DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting
Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands...
Saved in:
Published in | Journal of molecular modeling Vol. 29; no. 11; p. 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1610-2940 0948-5023 0948-5023 |
DOI | 10.1007/s00894-023-05765-4 |
Cover
Loading…
Abstract | Context
Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.
Methods
All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra. |
---|---|
AbstractList | ContextSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.MethodsAll DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra. Context Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural–functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440–448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. Methods All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra. Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data. All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra. Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.CONTEXTSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is solution-stable (L = 2-(2-hydroxybenzylidene-amino)phenol) has been explored theoretically with five different pyridyl-based ligands using DFT/TDDFT in order to understand the structural-functional and electronic transitions of these five complexes. Frontier molecular orbital (FMO) analysis was carried out to assess the reactivity behavior of all five complexes. For the purpose of studying the charge energy distribution over complexes, electrostatic potential maps were also drawn. Furthermore, in order to identify any stabilizing interactions that may be present in the given complexes, an NBO analysis was studied. To learn more about any potential correlations between the properties of these five complexes, a comparative analysis was explored. Our calculations demonstrate that complex 3 having pyridine-4-carboxamide as a ligand has a lower energy gap and a higher negative electrostatic potential which may indicate its higher reactivity and this may be due to the electron withdrawing group (carboxamide). TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied complexes is found in the range of 440-448 nm. Complexes 1, 2, and 4 show the higher light harvesting efficiency as compared to complexes 3 and 5. Our findings are in good accordance with the available experimental data.All DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra.METHODSAll DFT computations were performed using the Gaussian16 with unrestricted B3LYP-D2 functional with the basis sets 6-31G(d,p) for O, N, C, and H while LanL2DZ for Cu. The polarized continuum model (PCM) was used for the solvation. The software GaussView6.1 was utilized for the modeling of initial geometries and the plotting of MEP maps. The NBO6.0 program which is incorporated in Gaussian16 was utilized to investigate the bonding nature and stabilization energies of the complexes. The ORCA program was used to simulate the absorption spectra. |
ArticleNumber | 358 |
Author | Gupta, Manoj Kumar Ahmed, Mukhtar Ansari, Azaj |
Author_xml | – sequence: 1 givenname: Mukhtar surname: Ahmed fullname: Ahmed, Mukhtar organization: Department of Chemistry, Central University of Haryana – sequence: 2 givenname: Manoj Kumar surname: Gupta fullname: Gupta, Manoj Kumar organization: Department of Chemistry, Central University of Haryana – sequence: 3 givenname: Azaj surname: Ansari fullname: Ansari, Azaj email: ajaz.alam2@gmail.com organization: Department of Chemistry, Central University of Haryana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37919553$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vGyEQhlGVKnGT_IEcKqReetl2-NzlWCVNWylSL-4ZsSxrE61hC7iJ_32xnaZSDpEQjOB5Z4Z536GTEIND6IrAJwLQfs4AneINUNaAaKVo-Bu0AMW7RtS7E7QgkkBDFYczdJnzPQAQKqSg9BSdsVYRJQRboPnmdolNGPDyZh-5x3mKyRQfA66rrB1OcXI4jnjeJT_sJjz5VeUzfvBljW2cZ5dwiQ8mDbiPYfBhhU2enS35kLfi64LXJv1xudTHC_R2NFN2l0_nOfp1-3V5_b25-_ntx_WXu8ayVpSG27b-gysAZ4w0YIbRKGador01ZoRR9s4qpkhv-o5KKYHVvRWkp3wkgrNz9PGYd07x97bW1hufrZsmE1zcZk27TjIGhKmKfniB3sdtCrW7PSWEIlyKSr1_orb9xg16Tn5j0k7_m2UF6BGwKeac3PiMENB7z_TRM1390QfP9L7N7oXI-nKYf0nGT69L2VGaa52wcul_26-o_gKb4qn9 |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_109208 crossref_primary_10_1039_D4SE00406J crossref_primary_10_1007_s11082_024_08026_7 crossref_primary_10_1016_j_saa_2024_125407 crossref_primary_10_1007_s00894_024_05912_5 crossref_primary_10_1007_s00894_025_06296_w crossref_primary_10_1016_j_mtcomm_2024_110182 |
Cites_doi | 10.1007/s00894-016-3084-z 10.1039/C9DT01527B 10.1039/c5dt02638e 10.1021/ct300329h 10.3389/fphar.2022.982484 10.1039/b508541a 10.1016/j.molstruc.2021.130878 10.1063/1.448800 10.1039/B314148A 10.1007/s11224-020-01690-x 10.1039/C7CS00680B 10.1016/j.compbiolchem.2020.107265 10.1007/s11224-022-02119-3 10.1016/j.ica.2018.04.017 10.3389/fchem.2020.00157 10.1021/acscatal.9b02326 10.1007/s11224-022-02030-x 10.1039/C5SC01565K 10.1016/j.jscs.2020.101193 10.1039/C9NJ04374H 10.1016/0010-8545(94)80072-3 10.1063/1.476576 10.1007/s12039-016-1048-6 10.1039/c6ra27757h 10.1063/1.467943 10.1016/j.saa.2022.121774 10.1063/1.448799 10.1103/physrevb.37.785 10.1016/j.jinorgbio.2011.07.012 10.1063/1.448975 10.1002/jcc.20495 10.1063/1.466059 10.1039/b817735j 10.1021/acsomega.1c00906 10.1007/s00894-012-1488-y 10.1063/1.462066 10.1016/j.molstruc.2022.133251 10.1021/ja204820d 10.1039/C7SC01070B 10.1021/acsomega.3c02878 10.1021/acs.cgd.7b01256 10.3390/molecules28124777 10.1063/1.1674902 10.1038/nature01650 10.1039/C3CP55430A 10.1021/acs.inorgchem.5b00872 10.3390/molecules20034042 10.1016/j.ccr.2015.05.016 10.1039/c5sc01729g 10.5012/bkcs.2011.32.2.673 10.1016/j.poly.2009.08.021 10.1016/j.saa.2022.121331 10.1038/s41467-017-00776-1 10.1016/j.molstruc.2021.132209 10.1007/s11224-021-01775-1 10.1021/ja307077f 10.1002/ange.200352596 10.1038/s41598-019-55793-5 10.1039/C5CS00391A 10.1039/C5DT03663A 10.1016/j.molstruc.2018.03.132 10.1016/j.bioorg.2019.103561 10.1002/ejic.201801041 10.1002/wcms.1327 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s00894-023-05765-4 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
ExternalDocumentID | 37919553 10_1007_s00894_023_05765_4 |
Genre | Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM 7X8 |
ID | FETCH-LOGICAL-c375t-4c75024900eaa6a0adfa93ce92bcaaf0f6bec9391bab8266603266751b24f1543 |
IEDL.DBID | U2A |
ISSN | 1610-2940 0948-5023 |
IngestDate | Thu Jul 10 22:18:50 EDT 2025 Fri Jul 25 11:12:05 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Tue Jul 01 02:46:04 EDT 2025 Fri Feb 21 02:43:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | MEP map Role of polypyridyl ligands NBO DFT/TDDFT Electronic structures Copper complexes |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-4c75024900eaa6a0adfa93ce92bcaaf0f6bec9391bab8266603266751b24f1543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 37919553 |
PQID | 2885591465 |
PQPubID | 2043656 |
ParticipantIDs | proquest_miscellaneous_2886330139 proquest_journals_2885591465 pubmed_primary_37919553 crossref_primary_10_1007_s00894_023_05765_4 crossref_citationtrail_10_1007_s00894_023_05765_4 springer_journals_10_1007_s00894_023_05765_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationTitleAlternate | J Mol Model |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Shultz, Sarjeant, Farha (CR9) 2011; 133 Bhalla, Tomer, Goel (CR5) 2022; 1264 Abdel-Rahman, Basha, Al-Farhan (CR23) 2023; 28 Chocholoušová, Špirko, Hobza (CR46) 2004; 6 Keypour, Rezaeivala, Valencia (CR3) 2009; 28 Yusuf Tunde, Oladipo, Zamisa (CR24) 2021; 6 Ansari, Rajaraman (CR35) 2014; 16 Mullaney, Goux-Capes, Price (CR13) 2017; 8 Weigend, Ahlrichs (CR45) 2005; 7 Sumrra, Atif, Zafar (CR63) 2018; 1166 Tanak, Koysal, Isik (CR65) 2011; 32 van Lenthe, Baerends, Snijders (CR49) 1994; 101 Naqi Ahamad, Iman, Raza (CR1) 2020; 95 Kitaura, Onoyama, Sakamoto (CR8) 2004; 116 Vardhan, Yusubov, Verpoort (CR10) 2016; 306 Kerru, Gummidi, Bhaskaruni (CR60) 2019; 9 Jangir, Ansari, Kaleeswaran (CR40) 2019; 9 Beddoe, Lonergan, Pitak (CR21) 2019; 48 Lawal, Govender, Maguire (CR59) 2016; 22 Elgrishi, Chambers, Wang, Fontecave (CR14) 2017; 46 Yadav, Kumar, Mittal (CR38) 2022; 13 Kumar, Gupta, Rizvi, Ansari (CR57) 2023; 34 Wadt, Hay (CR43) 1985; 82 Yadav, Ansari, Ansari (CR53) 2022; 278 Huang, Chen, Hsu (CR31) 2017; 7 Kepp (CR37) 2011; 105 Lonsdale, Harvey, Mulholland (CR33) 2012; 8 Jayapal, Ansari, Rajaraman (CR36) 2015; 54 Ditchfield, Hehre, Pople (CR41) 1971; 54 Sutradhar, Alegria, Tannistha (CR26) 2020; 8 Monika (CR58) 2023; 34 Hay, Wadt (CR44) 1985; 82 van Lenthe, Baerends, Snijders (CR48) 1993; 99 Monika, Chauhan, Ansari (CR61) 2021; 32 Xing, Zeng, Chen (CR4) 2022; 1253 Anastasiadis, Polyzou, Kostakis (CR15) 2015; 44 Poynton, Bright, Blasco (CR18) 2017; 46 Cardin, Kelly, Quinn (CR19) 2017; 8 Grimme (CR29) 2006; 27 Kumar, Ansari, Ansari (CR54) 2023; 284 Gray, Tsybizova, Roithova (CR30) 2015; 6 Lee, Yang, Parr (CR50) 1988; 37 Yaghi, O’Keeffe, Ockwig (CR12) 2003; 423 Tisato, Refosco, Bandoli (CR7) 1994; 135–136 Becke (CR51) 1992; 96 Beddoe, Fitzpatrick, Price (CR20) 2017; 17 Da Silva, Pennifold, Harvey, Rocha (CR39) 2016; 45 CR52 Hay, Wadt (CR42) 1985; 82 Irfan, Al-Sehemi (CR56) 2012; 18 Vishwakarma, Mir, Maurya (CR25) 2016; 128 Mantasha, Shahid, Kumar (CR2) 2020; 44 van Wüllen (CR47) 1998; 109 Koley, Parsekar, Duraipandy (CR22) 2018; 478 Mulrooney, Clements, Ericsson (CR16) 2018; 2018 Ansari, Kaushik, Rajaraman (CR34) 2013; 135 Yadav, Ansari, Ansari (CR64) 2021; 32 CR28 Maza, Haring, Ahrenholtz (CR17) 2016; 7 Tranchemontagne, Mendoza-Cortés, O’Keeffe, Yaghi (CR11) 2009; 38 Alshammari, Platts (CR32) 2020; 86 Drissi, Benhalima, Megrouss (CR62) 2015; 20 Shahid, Mantasha, Khan (CR6) 2021; 1244 Chavez-Urias, López-González, Plascencia-Martínez (CR27) 2023; 8 Sahu, Mohapatra, Al-Resayes (CR55) 2021; 25 OM Yaghi (5765_CR12) 2003; 423 DJ Tranchemontagne (5765_CR11) 2009; 38 N Alshammari (5765_CR32) 2020; 86 C van Wüllen (5765_CR47) 1998; 109 PJ Hay (5765_CR42) 1985; 82 J Chocholoušová (5765_CR46) 2004; 6 SVF Beddoe (5765_CR21) 2019; 48 SH Sumrra (5765_CR63) 2018; 1166 5765_CR52 C Lee (5765_CR50) 1988; 37 O Yadav (5765_CR38) 2022; 13 R Ditchfield (5765_CR41) 1971; 54 A Gray (5765_CR30) 2015; 6 AA Monika (5765_CR58) 2023; 34 P Bhalla (5765_CR5) 2022; 1264 WK Huang (5765_CR31) 2017; 7 M Kumar (5765_CR57) 2023; 34 DZT Mulrooney (5765_CR16) 2018; 2018 JCS Da Silva (5765_CR39) 2016; 45 R Kitaura (5765_CR8) 2004; 116 M Sutradhar (5765_CR26) 2020; 8 A Ansari (5765_CR34) 2013; 135 O Yadav (5765_CR53) 2022; 278 R Lonsdale (5765_CR33) 2012; 8 N Kerru (5765_CR60) 2019; 9 YO Monika (5765_CR61) 2021; 32 FE Poynton (5765_CR18) 2017; 46 M Naqi Ahamad (5765_CR1) 2020; 95 H Tanak (5765_CR65) 2011; 32 LH Abdel-Rahman (5765_CR23) 2023; 28 P Jayapal (5765_CR36) 2015; 54 R Sahu (5765_CR55) 2021; 25 AD Becke (5765_CR51) 1992; 96 BR Mullaney (5765_CR13) 2017; 8 S Grimme (5765_CR29) 2006; 27 PJ Hay (5765_CR44) 1985; 82 WR Wadt (5765_CR43) 1985; 82 AM Shultz (5765_CR9) 2011; 133 N Elgrishi (5765_CR14) 2017; 46 O Yadav (5765_CR64) 2021; 32 R Jangir (5765_CR40) 2019; 9 E van Lenthe (5765_CR48) 1993; 99 IF Chavez-Urias (5765_CR27) 2023; 8 A Xing (5765_CR4) 2022; 1253 A Irfan (5765_CR56) 2012; 18 PK Vishwakarma (5765_CR25) 2016; 128 M Drissi (5765_CR62) 2015; 20 KP Kepp (5765_CR37) 2011; 105 SVF Beddoe (5765_CR20) 2017; 17 MK Koley (5765_CR22) 2018; 478 E van Lenthe (5765_CR49) 1994; 101 I Mantasha (5765_CR2) 2020; 44 L Yusuf Tunde (5765_CR24) 2021; 6 WA Maza (5765_CR17) 2016; 7 5765_CR28 M Kumar (5765_CR54) 2023; 284 CJ Cardin (5765_CR19) 2017; 8 H Keypour (5765_CR3) 2009; 28 M Shahid (5765_CR6) 2021; 1244 MM Lawal (5765_CR59) 2016; 22 A Ansari (5765_CR35) 2014; 16 NC Anastasiadis (5765_CR15) 2015; 44 H Vardhan (5765_CR10) 2016; 306 F Weigend (5765_CR45) 2005; 7 F Tisato (5765_CR7) 1994; 135–136 |
References_xml | – volume: 22 start-page: 235 year: 2016 ident: CR59 article-title: Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study publication-title: J Mol Model doi: 10.1007/s00894-016-3084-z – volume: 48 start-page: 15553 year: 2019 end-page: 15559 ident: CR21 article-title: All about that base: investigating the role of ligand basicity in pyridyl complexes derived from a copper-Schiff base coordination polymer publication-title: Dalton Trans doi: 10.1039/C9DT01527B – volume: 45 start-page: 2492 year: 2016 end-page: 2504 ident: CR39 article-title: A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective publication-title: Dalton Trans doi: 10.1039/c5dt02638e – volume: 8 start-page: 4637 year: 2012 end-page: 4645 ident: CR33 article-title: Effects of dispersion in density functional based quantum mechanical/molecular mechanical calculations on cytochrome p450 catalyzed reactions publication-title: J Chem Theory Comput doi: 10.1021/ct300329h – volume: 13 year: 2022 ident: CR38 article-title: Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases publication-title: Front pharmacol doi: 10.3389/fphar.2022.982484 – volume: 7 start-page: 3297 year: 2005 ident: CR45 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy publication-title: Phys Chem Chem Phys doi: 10.1039/b508541a – volume: 1244 year: 2021 ident: CR6 article-title: Elucidating the contribution of solvent on the catecholase activity in a mononuclear Cu(II) system: an experimental and theoretical approach publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.130878 – volume: 82 start-page: 284 year: 1985 end-page: 298 ident: CR43 article-title: effective core potentials for molecular calculations. Potentials for main group elements Na to Bi publication-title: J Chem Phys doi: 10.1063/1.448800 – volume: 6 start-page: 37 year: 2004 end-page: 41 ident: CR46 article-title: First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H⋯O and improper blue-shifted C–H⋯O hydrogen bonds publication-title: Phys Chem Chem Phys doi: 10.1039/B314148A – volume: 32 start-page: 1473 year: 2021 end-page: 1488 ident: CR61 article-title: Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination publication-title: Struct Chem doi: 10.1007/s11224-020-01690-x – volume: 46 start-page: 7706 year: 2017 end-page: 7756 ident: CR18 article-title: The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications publication-title: Chem Soc Rev doi: 10.1039/C7CS00680B – volume: 86 year: 2020 ident: CR32 article-title: Theoretical study of copper binding to GHK peptide publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107265 – volume: 34 start-page: 1565 year: 2023 end-page: 1575 ident: CR57 article-title: Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight publication-title: Struct Chem doi: 10.1007/s11224-022-02119-3 – volume: 478 start-page: 211 year: 2018 end-page: 221 ident: CR22 article-title: DNA binding and cytotoxicity of two Cu(II) complexes containing a Schiff base ligand along with 1,10-phenanthroline or imidazole as a coligand publication-title: Inorganica Chim Acta doi: 10.1016/j.ica.2018.04.017 – volume: 8 start-page: 157 year: 2020 end-page: 157 ident: CR26 article-title: 1D Copper(II)-aroylhydrazone coordination polymers: magnetic properties and microwave assisted oxidation of a secondary alcohol publication-title: Front Chem doi: 10.3389/fchem.2020.00157 – volume: 9 start-page: 10940 year: 2019 end-page: 10950 ident: CR40 article-title: Unprecedented copper (II) complex with a topoquinone-like moiety as a structural and functional mimic for copper amine oxidase: role of copper(II) in the genesis and amine oxidase activity publication-title: ACS Catal doi: 10.1021/acscatal.9b02326 – volume: 34 start-page: 825 year: 2023 end-page: 835 ident: CR58 article-title: Electronic structures and energetic of metal(II)-superoxo species: a DFT exploration publication-title: Struct Chem doi: 10.1007/s11224-022-02030-x – volume: 7 start-page: 719 year: 2016 end-page: 727 ident: CR17 article-title: Ruthenium(II)-polypyridyl zirconium(IV) metal–organic frameworks as a new class of sensitized solar cells publication-title: Chem Sci doi: 10.1039/C5SC01565K – volume: 25 year: 2021 ident: CR55 article-title: An efficient synthesis towards the core of Crinipellin: TD-DFT and docking studies publication-title: J Saudi Chem Soc doi: 10.1016/j.jscs.2020.101193 – volume: 44 start-page: 1371 year: 2020 end-page: 1388 ident: CR2 article-title: Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach publication-title: New J Chem doi: 10.1039/C9NJ04374H – volume: 135–136 start-page: 325 year: 1994 end-page: 397 ident: CR7 article-title: Structural survey of technetium complexes publication-title: Coord Chem Rev doi: 10.1016/0010-8545(94)80072-3 – volume: 109 start-page: 392 year: 1998 end-page: 399 ident: CR47 article-title: Molecular density functional calculations in the regular relativistic approximation: method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations publication-title: Chem Phys doi: 10.1063/1.476576 – volume: 128 start-page: 511 year: 2016 end-page: 522 ident: CR25 article-title: Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities publication-title: J Chem Sci doi: 10.1007/s12039-016-1048-6 – volume: 7 start-page: 4912 year: 2017 end-page: 4920 ident: CR31 article-title: Cross C-S coupling reaction catalyzed by copper(I) N-heterocyclic carbene complexes publication-title: RSC Adv doi: 10.1039/c6ra27757h – volume: 101 start-page: 9783 year: 1994 end-page: 9792 ident: CR49 article-title: Relativistic total energy using regular approximations publication-title: Phys Rev B doi: 10.1063/1.467943 – volume: 284 year: 2023 ident: CR54 article-title: Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: a theoretical study publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2022.121774 – volume: 82 start-page: 270 year: 1985 end-page: 283 ident: CR42 article-title: effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg publication-title: J Chem Phys doi: 10.1063/1.448799 – volume: 37 start-page: 785 year: 1988 end-page: 789 ident: CR50 article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density publication-title: Phys Rev B doi: 10.1103/physrevb.37.785 – volume: 105 start-page: 1286 year: 2011 end-page: 1292 ident: CR37 article-title: The ground states of iron (III) porphines: role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2011.07.012 – volume: 82 start-page: 299 year: 1985 end-page: 310 ident: CR44 article-title: effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals publication-title: J Chem Phys doi: 10.1063/1.448975 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR29 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J Comput Chem doi: 10.1002/jcc.20495 – volume: 99 start-page: 4597 year: 1993 end-page: 4610 ident: CR48 article-title: Relativistic regular two-component Hamiltonians publication-title: Phys Rev B doi: 10.1063/1.466059 – volume: 38 start-page: 1257 year: 2009 ident: CR11 article-title: Secondary building units, nets and bonding in the chemistry of metal–organic frameworks publication-title: Chem Soc Rev doi: 10.1039/b817735j – volume: 6 start-page: 13704 year: 2021 end-page: 13718 ident: CR24 article-title: Design of new Schiff-base copper(II) complexes: synthesis, crystal structures, DFT study, and binding potency toward cytochrome P450 3A4 publication-title: ACS Omega doi: 10.1021/acsomega.1c00906 – volume: 18 start-page: 4893 year: 2012 end-page: 4900 ident: CR56 article-title: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection publication-title: J Mol Model doi: 10.1007/s00894-012-1488-y – volume: 96 start-page: 2155 year: 1992 end-page: 2160 ident: CR51 article-title: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction publication-title: J Chem Phys doi: 10.1063/1.462066 – volume: 1264 year: 2022 ident: CR5 article-title: Chemoselective detection based on experimental and theoretical calculations of Cu ions via deprotonation of chromone derived probe and its application publication-title: J Mol Struct doi: 10.1016/j.molstruc.2022.133251 – volume: 133 start-page: 13252 year: 2011 end-page: 13255 ident: CR9 article-title: Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials publication-title: J Am Chem Soc doi: 10.1021/ja204820d – volume: 8 start-page: 4705 year: 2017 end-page: 4723 ident: CR19 article-title: Photochemically active DNA-intercalating ruthenium and related complexes–insights by combining crystallography and transient spectroscopy publication-title: Chem Sci doi: 10.1039/C7SC01070B – volume: 8 start-page: 24601 year: 2023 end-page: 24614 ident: CR27 article-title: l-Isoleucine-Schiff base copper(II) coordination polymers: crystal structure, spectroscopic, hirshfeld surface, and dft analyses publication-title: ACS Omega doi: 10.1021/acsomega.3c02878 – volume: 17 start-page: 6603 year: 2017 end-page: 6612 ident: CR20 article-title: A bridge too far: testing the limits of polypyridyl ligands in bridging soluble subunits of a coordination polymer publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.7b01256 – volume: 28 start-page: 4777 year: 2023 end-page: 4777 ident: CR23 article-title: Synthesis, Characterization, DFT studies of novel Cu(II), Zn(II), VO(II), Cr(III), and La(III) chloro-substituted Schiff base complexes: aspects of its antimicrobial, antioxidant, anti-inflammatory, and photodegradation of methylene blue publication-title: Molecules doi: 10.3390/molecules28124777 – volume: 54 start-page: 724 year: 1971 end-page: 728 ident: CR41 article-title: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules publication-title: J Chem Phys doi: 10.1063/1.1674902 – volume: 423 start-page: 705 year: 2003 end-page: 714 ident: CR12 article-title: Reticular synthesis and the design of new materials publication-title: Nature doi: 10.1038/nature01650 – volume: 16 start-page: 14601 year: 2014 end-page: 14613 ident: CR35 article-title: ortho-Hydroxylation of aromatic acids by a non-heme Fe =O species: how important is the ligand design? publication-title: Phys Chem Chem Phys doi: 10.1039/C3CP55430A – volume: 54 start-page: 11077 year: 2015 end-page: 11082 ident: CR36 article-title: Computational examination on the active site structure of a (peroxo) diiron (III) intermediate in the amine oxygenase AurF publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.5b00872 – volume: 20 start-page: 4042 year: 2015 end-page: 4054 ident: CR62 article-title: Theoretical and experimental electrostatic potential around the m-nitrophenol molecule publication-title: Molecules doi: 10.3390/molecules20034042 – volume: 306 start-page: 171 year: 2016 end-page: 194 ident: CR10 article-title: Self-assembled metal–organic polyhedra: an overview of various applications publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2015.05.016 – volume: 6 start-page: 5544 year: 2015 end-page: 5553 ident: CR30 article-title: Carboxylate-assisted C-H activation of phenylpyridines with copper, palladium and ruthenium: a mass spectrometry and DFT study publication-title: Chem Sci doi: 10.1039/c5sc01729g – volume: 32 start-page: 673 year: 2011 end-page: 680 ident: CR65 article-title: Experimental and computational approaches to the molecular structure of 3-(2-mercaptopyridine)phthalonitrile publication-title: Bull Korean Chem Soc doi: 10.5012/bkcs.2011.32.2.673 – ident: CR52 – volume: 28 start-page: 3755 year: 2009 end-page: 3758 ident: CR3 article-title: Synthesis and characterization of some new Co(II) and Cd(II) macroacyclic Schiff-base complexes containing piperazine moiety publication-title: Polyhedron doi: 10.1016/j.poly.2009.08.021 – volume: 278 year: 2022 ident: CR53 article-title: Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2022.121331 – volume: 8 start-page: 1053 year: 2017 ident: CR13 article-title: Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material publication-title: Nat Commun doi: 10.1038/s41467-017-00776-1 – volume: 1253 year: 2022 ident: CR4 article-title: Synthesis, crystal structure and antioxidant activity of butylphenol Schiff bases: experimental and DFT study publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.132209 – volume: 32 start-page: 2007 year: 2021 end-page: 2018 ident: CR64 article-title: Electronic structures, bonding and energetics of non-heme mono and dinuclear iron-TPA complexes: a computational exploration publication-title: Struct Chem doi: 10.1007/s11224-021-01775-1 – volume: 135 start-page: 4235 year: 2013 end-page: 4249 ident: CR34 article-title: Mechanistic insights on the ortho -hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe ═O and Fe ═O intermediates publication-title: J Am Chem Soc doi: 10.1021/ja307077f – volume: 116 start-page: 2738 year: 2004 end-page: 2741 ident: CR8 article-title: Immobilization of a metallo Schiff base into a microporous coordination polymer publication-title: Angew Chemie Int Ed doi: 10.1002/ange.200352596 – volume: 9 start-page: 19280 year: 2019 ident: CR60 article-title: A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole publication-title: Sci Rep doi: 10.1038/s41598-019-55793-5 – volume: 46 start-page: 761 year: 2017 end-page: 796 ident: CR14 article-title: Molecular polypyridine-based metal complexes as catalysts for the reduction of CO publication-title: Chem Soc Rev doi: 10.1039/C5CS00391A – volume: 44 start-page: 19791 year: 2015 end-page: 19795 ident: CR15 article-title: Dinuclear lanthanide(III)/zinc(II) complexes with methyl 2-pyridyl ketone oxime publication-title: Dalton Trans doi: 10.1039/C5DT03663A – ident: CR28 – volume: 1166 start-page: 110 year: 2018 end-page: 120 ident: CR63 article-title: Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes publication-title: J Mol Struct doi: 10.1016/j.molstruc.2018.03.132 – volume: 95 year: 2020 ident: CR1 article-title: Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes publication-title: Bioorg Chem doi: 10.1016/j.bioorg.2019.103561 – volume: 2018 start-page: 5223 year: 2018 end-page: 5228 ident: CR16 article-title: Phase control of ferromagnetic copper(II) carbonate coordination polymers through reagent concentration publication-title: Eur J Inorg Chem doi: 10.1002/ejic.201801041 – volume: 1244 year: 2021 ident: 5765_CR6 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.130878 – volume: 105 start-page: 1286 year: 2011 ident: 5765_CR37 publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2011.07.012 – volume: 96 start-page: 2155 year: 1992 ident: 5765_CR51 publication-title: J Chem Phys doi: 10.1063/1.462066 – volume: 86 year: 2020 ident: 5765_CR32 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107265 – volume: 6 start-page: 37 year: 2004 ident: 5765_CR46 publication-title: Phys Chem Chem Phys doi: 10.1039/B314148A – volume: 27 start-page: 1787 year: 2006 ident: 5765_CR29 publication-title: J Comput Chem doi: 10.1002/jcc.20495 – volume: 99 start-page: 4597 year: 1993 ident: 5765_CR48 publication-title: Phys Rev B doi: 10.1063/1.466059 – ident: 5765_CR52 doi: 10.1002/wcms.1327 – volume: 9 start-page: 19280 year: 2019 ident: 5765_CR60 publication-title: Sci Rep doi: 10.1038/s41598-019-55793-5 – volume: 37 start-page: 785 year: 1988 ident: 5765_CR50 publication-title: Phys Rev B doi: 10.1103/physrevb.37.785 – volume: 34 start-page: 1565 year: 2023 ident: 5765_CR57 publication-title: Struct Chem doi: 10.1007/s11224-022-02119-3 – volume: 32 start-page: 1473 year: 2021 ident: 5765_CR61 publication-title: Struct Chem doi: 10.1007/s11224-020-01690-x – volume: 54 start-page: 11077 year: 2015 ident: 5765_CR36 publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.5b00872 – volume: 6 start-page: 5544 year: 2015 ident: 5765_CR30 publication-title: Chem Sci doi: 10.1039/c5sc01729g – volume: 7 start-page: 4912 year: 2017 ident: 5765_CR31 publication-title: RSC Adv doi: 10.1039/c6ra27757h – volume: 28 start-page: 4777 year: 2023 ident: 5765_CR23 publication-title: Molecules doi: 10.3390/molecules28124777 – volume: 278 year: 2022 ident: 5765_CR53 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2022.121331 – volume: 25 year: 2021 ident: 5765_CR55 publication-title: J Saudi Chem Soc doi: 10.1016/j.jscs.2020.101193 – volume: 8 start-page: 1053 year: 2017 ident: 5765_CR13 publication-title: Nat Commun doi: 10.1038/s41467-017-00776-1 – ident: 5765_CR28 – volume: 8 start-page: 24601 year: 2023 ident: 5765_CR27 publication-title: ACS Omega doi: 10.1021/acsomega.3c02878 – volume: 1253 year: 2022 ident: 5765_CR4 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.132209 – volume: 32 start-page: 2007 year: 2021 ident: 5765_CR64 publication-title: Struct Chem doi: 10.1007/s11224-021-01775-1 – volume: 109 start-page: 392 year: 1998 ident: 5765_CR47 publication-title: Chem Phys doi: 10.1063/1.476576 – volume: 17 start-page: 6603 year: 2017 ident: 5765_CR20 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.7b01256 – volume: 116 start-page: 2738 year: 2004 ident: 5765_CR8 publication-title: Angew Chemie Int Ed doi: 10.1002/ange.200352596 – volume: 2018 start-page: 5223 year: 2018 ident: 5765_CR16 publication-title: Eur J Inorg Chem doi: 10.1002/ejic.201801041 – volume: 135–136 start-page: 325 year: 1994 ident: 5765_CR7 publication-title: Coord Chem Rev doi: 10.1016/0010-8545(94)80072-3 – volume: 478 start-page: 211 year: 2018 ident: 5765_CR22 publication-title: Inorganica Chim Acta doi: 10.1016/j.ica.2018.04.017 – volume: 133 start-page: 13252 year: 2011 ident: 5765_CR9 publication-title: J Am Chem Soc doi: 10.1021/ja204820d – volume: 7 start-page: 3297 year: 2005 ident: 5765_CR45 publication-title: Phys Chem Chem Phys doi: 10.1039/b508541a – volume: 6 start-page: 13704 year: 2021 ident: 5765_CR24 publication-title: ACS Omega doi: 10.1021/acsomega.1c00906 – volume: 45 start-page: 2492 year: 2016 ident: 5765_CR39 publication-title: Dalton Trans doi: 10.1039/c5dt02638e – volume: 9 start-page: 10940 year: 2019 ident: 5765_CR40 publication-title: ACS Catal doi: 10.1021/acscatal.9b02326 – volume: 28 start-page: 3755 year: 2009 ident: 5765_CR3 publication-title: Polyhedron doi: 10.1016/j.poly.2009.08.021 – volume: 101 start-page: 9783 year: 1994 ident: 5765_CR49 publication-title: Phys Rev B doi: 10.1063/1.467943 – volume: 16 start-page: 14601 year: 2014 ident: 5765_CR35 publication-title: Phys Chem Chem Phys doi: 10.1039/C3CP55430A – volume: 22 start-page: 235 year: 2016 ident: 5765_CR59 publication-title: J Mol Model doi: 10.1007/s00894-016-3084-z – volume: 44 start-page: 19791 year: 2015 ident: 5765_CR15 publication-title: Dalton Trans doi: 10.1039/C5DT03663A – volume: 32 start-page: 673 year: 2011 ident: 5765_CR65 publication-title: Bull Korean Chem Soc doi: 10.5012/bkcs.2011.32.2.673 – volume: 20 start-page: 4042 year: 2015 ident: 5765_CR62 publication-title: Molecules doi: 10.3390/molecules20034042 – volume: 135 start-page: 4235 year: 2013 ident: 5765_CR34 publication-title: J Am Chem Soc doi: 10.1021/ja307077f – volume: 7 start-page: 719 year: 2016 ident: 5765_CR17 publication-title: Chem Sci doi: 10.1039/C5SC01565K – volume: 306 start-page: 171 year: 2016 ident: 5765_CR10 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2015.05.016 – volume: 46 start-page: 7706 year: 2017 ident: 5765_CR18 publication-title: Chem Soc Rev doi: 10.1039/C7CS00680B – volume: 82 start-page: 284 year: 1985 ident: 5765_CR43 publication-title: J Chem Phys doi: 10.1063/1.448800 – volume: 1166 start-page: 110 year: 2018 ident: 5765_CR63 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2018.03.132 – volume: 38 start-page: 1257 year: 2009 ident: 5765_CR11 publication-title: Chem Soc Rev doi: 10.1039/b817735j – volume: 1264 year: 2022 ident: 5765_CR5 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2022.133251 – volume: 54 start-page: 724 year: 1971 ident: 5765_CR41 publication-title: J Chem Phys doi: 10.1063/1.1674902 – volume: 423 start-page: 705 year: 2003 ident: 5765_CR12 publication-title: Nature doi: 10.1038/nature01650 – volume: 8 start-page: 4705 year: 2017 ident: 5765_CR19 publication-title: Chem Sci doi: 10.1039/C7SC01070B – volume: 8 start-page: 157 year: 2020 ident: 5765_CR26 publication-title: Front Chem doi: 10.3389/fchem.2020.00157 – volume: 82 start-page: 299 year: 1985 ident: 5765_CR44 publication-title: J Chem Phys doi: 10.1063/1.448975 – volume: 95 year: 2020 ident: 5765_CR1 publication-title: Bioorg Chem doi: 10.1016/j.bioorg.2019.103561 – volume: 128 start-page: 511 year: 2016 ident: 5765_CR25 publication-title: J Chem Sci doi: 10.1007/s12039-016-1048-6 – volume: 8 start-page: 4637 year: 2012 ident: 5765_CR33 publication-title: J Chem Theory Comput doi: 10.1021/ct300329h – volume: 284 year: 2023 ident: 5765_CR54 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2022.121774 – volume: 46 start-page: 761 year: 2017 ident: 5765_CR14 publication-title: Chem Soc Rev doi: 10.1039/C5CS00391A – volume: 18 start-page: 4893 year: 2012 ident: 5765_CR56 publication-title: J Mol Model doi: 10.1007/s00894-012-1488-y – volume: 34 start-page: 825 year: 2023 ident: 5765_CR58 publication-title: Struct Chem doi: 10.1007/s11224-022-02030-x – volume: 82 start-page: 270 year: 1985 ident: 5765_CR42 publication-title: J Chem Phys doi: 10.1063/1.448799 – volume: 44 start-page: 1371 year: 2020 ident: 5765_CR2 publication-title: New J Chem doi: 10.1039/C9NJ04374H – volume: 48 start-page: 15553 year: 2019 ident: 5765_CR21 publication-title: Dalton Trans doi: 10.1039/C9DT01527B – volume: 13 year: 2022 ident: 5765_CR38 publication-title: Front pharmacol doi: 10.3389/fphar.2022.982484 |
SSID | ssj0001256522 |
Score | 2.405412 |
Snippet | Context
Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)]... Schiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)] that is... ContextSchiff base-containing metal complexes have been the subject of extensive research. In this work, a coordination polymer-derived complex called [Cu(L)]... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 358 |
SubjectTerms | Absorption spectra Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Continuum modeling Coordination compounds Coordination polymers Copper Density functional theory Electron transitions Energy distribution Energy gap Imines Ligands Molecular Medicine Molecular orbitals Original Paper Solvation Theoretical and Computational Chemistry |
Title | DFT and TDDFT exploration on the role of pyridyl ligands with copper toward bonding aspects and light harvesting |
URI | https://link.springer.com/article/10.1007/s00894-023-05765-4 https://www.ncbi.nlm.nih.gov/pubmed/37919553 https://www.proquest.com/docview/2885591465 https://www.proquest.com/docview/2886330139 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP1wOehF3K0bEbxpoW2atD2OyyiKnmZATyVJExWGtsyMB_-9XzJtVVxAKLTQNC15afJeviUAxxolg-CK-QXKNj8uFI6DJuI-M2mRUpWYQNt457t7fj2Mbx7YQxMUNmm93VuTpBupu2A3nK1sGtvI-pslnPnxPCwyq92xFw-j3qeVFSQpznyAbCbwoywOmmiZn6v5OiN9o5nfTKRu5umvwkpDGUlvhvEazOlyHZbO253aNqC-6A-IKAsyuLBX2rnVuRYneCDDI9aHkFSG1G_jl-JtREYvTzbEl9hVWKKqutZjMnUOtERWLs6FCBeDOXH1jqyCJ89i7HJylE-bMOxfDs6v_WYnBV_RhE39WCExQKEVBFoILgJRGJFRpbNIKiFMYDhCmdEslEKi3uA8QFaHUiKUUWyQZNEtWCirUu8AkaHRAocBmoRFjFpEosblwpo7U6lZJjwI29bMVZNm3O52Mcq7BMkOgRwRyB0CeezBSfdMPUuy8Wfp_RakvPnhJnmUpqiNcNhnHhx1txEHa_8Qpa5eXRlOqeW8HmzPwO1eR5MszBijHpy2aH9U_vu37P6v-B4s2-3qZ7GM-7AwHb_qAyQ1U3kIi73-2dm9PV893l4euj79DlsM7o4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT4QwFH5xOejFuItrTbwpCVBa4GjUybieZhJvpC2tmkyAzIwH_72vHUCNS2LCgYRSSD94_b6-pQAnGiWD4Ir5Bco2Py4U2kETcZ-ZtEipSkygbb7z_QPvD-ObR_bYJIVN2mj31iXpLHWX7IazlS1jG9l4s4QzP56HRSQDqQ3kGkbnn1ZWkKQ49wGymcCPsjhosmV-7ubrjPSNZn5zkbqZp7cKKw1lJOczjNdgTpfrsHTR7tS2AfVlb0BEWZDBpT3TLqzOjTjBAxkesTGEpDKkfhu_FG8jMnp5sim-xK7CElXVtR6TqQugJbJyeS5EuBzMiet3ZBU8eRZjV5OjfNqEYe9qcNH3m50UfEUTNvVjhcQAhVYQaCG4CERhREaVziKphDCB4QhlRrNQCol6g_MAWR1KiVBGsUGSRbdgoaxKvQNEhkYLNAM0CYsYtYhEjcuFdXemUrNMeBC2o5mrpsy43e1ilHcFkh0COSKQOwTy2IPT7p56VmTjz9b7LUh588NN8ihNURuh2WceHHeXEQfr_xClrl5dG06p5bwebM_A7R5HkyzMGKMenLVof3T--7vs_q_5ESz1B_d3-d31w-0eLNut62d5jfuwMB2_6gMkOFN56L7nd85x7nE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3BIhUuFdAW0lJqJG4QkcSxkxwR2xVQQBx2JW6R7diAtEqiJRz23zN2PgqirVQph0hxnCgvsd_LzBsDHGqUDIIr5hco2_y4UDgOmoj7zKRFSlViAm39ztc3_HwWX96xu1cufpft3ockW0-DrdJUNid1YU4G4xvOXLakbWRzzxLO_HgV1nA4Du17PYtOX_1lQcLiQgnIbAI_yuKgc878uZu3s9M7yvkuXOpmockmfOzoIzlt8d6CFV1uw_pZv2rbJ6jHkykRZUGmY7unXYqde_oEN2R7xOYTksqQerl4LJZzMn-8t3ZfYv_IElXVtV6QxiXTElk5zwsRzo_55PqdWzVPHsTC1eco7z_DbPJzenbud6sq-IomrPFjhSQBRVcQaCG4CERhREaVziKphDCB4QhrRrNQConag_MAGR7KilBGsUHCRb_AqKxKvQtEhkYLHBJoEhYx6hKJepcLG_pMpWaZ8CDsn2auupLjduWLeT4US3YI5IhA7hDIYw-OhnPqtuDGP1vv9SDl3cf3lEdpijoJpwDmwcFwGHGwsRBR6urZteGUWv7rwU4L7nA5mmRhxhj14LhH-3fnf7-Xr__X_Ad8uB1P8quLm1_fYMOuYt9aHPdg1Cye9XfkOo3cd6_zC6-_8q0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+and+TDDFT+exploration+on+the+role+of+pyridyl+ligands+with+copper+toward+bonding+aspects+and+light+harvesting&rft.jtitle=Journal+of+molecular+modeling&rft.au=Ahmed%2C+Mukhtar&rft.au=Gupta%2C+Manoj+Kumar&rft.au=Ansari%2C+Azaj&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=11&rft_id=info:doi/10.1007%2Fs00894-023-05765-4&rft.externalDocID=10_1007_s00894_023_05765_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |