Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning
In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many differ...
Saved in:
Published in | Nonlinearity Vol. 35; no. 1; pp. 278 - 310 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
06.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/ac337f |
Cover
Loading…
Abstract | In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future. |
---|---|
AbstractList | In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future. |
Author | E, Weinan Han, Jiequn Jentzen, Arnulf |
Author_xml | – sequence: 1 givenname: Weinan orcidid: 0000-0003-0272-9500 surname: E fullname: E, Weinan organization: Princeton University Program in Applied and Computational Mathematics, United States of America – sequence: 2 givenname: Jiequn orcidid: 0000-0002-3553-7313 surname: Han fullname: Han, Jiequn organization: Flatiron Institute Center for Computational Mathematics, United States of America – sequence: 3 givenname: Arnulf orcidid: 0000-0002-9840-3339 surname: Jentzen fullname: Jentzen, Arnulf organization: The Chinese University of Hong Kong, Shenzhen School of Data Science and Shenzhen Research Institute of Big Data, China |
BookMark | eNp9kM1LAzEQxYMo2FbvHnPw6Npks9lsvJVaP6CiB70JIU2Tbko2Kckq-N-bpeJB1NMM8-a9GX5jcOiD1wCcYXSJUdNMMalxUdOqmkpFCDMHYPQ9OgQjxCkuGMP0GIxT2iKEcVOSEXiduU2Itm-7BE2IMAX3bv0GtnbTwrXttE82eOng0_UiXUETQwfzZWe9lhE-BN9rOJfRBdgH2EnVZgG6rPmccgKOjHRJn37VCXi5WTzP74rl4-39fLYsFGG0LyqqtKmUYbWpEeOISs4aQjWuqJTVSjbE8FWJOTaSrxWhuSkbzlGt61oPkwmo97kqhpSiNkLZXvb58T5K6wRGYmAkBiBiACL2jLIR_TDuou1k_PjPcr632LAT2_AWM5wkMhJBqMCiZI3YrYe1i1_W_kz9BKdshuY |
CODEN | NONLE5 |
CitedBy_id | crossref_primary_10_1137_22M1520840 crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_1186_s13662_022_03702_y crossref_primary_10_1088_2632_2153_acfc33 crossref_primary_10_1016_j_fmre_2024_12_024 crossref_primary_10_1016_j_jco_2023_101746 crossref_primary_10_1109_TAC_2023_3344870 crossref_primary_10_1137_21M1402303 crossref_primary_10_1016_j_jcp_2024_113648 crossref_primary_10_1016_j_jcp_2024_113688 crossref_primary_10_1063_5_0140665 crossref_primary_10_1080_1350486X_2023_2210290 crossref_primary_10_1007_s10208_024_09649_8 crossref_primary_10_1007_s42521_023_00091_z crossref_primary_10_1287_stsy_2023_0044 crossref_primary_10_1007_s10208_021_09514_y crossref_primary_10_3390_jrfm15090388 crossref_primary_10_1002_mma_10465 crossref_primary_10_1007_s42967_024_00398_7 crossref_primary_10_1016_j_camwa_2023_11_005 crossref_primary_10_1007_s10614_023_10476_2 crossref_primary_10_1007_s10915_022_02044_x crossref_primary_10_1137_23M1562536 crossref_primary_10_1016_j_cma_2024_116997 crossref_primary_10_1088_1361_6420_ac6d03 crossref_primary_10_1088_1572_9494_accb8d crossref_primary_10_1016_j_jcp_2025_113791 crossref_primary_10_1007_s42985_023_00244_0 crossref_primary_10_1090_mcom_3971 crossref_primary_10_1109_TAC_2024_3396107 crossref_primary_10_3390_lubricants12020062 crossref_primary_10_1063_5_0198981 crossref_primary_10_1137_21M1402005 crossref_primary_10_1088_2632_2153_ad51cd crossref_primary_10_1103_PhysRevE_106_065303 crossref_primary_10_1016_j_jcp_2025_113905 crossref_primary_10_1214_23_PS18 crossref_primary_10_1016_j_camwa_2024_07_015 crossref_primary_10_1111_mafi_12335 crossref_primary_10_1515_jnma_2021_0111 crossref_primary_10_1109_JLT_2023_3304625 crossref_primary_10_1137_22M1529427 crossref_primary_10_1007_s42967_024_00423_9 crossref_primary_10_1109_TRO_2024_3411850 crossref_primary_10_1016_j_cnsns_2024_108556 crossref_primary_10_1016_j_padiff_2023_100499 crossref_primary_10_21105_joss_06766 crossref_primary_10_1007_s00521_023_09300_7 crossref_primary_10_1142_S0219876221420147 crossref_primary_10_1007_s10915_022_01994_6 crossref_primary_10_1111_mafi_12405 crossref_primary_10_1137_23M1601195 crossref_primary_10_7566_JPSJ_92_074006 crossref_primary_10_1137_21M1442838 |
Cites_doi | 10.1126/science.aag2302 10.1016/j.cpc.2020.107206 10.1214/13-aap932 10.1007/s40304-017-0117-6 10.1007/s004409970001 10.1103/physrevresearch.2.033429 10.1016/j.jcp.2019.07.048 10.1080/13504869500000005 10.1007/s42985-021-00102-x 10.1007/s11537-007-0657-8 10.1007/s00365-021-09549-y 10.1137/19m1288802 10.1007/s40306-015-0128-x 10.1137/19m1260141 10.1214/aoap/1035463324 10.4310/cms.2021.v19.n5.a1 10.1007/s10915-018-00903-0 10.1016/j.spa.2016.01.006 10.1038/s41557-020-0544-y 10.1186/s40687-016-0068-7 10.3934/jcd.2019009 10.1098/rspa.2019.0630 10.1137/1109059 10.3390/jrfm13070158 10.1515/mcma-2013-0001 10.1016/j.crma.2006.09.018 10.1017/s096249291500001x 10.1142/s0219530520500116 10.1137/19m125649x 10.1214/14-aap1030 10.1007/s40304-018-0127-z 10.1007/s00365-021-09541-6 10.1016/s0893-6080(03)00083-2 10.1137/16m106371x 10.1016/j.neucom.2018.06.056 10.1137/090765766 10.1111/mafi.12100 10.1103/physrevb.97.035116 10.1214/20-EJP423 10.2139/ssrn.3214596 10.1016/j.jcp.2019.109119 10.2139/ssrn.3071506 10.1016/j.jcp.2020.109409 10.3150/bj/1072215199 10.1214/aoap/1075828058 10.1007/s00332-018-9525-3 10.1016/j.spa.2007.03.005 10.1109/mis.2020.2971597 10.1016/j.jcp.2019.108929 10.1090/mcom/3013 10.1016/j.crma.2006.09.019 10.4208/cicp.oa-2020-0130 10.1515/mcma-2018-2020 10.1515/jnma-2019-0074 10.1109/72.712178 10.1016/j.spa.2004.01.001 10.3150/14-bej667 10.1073/pnas.1718942115 10.1002/cpa.3160280302 10.1137/17m1157015 10.1007/s10915-019-00908-3 10.1111/j.1469-1809.1937.tb02153.x 10.1007/s40687-018-0172-y 10.1016/j.jcp.2020.109339 10.1007/s10690-019-09271-7 10.1007/s11425-020-1773-8 10.1051/m2an/2010054 10.1214/17-aihp880 10.1186/s41546-016-0007-y 10.2139/ssrn.3594076 10.1006/jcom.1999.0508 10.1007/s42985-019-0006-9 10.1007/s42985-020-00062-8 10.1287/opre.2015.1425 10.1073/pnas.1922204117 10.1016/j.spa.2010.03.015 10.1090/mcom/3514 10.1017/s0956792520000182 10.1017/s0956792521000139 10.1007/s40304-017-0103-z 10.1007/s10208-021-09514-y 10.1093/imanum/drab027 10.1137/18m1222399 10.2139/ssrn.1995503 10.1051/m2an:2004005 10.1016/j.jcp.2020.109792 10.1142/s0219493721500489 10.1142/s0219024913500064 10.1016/0021-9991(90)90007-n 10.1016/j.jcp.2018.10.045 10.1215/kjm/1250524667 10.1051/cocv/2020018 10.1007/s40687-018-0160-2 10.1287/opre.1070.0496 10.1111/j.1540-6261.1985.tb02383.x 10.1103/physrevlett.122.226401 10.1364/oe.384875 10.1214/13-aap943 10.4310/cis.2006.v6.n3.a5 10.1016/j.jcp.2018.08.029 10.1007/s42985-021-00089-5 10.1017/s0956792521000073 10.1137/090755060 10.1137/19m1274377 10.1006/jcom.1998.0471 10.1098/rspa.1929.0094 10.1093/rfs/8.2.475 10.1109/tac.2007.904450 10.1214/105051605000000674 10.1016/j.spa.2013.10.005 10.1214/105051605000000412 10.21314/jcf.2011.233 10.1186/s41546-020-00047-w 10.1073/pnas.2024713118 10.1016/j.physd.2021.132955 10.1214/10-aap723 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2021 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/ac337f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1361-6544 |
EndPage | 310 |
ExternalDocumentID | 10_1088_1361_6544_ac337f nonac337f |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: EXC 2044-390685587 funderid: https://doi.org/10.13039/501100001659 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c375t-45cef4cf76f607905a97835e145aa4ba83f9b2191fa9dc3591f289906e66e9dc3 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Thu Apr 24 22:54:16 EDT 2025 Tue Jul 01 02:47:33 EDT 2025 Wed Aug 21 03:34:58 EDT 2024 Wed Jun 07 11:19:00 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-45cef4cf76f607905a97835e145aa4ba83f9b2191fa9dc3591f289906e66e9dc3 |
Notes | NON-105297.R1 London Mathematical Society |
ORCID | 0000-0002-3553-7313 0000-0003-0272-9500 0000-0002-9840-3339 |
PageCount | 33 |
ParticipantIDs | iop_journals_10_1088_1361_6544_ac337f crossref_primary_10_1088_1361_6544_ac337f crossref_citationtrail_10_1088_1361_6544_ac337f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-06 |
PublicationDateYYYYMMDD | 2022-01-06 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Pfau (nonac337fbib137) 2020; 2 Heinrich (nonac337fbib85) 1998; 14 Khoo (nonac337fbib112) 2019; 41 Strang (nonac337fbib150) 1973 Heinrich (nonac337fbib86) 2001 Karatzas (nonac337fbib109) 1998 Arjovsky (nonac337fbib2) 2017; vol 70 Henry-Labordère (nonac337fbib88) 2012 Han (nonac337fbib80) 2020 Watanabe (nonac337fbib158) 1965; 4 Fan (nonac337fbib55) 2019 Hutzenthaler (nonac337fbib102) 2020; 58 Beck (nonac337fbib5) 2019 Giles (nonac337fbib61) 2008; 56 Lasry (nonac337fbib120) 2007; 2 Gobet (nonac337fbib65) 2010; 48 Gobet (nonac337fbib68) 2016; 38 Duffie (nonac337fbib43) 1996; 6 Kang (nonac337fbib108) 2021; 425 Carleo (nonac337fbib26) 2017; 355 Lye (nonac337fbib127) 2020; 410 Ji (nonac337fbib105) 2020; 35 Ruszczyński (nonac337fbib146) 2020; 26 Li (nonac337fbib124) 2020 Giles (nonac337fbib62) 2015; 24 Han (nonac337fbib82) 2020; 5 Nakamura-Zimmerer (nonac337fbib132) 2021; 43 Hutzenthaler (nonac337fbib100) 2020; 476 Jentzen (nonac337fbib104) 2021; 19 Grohs (nonac337fbib75) 2019 Geiss (nonac337fbib60) 2016; 126 Farahmand (nonac337fbib57) 2017 Lee (nonac337fbib121) 1990; 91 Beck (nonac337fbib6) 2019; 29 Luo (nonac337fbib126) 2019; 122 E (nonac337fbib47) 2016; 2 Khoo (nonac337fbib110) 2019; 6 Kutyniok (nonac337fbib115) 2021 Zhang (nonac337fbib163) 2004; 14 Ruthotto (nonac337fbib147) 2020; 117 Skorokhod (nonac337fbib149) 1964; 9 Warin (nonac337fbib156) 2018 E (nonac337fbib50) 2021 Huang (nonac337fbib95) 2006; 6 Rao (nonac337fbib143) 2009; vol 135 Han (nonac337fbib84) 2019; 399 Lagaris (nonac337fbib117) 1998; 9 Lin (nonac337fbib125) 2021; 118 Crépey (nonac337fbib34) 2013; 16 Han (nonac337fbib81) 2018; 115 Hutzenthaler (nonac337fbib101) 2019; 25 Zhang (nonac337fbib165) 2020; 253 Chen (nonac337fbib33) 2020; 28 E (nonac337fbib49) 2020; 63 Fujii (nonac337fbib59) 2019; 26 Hutzenthaler (nonac337fbib99) 2020; 1 Fahim (nonac337fbib54) 2011; 21 Beck (nonac337fbib7) 2020 Chan-Wai-Nam (nonac337fbib30) 2019; 79 Bellman (nonac337fbib14) 1957 Pardoux (nonac337fbib136) 1999; 114 Jianyu (nonac337fbib107) 2003; 16 Crisan (nonac337fbib36) 2012; 3 Heinrich (nonac337fbib87) 1999; 15 Henry-Labordère (nonac337fbib91) 2019; 55 Khoo (nonac337fbib111) 2020 Warin (nonac337fbib155) 2017 Huré (nonac337fbib96) 2020; 89 Darbon (nonac337fbib39) 2016; 3 Pham (nonac337fbib138) 2015; 40 Crisan (nonac337fbib35) 2010; 44 Reisinger (nonac337fbib144) 2020; 18 Celledoni (nonac337fbib29) 2020; 32 Lasry (nonac337fbib119) 2006; 10 Guyon (nonac337fbib77) 2011; 14 E (nonac337fbib46) 2019; 6 Von Petersdorff (nonac337fbib153) 2004; 38 Jacquier (nonac337fbib103) 2019 Lasry (nonac337fbib118) 2006; 9 Crisan (nonac337fbib38) 2010; 120 Kingma (nonac337fbib113) 2015 E (nonac337fbib48) 2019; 79 Bally (nonac337fbib4) 2003; 9 Carmona (nonac337fbib28) 2021; 59 Becker (nonac337fbib13) 2021; 32 Cai (nonac337fbib25) 2018; 97 Uchiyama (nonac337fbib152) 1993 Gonon (nonac337fbib71) 2021 Sirignano (nonac337fbib148) 2018; 375 Chang (nonac337fbib31) 2016; 1 Beck (nonac337fbib8) 2020; 28 Han (nonac337fbib83) 2020; 423 Bressan (nonac337fbib23) 2007; vol 1 Gobet (nonac337fbib69) 2016; 85 Labart (nonac337fbib116) 2013; 19 Delarue (nonac337fbib40) 2006; 16 Grohs (nonac337fbib74) 2018 Massaroli (nonac337fbib129) 2019 Crisan (nonac337fbib37) 2014; 24 Fan (nonac337fbib56) 2020; 404 E (nonac337fbib51) 2018; 6 Guo (nonac337fbib76) 2015; 25 Dirac (nonac337fbib41) 1929; 123 Bergman (nonac337fbib19) 1995; 8 Fisher (nonac337fbib58) 1937; 7 Hutzenthaler (nonac337fbib98) 2020 Zhang (nonac337fbib161) 2020; 42 Han (nonac337fbib79) 2020; vol 107 Gobet (nonac337fbib67) 2005; 15 Goodfellow (nonac337fbib72) 2014 Li (nonac337fbib123) 2018; 18 Beck (nonac337fbib9) 2021 Hornung (nonac337fbib93) 2020 Giles (nonac337fbib63) 2019 Xuan (nonac337fbib159) 2021 Henry-Labordère (nonac337fbib89) 2017 Zhang (nonac337fbib164) 2020 E (nonac337fbib45) 2017; 5 Pardoux (nonac337fbib135) 1991 Becker (nonac337fbib11) 2019; 20 Bender (nonac337fbib16) 2017; 27 McKean (nonac337fbib130) 1975; 28 Zang (nonac337fbib160) 2020; 411 E (nonac337fbib44) 2017; 5 Raissi (nonac337fbib141) 2018 Henry-Labordère (nonac337fbib90) 2014; 124 Becker (nonac337fbib10) 2020; 28 Hutzenthaler (nonac337fbib97) 2021 Gobet (nonac337fbib70) 2016; 22 Bender (nonac337fbib15) 2007; 117 Wang (nonac337fbib154) 2018 Han (nonac337fbib78) 2016 Gobet (nonac337fbib66) 2008 Sutton (nonac337fbib151) 2018 Raissi (nonac337fbib140) 2018; 19 Zhang (nonac337fbib162) 2019; 397 Bouchard (nonac337fbib22) 2004; 111 Leland (nonac337fbib122) 1985; 40 Dockhorn (nonac337fbib42) 2019 Nüsken (nonac337fbib133) 2021; 2 Arjovsky (nonac337fbib1) 2017 Becker (nonac337fbib12) 2020; 13 Briand (nonac337fbib24) 2014; 24 Magill (nonac337fbib128) 2018 Carmona (nonac337fbib27) 2019 Goudenège (nonac337fbib73) 2019 Pham (nonac337fbib139) 2021; 2 Berner (nonac337fbib20) 2020; 2 Avellaneda (nonac337fbib3) 1995; 2 Billaud-Friess (nonac337fbib21) 2018 Jiang (nonac337fbib106) 2015; 63 Chen (nonac337fbib32) 2018 Benning (nonac337fbib17) 2019; 6 Hermann (nonac337fbib92) 2020; 12 Ruiz-Balet (nonac337fbib145) 2021 Warin (nonac337fbib157) 2018; 24 Huang (nonac337fbib94) 2007; 52 Raissi (nonac337fbib142) 2019; 378 Kolmogorov (nonac337fbib114) 1937; 1 Müller (nonac337fbib131) 2019 Elbrächter (nonac337fbib52) 2021 Evans (nonac337fbib53) 2010; vol 19 Gnoatto (nonac337fbib64) 2020 Berg (nonac337fbib18) 2018; 317 Oksendal (nonac337fbib134) 2013 |
References_xml | – volume: 355 start-page: 602 year: 2017 ident: nonac337fbib26 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science doi: 10.1126/science.aag2302 – volume: 253 year: 2020 ident: nonac337fbib165 article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107206 – volume: 24 start-page: 652 year: 2014 ident: nonac337fbib37 article-title: Second order discretisation of backward SDEs and simulation with the cubature method publication-title: Ann. Appl. Probab. doi: 10.1214/13-aap932 – volume: 5 start-page: 349 year: 2017 ident: nonac337fbib45 article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0117-6 – volume: 114 start-page: 123 year: 1999 ident: nonac337fbib136 article-title: Forward-backward stochastic differential equations and quasilinear parabolic PDEs publication-title: Probab. Theory Relat. Fields doi: 10.1007/s004409970001 – volume: 2 year: 2020 ident: nonac337fbib137 article-title: Ab initio solution of the many-electron Schrödinger equation with deep neural networks publication-title: Phys. Rev. Res. doi: 10.1103/physrevresearch.2.033429 – year: 2018 ident: nonac337fbib74 article-title: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations publication-title: Mem. Am. Math. Soc. – volume: 397 year: 2019 ident: nonac337fbib162 article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.048 – volume: 2 start-page: 73 year: 1995 ident: nonac337fbib3 article-title: Pricing and hedging derivative securities in markets with uncertain volatilities publication-title: Appl. Math. Finance doi: 10.1080/13504869500000005 – volume: 2 start-page: 1 year: 2021 ident: nonac337fbib133 article-title: Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space publication-title: Partial Differ. Equ. Appl. doi: 10.1007/s42985-021-00102-x – year: 2020 ident: nonac337fbib80 article-title: Convergence of deep fictitious play for stochastic differential games – year: 2015 ident: nonac337fbib113 article-title: Adam: a method for stochastic optimisation – volume: 2 start-page: 229 year: 2007 ident: nonac337fbib120 article-title: Mean field games publication-title: Japanese J. Math. doi: 10.1007/s11537-007-0657-8 – start-page: 1 year: 2021 ident: nonac337fbib50 article-title: The Barron space and the flow-induced function spaces for neural network models publication-title: Constr. Approx. doi: 10.1007/s00365-021-09549-y – volume: 43 start-page: A1221 year: 2021 ident: nonac337fbib132 article-title: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/19m1288802 – volume: 40 start-page: 255 year: 2015 ident: nonac337fbib138 article-title: Feynman–Kac representation of fully nonlinear PDEs and applications publication-title: Acta Math. Vietnamica doi: 10.1007/s40306-015-0128-x – volume: 42 start-page: A639 year: 2020 ident: nonac337fbib161 article-title: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks publication-title: SIAM J. Sci. Comput. doi: 10.1137/19m1260141 – volume: 6 start-page: 1075 year: 1996 ident: nonac337fbib43 article-title: Recursive valuation of defaultable securities and the timing of resolution of uncertainty publication-title: Ann. Appl. Probab. doi: 10.1214/aoap/1035463324 – volume: 19 start-page: 1167 year: 2021 ident: nonac337fbib104 article-title: A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients publication-title: Commun. Math. Sci. doi: 10.4310/cms.2021.v19.n5.a1 – volume: 79 start-page: 1534 year: 2019 ident: nonac337fbib48 article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-00903-0 – start-page: 2672 year: 2014 ident: nonac337fbib72 article-title: Generative adversarial nets – volume: 126 start-page: 2123 year: 2016 ident: nonac337fbib60 article-title: Simulation of BSDEs with jumps by Wiener chaos expansion publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2016.01.006 – volume: 12 start-page: 891 year: 2020 ident: nonac337fbib92 article-title: Deep-neural-network solution of the electronic Schrödinger equation publication-title: Nat. Chem. doi: 10.1038/s41557-020-0544-y – volume: 3 start-page: 19 year: 2016 ident: nonac337fbib39 article-title: Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere publication-title: Res. Math. Sci. doi: 10.1186/s40687-016-0068-7 – volume: 6 start-page: 171 year: 2019 ident: nonac337fbib17 article-title: Deep learning as optimal control problems: models and numerical methods publication-title: J. Comput. Dyn. doi: 10.3934/jcd.2019009 – volume: 476 start-page: 20190630 year: 2020 ident: nonac337fbib100 article-title: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2019.0630 – volume: 9 start-page: 445 year: 1964 ident: nonac337fbib149 article-title: Branching diffusion processes publication-title: Theory Probab. Appl. doi: 10.1137/1109059 – volume: 13 start-page: 158 year: 2020 ident: nonac337fbib12 article-title: Pricing and hedging American-style options with deep learning publication-title: J. Risk Financ. Manag. doi: 10.3390/jrfm13070158 – volume: 19 start-page: 11 year: 2013 ident: nonac337fbib116 article-title: A parallel algorithm for solving BSDEs publication-title: Monte Carlo Methods Appl. doi: 10.1515/mcma-2013-0001 – volume: 10 start-page: 679 year: 2006 ident: nonac337fbib119 article-title: Jeux à champ moyen: II. Horizon fini et contrôle optimal publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2006.09.018 – volume: vol 107 start-page: 221 year: 2020 ident: nonac337fbib79 article-title: Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games – volume: 24 start-page: 259 year: 2015 ident: nonac337fbib62 article-title: Multilevel Monte Carlo methods publication-title: Acta Numer. doi: 10.1017/s096249291500001x – volume: 18 start-page: 951 year: 2020 ident: nonac337fbib144 article-title: Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems publication-title: Anal. Appl. doi: 10.1142/s0219530520500116 – start-page: 6572 year: 2018 ident: nonac337fbib32 article-title: Neural ordinary differential equations – volume: 2 start-page: 631 year: 2020 ident: nonac337fbib20 article-title: Analysis of the generalisation error: empirical risk minimisation over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations publication-title: SIAM J. Math. Data Sci. doi: 10.1137/19m125649x – volume: 25 start-page: 1540 year: 2015 ident: nonac337fbib76 article-title: A monotone scheme for high-dimensional fully nonlinear PDEs publication-title: Ann. Appl. Probab. doi: 10.1214/14-aap1030 – year: 2018 ident: nonac337fbib156 article-title: Monte Carlo for high-dimensional degenerated semi linear and full non linear PDEs – volume: 6 start-page: 1 year: 2018 ident: nonac337fbib51 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – start-page: 1 year: 2021 ident: nonac337fbib52 article-title: DNN expression rate analysis of high-dimensional PDEs: application to option pricing publication-title: Constr. Approx. doi: 10.1007/s00365-021-09541-6 – volume: 16 start-page: 729 year: 2003 ident: nonac337fbib107 article-title: Numerical solution of elliptic partial differential equation using radial basis function neural networks publication-title: Neural Netw. doi: 10.1016/s0893-6080(03)00083-2 – year: 2019 ident: nonac337fbib42 article-title: A discussion on solving partial differential equations using neural networks – volume: 38 start-page: C652 year: 2016 ident: nonac337fbib68 article-title: Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelisation on GPUs publication-title: SIAM J. Sci. Comput. doi: 10.1137/16m106371x – year: 2017 ident: nonac337fbib1 article-title: Towards principled methods for training generative adversarial networks – year: 2020 ident: nonac337fbib7 article-title: Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations – year: 2019 ident: nonac337fbib103 article-title: Deep curve-dependent PDEs for affine rough volatility – volume: 317 start-page: 28 year: 2018 ident: nonac337fbib18 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – year: 2021 ident: nonac337fbib145 article-title: Neural ODE control for classification, approximation and transport – start-page: 4071 year: 2018 ident: nonac337fbib128 article-title: Neural networks trained to solve differential equations learn general representations – volume: 3 start-page: 534 year: 2012 ident: nonac337fbib36 article-title: Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing publication-title: SIAM J. Finan. Math. doi: 10.1137/090765766 – volume: 27 start-page: 866 year: 2017 ident: nonac337fbib16 article-title: A primal-dual algorithm for Bsdes publication-title: Math. Finance doi: 10.1111/mafi.12100 – volume: 97 year: 2018 ident: nonac337fbib25 article-title: Approximating quantum many-body wave functions using artificial neural networks publication-title: Phys. Rev. B doi: 10.1103/physrevb.97.035116 – volume: 25 start-page: 1 year: 2019 ident: nonac337fbib101 article-title: Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks publication-title: Electron. J. Probab. doi: 10.1214/20-EJP423 – year: 2018 ident: nonac337fbib154 article-title: Deep learning-based BSDE solver for LIBOR market model with application to Bermudan swaption pricing and hedging doi: 10.2139/ssrn.3214596 – year: 2017 ident: nonac337fbib155 article-title: Variations on branching methods for non linear PDEs – volume: 404 year: 2020 ident: nonac337fbib56 article-title: Solving electrical impedance tomography with deep learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109119 – year: 2017 ident: nonac337fbib89 article-title: Deep primal-dual algorithm for BSDEs: applications of machine learning to CVA and IM publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3071506 – start-page: 200 year: 1991 ident: nonac337fbib135 article-title: Backward stochastic differential equations and quasilinear parabolic partial differential equations – start-page: 125 year: 2018 ident: nonac337fbib21 article-title: Stochastic methods for solving high-dimensional partial differential equations – year: 2016 ident: nonac337fbib78 article-title: Deep learning approximation for stochastic control problems – volume: 411 year: 2020 ident: nonac337fbib160 article-title: Weak adversarial networks for high-dimensional partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109409 – volume: 9 start-page: 1003 year: 2003 ident: nonac337fbib4 article-title: A quantisation algorithm for solving multidimensional discrete-time optimal stopping problems publication-title: Bernoulli doi: 10.3150/bj/1072215199 – year: 2019 ident: nonac337fbib131 article-title: Deep Ritz revisited – start-page: 58 year: 2001 ident: nonac337fbib86 article-title: Multilevel Monte Carlo methods – volume: 14 start-page: 459 year: 2004 ident: nonac337fbib163 article-title: Numerical scheme for BSDEs publication-title: Ann. Appl. Probab. doi: 10.1214/aoap/1075828058 – year: 2019 ident: nonac337fbib5 article-title: Deep splitting method for parabolic PDEs – volume: 29 start-page: 1563 year: 2019 ident: nonac337fbib6 article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-018-9525-3 – start-page: 6799 year: 2019 ident: nonac337fbib129 article-title: Port–Hamiltonian approach to neural network training – year: 1973 ident: nonac337fbib150 – volume: 117 start-page: 1793 year: 2007 ident: nonac337fbib15 article-title: A forward scheme for backward SDEs publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2007.03.005 – volume: 35 start-page: 71 year: 2020 ident: nonac337fbib105 article-title: Three algorithms for solving high-dimensional fully-coupled FBSDEs through deep learning publication-title: IEEE Intell. Syst. doi: 10.1109/mis.2020.2971597 – volume: 399 year: 2019 ident: nonac337fbib84 article-title: Solving many-electron Schrödinger equation using deep neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108929 – volume: 19 start-page: 932 year: 2018 ident: nonac337fbib140 article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations publication-title: J. Mach. Learn. Res. – volume: 85 start-page: 1359 year: 2016 ident: nonac337fbib69 article-title: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions publication-title: Math. Comput. doi: 10.1090/mcom/3013 – volume: 9 start-page: 619 year: 2006 ident: nonac337fbib118 article-title: Jeux à champ moyen. I: Le cas stationnaire publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2006.09.019 – volume: 28 start-page: 2109 year: 2020 ident: nonac337fbib10 article-title: Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.oa-2020-0130 – year: 2020 ident: nonac337fbib93 article-title: Space–time deep neural network approximations for high-dimensional partial differential equations – volume: 24 start-page: 225 year: 2018 ident: nonac337fbib157 article-title: Nesting Monte Carlo for high-dimensional non-linear PDEs publication-title: Monte Carlo Methods Appl. doi: 10.1515/mcma-2018-2020 – year: 2019 ident: nonac337fbib75 article-title: Deep neural network approximations for Monte Carlo algorithms publication-title: Partial. Differ. Equ. Appl. – volume: 28 start-page: 197 year: 2020 ident: nonac337fbib8 article-title: Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations publication-title: J. Numer. Math. doi: 10.1515/jnma-2019-0074 – volume: 9 start-page: 987 year: 1998 ident: nonac337fbib117 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 111 start-page: 175 year: 2004 ident: nonac337fbib22 article-title: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2004.01.001 – volume: 22 start-page: 530 year: 2016 ident: nonac337fbib70 article-title: Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression publication-title: Bernoulli doi: 10.3150/14-bej667 – volume: 115 start-page: 8505 year: 2018 ident: nonac337fbib81 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1718942115 – year: 2020 ident: nonac337fbib124 article-title: Neural operator: graph kernel network for partial differential equations – volume: 28 start-page: 323 year: 1975 ident: nonac337fbib130 article-title: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160280302 – volume: 20 start-page: 1 year: 2019 ident: nonac337fbib11 article-title: Deep optimal stopping publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 929 year: 2020 ident: nonac337fbib102 article-title: Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities publication-title: SIAM J. Numer. Anal. doi: 10.1137/17m1157015 – start-page: 3120 year: 2017 ident: nonac337fbib57 article-title: Deep reinforcement learning for partial differential equation control – volume: 79 start-page: 1667 year: 2019 ident: nonac337fbib30 article-title: Machine learning for semi linear PDEs publication-title: J. Sci. Comput. doi: 10.1007/s10915-019-00908-3 – volume: 7 start-page: 355 year: 1937 ident: nonac337fbib58 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugenics doi: 10.1111/j.1469-1809.1937.tb02153.x – volume: 6 start-page: 1 year: 2019 ident: nonac337fbib46 article-title: A mean-field optimal control formulation of deep learning publication-title: Res. Math. Sci. doi: 10.1007/s40687-018-0172-y – volume: 410 year: 2020 ident: nonac337fbib127 article-title: Deep learning observables in computational fluid dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109339 – volume: 26 start-page: 391 year: 2019 ident: nonac337fbib59 article-title: Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs publication-title: Asia-Pacific Financ. Markets doi: 10.1007/s10690-019-09271-7 – volume: vol 70 start-page: 214 year: 2017 ident: nonac337fbib2 article-title: Wasserstein generative adversarial networks – year: 2021 ident: nonac337fbib159 article-title: Optimal policies for a pandemic: a stochastic game approach and a deep learning algorithm – year: 2019 ident: nonac337fbib63 article-title: Generalised multilevel Picard approximations – start-page: 99 year: 1993 ident: nonac337fbib152 article-title: Solving inverse problems in nonlinear PDEs by recurrent neural networks – volume: 63 start-page: 2233 year: 2020 ident: nonac337fbib49 article-title: Machine learning from a continuous viewpoint: I publication-title: Sci. China Math. doi: 10.1007/s11425-020-1773-8 – volume: 44 start-page: 1107 year: 2010 ident: nonac337fbib35 article-title: Probabilistic methods for semilinear partial differential equations. Applications to finance publication-title: ESAIM: Math. Modelling Numer. Anal. doi: 10.1051/m2an/2010054 – volume: 55 start-page: 184 year: 2019 ident: nonac337fbib91 article-title: Branching diffusion representation of semilinear PDEs and Monte Carlo approximation publication-title: Ann. Inst. Henri Poincare doi: 10.1214/17-aihp880 – volume: 1 start-page: 1 year: 2016 ident: nonac337fbib31 article-title: A branching particle system approximation for a class of FBSDEs publication-title: Probab. Uncertain. Quantitat. Risk doi: 10.1186/s41546-016-0007-y – year: 2020 ident: nonac337fbib64 article-title: Deep xVA solver–a neural network based counterparty credit risk management framework doi: 10.2139/ssrn.3594076 – volume: 15 start-page: 317 year: 1999 ident: nonac337fbib87 article-title: Monte Carlo complexity of parametric integration publication-title: J. Complexity doi: 10.1006/jcom.1999.0508 – year: 1957 ident: nonac337fbib14 – volume: 1 start-page: 1 year: 2020 ident: nonac337fbib99 article-title: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations publication-title: SN Partial Differ. Equ. Appl. doi: 10.1007/s42985-019-0006-9 – volume: 2 start-page: 1 year: 2021 ident: nonac337fbib139 article-title: Neural networks-based backward scheme for fully nonlinear PDEs publication-title: SN Partial Differ. Equ. Appl. doi: 10.1007/s42985-020-00062-8 – volume: 63 start-page: 1489 year: 2015 ident: nonac337fbib106 article-title: An approximate dynamic programming algorithm for monotone value functions publication-title: Oper. Res. doi: 10.1287/opre.2015.1425 – volume: 117 start-page: 9183 year: 2020 ident: nonac337fbib147 article-title: A machine learning framework for solving high-dimensional mean field game and mean field control problems publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1922204117 – volume: 120 start-page: 1133 year: 2010 ident: nonac337fbib38 article-title: On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2010.03.015 – volume: 89 start-page: 1547 year: 2020 ident: nonac337fbib96 article-title: Deep backward schemes for high-dimensional nonlinear PDEs publication-title: Math. Comput. doi: 10.1090/mcom/3514 – start-page: 1 year: 2020 ident: nonac337fbib111 article-title: Solving parametric PDE problems with artificial neural networks publication-title: Eur. J. Appl. Math. doi: 10.1017/s0956792520000182 – volume: 32 start-page: 888 year: 2020 ident: nonac337fbib29 article-title: Structure-preserving deep learning publication-title: Eur. J. Appl. Math. doi: 10.1017/s0956792521000139 – volume: 5 start-page: 1 year: 2017 ident: nonac337fbib44 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0103-z – start-page: 1 year: 2021 ident: nonac337fbib97 article-title: Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities publication-title: Found. Comput. Math. doi: 10.1007/s10208-021-09514-y – year: 2021 ident: nonac337fbib71 article-title: Uniform error estimates for artificial neural network approximations for heat equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drab027 – volume: 41 start-page: A3182 year: 2019 ident: nonac337fbib112 article-title: SwitchNet: a neural network model for forward and inverse scattering problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/18m1222399 – year: 2012 ident: nonac337fbib88 article-title: Counterparty risk valuation: a marked branching diffusion approach doi: 10.2139/ssrn.1995503 – volume: 38 start-page: 93 year: 2004 ident: nonac337fbib153 article-title: Numerical solution of parabolic equations in high dimensions publication-title: ESAIM: Math. Modelling Numer. Anal. doi: 10.1051/m2an:2004005 – volume: vol 19 year: 2010 ident: nonac337fbib53 – year: 2013 ident: nonac337fbib134 – volume: vol 1 year: 2007 ident: nonac337fbib23 – volume: 423 year: 2020 ident: nonac337fbib83 article-title: Solving high-dimensional eigenvalue problems using deep neural networks: a diffusion Monte Carlo like approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109792 – start-page: 2150048 year: 2021 ident: nonac337fbib9 article-title: On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations publication-title: Stoch. Dyn. doi: 10.1142/s0219493721500489 – volume: 16 start-page: 1350006 year: 2013 ident: nonac337fbib34 article-title: Counterparty risk and funding: the four wings of the TVA publication-title: Int. J. Theor. Appl. Finan. doi: 10.1142/s0219024913500064 – volume: 91 start-page: 110 year: 1990 ident: nonac337fbib121 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90007-n – volume: 378 start-page: 686 year: 2019 ident: nonac337fbib142 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 4 start-page: 385 year: 1965 ident: nonac337fbib158 article-title: On the branching process for Brownian particles with an absorbing boundary publication-title: J. Math. Kyoto Univ. doi: 10.1215/kjm/1250524667 – volume: 26 start-page: 96 year: 2020 ident: nonac337fbib146 article-title: A dual method for evaluation of dynamic risk in diffusion processes publication-title: ESAIM: Control Optim. Calculus Variations doi: 10.1051/cocv/2020018 – volume: 18 start-page: 1 year: 2018 ident: nonac337fbib123 article-title: Maximum principle based algorithms for deep learning publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 1 year: 2019 ident: nonac337fbib110 article-title: Solving for high-dimensional committor functions using artificial neural networks publication-title: Res. Math. Sci. doi: 10.1007/s40687-018-0160-2 – volume: 56 start-page: 607 year: 2008 ident: nonac337fbib61 article-title: Multilevel Monte Carlo path simulation publication-title: Oper. Res. doi: 10.1287/opre.1070.0496 – year: 2018 ident: nonac337fbib151 – volume: 40 start-page: 1283 year: 1985 ident: nonac337fbib122 article-title: Option pricing and replication with transactions costs publication-title: J. Finance doi: 10.1111/j.1540-6261.1985.tb02383.x – volume: 122 year: 2019 ident: nonac337fbib126 article-title: Backflow transformations via neural networks for quantum many-body wave functions publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.122.226401 – volume: 28 start-page: 11618 year: 2020 ident: nonac337fbib33 article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials publication-title: Opt. Express doi: 10.1364/oe.384875 – volume: 24 start-page: 1129 year: 2014 ident: nonac337fbib24 article-title: Simulation of BSDEs by Wiener chaos expansion publication-title: Ann. Appl. Probab. doi: 10.1214/13-aap943 – volume: 6 start-page: 221 year: 2006 ident: nonac337fbib95 article-title: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle publication-title: Commun. Inf. Syst. doi: 10.4310/cis.2006.v6.n3.a5 – volume: 375 start-page: 1339 year: 2018 ident: nonac337fbib148 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume: 2 start-page: 80 year: 2016 ident: nonac337fbib47 article-title: Multilevel Picard iterations for solving smooth semilinear parabolic heat equations publication-title: Partial. Differ. Equ. Appl. doi: 10.1007/s42985-021-00089-5 – year: 1998 ident: nonac337fbib109 – volume: 32 start-page: 470 year: 2021 ident: nonac337fbib13 article-title: Solving high-dimensional optimal stopping problems using deep learning publication-title: Eur. J. Appl. Math. doi: 10.1017/s0956792521000073 – year: 2008 ident: nonac337fbib66 article-title: Numerical simulation of BSDEs using empirical regression methods: theory and practice – year: 2019 ident: nonac337fbib73 article-title: Variance reduction applied to machine learning for pricing Bermudan/American options in high dimension – volume: 1 start-page: 1 year: 1937 ident: nonac337fbib114 article-title: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem publication-title: Moscow Univ. Bull. Math. – volume: 48 start-page: 257 year: 2010 ident: nonac337fbib65 article-title: Solving BSDE with adaptive control variate publication-title: SIAM J. Numer. Anal. doi: 10.1137/090755060 – start-page: 1 year: 2021 ident: nonac337fbib115 article-title: A theoretical analysis of deep neural networks and parametric PDEs publication-title: Constr. Approx. – volume: 59 start-page: 1455 year: 2021 ident: nonac337fbib28 article-title: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case publication-title: SIAM J. Numer. Anal. doi: 10.1137/19m1274377 – volume: 14 start-page: 151 year: 1998 ident: nonac337fbib85 article-title: Monte Carlo complexity of global solution of integral equations publication-title: J. Complexity doi: 10.1006/jcom.1998.0471 – volume: 123 start-page: 714 year: 1929 ident: nonac337fbib41 article-title: Quantum mechanics of many-electron systems publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1929.0094 – volume: 8 start-page: 475 year: 1995 ident: nonac337fbib19 article-title: Option pricing with differential interest rates publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/8.2.475 – volume: 52 start-page: 1560 year: 2007 ident: nonac337fbib94 article-title: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria publication-title: IEEE Trans. Autom. Control doi: 10.1109/tac.2007.904450 – volume: 16 start-page: 140 year: 2006 ident: nonac337fbib40 article-title: A forward–backward stochastic algorithm for quasi-linear PDEs publication-title: Ann. Appl. Probab. doi: 10.1214/105051605000000674 – volume: 124 start-page: 1112 year: 2014 ident: nonac337fbib90 article-title: A numerical algorithm for a class of BSDEs via the branching process publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2013.10.005 – year: 2020 ident: nonac337fbib98 article-title: Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities – year: 2019 ident: nonac337fbib27 article-title: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II. The finite horizon case – year: 2019 ident: nonac337fbib55 article-title: Solving inverse wave scattering with deep learning – year: 2020 ident: nonac337fbib164 article-title: FBSDE based neural network algorithms for high-dimensional quasilinear parabolic PDEs – volume: 15 start-page: 2172 year: 2005 ident: nonac337fbib67 article-title: A regression-based Monte Carlo method to solve backward stochastic differential equations publication-title: Ann. Appl. Probab. doi: 10.1214/105051605000000412 – volume: 14 start-page: 37 year: 2011 ident: nonac337fbib77 article-title: Uncertain volatility model: a Monte-Carlo approach publication-title: J.Comput. Finance doi: 10.21314/jcf.2011.233 – volume: 5 start-page: 1 year: 2020 ident: nonac337fbib82 article-title: Convergence of the deep BSDE method for coupled FBSDEs publication-title: Probab. Uncertain. Quantit. Risk doi: 10.1186/s41546-020-00047-w – volume: 118 start-page: e2024713118 year: 2021 ident: nonac337fbib125 article-title: Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2024713118 – year: 2018 ident: nonac337fbib141 article-title: Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations – volume: vol 135 start-page: 497 year: 2009 ident: nonac337fbib143 article-title: A survey of numerical methods for optimal control – volume: 425 year: 2021 ident: nonac337fbib108 article-title: Algorithms of data generation for deep learning and feedback design: a survey publication-title: Physica D doi: 10.1016/j.physd.2021.132955 – volume: 21 start-page: 1322 year: 2011 ident: nonac337fbib54 article-title: A probabilistic numerical method for fully nonlinear parabolic PDEs publication-title: Ann. Appl. Probab. doi: 10.1214/10-aap723 |
SSID | ssj0011823 |
Score | 2.655661 |
SecondaryResourceType | review_article |
Snippet | In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 278 |
SubjectTerms | backward stochastic differential equations deep learning high dimension nonlinear Monte Carlo partial differential equations |
Title | Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/ac337f |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt_hayUEPHrq73TRpqifxwSKselDwIIQkTVRc3WVbL_56M223rCIi3tIySYdJmkySme8D2DfGsI5JeKBirQOc_QKddFyAzodIbDsRBWtJ74p376LLe3Y_Bcd1LsxgWE39TV8sgYJLE1YBcaIVUh4GnEVRSxlKYzcNs1T4ZQaz965v6isE7zjXPPJxHLLqjvKnFr6sSdP-uxNLzMUSPIyVKyNLXprvuW6aj2-4jf_UfhkWK9eTnJSiKzBl31ZhYQKQ0D_1ahTXbBXmivBQk63Bw0n_cTB6zp9eM-K9XOIHLB5EEAQ7JikSBJTgHuTm7Dw7IpizQt5KEA41Ij1EwCKnatQfkHxAXov4TUsqworHdbi7OL897QYVL0NgaMzyIGLGusi4mDveRoAvVZwf2TBiSkVaCeoS7WfC0KkkNZT5Am7r2txybvHNBsx4HewmEJdq21ZOaGeQj9xovx2yqU79Ni-iKedb0Br3jDQVaDlyZ_RlcXkuhER7SrSnLO25BYd1jWEJ2PGL7IHvJln9tdkvco0vcl55SZkMZScWcpi67T-2swPzHcyewBMcvgsz-ejdNrxPk-u9Yux-AoSG7iU |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BEQgG3ojy9AADQ9qmjp2EDQEVr0IHkBiQjO3YBdGXmrDw67ETU7UIISQ2J7o4l7Njn-277wM4kFKSuoypx0MhPDv6eSKua886H1GsanGUs5Y0b-nFQ3D1SB4dz2meC9MfuKG_YooFUHBhQhcQF1V9TH2PkiCocolxqKuDRE_DDMEU5xl8d63RMYJxnkdc8mHoE3dO-VMtE_PStHn32DTTWILnLwWL6JK3ynsmKvLjG3bjP75gGRadC4pOCvEVmFK9VVgYAyY0V80Rmmu6CrN5mKhM1-DppNPuD1-zl26KjLeLTMe1GxLIgh6jxBIFFCAfqHV2nh4jm7uCegUYBx-ipkXCQqd82OmjrI-6eRynQo64or0OD43z-9MLz_EzeBKHJPMCIpUOpA6ppjUL9MXzfSTlB4TzQPAI61iYEdHXPE4kJqZgl3c1qihV9s4GlIwOahOQToSqcR0JLS0vuRRmWaQSkZjlXoATSstQ_WodJh14ueXQ6LD8ED2KmLUpszZlhU3LcDR6YlAAd_wie2iairm_N_1FbndCzijPMGE-q4cRM2249cd69mGuddZgN5e319swX7cJFXZTh-5AKRu-q13j5mRiL-_Kn5p284k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+solving+high+dimensional+PDEs%3A+from+nonlinear+Monte+Carlo+to+machine+learning&rft.jtitle=Nonlinearity&rft.au=E%2C+Weinan&rft.au=Han%2C+Jiequn&rft.au=Jentzen%2C+Arnulf&rft.date=2022-01-06&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=35&rft.issue=1&rft.spage=278&rft.epage=310&rft_id=info:doi/10.1088%2F1361-6544%2Fac337f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_ac337f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |