Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP
Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transi...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 79; no. 12; pp. 3063 - 3075 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg. |
---|---|
AbstractList | Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg. Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg. |
Author | Wang, Xuetong Song, Dalong Ye, Qinong Liu, XiaoJun Wang, Xiaodong Yan, BingXue Gu, Yinmin Chen, Yunzhao Wang, Yang Xu, Zhiyuan Sun, Minxuan Gao, Shan Jiang, Siyuan Tong, Zhou Yu, Jie Zhang, Xiaolu |
Author_xml | – sequence: 1 givenname: Siyuan surname: Jiang fullname: Jiang, Siyuan – sequence: 2 givenname: Xuetong surname: Wang fullname: Wang, Xuetong – sequence: 3 givenname: Dalong surname: Song fullname: Song, Dalong – sequence: 4 givenname: XiaoJun surname: Liu fullname: Liu, XiaoJun – sequence: 5 givenname: Yinmin surname: Gu fullname: Gu, Yinmin – sequence: 6 givenname: Zhiyuan surname: Xu fullname: Xu, Zhiyuan – sequence: 7 givenname: Xiaodong surname: Wang fullname: Wang, Xiaodong – sequence: 8 givenname: Xiaolu surname: Zhang fullname: Zhang, Xiaolu – sequence: 9 givenname: Qinong surname: Ye fullname: Ye, Qinong – sequence: 10 givenname: Zhou surname: Tong fullname: Tong, Zhou – sequence: 11 givenname: BingXue surname: Yan fullname: Yan, BingXue – sequence: 12 givenname: Jie surname: Yu fullname: Yu, Jie – sequence: 13 givenname: Yunzhao surname: Chen fullname: Chen, Yunzhao – sequence: 14 givenname: Minxuan surname: Sun fullname: Sun, Minxuan – sequence: 15 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 16 givenname: Shan surname: Gao fullname: Gao, Shan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30987997$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtv2zAURokiReO4-QktOHZhwodoSuhkKM4DyMNok5mgqStLBU2qJDV47S-v3MQdOnQiCJzvkvc7Z-jEBw8IfWL0gjFZXlJKSyILxS_q5SNhJRG8ku_QjElRElUU8gTN_jKn6CylH9NVMio_oFNBq1JVlZqhX3UXHKQMMTh855vRQsKroc8duN44kgN5gATedvudcfg5Gp_63AePQ4vXMaRsMuDaeAsR1-Bcwps9_j4OQ4SUer_FV7CNpjHHzOrm-hvOXQzjtsPL9cNy_RG9b41LcP52ztHL9eq5viX3Tzd39fKeWKFkJkUlNgoE55S3sGitACUXTaMYs6ZRireNMAvJBAeghSnbBSttwwtGOYUCqlbM0ZfXuUMMP8dpZ73rk52-bDyEMWnOJ1YIPjU4R5_f0HGzg0YPsd-ZuNfH3ibg6ytgpwpShFbbPv_ZMUfTO82oPljSBwP6YEBPljQr9cHSlJb_pI8P_D_3G-jmllk |
CitedBy_id | crossref_primary_10_1186_s13008_024_00116_y crossref_primary_10_3390_metabo11080562 crossref_primary_10_1111_sji_13137 crossref_primary_10_1186_s12935_021_01803_4 crossref_primary_10_1016_j_gendis_2025_101556 crossref_primary_10_1007_s00018_022_04504_x crossref_primary_10_1371_journal_pbio_3002621 crossref_primary_10_1016_j_mcpro_2021_100131 crossref_primary_10_1248_bpb_b22_00682 crossref_primary_10_1038_s41389_022_00420_8 crossref_primary_10_1007_s10555_024_10170_1 crossref_primary_10_1038_s41416_024_02762_z crossref_primary_10_1038_s41388_023_02836_x crossref_primary_10_3390_life12060784 crossref_primary_10_1002_ange_202313968 crossref_primary_10_3390_ijms25042152 crossref_primary_10_1002_advs_202411888 crossref_primary_10_1038_s41419_023_05849_2 crossref_primary_10_3390_cancers14010173 crossref_primary_10_1186_s12935_021_02159_5 crossref_primary_10_1002_2211_5463_13137 crossref_primary_10_3390_genes15070953 crossref_primary_10_1007_s13402_022_00694_5 crossref_primary_10_3390_cancers14081878 crossref_primary_10_3390_membranes12100997 crossref_primary_10_1021_cbmi_3c00109 crossref_primary_10_1186_s11658_023_00497_y crossref_primary_10_1038_s41392_022_01132_6 crossref_primary_10_1158_1541_7786_MCR_19_0889 crossref_primary_10_3892_ijo_2020_5075 crossref_primary_10_1038_s41419_024_06711_9 crossref_primary_10_3390_cancers16162776 crossref_primary_10_1016_j_cca_2021_07_001 crossref_primary_10_1002_anie_202313968 crossref_primary_10_1016_j_cellsig_2024_111419 crossref_primary_10_1016_j_jphs_2023_08_002 crossref_primary_10_1016_j_semcancer_2020_11_012 crossref_primary_10_1016_j_canlet_2025_217486 crossref_primary_10_1016_j_plipres_2022_101198 crossref_primary_10_1038_s41586_021_03879_4 crossref_primary_10_1021_acs_jmedchem_3c02347 crossref_primary_10_3390_ijms20194767 crossref_primary_10_1016_j_plipres_2021_101115 crossref_primary_10_1371_journal_pone_0278282 crossref_primary_10_3390_cancers11091363 crossref_primary_10_1111_jcmm_16713 crossref_primary_10_1093_bfgp_elae048 crossref_primary_10_1016_j_jchromb_2025_124508 crossref_primary_10_3389_fcell_2023_1157269 crossref_primary_10_1038_s41419_021_04107_7 crossref_primary_10_1158_2159_8290_CD_22_0427 crossref_primary_10_1016_j_jia_2022_11_005 crossref_primary_10_1002_ctm2_711 crossref_primary_10_1016_j_celrep_2022_110712 crossref_primary_10_1016_j_lwt_2020_110388 crossref_primary_10_1016_j_scitotenv_2020_138314 crossref_primary_10_1186_s12935_021_02042_3 crossref_primary_10_1016_j_virol_2020_06_002 crossref_primary_10_1038_s41388_020_01432_7 crossref_primary_10_1002_jev2_12042 crossref_primary_10_1016_j_cellsig_2023_110983 crossref_primary_10_1158_1541_7786_MCR_19_0197 |
Cites_doi | 10.4103/ijmr.IJMR_1639_15 10.1002/ijc.23715 10.1073/pnas.0409817102 10.1172/JCI200519935 10.1016/j.ejca.2011.01.005 10.1083/jcb.200708115 10.1016/S0006-3495(03)74990-X 10.18632/oncotarget.15686 10.1017/S000711451500183X 10.1002/jcb.10724 10.1093/hmg/ddu449 10.1074/jbc.C400046200 10.1200/JCO.2004.02.027 10.1042/bj3590393 10.1038/nrc2521 10.1096/fj.201601337R 10.1016/j.coph.2012.07.006 10.1038/nrm3048 10.1136/gutjnl-2011-301587 10.1172/JCI36183 10.1007/s00018-010-0424-5 10.1248/yakushi.127.27 10.1021/acs.jproteome.5b01030 10.1111/j.1349-7006.2009.01419.x 10.1007/s11883-014-0474-5 10.1074/jbc.271.46.28727 10.1515/hsz-2014-0194 10.1002/cncr.28485 10.1158/1055-9965.EPI-14-1329 10.1042/BJ20110803 10.1089/omi.2011.0118 10.1016/j.bbrc.2010.01.133 10.1242/jcs.115.6.1331 10.1038/nm.4045 10.1093/annonc/mdl080 10.1038/nrc865 10.1159/000477890 10.1091/mbc.e09-02-0142 10.1097/01.mco.0000232896.66791.62 10.1016/j.ccr.2010.02.030 10.1002/pros.20593 10.1158/0008-5472.CAN-07-0575 10.1158/1055-9965.EPI-07-0599 10.1016/j.bbamcr.2014.04.019 10.1093/jnci/djj499 10.1096/fj.201701382RR 10.1016/j.jsbmb.2016.05.007 10.1093/nar/gkw1108 |
ContentType | Journal Article |
Copyright | 2019 American Association for Cancer Research. |
Copyright_xml | – notice: 2019 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/0008-5472.CAN-18-3295 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 3075 |
ExternalDocumentID | 30987997 10_1158_0008_5472_CAN_18_3295 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM RHF 7X8 |
ID | FETCH-LOGICAL-c375t-493b7e32202fe6fc3e756dd711cad772fd3a65132ee04a8f618cd241020e4e9f3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Jul 10 18:25:38 EDT 2025 Wed Feb 19 02:31:01 EST 2025 Tue Jul 01 03:59:44 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2019 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-493b7e32202fe6fc3e756dd711cad772fd3a65132ee04a8f618cd241020e4e9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30987997 |
PQID | 2210233215 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2210233215 pubmed_primary_30987997 crossref_citationtrail_10_1158_0008_5472_CAN_18_3295 crossref_primary_10_1158_0008_5472_CAN_18_3295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-15 |
PublicationDateYYYYMMDD | 2019-06-15 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2019 |
References | Platz (2022061706351128300_bib17) 2006; 98 YuPeng (2022061706351128300_bib14) 2015; 24 Singh (2022061706351128300_bib23) 2017; 146 Oh (2022061706351128300_bib43) 2007; 67 The Gene Ontology C (2022061706351128300_bib30) 2017; 45 Carbone (2022061706351128300_bib28) 1997; 57 Sigismund (2022061706351128300_bib29) 2005; 102 Yu (2022061706351128300_bib31) 2012; 16 Beltran (2022061706351128300_bib37) 2016; 22 Oh (2022061706351128300_bib44) 2010; 393 Platz (2022061706351128300_bib16) 2008; 123 Chatterjee (2022061706351128300_bib5) 2018; 32 Avraham (2022061706351128300_bib35) 2011; 12 Wu (2022061706351128300_bib1) 2014; 120 Graaf (2022061706351128300_bib18) 2004; 22 Hager (2022061706351128300_bib38) 2006; 9 Mosesson (2022061706351128300_bib46) 2008; 8 Pessentheiner (2022061706351128300_bib24) 2017; 31 Huang (2022061706351128300_bib49) 2004; 279 Suzuki (2022061706351128300_bib41) 2013; 85 Papadopoulos (2022061706351128300_bib39) 2011; 47 Touvier (2022061706351128300_bib10) 2015; 114 Ringerike (2022061706351128300_bib47) 2002; 115 Iwatsuki (2022061706351128300_bib4) 2010; 101 Wang (2022061706351128300_bib12) 2017; 42 Murtola (2022061706351128300_bib19) 2007; 16 Mosser (2022061706351128300_bib50) 2015; 24 Zeisberg (2022061706351128300_bib3) 2009; 119 Ramnarayanan (2022061706351128300_bib32) 2011; 439 Mak (2022061706351128300_bib9) 2010; 17 Albrektsen (2022061706351128300_bib25) 2001; 359 Pelton (2022061706351128300_bib13) 2012; 12 Chambers (2022061706351128300_bib2) 2002; 2 Zhuang (2022061706351128300_bib22) 2005; 115 Nakazawa (2022061706351128300_bib7) 2017; 166 Montanari (2022061706351128300_bib8) 2017; 8 Ohkubo (2022061706351128300_bib42) 2007; 127 Magal (2022061706351128300_bib33) 2009; 20 Bogner-Strauss (2022061706351128300_bib26) 2010; 67 Tebar (2022061706351128300_bib48) 1996; 271 Murai (2022061706351128300_bib21) 2015; 396 Roxrud (2022061706351128300_bib36) 2008; 180 Bravi (2022061706351128300_bib15) 2006; 17 Sun (2022061706351128300_bib40) 2014; 1843 Freeman (2022061706351128300_bib11) 2004; 91 Pon (2022061706351128300_bib20) 2015; 17 Ma (2022061706351128300_bib27) 2016; 15 Lawrence (2022061706351128300_bib45) 2003; 84 Lo (2022061706351128300_bib6) 2007; 67 Mekenkamp (2022061706351128300_bib34) 2013; 62 |
References_xml | – volume: 146 start-page: S38 year: 2017 ident: 2022061706351128300_bib23 article-title: Interlink between cholesterol & cell cycle in prostate carcinoma publication-title: Indian J Med Res doi: 10.4103/ijmr.IJMR_1639_15 – volume: 123 start-page: 1693 year: 2008 ident: 2022061706351128300_bib16 article-title: Association between plasma cholesterol and prostate cancer in the PSA era publication-title: Int J Cancer doi: 10.1002/ijc.23715 – volume: 102 start-page: 2760 year: 2005 ident: 2022061706351128300_bib29 article-title: Clathrin-independent endocytosis of ubiquitinated cargos publication-title: PNAS doi: 10.1073/pnas.0409817102 – volume: 115 start-page: 959 year: 2005 ident: 2022061706351128300_bib22 article-title: Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts publication-title: J Clin Invest doi: 10.1172/JCI200519935 – volume: 47 start-page: 819 year: 2011 ident: 2022061706351128300_bib39 article-title: Statins and prostate cancer: molecular and clinical aspects publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.01.005 – volume: 180 start-page: 1205 year: 2008 ident: 2022061706351128300_bib36 article-title: An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor publication-title: J Cell Biol doi: 10.1083/jcb.200708115 – volume: 84 start-page: 1827 year: 2003 ident: 2022061706351128300_bib45 article-title: Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy publication-title: Biophys J doi: 10.1016/S0006-3495(03)74990-X – volume: 8 start-page: 35376 year: 2017 ident: 2022061706351128300_bib8 article-title: Epithelial-mesenchymal transition in prostate cancer: an overview publication-title: Oncotarget doi: 10.18632/oncotarget.15686 – volume: 114 start-page: 347 year: 2015 ident: 2022061706351128300_bib10 article-title: Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies publication-title: Br J Nutr doi: 10.1017/S000711451500183X – volume: 91 start-page: 54 year: 2004 ident: 2022061706351128300_bib11 article-title: Cholesterol and prostate cancer publication-title: J Cell Biochem doi: 10.1002/jcb.10724 – volume: 24 start-page: 371 year: 2015 ident: 2022061706351128300_bib50 article-title: The adipocyte differentiation protein APMAP is an endogenous suppressor of Abeta production in the brain publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu449 – volume: 279 start-page: 16657 year: 2004 ident: 2022061706351128300_bib49 article-title: Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference publication-title: J Biol Chem doi: 10.1074/jbc.C400046200 – volume: 22 start-page: 2388 year: 2004 ident: 2022061706351128300_bib18 article-title: The risk of cancer in users of statins publication-title: J Clin Oncol doi: 10.1200/JCO.2004.02.027 – volume: 359 start-page: 393 year: 2001 ident: 2022061706351128300_bib25 article-title: Identification of a novel integral plasma membrane protein induced during adipocyte differentiation publication-title: Biochem J doi: 10.1042/bj3590393 – volume: 8 start-page: 835 year: 2008 ident: 2022061706351128300_bib46 article-title: Derailed endocytosis: an emerging feature of cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc2521 – volume: 31 start-page: 4088 year: 2017 ident: 2022061706351128300_bib24 article-title: APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion publication-title: FASEB J doi: 10.1096/fj.201601337R – volume: 12 start-page: 751 year: 2012 ident: 2022061706351128300_bib13 article-title: Cholesterol and prostate cancer publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2012.07.006 – volume: 12 start-page: 104 year: 2011 ident: 2022061706351128300_bib35 article-title: Feedback regulation of EGFR signalling: decision making by early and delayed loops publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3048 – volume: 62 start-page: 94 year: 2013 ident: 2022061706351128300_bib34 article-title: Chromosome 20p11 gains are associated with liver-specific metastasis in patients with colorectal cancer publication-title: Gut doi: 10.1136/gutjnl-2011-301587 – volume: 119 start-page: 1429 year: 2009 ident: 2022061706351128300_bib3 article-title: Biomarkers for epithelial-mesenchymal transitions publication-title: J Clin Invest doi: 10.1172/JCI36183 – volume: 67 start-page: 4049 year: 2010 ident: 2022061706351128300_bib26 article-title: Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARgamma publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0424-5 – volume: 127 start-page: 27 year: 2007 ident: 2022061706351128300_bib42 article-title: Role of lipid rafts in trimeric G protein-mediated signal transduction publication-title: Yakugaku Zasshi doi: 10.1248/yakushi.127.27 – volume: 15 start-page: 628 year: 2016 ident: 2022061706351128300_bib27 article-title: Identification of a novel function of adipocyte plasma membrane-associated protein (APMAP) in gestational diabetes mellitus by proteomic analysis of omental adipose tissue publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b01030 – volume: 101 start-page: 293 year: 2010 ident: 2022061706351128300_bib4 article-title: Epithelial-mesenchymal transition in cancer development and its clinical significance publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2009.01419.x – volume: 17 start-page: 474 year: 2015 ident: 2022061706351128300_bib20 article-title: A review of statin use and prostate cancer publication-title: Curr Atheroscler Rep doi: 10.1007/s11883-014-0474-5 – volume: 271 start-page: 28727 year: 1996 ident: 2022061706351128300_bib48 article-title: Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits publication-title: J Biol Chem doi: 10.1074/jbc.271.46.28727 – volume: 396 start-page: 1 year: 2015 ident: 2022061706351128300_bib21 article-title: Cholesterol lowering: role in cancer prevention and treatment publication-title: Biol Chem doi: 10.1515/hsz-2014-0194 – volume: 120 start-page: 818 year: 2014 ident: 2022061706351128300_bib1 article-title: No improvement noted in overall or cause-specific survival for men presenting with metastatic prostate cancer over a 20-year period publication-title: Cancer doi: 10.1002/cncr.28485 – volume: 24 start-page: 1086 year: 2015 ident: 2022061706351128300_bib14 article-title: Cholesterol levels in blood and the risk of prostate cancer: a meta-analysis of 14 prospective studies publication-title: Cancer Epidemiol Biomark Prev doi: 10.1158/1055-9965.EPI-14-1329 – volume: 439 start-page: 497 year: 2011 ident: 2022061706351128300_bib32 article-title: MAL, but not MAL2, expression promotes the formation of cholesterol-dependent membrane domains that recruit apical proteins publication-title: Biochem J doi: 10.1042/BJ20110803 – volume: 16 start-page: 284 year: 2012 ident: 2022061706351128300_bib31 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 393 start-page: 319 year: 2010 ident: 2022061706351128300_bib44 article-title: Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.01.133 – volume: 115 start-page: 1331 year: 2002 ident: 2022061706351128300_bib47 article-title: Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae publication-title: J Cell Sci doi: 10.1242/jcs.115.6.1331 – volume: 22 start-page: 298 year: 2016 ident: 2022061706351128300_bib37 article-title: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer publication-title: Nat Med doi: 10.1038/nm.4045 – volume: 17 start-page: 1014 year: 2006 ident: 2022061706351128300_bib15 article-title: Self-reported history of hypercholesterolaemia and gallstones and the risk of prostate cancer publication-title: Ann Oncol doi: 10.1093/annonc/mdl080 – volume: 2 start-page: 563 year: 2002 ident: 2022061706351128300_bib2 article-title: Dissemination and growth of cancer cells in metastatic sites publication-title: Nat Rev Cancer doi: 10.1038/nrc865 – volume: 42 start-page: 729 year: 2017 ident: 2022061706351128300_bib12 article-title: Cholesterol enhances colorectal cancer progression via ROS Elevation and MAPK signaling pathway activation publication-title: Cell Physiol Biochem doi: 10.1159/000477890 – volume: 20 start-page: 3751 year: 2009 ident: 2022061706351128300_bib33 article-title: Clustering and lateral concentration of raft lipids by the MAL protein publication-title: Mol Biol Cell doi: 10.1091/mbc.e09-02-0142 – volume: 9 start-page: 379 year: 2006 ident: 2022061706351128300_bib38 article-title: The role of cholesterol in prostate cancer publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/01.mco.0000232896.66791.62 – volume: 17 start-page: 319 year: 2010 ident: 2022061706351128300_bib9 article-title: ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.02.030 – volume: 85 start-page: 34 year: 2013 ident: 2022061706351128300_bib41 article-title: Mechanisms for signal transduction in lipid rafts of cell plasma membranes publication-title: Seikagaku – volume: 57 start-page: 5498 year: 1997 ident: 2022061706351128300_bib28 article-title: eps15 and eps15R are essential components of the endocytic pathway publication-title: Cancer Res – volume: 67 start-page: 1061 year: 2007 ident: 2022061706351128300_bib43 article-title: Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction publication-title: Prostate doi: 10.1002/pros.20593 – volume: 67 start-page: 9066 year: 2007 ident: 2022061706351128300_bib6 article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0575 – volume: 16 start-page: 2226 year: 2007 ident: 2022061706351128300_bib19 article-title: Cholesterol-lowering drugs and prostate cancer risk: a population-based case-control study publication-title: Cancer Epidemiol Biomark Prev doi: 10.1158/1055-9965.EPI-07-0599 – volume: 1843 start-page: 1839 year: 2014 ident: 2022061706351128300_bib40 article-title: Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells publication-title: Biochem Biophys Acta doi: 10.1016/j.bbamcr.2014.04.019 – volume: 98 start-page: 1819 year: 2006 ident: 2022061706351128300_bib17 article-title: Statin drugs and risk of advanced prostate cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djj499 – volume: 32 start-page: 4560 year: 2018 ident: 2022061706351128300_bib5 article-title: EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression publication-title: FASEB J doi: 10.1096/fj.201701382RR – volume: 166 start-page: 84 year: 2017 ident: 2022061706351128300_bib7 article-title: Epithelial-mesenchymal-transition regulators in prostate cancer: androgens and beyond publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2016.05.007 – volume: 45 start-page: D331 year: 2017 ident: 2022061706351128300_bib30 article-title: Expansion of the Gene Ontology knowledgebase and resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1108 |
SSID | ssj0005105 |
Score | 2.556868 |
Snippet | Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3063 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Apoptosis Case-Control Studies Cell Proliferation Cholesterol - pharmacology Epithelial-Mesenchymal Transition - drug effects ErbB Receptors - genetics ErbB Receptors - metabolism Gene Expression Regulation, Neoplastic - drug effects Humans Male Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Mice Mice, Inbred NOD Mice, SCID Prognosis Prostatic Neoplasms - drug therapy Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology Proteolysis - drug effects Tumor Cells, Cultured Xenograft Model Antitumor Assays |
Title | Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30987997 https://www.proquest.com/docview/2210233215 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXxPfKl4zEbXJp4jh2jlXpmAqdCtpEb1ESO12lkExdcyhH_nLeS5w0Qx0wLmllNc9R3q_Pv2e_D0LeOcqPZBpHTIh4yDydcBZ4WjLM-vSl1E4sMXd4duqfnHvThVj0et0KweUmHiQ_9uaV_I9WYQz0ilmyt9BsKxQG4DvoF66gYbj-k47H2NwWKx0UWDBDlxhdNbnELIsMJmebgs0wuSi52H7HNHxcllYNQ5xjugcQzaMx6n19NDZZdoVkFPt8VsGx-RKs0XId6ZZVTj4ef207-4zms9G8y22tIFs-6KI6H64DPSpDlGWDzrbDdNVsVK-25Q6h3-zoojRASpft_o8NHP4QZZ3Rz6uy-u0qKqZl3t2_wJQpn9UZnK1NVkx4dQOfgdmZYenVhSYbO103nWnw6HasLrg9vLOCg9kS-1cHoepwynrCwXh0yhzFuFv3-bxejfu3VbKNXay8JqHw1F6FKCYEMaGjQhRzh9x1wV9Bg_vpy65svbCxtM3MNpUMxLzf-zTXSdINnk_FgM4ekgfWdaGjGoePSM_kj8m9mQ3OeEJ-duBILRzpjXCkOzjSIqUNHGmNIlrBkcZb2oEj7cAR70E4UgtHWsHxKTk_npyNT5ht8cESLsWGeQGPpYFFZeimxk8TbqTwtZaOk0QaXmSqeeQLh7vGDL1Ipb6jEg2kE5wc45kg5c_IQV7k5pBQHfmx64nYSPgIpFE-15Eb-14Qq6EZOn3iNe80TGz9e2zDkoV_1GifDNrbLusCMH-74W2jsBBMNZ6_RbkpyqvQxe0VzoFk98nzWpOtSD4MlAwC-eK2070k93f_qlfkYLMuzWvgyZv4TYXBX4YYtf8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+Induces+Epithelial-to-Mesenchymal+Transition+of+Prostate+Cancer+Cells+by+Suppressing+Degradation+of+EGFR+through+APMAP&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Jiang%2C+Siyuan&rft.au=Wang%2C+Xuetong&rft.au=Song%2C+Dalong&rft.au=Liu%2C+XiaoJun&rft.date=2019-06-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=79&rft.issue=12&rft.spage=3063&rft.epage=3075&rft_id=info:doi/10.1158%2F0008-5472.CAN-18-3295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_18_3295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |