Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP

Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transi...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 79; no. 12; pp. 3063 - 3075
Main Authors Jiang, Siyuan, Wang, Xuetong, Song, Dalong, Liu, XiaoJun, Gu, Yinmin, Xu, Zhiyuan, Wang, Xiaodong, Zhang, Xiaolu, Ye, Qinong, Tong, Zhou, Yan, BingXue, Yu, Jie, Chen, Yunzhao, Sun, Minxuan, Wang, Yang, Gao, Shan
Format Journal Article
LanguageEnglish
Published United States 15.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.
AbstractList Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.
Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of cholesterol in prostate cancer metastasis are not fully understood. Here, we found that cholesterol induces the epithelial-to-mesenchymal transition (EMT) through extracellular-regulated protein kinases 1/2 pathway activation, which is mediated by EGFR and adipocyte plasma membrane-associated protein (APMAP) accumulation in cholesterol-induced lipid rafts. Mechanistically, APMAP increases the interaction with EGFR substrate 15-related protein (EPS15R) to inhibit the endocytosis of EGFR by cholesterol, thus promoting cholesterol-induced EMT. Both the mRNA and protein levels of APMAP are upregulated in clinical prostate cancer samples. Together, these findings shed light onto an APMAP/EPS15R/EGFR axis that mediates cholesterol-induced EMT of prostate cancer cells. SIGNIFICANCE: This study delineates the molecular mechanisms by which cholesterol increases prostate cancer progression and demonstrates that the binding of cholesterol-induced APMAP with EPS15R inhibits EGFR internalization and activates ERK1/2 to promote EMT. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3063/F1.large.jpg.
Author Wang, Xuetong
Song, Dalong
Ye, Qinong
Liu, XiaoJun
Wang, Xiaodong
Yan, BingXue
Gu, Yinmin
Chen, Yunzhao
Wang, Yang
Xu, Zhiyuan
Sun, Minxuan
Gao, Shan
Jiang, Siyuan
Tong, Zhou
Yu, Jie
Zhang, Xiaolu
Author_xml – sequence: 1
  givenname: Siyuan
  surname: Jiang
  fullname: Jiang, Siyuan
– sequence: 2
  givenname: Xuetong
  surname: Wang
  fullname: Wang, Xuetong
– sequence: 3
  givenname: Dalong
  surname: Song
  fullname: Song, Dalong
– sequence: 4
  givenname: XiaoJun
  surname: Liu
  fullname: Liu, XiaoJun
– sequence: 5
  givenname: Yinmin
  surname: Gu
  fullname: Gu, Yinmin
– sequence: 6
  givenname: Zhiyuan
  surname: Xu
  fullname: Xu, Zhiyuan
– sequence: 7
  givenname: Xiaodong
  surname: Wang
  fullname: Wang, Xiaodong
– sequence: 8
  givenname: Xiaolu
  surname: Zhang
  fullname: Zhang, Xiaolu
– sequence: 9
  givenname: Qinong
  surname: Ye
  fullname: Ye, Qinong
– sequence: 10
  givenname: Zhou
  surname: Tong
  fullname: Tong, Zhou
– sequence: 11
  givenname: BingXue
  surname: Yan
  fullname: Yan, BingXue
– sequence: 12
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
– sequence: 13
  givenname: Yunzhao
  surname: Chen
  fullname: Chen, Yunzhao
– sequence: 14
  givenname: Minxuan
  surname: Sun
  fullname: Sun, Minxuan
– sequence: 15
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
– sequence: 16
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30987997$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtv2zAURokiReO4-QktOHZhwodoSuhkKM4DyMNok5mgqStLBU2qJDV47S-v3MQdOnQiCJzvkvc7Z-jEBw8IfWL0gjFZXlJKSyILxS_q5SNhJRG8ku_QjElRElUU8gTN_jKn6CylH9NVMio_oFNBq1JVlZqhX3UXHKQMMTh855vRQsKroc8duN44kgN5gATedvudcfg5Gp_63AePQ4vXMaRsMuDaeAsR1-Bcwps9_j4OQ4SUer_FV7CNpjHHzOrm-hvOXQzjtsPL9cNy_RG9b41LcP52ztHL9eq5viX3Tzd39fKeWKFkJkUlNgoE55S3sGitACUXTaMYs6ZRireNMAvJBAeghSnbBSttwwtGOYUCqlbM0ZfXuUMMP8dpZ73rk52-bDyEMWnOJ1YIPjU4R5_f0HGzg0YPsd-ZuNfH3ibg6ytgpwpShFbbPv_ZMUfTO82oPljSBwP6YEBPljQr9cHSlJb_pI8P_D_3G-jmllk
CitedBy_id crossref_primary_10_1186_s13008_024_00116_y
crossref_primary_10_3390_metabo11080562
crossref_primary_10_1111_sji_13137
crossref_primary_10_1186_s12935_021_01803_4
crossref_primary_10_1016_j_gendis_2025_101556
crossref_primary_10_1007_s00018_022_04504_x
crossref_primary_10_1371_journal_pbio_3002621
crossref_primary_10_1016_j_mcpro_2021_100131
crossref_primary_10_1248_bpb_b22_00682
crossref_primary_10_1038_s41389_022_00420_8
crossref_primary_10_1007_s10555_024_10170_1
crossref_primary_10_1038_s41416_024_02762_z
crossref_primary_10_1038_s41388_023_02836_x
crossref_primary_10_3390_life12060784
crossref_primary_10_1002_ange_202313968
crossref_primary_10_3390_ijms25042152
crossref_primary_10_1002_advs_202411888
crossref_primary_10_1038_s41419_023_05849_2
crossref_primary_10_3390_cancers14010173
crossref_primary_10_1186_s12935_021_02159_5
crossref_primary_10_1002_2211_5463_13137
crossref_primary_10_3390_genes15070953
crossref_primary_10_1007_s13402_022_00694_5
crossref_primary_10_3390_cancers14081878
crossref_primary_10_3390_membranes12100997
crossref_primary_10_1021_cbmi_3c00109
crossref_primary_10_1186_s11658_023_00497_y
crossref_primary_10_1038_s41392_022_01132_6
crossref_primary_10_1158_1541_7786_MCR_19_0889
crossref_primary_10_3892_ijo_2020_5075
crossref_primary_10_1038_s41419_024_06711_9
crossref_primary_10_3390_cancers16162776
crossref_primary_10_1016_j_cca_2021_07_001
crossref_primary_10_1002_anie_202313968
crossref_primary_10_1016_j_cellsig_2024_111419
crossref_primary_10_1016_j_jphs_2023_08_002
crossref_primary_10_1016_j_semcancer_2020_11_012
crossref_primary_10_1016_j_canlet_2025_217486
crossref_primary_10_1016_j_plipres_2022_101198
crossref_primary_10_1038_s41586_021_03879_4
crossref_primary_10_1021_acs_jmedchem_3c02347
crossref_primary_10_3390_ijms20194767
crossref_primary_10_1016_j_plipres_2021_101115
crossref_primary_10_1371_journal_pone_0278282
crossref_primary_10_3390_cancers11091363
crossref_primary_10_1111_jcmm_16713
crossref_primary_10_1093_bfgp_elae048
crossref_primary_10_1016_j_jchromb_2025_124508
crossref_primary_10_3389_fcell_2023_1157269
crossref_primary_10_1038_s41419_021_04107_7
crossref_primary_10_1158_2159_8290_CD_22_0427
crossref_primary_10_1016_j_jia_2022_11_005
crossref_primary_10_1002_ctm2_711
crossref_primary_10_1016_j_celrep_2022_110712
crossref_primary_10_1016_j_lwt_2020_110388
crossref_primary_10_1016_j_scitotenv_2020_138314
crossref_primary_10_1186_s12935_021_02042_3
crossref_primary_10_1016_j_virol_2020_06_002
crossref_primary_10_1038_s41388_020_01432_7
crossref_primary_10_1002_jev2_12042
crossref_primary_10_1016_j_cellsig_2023_110983
crossref_primary_10_1158_1541_7786_MCR_19_0197
Cites_doi 10.4103/ijmr.IJMR_1639_15
10.1002/ijc.23715
10.1073/pnas.0409817102
10.1172/JCI200519935
10.1016/j.ejca.2011.01.005
10.1083/jcb.200708115
10.1016/S0006-3495(03)74990-X
10.18632/oncotarget.15686
10.1017/S000711451500183X
10.1002/jcb.10724
10.1093/hmg/ddu449
10.1074/jbc.C400046200
10.1200/JCO.2004.02.027
10.1042/bj3590393
10.1038/nrc2521
10.1096/fj.201601337R
10.1016/j.coph.2012.07.006
10.1038/nrm3048
10.1136/gutjnl-2011-301587
10.1172/JCI36183
10.1007/s00018-010-0424-5
10.1248/yakushi.127.27
10.1021/acs.jproteome.5b01030
10.1111/j.1349-7006.2009.01419.x
10.1007/s11883-014-0474-5
10.1074/jbc.271.46.28727
10.1515/hsz-2014-0194
10.1002/cncr.28485
10.1158/1055-9965.EPI-14-1329
10.1042/BJ20110803
10.1089/omi.2011.0118
10.1016/j.bbrc.2010.01.133
10.1242/jcs.115.6.1331
10.1038/nm.4045
10.1093/annonc/mdl080
10.1038/nrc865
10.1159/000477890
10.1091/mbc.e09-02-0142
10.1097/01.mco.0000232896.66791.62
10.1016/j.ccr.2010.02.030
10.1002/pros.20593
10.1158/0008-5472.CAN-07-0575
10.1158/1055-9965.EPI-07-0599
10.1016/j.bbamcr.2014.04.019
10.1093/jnci/djj499
10.1096/fj.201701382RR
10.1016/j.jsbmb.2016.05.007
10.1093/nar/gkw1108
ContentType Journal Article
Copyright 2019 American Association for Cancer Research.
Copyright_xml – notice: 2019 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-18-3295
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 3075
ExternalDocumentID 30987997
10_1158_0008_5472_CAN_18_3295
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
ID FETCH-LOGICAL-c375t-493b7e32202fe6fc3e756dd711cad772fd3a65132ee04a8f618cd241020e4e9f3
ISSN 0008-5472
1538-7445
IngestDate Thu Jul 10 18:25:38 EDT 2025
Wed Feb 19 02:31:01 EST 2025
Tue Jul 01 03:59:44 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2019 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-493b7e32202fe6fc3e756dd711cad772fd3a65132ee04a8f618cd241020e4e9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30987997
PQID 2210233215
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2210233215
pubmed_primary_30987997
crossref_citationtrail_10_1158_0008_5472_CAN_18_3295
crossref_primary_10_1158_0008_5472_CAN_18_3295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-15
PublicationDateYYYYMMDD 2019-06-15
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2019
References Platz (2022061706351128300_bib17) 2006; 98
YuPeng (2022061706351128300_bib14) 2015; 24
Singh (2022061706351128300_bib23) 2017; 146
Oh (2022061706351128300_bib43) 2007; 67
The Gene Ontology C (2022061706351128300_bib30) 2017; 45
Carbone (2022061706351128300_bib28) 1997; 57
Sigismund (2022061706351128300_bib29) 2005; 102
Yu (2022061706351128300_bib31) 2012; 16
Beltran (2022061706351128300_bib37) 2016; 22
Oh (2022061706351128300_bib44) 2010; 393
Platz (2022061706351128300_bib16) 2008; 123
Chatterjee (2022061706351128300_bib5) 2018; 32
Avraham (2022061706351128300_bib35) 2011; 12
Wu (2022061706351128300_bib1) 2014; 120
Graaf (2022061706351128300_bib18) 2004; 22
Hager (2022061706351128300_bib38) 2006; 9
Mosesson (2022061706351128300_bib46) 2008; 8
Pessentheiner (2022061706351128300_bib24) 2017; 31
Huang (2022061706351128300_bib49) 2004; 279
Suzuki (2022061706351128300_bib41) 2013; 85
Papadopoulos (2022061706351128300_bib39) 2011; 47
Touvier (2022061706351128300_bib10) 2015; 114
Ringerike (2022061706351128300_bib47) 2002; 115
Iwatsuki (2022061706351128300_bib4) 2010; 101
Wang (2022061706351128300_bib12) 2017; 42
Murtola (2022061706351128300_bib19) 2007; 16
Mosser (2022061706351128300_bib50) 2015; 24
Zeisberg (2022061706351128300_bib3) 2009; 119
Ramnarayanan (2022061706351128300_bib32) 2011; 439
Mak (2022061706351128300_bib9) 2010; 17
Albrektsen (2022061706351128300_bib25) 2001; 359
Pelton (2022061706351128300_bib13) 2012; 12
Chambers (2022061706351128300_bib2) 2002; 2
Zhuang (2022061706351128300_bib22) 2005; 115
Nakazawa (2022061706351128300_bib7) 2017; 166
Montanari (2022061706351128300_bib8) 2017; 8
Ohkubo (2022061706351128300_bib42) 2007; 127
Magal (2022061706351128300_bib33) 2009; 20
Bogner-Strauss (2022061706351128300_bib26) 2010; 67
Tebar (2022061706351128300_bib48) 1996; 271
Murai (2022061706351128300_bib21) 2015; 396
Roxrud (2022061706351128300_bib36) 2008; 180
Bravi (2022061706351128300_bib15) 2006; 17
Sun (2022061706351128300_bib40) 2014; 1843
Freeman (2022061706351128300_bib11) 2004; 91
Pon (2022061706351128300_bib20) 2015; 17
Ma (2022061706351128300_bib27) 2016; 15
Lawrence (2022061706351128300_bib45) 2003; 84
Lo (2022061706351128300_bib6) 2007; 67
Mekenkamp (2022061706351128300_bib34) 2013; 62
References_xml – volume: 146
  start-page: S38
  year: 2017
  ident: 2022061706351128300_bib23
  article-title: Interlink between cholesterol & cell cycle in prostate carcinoma
  publication-title: Indian J Med Res
  doi: 10.4103/ijmr.IJMR_1639_15
– volume: 123
  start-page: 1693
  year: 2008
  ident: 2022061706351128300_bib16
  article-title: Association between plasma cholesterol and prostate cancer in the PSA era
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23715
– volume: 102
  start-page: 2760
  year: 2005
  ident: 2022061706351128300_bib29
  article-title: Clathrin-independent endocytosis of ubiquitinated cargos
  publication-title: PNAS
  doi: 10.1073/pnas.0409817102
– volume: 115
  start-page: 959
  year: 2005
  ident: 2022061706351128300_bib22
  article-title: Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts
  publication-title: J Clin Invest
  doi: 10.1172/JCI200519935
– volume: 47
  start-page: 819
  year: 2011
  ident: 2022061706351128300_bib39
  article-title: Statins and prostate cancer: molecular and clinical aspects
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.01.005
– volume: 180
  start-page: 1205
  year: 2008
  ident: 2022061706351128300_bib36
  article-title: An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200708115
– volume: 84
  start-page: 1827
  year: 2003
  ident: 2022061706351128300_bib45
  article-title: Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(03)74990-X
– volume: 8
  start-page: 35376
  year: 2017
  ident: 2022061706351128300_bib8
  article-title: Epithelial-mesenchymal transition in prostate cancer: an overview
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15686
– volume: 114
  start-page: 347
  year: 2015
  ident: 2022061706351128300_bib10
  article-title: Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies
  publication-title: Br J Nutr
  doi: 10.1017/S000711451500183X
– volume: 91
  start-page: 54
  year: 2004
  ident: 2022061706351128300_bib11
  article-title: Cholesterol and prostate cancer
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.10724
– volume: 24
  start-page: 371
  year: 2015
  ident: 2022061706351128300_bib50
  article-title: The adipocyte differentiation protein APMAP is an endogenous suppressor of Abeta production in the brain
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu449
– volume: 279
  start-page: 16657
  year: 2004
  ident: 2022061706351128300_bib49
  article-title: Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C400046200
– volume: 22
  start-page: 2388
  year: 2004
  ident: 2022061706351128300_bib18
  article-title: The risk of cancer in users of statins
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2004.02.027
– volume: 359
  start-page: 393
  year: 2001
  ident: 2022061706351128300_bib25
  article-title: Identification of a novel integral plasma membrane protein induced during adipocyte differentiation
  publication-title: Biochem J
  doi: 10.1042/bj3590393
– volume: 8
  start-page: 835
  year: 2008
  ident: 2022061706351128300_bib46
  article-title: Derailed endocytosis: an emerging feature of cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2521
– volume: 31
  start-page: 4088
  year: 2017
  ident: 2022061706351128300_bib24
  article-title: APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion
  publication-title: FASEB J
  doi: 10.1096/fj.201601337R
– volume: 12
  start-page: 751
  year: 2012
  ident: 2022061706351128300_bib13
  article-title: Cholesterol and prostate cancer
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2012.07.006
– volume: 12
  start-page: 104
  year: 2011
  ident: 2022061706351128300_bib35
  article-title: Feedback regulation of EGFR signalling: decision making by early and delayed loops
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3048
– volume: 62
  start-page: 94
  year: 2013
  ident: 2022061706351128300_bib34
  article-title: Chromosome 20p11 gains are associated with liver-specific metastasis in patients with colorectal cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-301587
– volume: 119
  start-page: 1429
  year: 2009
  ident: 2022061706351128300_bib3
  article-title: Biomarkers for epithelial-mesenchymal transitions
  publication-title: J Clin Invest
  doi: 10.1172/JCI36183
– volume: 67
  start-page: 4049
  year: 2010
  ident: 2022061706351128300_bib26
  article-title: Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARgamma
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0424-5
– volume: 127
  start-page: 27
  year: 2007
  ident: 2022061706351128300_bib42
  article-title: Role of lipid rafts in trimeric G protein-mediated signal transduction
  publication-title: Yakugaku Zasshi
  doi: 10.1248/yakushi.127.27
– volume: 15
  start-page: 628
  year: 2016
  ident: 2022061706351128300_bib27
  article-title: Identification of a novel function of adipocyte plasma membrane-associated protein (APMAP) in gestational diabetes mellitus by proteomic analysis of omental adipose tissue
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b01030
– volume: 101
  start-page: 293
  year: 2010
  ident: 2022061706351128300_bib4
  article-title: Epithelial-mesenchymal transition in cancer development and its clinical significance
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2009.01419.x
– volume: 17
  start-page: 474
  year: 2015
  ident: 2022061706351128300_bib20
  article-title: A review of statin use and prostate cancer
  publication-title: Curr Atheroscler Rep
  doi: 10.1007/s11883-014-0474-5
– volume: 271
  start-page: 28727
  year: 1996
  ident: 2022061706351128300_bib48
  article-title: Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.46.28727
– volume: 396
  start-page: 1
  year: 2015
  ident: 2022061706351128300_bib21
  article-title: Cholesterol lowering: role in cancer prevention and treatment
  publication-title: Biol Chem
  doi: 10.1515/hsz-2014-0194
– volume: 120
  start-page: 818
  year: 2014
  ident: 2022061706351128300_bib1
  article-title: No improvement noted in overall or cause-specific survival for men presenting with metastatic prostate cancer over a 20-year period
  publication-title: Cancer
  doi: 10.1002/cncr.28485
– volume: 24
  start-page: 1086
  year: 2015
  ident: 2022061706351128300_bib14
  article-title: Cholesterol levels in blood and the risk of prostate cancer: a meta-analysis of 14 prospective studies
  publication-title: Cancer Epidemiol Biomark Prev
  doi: 10.1158/1055-9965.EPI-14-1329
– volume: 439
  start-page: 497
  year: 2011
  ident: 2022061706351128300_bib32
  article-title: MAL, but not MAL2, expression promotes the formation of cholesterol-dependent membrane domains that recruit apical proteins
  publication-title: Biochem J
  doi: 10.1042/BJ20110803
– volume: 16
  start-page: 284
  year: 2012
  ident: 2022061706351128300_bib31
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 393
  start-page: 319
  year: 2010
  ident: 2022061706351128300_bib44
  article-title: Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.01.133
– volume: 115
  start-page: 1331
  year: 2002
  ident: 2022061706351128300_bib47
  article-title: Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.6.1331
– volume: 22
  start-page: 298
  year: 2016
  ident: 2022061706351128300_bib37
  article-title: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer
  publication-title: Nat Med
  doi: 10.1038/nm.4045
– volume: 17
  start-page: 1014
  year: 2006
  ident: 2022061706351128300_bib15
  article-title: Self-reported history of hypercholesterolaemia and gallstones and the risk of prostate cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdl080
– volume: 2
  start-page: 563
  year: 2002
  ident: 2022061706351128300_bib2
  article-title: Dissemination and growth of cancer cells in metastatic sites
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc865
– volume: 42
  start-page: 729
  year: 2017
  ident: 2022061706351128300_bib12
  article-title: Cholesterol enhances colorectal cancer progression via ROS Elevation and MAPK signaling pathway activation
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000477890
– volume: 20
  start-page: 3751
  year: 2009
  ident: 2022061706351128300_bib33
  article-title: Clustering and lateral concentration of raft lipids by the MAL protein
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e09-02-0142
– volume: 9
  start-page: 379
  year: 2006
  ident: 2022061706351128300_bib38
  article-title: The role of cholesterol in prostate cancer
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/01.mco.0000232896.66791.62
– volume: 17
  start-page: 319
  year: 2010
  ident: 2022061706351128300_bib9
  article-title: ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.02.030
– volume: 85
  start-page: 34
  year: 2013
  ident: 2022061706351128300_bib41
  article-title: Mechanisms for signal transduction in lipid rafts of cell plasma membranes
  publication-title: Seikagaku
– volume: 57
  start-page: 5498
  year: 1997
  ident: 2022061706351128300_bib28
  article-title: eps15 and eps15R are essential components of the endocytic pathway
  publication-title: Cancer Res
– volume: 67
  start-page: 1061
  year: 2007
  ident: 2022061706351128300_bib43
  article-title: Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction
  publication-title: Prostate
  doi: 10.1002/pros.20593
– volume: 67
  start-page: 9066
  year: 2007
  ident: 2022061706351128300_bib6
  article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0575
– volume: 16
  start-page: 2226
  year: 2007
  ident: 2022061706351128300_bib19
  article-title: Cholesterol-lowering drugs and prostate cancer risk: a population-based case-control study
  publication-title: Cancer Epidemiol Biomark Prev
  doi: 10.1158/1055-9965.EPI-07-0599
– volume: 1843
  start-page: 1839
  year: 2014
  ident: 2022061706351128300_bib40
  article-title: Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells
  publication-title: Biochem Biophys Acta
  doi: 10.1016/j.bbamcr.2014.04.019
– volume: 98
  start-page: 1819
  year: 2006
  ident: 2022061706351128300_bib17
  article-title: Statin drugs and risk of advanced prostate cancer
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djj499
– volume: 32
  start-page: 4560
  year: 2018
  ident: 2022061706351128300_bib5
  article-title: EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression
  publication-title: FASEB J
  doi: 10.1096/fj.201701382RR
– volume: 166
  start-page: 84
  year: 2017
  ident: 2022061706351128300_bib7
  article-title: Epithelial-mesenchymal-transition regulators in prostate cancer: androgens and beyond
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2016.05.007
– volume: 45
  start-page: D331
  year: 2017
  ident: 2022061706351128300_bib30
  article-title: Expansion of the Gene Ontology knowledgebase and resources
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1108
SSID ssj0005105
Score 2.556868
Snippet Cholesterol increases the risk of aggressive prostate cancer and has emerged as a potential therapeutic target for prostate cancer. The functional roles of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3063
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apoptosis
Case-Control Studies
Cell Proliferation
Cholesterol - pharmacology
Epithelial-Mesenchymal Transition - drug effects
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Humans
Male
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred NOD
Mice, SCID
Prognosis
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Proteolysis - drug effects
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
Title Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP
URI https://www.ncbi.nlm.nih.gov/pubmed/30987997
https://www.proquest.com/docview/2210233215
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXxPfKl4zEbXJp4jh2jlXpmAqdCtpEb1ESO12lkExdcyhH_nLeS5w0Qx0wLmllNc9R3q_Pv2e_D0LeOcqPZBpHTIh4yDydcBZ4WjLM-vSl1E4sMXd4duqfnHvThVj0et0KweUmHiQ_9uaV_I9WYQz0ilmyt9BsKxQG4DvoF66gYbj-k47H2NwWKx0UWDBDlxhdNbnELIsMJmebgs0wuSi52H7HNHxcllYNQ5xjugcQzaMx6n19NDZZdoVkFPt8VsGx-RKs0XId6ZZVTj4ef207-4zms9G8y22tIFs-6KI6H64DPSpDlGWDzrbDdNVsVK-25Q6h3-zoojRASpft_o8NHP4QZZ3Rz6uy-u0qKqZl3t2_wJQpn9UZnK1NVkx4dQOfgdmZYenVhSYbO103nWnw6HasLrg9vLOCg9kS-1cHoepwynrCwXh0yhzFuFv3-bxejfu3VbKNXay8JqHw1F6FKCYEMaGjQhRzh9x1wV9Bg_vpy65svbCxtM3MNpUMxLzf-zTXSdINnk_FgM4ekgfWdaGjGoePSM_kj8m9mQ3OeEJ-duBILRzpjXCkOzjSIqUNHGmNIlrBkcZb2oEj7cAR70E4UgtHWsHxKTk_npyNT5ht8cESLsWGeQGPpYFFZeimxk8TbqTwtZaOk0QaXmSqeeQLh7vGDL1Ipb6jEg2kE5wc45kg5c_IQV7k5pBQHfmx64nYSPgIpFE-15Eb-14Qq6EZOn3iNe80TGz9e2zDkoV_1GifDNrbLusCMH-74W2jsBBMNZ6_RbkpyqvQxe0VzoFk98nzWpOtSD4MlAwC-eK2070k93f_qlfkYLMuzWvgyZv4TYXBX4YYtf8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+Induces+Epithelial-to-Mesenchymal+Transition+of+Prostate+Cancer+Cells+by+Suppressing+Degradation+of+EGFR+through+APMAP&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Jiang%2C+Siyuan&rft.au=Wang%2C+Xuetong&rft.au=Song%2C+Dalong&rft.au=Liu%2C+XiaoJun&rft.date=2019-06-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=79&rft.issue=12&rft.spage=3063&rft.epage=3075&rft_id=info:doi/10.1158%2F0008-5472.CAN-18-3295&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_18_3295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon