (III) intermediate in the amine oxygenase AurF
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.5b00872
– volume: 20
  start-page: 4042
  year: 2015
  end-page: 4054
  ident: CR62
  article-title: Theoretical and experimental electrostatic potential around the m-nitrophenol molecule
  publication-title: Molecules
  doi: 10.3390/molecules20034042
– volume: 306
  start-page: 171
  year: 2016
  end-page: 194
  ident: CR10
  article-title: Self-assembled metal–organic polyhedra: an overview of various applications
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2015.05.016
– volume: 6
  start-page: 5544
  year: 2015
  end-page: 5553
  ident: CR30
  article-title: Carboxylate-assisted C-H activation of phenylpyridines with copper, palladium and ruthenium: a mass spectrometry and DFT study
  publication-title: Chem Sci
  doi: 10.1039/c5sc01729g
– volume: 32
  start-page: 673
  year: 2011
  end-page: 680
  ident: CR65
  article-title: Experimental and computational approaches to the molecular structure of 3-(2-mercaptopyridine)phthalonitrile
  publication-title: Bull Korean Chem Soc
  doi: 10.5012/bkcs.2011.32.2.673
– ident: CR52
– volume: 28
  start-page: 3755
  year: 2009
  end-page: 3758
  ident: CR3
  article-title: Synthesis and characterization of some new Co(II) and Cd(II) macroacyclic Schiff-base complexes containing piperazine moiety
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.08.021
– volume: 278
  year: 2022
  ident: CR53
  article-title: Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2022.121331
– volume: 8
  start-page: 1053
  year: 2017
  ident: CR13
  article-title: Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00776-1
– volume: 1253
  year: 2022
  ident: CR4
  article-title: Synthesis, crystal structure and antioxidant activity of butylphenol Schiff bases: experimental and DFT study
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2021.132209
– volume: 32
  start-page: 2007
  year: 2021
  end-page: 2018
  ident: CR64
  article-title: Electronic structures, bonding and energetics of non-heme mono and dinuclear iron-TPA complexes: a computational exploration
  publication-title: Struct Chem
  doi: 10.1007/s11224-021-01775-1
– volume: 135
  start-page: 4235
  year: 2013
  end-page: 4249
  ident: CR34
  article-title: Mechanistic insights on the ortho -hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe ═O and Fe ═O intermediates
  publication-title: J Am Chem Soc
  doi: 10.1021/ja307077f
– volume: 116
  start-page: 2738
  year: 2004
  end-page: 2741
  ident: CR8
  article-title: Immobilization of a metallo Schiff base into a microporous coordination polymer
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/ange.200352596
– volume: 9
  start-page: 19280
  year: 2019
  ident: CR60
  article-title: A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55793-5
– volume: 46
  start-page: 761
  year: 2017
  end-page: 796
  ident: CR14
  article-title: Molecular polypyridine-based metal complexes as catalysts for the reduction of CO
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00391A
– volume: 44
  start-page: 19791
  year: 2015
  end-page: 19795
  ident: CR15
  article-title: Dinuclear lanthanide(III)/zinc(II) complexes with methyl 2-pyridyl ketone oxime
  publication-title: Dalton Trans
  doi: 10.1039/C5DT03663A
– ident: CR28
– volume: 1166
  start-page: 110
  year: 2018
  end-page: 120
  ident: CR63
  article-title: Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2018.03.132
– volume: 95
  year: 2020
  ident: CR1
  article-title: Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes
  publication-title: Bioorg Chem
  doi: 10.1016/j.bioorg.2019.103561
– volume: 2018
  start-page: 5223
  year: 2018
  end-page: 5228
  ident: CR16
  article-title: Phase control of ferromagnetic copper(II) carbonate coordination polymers through reagent concentration
  publication-title: Eur J Inorg Chem
  doi: 10.1002/ejic.201801041
– volume: 1244
  year: 2021
  ident: 5765_CR6
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2021.130878
– volume: 105
  start-page: 1286
  year: 2011
  ident: 5765_CR37
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2011.07.012
– volume: 96
  start-page: 2155
  year: 1992
  ident: 5765_CR51
  publication-title: J Chem Phys
  doi: 10.1063/1.462066
– volume: 86
  year: 2020
  ident: 5765_CR32
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2020.107265
– volume: 6
  start-page: 37
  year: 2004
  ident: 5765_CR46
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B314148A
– volume: 27
  start-page: 1787
  year: 2006
  ident: 5765_CR29
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20495
– volume: 99
  start-page: 4597
  year: 1993
  ident: 5765_CR48
  publication-title: Phys Rev B
  doi: 10.1063/1.466059
– ident: 5765_CR52
  doi: 10.1002/wcms.1327
– volume: 9
  start-page: 19280
  year: 2019
  ident: 5765_CR60
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55793-5
– volume: 37
  start-page: 785
  year: 1988
  ident: 5765_CR50
  publication-title: Phys Rev B
  doi: 10.1103/physrevb.37.785
– volume: 34
  start-page: 1565
  year: 2023
  ident: 5765_CR57
  publication-title: Struct Chem
  doi: 10.1007/s11224-022-02119-3
– volume: 32
  start-page: 1473
  year: 2021
  ident: 5765_CR61
  publication-title: Struct Chem
  doi: 10.1007/s11224-020-01690-x
– volume: 54
  start-page: 11077
  year: 2015
  ident: 5765_CR36
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.5b00872
– volume: 6
  start-page: 5544
  year: 2015
  ident: 5765_CR30
  publication-title: Chem Sci
  doi: 10.1039/c5sc01729g
– volume: 7
  start-page: 4912
  year: 2017
  ident: 5765_CR31
  publication-title: RSC Adv
  doi: 10.1039/c6ra27757h
– volume: 28
  start-page: 4777
  year: 2023
  ident: 5765_CR23
  publication-title: Molecules
  doi: 10.3390/molecules28124777
– volume: 278
  year: 2022
  ident: 5765_CR53
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2022.121331
– volume: 25
  year: 2021
  ident: 5765_CR55
  publication-title: J Saudi Chem Soc
  doi: 10.1016/j.jscs.2020.101193
– volume: 8
  start-page: 1053
  year: 2017
  ident: 5765_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00776-1
– ident: 5765_CR28
– volume: 8
  start-page: 24601
  year: 2023
  ident: 5765_CR27
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c02878
– volume: 1253
  year: 2022
  ident: 5765_CR4
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2021.132209
– volume: 32
  start-page: 2007
  year: 2021
  ident: 5765_CR64
  publication-title: Struct Chem
  doi: 10.1007/s11224-021-01775-1
– volume: 109
  start-page: 392
  year: 1998
  ident: 5765_CR47
  publication-title: Chem Phys
  doi: 10.1063/1.476576
– volume: 17
  start-page: 6603
  year: 2017
  ident: 5765_CR20
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.7b01256
– volume: 116
  start-page: 2738
  year: 2004
  ident: 5765_CR8
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/ange.200352596
– volume: 2018
  start-page: 5223
  year: 2018
  ident: 5765_CR16
  publication-title: Eur J Inorg Chem
  doi: 10.1002/ejic.201801041
– volume: 135–136
  start-page: 325
  year: 1994
  ident: 5765_CR7
  publication-title: Coord Chem Rev
  doi: 10.1016/0010-8545(94)80072-3
– volume: 478
  start-page: 211
  year: 2018
  ident: 5765_CR22
  publication-title: Inorganica Chim Acta
  doi: 10.1016/j.ica.2018.04.017
– volume: 133
  start-page: 13252
  year: 2011
  ident: 5765_CR9
  publication-title: J Am Chem Soc
  doi: 10.1021/ja204820d
– volume: 7
  start-page: 3297
  year: 2005
  ident: 5765_CR45
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b508541a
– volume: 6
  start-page: 13704
  year: 2021
  ident: 5765_CR24
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00906
– volume: 45
  start-page: 2492
  year: 2016
  ident: 5765_CR39
  publication-title: Dalton Trans
  doi: 10.1039/c5dt02638e
– volume: 9
  start-page: 10940
  year: 2019
  ident: 5765_CR40
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b02326
– volume: 28
  start-page: 3755
  year: 2009
  ident: 5765_CR3
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.08.021
– volume: 101
  start-page: 9783
  year: 1994
  ident: 5765_CR49
  publication-title: Phys Rev B
  doi: 10.1063/1.467943
– volume: 16
  start-page: 14601
  year: 2014
  ident: 5765_CR35
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C3CP55430A
– volume: 22
  start-page: 235
  year: 2016
  ident: 5765_CR59
  publication-title: J Mol Model
  doi: 10.1007/s00894-016-3084-z
– volume: 44
  start-page: 19791
  year: 2015
  ident: 5765_CR15
  publication-title: Dalton Trans
  doi: 10.1039/C5DT03663A
– volume: 32
  start-page: 673
  year: 2011
  ident: 5765_CR65
  publication-title: Bull Korean Chem Soc
  doi: 10.5012/bkcs.2011.32.2.673
– volume: 20
  start-page: 4042
  year: 2015
  ident: 5765_CR62
  publication-title: Molecules
  doi: 10.3390/molecules20034042
– volume: 135
  start-page: 4235
  year: 2013
  ident: 5765_CR34
  publication-title: J Am Chem Soc
  doi: 10.1021/ja307077f
– volume: 7
  start-page: 719
  year: 2016
  ident: 5765_CR17
  publication-title: Chem Sci
  doi: 10.1039/C5SC01565K
– volume: 306
  start-page: 171
  year: 2016
  ident: 5765_CR10
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2015.05.016
– volume: 46
  start-page: 7706
  year: 2017
  ident: 5765_CR18
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00680B
– volume: 82
  start-page: 284
  year: 1985
  ident: 5765_CR43
  publication-title: J Chem Phys
  doi: 10.1063/1.448800
– volume: 1166
  start-page: 110
  year: 2018
  ident: 5765_CR63
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2018.03.132
– volume: 38
  start-page: 1257
  year: 2009
  ident: 5765_CR11
  publication-title: Chem Soc Rev
  doi: 10.1039/b817735j
– volume: 1264
  year: 2022
  ident: 5765_CR5
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2022.133251
– volume: 54
  start-page: 724
  year: 1971
  ident: 5765_CR41
  publication-title: J Chem Phys
  doi: 10.1063/1.1674902
– volume: 423
  start-page: 705
  year: 2003
  ident: 5765_CR12
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 8
  start-page: 4705
  year: 2017
  ident: 5765_CR19
  publication-title: Chem Sci
  doi: 10.1039/C7SC01070B
– volume: 8
  start-page: 157
  year: 2020
  ident: 5765_CR26
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.00157
– volume: 82
  start-page: 299
  year: 1985
  ident: 5765_CR44
  publication-title: J Chem Phys
  doi: 10.1063/1.448975
– volume: 95
  year: 2020
  ident: 5765_CR1
  publication-title: Bioorg Chem
  doi: 10.1016/j.bioorg.2019.103561
– volume: 128
  start-page: 511
  year: 2016
  ident: 5765_CR25
  publication-title: J Chem Sci
  doi: 10.1007/s12039-016-1048-6
– volume: 8
  start-page: 4637
  year: 2012
  ident: 5765_CR33
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300329h
– volume: 284
  year: 2023
  ident: 5765_CR54
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2022.121774
– volume: 46
  start-page: 761
  year: 2017
  ident: 5765_CR14
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00391A
– volume: 18
  start-page: 4893
  year: 2012
  ident: 5765_CR56
  publication-title: J Mol Model
  doi: 10.1007/s00894-012-1488-y
– volume: 34
  start-page: 825
  year: 2023
  ident: 5765_CR58
  publication-title: Struct Chem
  doi: 10.1007/s11224-022-02030-x
– volume: 82
  start-page: 270
  year: 1985
  ident: 5765_CR42
  publication-title: J Chem Phys
  doi: 10.1063/1.448799
– volume: 44
  start-page: 1371
  year: 2020
  ident: 5765_CR2
  publication-title: New J Chem
  doi: 10.1039/C9NJ04374H
– volume: 48
  start-page: 15553
  year: 2019
  ident: 5765_CR21
  publication-title: Dalton Trans
  doi: 10.1039/C9DT01527B
– volume: 13
  year: 2022
  ident: 5765_CR38
  publication-title: Front pharmacol
  doi: 10.3389/fphar.2022.982484
SSID ssj0001256522
Score 2.405412
Snippet Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)]...
Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is...
ContextSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)]...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 358
SubjectTerms Absorption spectra
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Continuum modeling
Coordination compounds
Coordination polymers
Copper
Density functional theory
Electron transitions
Energy distribution
Energy gap
Imines
Ligands
Molecular Medicine
Molecular orbitals
Original Paper
Solvation
Theoretical and Computational Chemistry
Title DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting
URI https://link.springer.com/article/10.1007/s00894-023-05765-4
https://www.ncbi.nlm.nih.gov/pubmed/37919553
https://www.proquest.com/docview/2885591465
https://www.proquest.com/docview/2886330139
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP1wOehF3K0bEbxpoW2atD2OyyiKnmZATyVJExWGtsyMB_-9XzJtVVxAKLTQNC15afJeviUAxxolg-CK-QXKNj8uFI6DJuI-M2mRUpWYQNt457t7fj2Mbx7YQxMUNmm93VuTpBupu2A3nK1sGtvI-pslnPnxPCwyq92xFw-j3qeVFSQpznyAbCbwoywOmmiZn6v5OiN9o5nfTKRu5umvwkpDGUlvhvEazOlyHZbO253aNqC-6A-IKAsyuLBX2rnVuRYneCDDI9aHkFSG1G_jl-JtREYvTzbEl9hVWKKqutZjMnUOtERWLs6FCBeDOXH1jqyCJ89i7HJylE-bMOxfDs6v_WYnBV_RhE39WCExQKEVBFoILgJRGJFRpbNIKiFMYDhCmdEslEKi3uA8QFaHUiKUUWyQZNEtWCirUu8AkaHRAocBmoRFjFpEosblwpo7U6lZJjwI29bMVZNm3O52Mcq7BMkOgRwRyB0CeezBSfdMPUuy8Wfp_RakvPnhJnmUpqiNcNhnHhx1txEHa_8Qpa5eXRlOqeW8HmzPwO1eR5MszBijHpy2aH9U_vu37P6v-B4s2-3qZ7GM-7AwHb_qAyQ1U3kIi73-2dm9PV893l4euj79DlsM7o4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4QwFH5xOejFuItrTbwpCVBa4GjUybieZhJvpC2tmkyAzIwH_72vHUCNS2LCgYRSSD94_b6-pQAnGiWD4Ir5Bco2Py4U2kETcZ-ZtEipSkygbb7z_QPvD-ObR_bYJIVN2mj31iXpLHWX7IazlS1jG9l4s4QzP56HRSQDqQ3kGkbnn1ZWkKQ49wGymcCPsjhosmV-7ubrjPSNZn5zkbqZp7cKKw1lJOczjNdgTpfrsHTR7tS2AfVlb0BEWZDBpT3TLqzOjTjBAxkesTGEpDKkfhu_FG8jMnp5sim-xK7CElXVtR6TqQugJbJyeS5EuBzMiet3ZBU8eRZjV5OjfNqEYe9qcNH3m50UfEUTNvVjhcQAhVYQaCG4CERhREaVziKphDCB4QhlRrNQCol6g_MAWR1KiVBGsUGSRbdgoaxKvQNEhkYLNAM0CYsYtYhEjcuFdXemUrNMeBC2o5mrpsy43e1ilHcFkh0COSKQOwTy2IPT7p56VmTjz9b7LUh588NN8ihNURuh2WceHHeXEQfr_xClrl5dG06p5bwebM_A7R5HkyzMGKMenLVof3T--7vs_q_5ESz1B_d3-d31w-0eLNut62d5jfuwMB2_6gMkOFN56L7nd85x7nE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3BIhUuFdAW0lJqJG4QkcSxkxwR2xVQQBx2JW6R7diAtEqiJRz23zN2PgqirVQph0hxnCgvsd_LzBsDHGqUDIIr5hco2_y4UDgOmoj7zKRFSlViAm39ztc3_HwWX96xu1cufpft3ockW0-DrdJUNid1YU4G4xvOXLakbWRzzxLO_HgV1nA4Du17PYtOX_1lQcLiQgnIbAI_yuKgc878uZu3s9M7yvkuXOpmockmfOzoIzlt8d6CFV1uw_pZv2rbJ6jHkykRZUGmY7unXYqde_oEN2R7xOYTksqQerl4LJZzMn-8t3ZfYv_IElXVtV6QxiXTElk5zwsRzo_55PqdWzVPHsTC1eco7z_DbPJzenbud6sq-IomrPFjhSQBRVcQaCG4CERhREaVziKphDCB4QhrRrNQConag_MAGR7KilBGsUHCRb_AqKxKvQtEhkYLHBJoEhYx6hKJepcLG_pMpWaZ8CDsn2auupLjduWLeT4US3YI5IhA7hDIYw-OhnPqtuDGP1vv9SDl3cf3lEdpijoJpwDmwcFwGHGwsRBR6urZteGUWv7rwU4L7nA5mmRhxhj14LhH-3fnf7-Xr__X_Ad8uB1P8quLm1_fYMOuYt9aHPdg1Cye9XfkOo3cd6_zC6-_8q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+and+TDDFT+exploration+on+the+role+of+pyridyl+ligands+with+copper+toward+bonding+aspects+and+light+harvesting&rft.jtitle=Journal+of+molecular+modeling&rft.au=Ahmed%2C+Mukhtar&rft.au=Gupta%2C+Manoj+Kumar&rft.au=Ansari%2C+Azaj&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=11&rft_id=info:doi/10.1007%2Fs00894-023-05765-4&rft.externalDocID=10_1007_s00894_023_05765_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon