Theoretical analysis of non-probabilistic reliability based on interval model

The aim of this paper is to propose a theoretical approach for performing the non-probabilistic reliability analysis of structure. Due to a great deal of uncertainties and limited measured data in engineering practice, the structural uncertain parameters were described as interval variables. The the...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica solida Sinica Vol. 30; no. 6; pp. 638 - 646
Main Authors Chen, Xu-Yong, Fan, Jian-Ping, Bian, Xiao-Ya
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.12.2017
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to propose a theoretical approach for performing the non-probabilistic reliability analysis of structure. Due to a great deal of uncertainties and limited measured data in engineering practice, the structural uncertain parameters were described as interval variables. The theoretical analysis model was developed by starting from the 2-D plane and 3-D space. In order to avoid the loss of probable failure points, the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis. The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function. Furthermore, the low-dimensional analytical scheme was extended to the high-dimensional case. Using the proposed approach, it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly. A number of equations used for calculating the extreme points and root points were also evaluated. This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field. Finally, two kinds of examples were presented and compared with the existing computation. The good agreements show that the proposed theoretical analysis approach in the paper is correct. The efforts were conducted to improve the optimization method, to indicate the search direction and path, and to avoid only searching the local optimal solution which would result in missed probable failure points.
AbstractList The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.
The aim of this paper is to propose a theoretical approach for performing the non-probabilistic reliability analysis of structure. Due to a great deal of uncertainties and limited measured data in engineering practice, the structural uncertain parameters were described as interval variables. The theoretical analysis model was developed by starting from the 2-D plane and 3-D space. In order to avoid the loss of probable failure points, the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis. The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function. Furthermore, the low-dimensional analytical scheme was extended to the high-dimensional case. Using the proposed approach, it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly. A number of equations used for calculating the extreme points and root points were also evaluated. This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field. Finally, two kinds of examples were presented and compared with the existing computation. The good agreements show that the proposed theoretical analysis approach in the paper is correct. The efforts were conducted to improve the optimization method, to indicate the search direction and path, and to avoid only searching the local optimal solution which would result in missed probable failure points.
Author Xu-Yong Chen;Jian-Ping Fan;Xiao-Ya Bian
AuthorAffiliation School of Resource and Civil Engineering, Wuhan Institute of Technology, Wuhan 430073, China;School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
Author_xml – sequence: 1
  givenname: Xu-Yong
  surname: Chen
  fullname: Chen, Xu-Yong
  organization: School of Resource and Civil Engineering, Wuhan Institute of Technology, Wuhan 430073, China
– sequence: 2
  givenname: Jian-Ping
  surname: Fan
  fullname: Fan, Jian-Ping
  email: jpfan@hust.edu.cn
  organization: School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Xiao-Ya
  surname: Bian
  fullname: Bian, Xiao-Ya
  organization: School of Resource and Civil Engineering, Wuhan Institute of Technology, Wuhan 430073, China
BookMark eNqFkD1PwzAQhi1UJErhF7BE7Ak-242TgQFVfElFLDBbtnMBV6ld7IDUf49pEQNLp9Pp9Nx795ySiQ8eCbkAWgGF-mpVWb1OqWIUZAVQUcqPyBSampYMuJiQKW1aUbZQ1yfkNKUVpYzyhk3J08s7hoijs3ootNfDNrlUhL7ICeUmBqONG1zK8yLi4HbduC2MTtgVwRfOjxi_MrsOHQ5n5LjXQ8Lz3zojr3e3L4uHcvl8_7i4WZaWy_lYCkmFlFaaXgO0ghsE1jBDa4PILWLfs4ZaZgyXrdV9JxtOhWhlD420XQ18Rvh-r40hpYi92kS31nGrgKofI2qldkbUjxEFoLKRTLX_KOtGPbrgx6jdcIAVezblJP-GUa3CZ8y-0gHseo9htvHlMpasQ2-xcxHtqLrgDvCXvye_B__2kZP_Pq2lgGZOJePfIyCd9w
CitedBy_id crossref_primary_10_1016_j_cma_2019_07_034
crossref_primary_10_1007_s10999_019_09470_0
crossref_primary_10_1155_2019_8290317
crossref_primary_10_1177_1748006X20928196
crossref_primary_10_3390_app122412584
crossref_primary_10_1109_ACCESS_2019_2926145
crossref_primary_10_1142_S0219876222500505
crossref_primary_10_1177_1748006X221104556
crossref_primary_10_1007_s12206_021_0112_4
crossref_primary_10_1016_j_eng_2024_12_034
crossref_primary_10_17531_ein_2021_3_10
crossref_primary_10_32604_csse_2023_035118
Cites_doi 10.1016/0045-7949(94)00499-S
10.1115/1.2900858
10.1016/0167-4730(95)00004-N
10.1016/j.engfailanal.2010.01.010
10.1016/j.apm.2006.02.013
10.1016/j.ijmecsci.2016.11.020
10.1007/s00707-013-0975-2
10.1016/j.cma.2012.03.020
10.1016/S0894-9166(10)60013-4
10.1007/s00419-016-1121-0
10.1016/j.cma.2012.10.020
10.1016/S0045-7949(02)00006-8
10.1016/0167-4730(94)90013-2
10.1016/0167-4730(95)00010-2
10.1016/j.cie.2009.11.005
10.1007/s00707-013-0969-0
ContentType Journal Article
Copyright 2017
The Chinese Society of Theoretical and Applied Mechanics and Technology 2017
Copyright_xml – notice: 2017
– notice: The Chinese Society of Theoretical and Applied Mechanics and Technology 2017
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1016/j.camss.2017.11.003
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Theoretical analysis of non-probabilistic reliability based on interval model
EISSN 1860-2134
EndPage 646
ExternalDocumentID 10_1016_j_camss_2017_11_003
S0894916617300988
674185072
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.86
.~1
0R~
188
1B1
1SB
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
8RM
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADIMF
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFLOW
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HF~
HVGLF
HZ~
IKXTQ
IWAJR
IXE
J-C
J1W
JJJVA
JUIAU
JZLTJ
KDC
KOM
KOV
LAS
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPX
RSV
RT1
S1Z
S27
SDF
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T13
T5K
T8Q
TCJ
TGP
U1F
U1G
U2A
U5A
U5K
UGNYK
UOJIU
UTJUX
UZ4
VEKWB
VFIZW
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c375t-470477c7bfa11943be1282b06bee3ceeff280c2bb379cafd78304497f187cd613
IEDL.DBID .~1
ISSN 0894-9166
IngestDate Tue Jul 01 02:37:05 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Fri Feb 21 02:42:36 EST 2025
Fri Feb 23 02:27:07 EST 2024
Wed Feb 14 09:55:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Interval model
Non-probabilistic
Theoretical analysis
Reliability
Probable failure point
Language English
License http://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-470477c7bfa11943be1282b06bee3ceeff280c2bb379cafd78304497f187cd613
Notes The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.
42-1121/O3
Non-probabilistic Reliability Interval model Theoretical analysis Probable failure point
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_camss_2017_11_003
crossref_citationtrail_10_1016_j_camss_2017_11_003
springer_journals_10_1016_j_camss_2017_11_003
elsevier_sciencedirect_doi_10_1016_j_camss_2017_11_003
chongqing_primary_674185072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationSubtitle The Chinese Society of Theoretical and Applied Mechanics
PublicationTitle Acta mechanica solida Sinica
PublicationTitleAbbrev Acta Mech. Solida Sin
PublicationTitleAlternate Acta Mechanica Solida Sinica
PublicationYear 2017
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Ben-Haim (bib0003) 1995; 17
Elishakoff (bib0006) 1995; 56
Jiang, Bi, Lu, Han (bib0016) 2013; 254
Fan, Li, Chen (bib0007) 2012; 29
Guo, Lv, Feng (bib0010) 2001; 18
Guo, Zhang, Li (bib0011) 2005; 22
Jiang, Chen, Xu (bib0014) 2007; 31
Hurtado, Alvarez (bib0012) 2012; 225–228
Qiu, Wang (bib0021) 2010; 17
Fan, Li, Qi, Chen (bib0008) 2012; 33
Li, Fan, Qi, Chen (bib0019) 2013; 30
Ben-Haim (bib0002) 1994; 14
Lee, Yang, Ruy (bib0018) 2002; 80
Ben-Haim (bib0001) 1993; 60
Wang, Wang, Wang, Chen (bib0023) 2016; 86
Wang, Wang, Su, Lin (bib0024) 2017; 121
Chen, Tang, Tsui, Fan (bib0004) 2010; 23
Elishakoff (bib0005) 1995; 17
Guo, Lv (bib0009) 2003; 20
Jiang, Zhang, Han, Bai (bib0015) 2013; 45
Jiang, Zhang, Han, Qian (bib0017) 2014; 225
Wang, Wang, Xia (bib0022) 2014; 225
Ni, Qiu (bib0020) 2010; 58
Jiang, Chen, Jiang, Tuo (bib0013) 2007; 24
Lee, Yang, Ruy (CR18) 2002; 80
Fan, Li, Chen (CR7) 2012; 29
Guo, Lv, Feng (CR10) 2001; 18
Wang, Wang, Wang, Chen (CR23) 2016; 86
Wang, Wang, Su, Lin (CR24) 2017; 121
Ben-Haim (CR3) 1995; 17
Jiang, Chen, Xu (CR14) 2007; 31
Hurtado, Alvarez (CR12) 2012; 225–228
Guo, Zhang, Li (CR11) 2005; 22
Ben-Haim (CR1) 1993; 60
Wang, Wang, Xia (CR22) 2014; 225
Fan, Li, Qi, Chen (CR8) 2012; 33
Guo, Lv (CR9) 2003; 20
Ben-Haim (CR2) 1994; 14
Jiang, Bi, Lu, Han (CR16) 2013; 254
Ni, Qiu (CR20) 2010; 58
Qiu, Wang (CR21) 2010; 17
Jiang, Zhang, Han, Bai (CR15) 2013; 45
Jiang, Chen, Jiang, Tuo (CR13) 2007; 24
Jiang, Zhang, Han, Qian (CR17) 2014; 225
Elishakoff (CR5) 1995; 17
Elishakoff (CR6) 1995; 56
Li, Fan, Qi, Chen (CR19) 2013; 30
Chen, Tang, Tsui, Fan (CR4) 2010; 23
Jiang (10.1016/j.camss.2017.11.003_bib0013) 2007; 24
Fan (10.1016/j.camss.2017.11.003_bib0007) 2012; 29
Jiang (10.1016/j.camss.2017.11.003_bib0017) 2014; 225
Qiu (10.1016/j.camss.2017.11.003_bib0021) 2010; 17
Jiang (10.1016/j.camss.2017.11.003_bib0016) 2013; 254
Hurtado (10.1016/j.camss.2017.11.003_bib0012) 2012; 225–228
Wang (10.1016/j.camss.2017.11.003_bib0024) 2017; 121
Ben-Haim (10.1016/j.camss.2017.11.003_bib0001) 1993; 60
Elishakoff (10.1016/j.camss.2017.11.003_bib0006) 1995; 56
Li (10.1016/j.camss.2017.11.003_bib0019) 2013; 30
Fan (10.1016/j.camss.2017.11.003_bib0008) 2012; 33
Lee (10.1016/j.camss.2017.11.003_bib0018) 2002; 80
Ben-Haim (10.1016/j.camss.2017.11.003_bib0002) 1994; 14
Ni (10.1016/j.camss.2017.11.003_bib0020) 2010; 58
Elishakoff (10.1016/j.camss.2017.11.003_bib0005) 1995; 17
Wang (10.1016/j.camss.2017.11.003_bib0022) 2014; 225
Guo (10.1016/j.camss.2017.11.003_bib0009) 2003; 20
Ben-Haim (10.1016/j.camss.2017.11.003_bib0003) 1995; 17
Guo (10.1016/j.camss.2017.11.003_bib0011) 2005; 22
Jiang (10.1016/j.camss.2017.11.003_bib0014) 2007; 31
Guo (10.1016/j.camss.2017.11.003_bib0010) 2001; 18
Chen (10.1016/j.camss.2017.11.003_bib0004) 2010; 23
Wang (10.1016/j.camss.2017.11.003_bib0023) 2016; 86
Jiang (10.1016/j.camss.2017.11.003_bib0015) 2013; 45
References_xml – volume: 60
  start-page: 683
  year: 1993
  end-page: 688
  ident: bib0001
  article-title: Convex models of uncertainty in radial pulse buckling of shells
  publication-title: J. Appl. Mech.
– volume: 29
  start-page: 831
  year: 2012
  end-page: 834
  ident: bib0007
  article-title: Optimal searching algorithm for non-probabilistic reliability
  publication-title: Chin. J. Comput. Mech.
– volume: 17
  start-page: 91
  year: 1995
  end-page: 109
  ident: bib0003
  article-title: A non-probabilistic measure of reliability of linear systems based on expansion of convex models
  publication-title: Struct. Saf.
– volume: 80
  start-page: 257
  year: 2002
  end-page: 269
  ident: bib0018
  article-title: A comparative study on reliability-index and target-performance-based probabilistic structural design optimization
  publication-title: Comput. Struct.
– volume: 56
  start-page: 871
  year: 1995
  end-page: 895
  ident: bib0006
  article-title: Essay on uncertainties in elastic and viscoelastic structures: from A. M. Freudenthal's criticisms to modern convex modeling
  publication-title: Comput. Struct.
– volume: 24
  start-page: 23
  year: 2007
  end-page: 27
  ident: bib0013
  article-title: A one-dimensional optimization algorithm for non-probabilistic reliability index
  publication-title: Eng. Mech.
– volume: 18
  start-page: 56
  year: 2001
  end-page: 62
  ident: bib0010
  article-title: A non-probabilistic model of structural reliability based on interval analysis
  publication-title: Chin. J. Comput. Mech.
– volume: 33
  start-page: 325
  year: 2012
  end-page: 330
  ident: bib0008
  article-title: Safety evaluation of non-probabilistic reliability model of structures
  publication-title: Chin. J. Solid Mech.
– volume: 225
  start-page: 413
  year: 2014
  end-page: 430
  ident: bib0022
  article-title: Hybrid reliability analysis of structures with multi-source uncertainties
  publication-title: Acta Mech.
– volume: 45
  start-page: 103
  year: 2013
  end-page: 115
  ident: bib0015
  article-title: An evidence-theory-based reliability analysis method for uncertain structures
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 14
  start-page: 227
  year: 1994
  end-page: 245
  ident: bib0002
  article-title: A non-probabilistic concept of reliability
  publication-title: Struct. Saf.
– volume: 121
  start-page: 44
  year: 2017
  end-page: 57
  ident: bib0024
  article-title: Reliability estimation of fatigue crack growth prediction via limited measured data
  publication-title: Int. J. Mech. Sci.
– volume: 20
  start-page: 107
  year: 2003
  end-page: 110
  ident: bib0009
  article-title: Comparison between the non-probabilistic and probabilistic reliability methods for uncertain structure design
  publication-title: Chin. J. Appl. Mech.
– volume: 30
  start-page: 192
  year: 2013
  end-page: 197
  ident: bib0019
  article-title: The gradient projection method for non-probabilistic reliability index based on interval model
  publication-title: Chin. J. Comput. Mech.
– volume: 58
  start-page: 463
  year: 2010
  end-page: 467
  ident: bib0020
  article-title: Hybrid probabilistic fuzzy and non-probabilistic model of structural reliability
  publication-title: Comput. Ind. Eng.
– volume: 17
  start-page: 195
  year: 1995
  end-page: 199
  ident: bib0005
  article-title: Discussion on: a non-probabilistic concept of reliability
  publication-title: Struct. Saf.
– volume: 86
  start-page: 1341
  year: 2016
  end-page: 1367
  ident: bib0023
  article-title: Reliability-based design optimization under mixture of random, interval and convex uncertainties
  publication-title: Arch. Appl. Mech.
– volume: 23
  start-page: 115
  year: 2010
  end-page: 123
  ident: bib0004
  article-title: Modified scheme based on semi-analytic approach for computing non-probabilistic reliability index
  publication-title: Acta Mech. Solida Sin.
– volume: 31
  start-page: 1362
  year: 2007
  end-page: 1370
  ident: bib0014
  article-title: A semi-analytic method for calculating non-probabilistic reliability index based on interval models
  publication-title: Appl. Math. Model.
– volume: 17
  start-page: 1142
  year: 2010
  end-page: 1154
  ident: bib0021
  article-title: The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system
  publication-title: Eng. Fail. Anal.
– volume: 22
  start-page: 227
  year: 2005
  end-page: 231
  ident: bib0011
  article-title: Procedures for computing the non-probabilistic reliability index of uncertain structures
  publication-title: Chin. J. Comput. Mech.
– volume: 225–228
  start-page: 74
  year: 2012
  end-page: 94
  ident: bib0012
  article-title: The encounter of interval and probabilistic approaches to structural reliability at the design point
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 254
  start-page: 83
  year: 2013
  end-page: 98
  ident: bib0016
  article-title: Structural reliability analysis using non-probabilistic convex model
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 225
  start-page: 383
  year: 2014
  end-page: 395
  ident: bib0017
  article-title: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model
  publication-title: Acta Mech.
– volume: 56
  start-page: 871
  issue: 6
  year: 1995
  end-page: 895
  ident: CR6
  article-title: Essay on uncertainties in elastic and viscoelastic structures: from A. M. Freudenthal’s criticisms to modern convex modeling
  publication-title: Comput. Struct
  doi: 10.1016/0045-7949(94)00499-S
– volume: 60
  start-page: 683
  issue: 3
  year: 1993
  end-page: 688
  ident: CR1
  article-title: Convex models of uncertainty in radial pulse buckling of shells
  publication-title: J. Appl. Mech
  doi: 10.1115/1.2900858
– volume: 17
  start-page: 91
  issue: 2
  year: 1995
  end-page: 109
  ident: CR3
  article-title: A non-probabilistic measure of reliability of linear systems based on expansion of convex models
  publication-title: Struct. Saf
  doi: 10.1016/0167-4730(95)00004-N
– volume: 17
  start-page: 1142
  issue: 5
  year: 2010
  end-page: 1154
  ident: CR21
  article-title: The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system
  publication-title: Eng. Fail. Anal
  doi: 10.1016/j.engfailanal.2010.01.010
– volume: 24
  start-page: 23
  issue: 7
  year: 2007
  end-page: 27
  ident: CR13
  article-title: A one-dimensional optimization algorithm for non-probabilistic reliability index
  publication-title: Eng. Mech
– volume: 31
  start-page: 1362
  issue: 7
  year: 2007
  end-page: 1370
  ident: CR14
  article-title: A semi-analytic method for calculating non-probabilistic reliability index based on interval models
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2006.02.013
– volume: 29
  start-page: 831
  issue: 6
  year: 2012
  end-page: 834 (in Chinese)
  ident: CR7
  article-title: Optimal searching algorithm for non-probabilistic reliability
  publication-title: Chin. J. Comput. Mech
– volume: 20
  start-page: 107
  issue: 3
  year: 2003
  end-page: 110
  ident: CR9
  article-title: Comparison between the non-probabilistic and probabilistic reliability methods for uncertain structure design
  publication-title: Chin. J. Appl. Mech
– volume: 22
  start-page: 227
  issue: 2
  year: 2005
  end-page: 231 (in Chinese)
  ident: CR11
  article-title: Procedures for computing the non-probabilistic reliability index of uncertain structures
  publication-title: Chin. J. Comput. Mech
– volume: 121
  start-page: 44
  year: 2017
  end-page: 57
  ident: CR24
  article-title: Reliability estimation of fatigue crack growth prediction via limited measured data
  publication-title: Int. J. Mech. Sci
  doi: 10.1016/j.ijmecsci.2016.11.020
– volume: 225
  start-page: 383
  year: 2014
  end-page: 395
  ident: CR17
  article-title: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model
  publication-title: Acta Mech
  doi: 10.1007/s00707-013-0975-2
– volume: 30
  start-page: 192
  issue: 2
  year: 2013
  end-page: 197 (in Chinese)
  ident: CR19
  article-title: The gradient projection method for non-probabilistic reliability index based on interval model
  publication-title: Chin. J. Comput. Mech
– volume: 18
  start-page: 56
  issue: 1
  year: 2001
  end-page: 62 (in Chinese)
  ident: CR10
  article-title: A non-probabilistic model of structural reliability based on interval analysis
  publication-title: Chin. J. Comput. Mech
– volume: 45
  start-page: 103
  issue: 1
  year: 2013
  end-page: 115
  ident: CR15
  article-title: An evidence-theory-based reliability analysis method for uncertain structures
  publication-title: Chin. J. Theor. Appl. Mech
– volume: 225–228
  start-page: 74
  year: 2012
  end-page: 94
  ident: CR12
  article-title: The encounter of interval and probabilistic approaches to structural reliability at the design point
  publication-title: Comput. Methods Appl. Mech. Eng
  doi: 10.1016/j.cma.2012.03.020
– volume: 23
  start-page: 115
  issue: 2
  year: 2010
  end-page: 123
  ident: CR4
  article-title: Modified scheme based on semi-analytic approach for computing non-probabilistic reliability index
  publication-title: Acta Mech. Solida Sin
  doi: 10.1016/S0894-9166(10)60013-4
– volume: 86
  start-page: 1341
  issue: 7
  year: 2016
  end-page: 1367
  ident: CR23
  article-title: Reliability-based design optimization under mixture of random, interval and convex uncertainties
  publication-title: Arch. Appl. Mech
  doi: 10.1007/s00419-016-1121-0
– volume: 254
  start-page: 83
  year: 2013
  end-page: 98
  ident: CR16
  article-title: Structural reliability analysis using non-probabilistic convex model
  publication-title: Comput. Methods Appl. Mech. Eng
  doi: 10.1016/j.cma.2012.10.020
– volume: 80
  start-page: 257
  issue: 3–4
  year: 2002
  end-page: 269
  ident: CR18
  article-title: A comparative study on reliability-index and target-performance-based probabilistic structural design optimization
  publication-title: Comput. Struct
  doi: 10.1016/S0045-7949(02)00006-8
– volume: 14
  start-page: 227
  issue: 4
  year: 1994
  end-page: 245
  ident: CR2
  article-title: A non-probabilistic concept of reliability
  publication-title: Struct. Saf
  doi: 10.1016/0167-4730(94)90013-2
– volume: 17
  start-page: 195
  issue: 3
  year: 1995
  end-page: 199
  ident: CR5
  article-title: Discussion on: a non-probabilistic concept of reliability
  publication-title: Struct. Saf
  doi: 10.1016/0167-4730(95)00010-2
– volume: 58
  start-page: 463
  issue: 3
  year: 2010
  end-page: 467
  ident: CR20
  article-title: Hybrid probabilistic fuzzy and non-probabilistic model of structural reliability
  publication-title: Comput. Ind. Eng
  doi: 10.1016/j.cie.2009.11.005
– volume: 33
  start-page: 325
  issue: 3
  year: 2012
  end-page: 330 (in Chinese)
  ident: CR8
  article-title: Safety evaluation of non-probabilistic reliability model of structures
  publication-title: Chin. J. Solid Mech
– volume: 225
  start-page: 413
  issue: 2
  year: 2014
  end-page: 430
  ident: CR22
  article-title: Hybrid reliability analysis of structures with multi-source uncertainties
  publication-title: Acta Mech
  doi: 10.1007/s00707-013-0969-0
– volume: 31
  start-page: 1362
  issue: 7
  year: 2007
  ident: 10.1016/j.camss.2017.11.003_bib0014
  article-title: A semi-analytic method for calculating non-probabilistic reliability index based on interval models
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.02.013
– volume: 30
  start-page: 192
  issue: 2
  year: 2013
  ident: 10.1016/j.camss.2017.11.003_bib0019
  article-title: The gradient projection method for non-probabilistic reliability index based on interval model
  publication-title: Chin. J. Comput. Mech.
– volume: 22
  start-page: 227
  issue: 2
  year: 2005
  ident: 10.1016/j.camss.2017.11.003_bib0011
  article-title: Procedures for computing the non-probabilistic reliability index of uncertain structures
  publication-title: Chin. J. Comput. Mech.
– volume: 225–228
  start-page: 74
  year: 2012
  ident: 10.1016/j.camss.2017.11.003_bib0012
  article-title: The encounter of interval and probabilistic approaches to structural reliability at the design point
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.03.020
– volume: 18
  start-page: 56
  issue: 1
  year: 2001
  ident: 10.1016/j.camss.2017.11.003_bib0010
  article-title: A non-probabilistic model of structural reliability based on interval analysis
  publication-title: Chin. J. Comput. Mech.
– volume: 86
  start-page: 1341
  issue: 7
  year: 2016
  ident: 10.1016/j.camss.2017.11.003_bib0023
  article-title: Reliability-based design optimization under mixture of random, interval and convex uncertainties
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-016-1121-0
– volume: 17
  start-page: 1142
  issue: 5
  year: 2010
  ident: 10.1016/j.camss.2017.11.003_bib0021
  article-title: The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2010.01.010
– volume: 17
  start-page: 91
  issue: 2
  year: 1995
  ident: 10.1016/j.camss.2017.11.003_bib0003
  article-title: A non-probabilistic measure of reliability of linear systems based on expansion of convex models
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(95)00004-N
– volume: 17
  start-page: 195
  issue: 3
  year: 1995
  ident: 10.1016/j.camss.2017.11.003_bib0005
  article-title: Discussion on: a non-probabilistic concept of reliability
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(95)00010-2
– volume: 45
  start-page: 103
  issue: 1
  year: 2013
  ident: 10.1016/j.camss.2017.11.003_bib0015
  article-title: An evidence-theory-based reliability analysis method for uncertain structures
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 225
  start-page: 413
  issue: 2
  year: 2014
  ident: 10.1016/j.camss.2017.11.003_bib0022
  article-title: Hybrid reliability analysis of structures with multi-source uncertainties
  publication-title: Acta Mech.
  doi: 10.1007/s00707-013-0969-0
– volume: 56
  start-page: 871
  issue: 6
  year: 1995
  ident: 10.1016/j.camss.2017.11.003_bib0006
  article-title: Essay on uncertainties in elastic and viscoelastic structures: from A. M. Freudenthal's criticisms to modern convex modeling
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(94)00499-S
– volume: 33
  start-page: 325
  issue: 3
  year: 2012
  ident: 10.1016/j.camss.2017.11.003_bib0008
  article-title: Safety evaluation of non-probabilistic reliability model of structures
  publication-title: Chin. J. Solid Mech.
– volume: 24
  start-page: 23
  issue: 7
  year: 2007
  ident: 10.1016/j.camss.2017.11.003_bib0013
  article-title: A one-dimensional optimization algorithm for non-probabilistic reliability index
  publication-title: Eng. Mech.
– volume: 80
  start-page: 257
  issue: 3–4
  year: 2002
  ident: 10.1016/j.camss.2017.11.003_bib0018
  article-title: A comparative study on reliability-index and target-performance-based probabilistic structural design optimization
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(02)00006-8
– volume: 58
  start-page: 463
  issue: 3
  year: 2010
  ident: 10.1016/j.camss.2017.11.003_bib0020
  article-title: Hybrid probabilistic fuzzy and non-probabilistic model of structural reliability
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2009.11.005
– volume: 121
  start-page: 44
  year: 2017
  ident: 10.1016/j.camss.2017.11.003_bib0024
  article-title: Reliability estimation of fatigue crack growth prediction via limited measured data
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.11.020
– volume: 254
  start-page: 83
  year: 2013
  ident: 10.1016/j.camss.2017.11.003_bib0016
  article-title: Structural reliability analysis using non-probabilistic convex model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.10.020
– volume: 23
  start-page: 115
  issue: 2
  year: 2010
  ident: 10.1016/j.camss.2017.11.003_bib0004
  article-title: Modified scheme based on semi-analytic approach for computing non-probabilistic reliability index
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1016/S0894-9166(10)60013-4
– volume: 225
  start-page: 383
  year: 2014
  ident: 10.1016/j.camss.2017.11.003_bib0017
  article-title: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model
  publication-title: Acta Mech.
  doi: 10.1007/s00707-013-0975-2
– volume: 20
  start-page: 107
  issue: 3
  year: 2003
  ident: 10.1016/j.camss.2017.11.003_bib0009
  article-title: Comparison between the non-probabilistic and probabilistic reliability methods for uncertain structure design
  publication-title: Chin. J. Appl. Mech.
– volume: 60
  start-page: 683
  issue: 3
  year: 1993
  ident: 10.1016/j.camss.2017.11.003_bib0001
  article-title: Convex models of uncertainty in radial pulse buckling of shells
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900858
– volume: 29
  start-page: 831
  issue: 6
  year: 2012
  ident: 10.1016/j.camss.2017.11.003_bib0007
  article-title: Optimal searching algorithm for non-probabilistic reliability
  publication-title: Chin. J. Comput. Mech.
– volume: 14
  start-page: 227
  issue: 4
  year: 1994
  ident: 10.1016/j.camss.2017.11.003_bib0002
  article-title: A non-probabilistic concept of reliability
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(94)90013-2
SSID ssj0020382
Score 2.1482866
Snippet The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of...
The aim of this paper is to propose a theoretical approach for performing the non-probabilistic reliability analysis of structure. Due to a great deal of...
SourceID crossref
springer
elsevier
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 638
SubjectTerms Classical Mechanics
Engineering
Interval model
Non-probabilistic
Probable failure point
Reliability
Surfaces and Interfaces
Theoretical analysis
Theoretical and Applied Mechanics
Thin Films
Title Theoretical analysis of non-probabilistic reliability based on interval model
URI http://lib.cqvip.com/qk/87045X/201706/674185072.html
https://dx.doi.org/10.1016/j.camss.2017.11.003
https://link.springer.com/article/10.1016/j.camss.2017.11.003
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIpSQB4YMbUTN47HqqIqTyFoJTbLdhxUVFqgZWDht-NzkvKQ6MAUJTon1p1931m5-w6ho1g0NU8ySXLDJOGOaSIlZ4RlTBoZucRSKBS-uk66fX5-37xfQO2qFgbSKkvfX_j04K3LJ41Sm43nwaBxR1PJfXDjITgGVkwo-OVcwCo_-ZileUQ0Dg2jQJiAdMU8FHK8rH6aAGc3EydA5Qmds5a91xk9vHjc-Aupfv0xDUDUWUdrZQSJW8UkN9CCG22i1W-8glvoqvdVnoh1STuCxzn2Z30CLWQCrS4wNONXNxwUVN3vGBAtw-MRHoRESD829MnZRv3Oaa_dJWXfBGK96qeEC8qFsMLkmjHJY-M8CEWGJsa52INinkcptZExsZBW55lIY8q5FDlLhc08vu-gRT8ft4uw9XtcZqkRadbkQmptrQ8pk5jlTUGl0zVUn-lLPRf8GCoJjDhURDUUVRpUtqQch84XQ1Xllj2qYAIFJvCHEWAqraHj2aDqjXPFk8o06sfCUR4T5g8klSFVuW8n8-T3_vuhOlqBuyIHZh8tTl_f3IGPZKbmMCzVQ7TUat9e3sD17KJ7_Qn6dvPE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3RcKAcUFtADdDWB46Y2LvOen1ECBQKyYUgcbNsrxcF0fAVDvx7xl5voEjkwHXXs2vN2PPG8swbgN1c9o0oKkVryxUVnhuqlOCUV1xZlfnCsVAoPBwVgwvx97J_uQSHbS1MSKtMvr_x6dFbpye9pM3e3WTSO2elEhjcIATngRWz_ALLgZ2q34Hlg5PTwWh-7mJ57BkVxtMg0JIPxTQvZ_49BtpuLvcDm2donrWCjmd6dY_Q8RFYvbs0jVh0_A3WUhBJDpp5foclP_0Bq2-oBddhOH6tUCQmMY-Q25rgcZ-GLjKRWTeQNJMHfzNp2LqfSQC1itxOySTmQqJsbJWzARfHR-PDAU2tE6hD7c-okExI6aStDedK5NYjDmWWFdb7HHGxrrOSuczaXCpn6kqWORNCyZqX0lUI8ZvQwfn4n0AcbnNVlVaWFWpXGeMcRpVFzuu-ZMqbLmzP9aXvGooMXURSHCazLmStBrVLrOOh-cWNbtPLrnU0gQ4mwPNIICvtwt5cqP3iwuFFaxr939rRCAuLBWlrSJ227uOi8Vuf_dEfWBmMh2f67GR0ug1fw5smJWYHOrOHJ_8LA5uZ_Z0W7guyL_Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+analysis+of+non-probabilistic+reliability+based+on+interval+model&rft.jtitle=Acta+mechanica+solida+Sinica&rft.au=Chen%2C+Xu-Yong&rft.au=Fan%2C+Jian-Ping&rft.au=Bian%2C+Xiao-Ya&rft.date=2017-12-01&rft.issn=0894-9166&rft.volume=30&rft.issue=6&rft.spage=638&rft.epage=646&rft_id=info:doi/10.1016%2Fj.camss.2017.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_camss_2017_11_003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87045X%2F87045X.jpg