Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning

In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many differ...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 35; no. 1; pp. 278 - 310
Main Authors E, Weinan, Han, Jiequn, Jentzen, Arnulf
Format Journal Article
LanguageEnglish
Published IOP Publishing 06.01.2022
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/ac337f

Cover

Loading…
Abstract In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future.
AbstractList In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep learning. They are potentially free of the curse of dimensionality for many different applications and have been proven to be so in the case of some nonlinear Monte Carlo methods for nonlinear parabolic PDEs. In this paper, we review these numerical and theoretical advances. In addition to algorithms based on stochastic reformulations of the original problem, such as the multilevel Picard iteration and the deep backward stochastic differential equations method, we also discuss algorithms based on the more traditional Ritz, Galerkin, and least square formulations. We hope to demonstrate to the reader that studying PDEs as well as control and variational problems in very high dimensions might very well be among the most promising new directions in mathematics and scientific computing in the near future.
Author E, Weinan
Han, Jiequn
Jentzen, Arnulf
Author_xml – sequence: 1
  givenname: Weinan
  orcidid: 0000-0003-0272-9500
  surname: E
  fullname: E, Weinan
  organization: Princeton University Program in Applied and Computational Mathematics, United States of America
– sequence: 2
  givenname: Jiequn
  orcidid: 0000-0002-3553-7313
  surname: Han
  fullname: Han, Jiequn
  organization: Flatiron Institute Center for Computational Mathematics, United States of America
– sequence: 3
  givenname: Arnulf
  orcidid: 0000-0002-9840-3339
  surname: Jentzen
  fullname: Jentzen, Arnulf
  organization: The Chinese University of Hong Kong, Shenzhen School of Data Science and Shenzhen Research Institute of Big Data, China
BookMark eNp9kM1LAzEQxYMo2FbvHnPw6Npks9lsvJVaP6CiB70JIU2Tbko2Kckq-N-bpeJB1NMM8-a9GX5jcOiD1wCcYXSJUdNMMalxUdOqmkpFCDMHYPQ9OgQjxCkuGMP0GIxT2iKEcVOSEXiduU2Itm-7BE2IMAX3bv0GtnbTwrXttE82eOng0_UiXUETQwfzZWe9lhE-BN9rOJfRBdgH2EnVZgG6rPmccgKOjHRJn37VCXi5WTzP74rl4-39fLYsFGG0LyqqtKmUYbWpEeOISs4aQjWuqJTVSjbE8FWJOTaSrxWhuSkbzlGt61oPkwmo97kqhpSiNkLZXvb58T5K6wRGYmAkBiBiACL2jLIR_TDuou1k_PjPcr632LAT2_AWM5wkMhJBqMCiZI3YrYe1i1_W_kz9BKdshuY
CODEN NONLE5
CitedBy_id crossref_primary_10_1137_22M1520840
crossref_primary_10_1088_1361_6420_ace9d4
crossref_primary_10_1186_s13662_022_03702_y
crossref_primary_10_1088_2632_2153_acfc33
crossref_primary_10_1016_j_fmre_2024_12_024
crossref_primary_10_1016_j_jco_2023_101746
crossref_primary_10_1109_TAC_2023_3344870
crossref_primary_10_1137_21M1402303
crossref_primary_10_1016_j_jcp_2024_113648
crossref_primary_10_1016_j_jcp_2024_113688
crossref_primary_10_1063_5_0140665
crossref_primary_10_1080_1350486X_2023_2210290
crossref_primary_10_1007_s10208_024_09649_8
crossref_primary_10_1007_s42521_023_00091_z
crossref_primary_10_1287_stsy_2023_0044
crossref_primary_10_1007_s10208_021_09514_y
crossref_primary_10_3390_jrfm15090388
crossref_primary_10_1002_mma_10465
crossref_primary_10_1007_s42967_024_00398_7
crossref_primary_10_1016_j_camwa_2023_11_005
crossref_primary_10_1007_s10614_023_10476_2
crossref_primary_10_1007_s10915_022_02044_x
crossref_primary_10_1137_23M1562536
crossref_primary_10_1016_j_cma_2024_116997
crossref_primary_10_1088_1361_6420_ac6d03
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_1016_j_jcp_2025_113791
crossref_primary_10_1007_s42985_023_00244_0
crossref_primary_10_1090_mcom_3971
crossref_primary_10_1109_TAC_2024_3396107
crossref_primary_10_3390_lubricants12020062
crossref_primary_10_1063_5_0198981
crossref_primary_10_1137_21M1402005
crossref_primary_10_1088_2632_2153_ad51cd
crossref_primary_10_1103_PhysRevE_106_065303
crossref_primary_10_1016_j_jcp_2025_113905
crossref_primary_10_1214_23_PS18
crossref_primary_10_1016_j_camwa_2024_07_015
crossref_primary_10_1111_mafi_12335
crossref_primary_10_1515_jnma_2021_0111
crossref_primary_10_1109_JLT_2023_3304625
crossref_primary_10_1137_22M1529427
crossref_primary_10_1007_s42967_024_00423_9
crossref_primary_10_1109_TRO_2024_3411850
crossref_primary_10_1016_j_cnsns_2024_108556
crossref_primary_10_1016_j_padiff_2023_100499
crossref_primary_10_21105_joss_06766
crossref_primary_10_1007_s00521_023_09300_7
crossref_primary_10_1142_S0219876221420147
crossref_primary_10_1007_s10915_022_01994_6
crossref_primary_10_1111_mafi_12405
crossref_primary_10_1137_23M1601195
crossref_primary_10_7566_JPSJ_92_074006
crossref_primary_10_1137_21M1442838
Cites_doi 10.1126/science.aag2302
10.1016/j.cpc.2020.107206
10.1214/13-aap932
10.1007/s40304-017-0117-6
10.1007/s004409970001
10.1103/physrevresearch.2.033429
10.1016/j.jcp.2019.07.048
10.1080/13504869500000005
10.1007/s42985-021-00102-x
10.1007/s11537-007-0657-8
10.1007/s00365-021-09549-y
10.1137/19m1288802
10.1007/s40306-015-0128-x
10.1137/19m1260141
10.1214/aoap/1035463324
10.4310/cms.2021.v19.n5.a1
10.1007/s10915-018-00903-0
10.1016/j.spa.2016.01.006
10.1038/s41557-020-0544-y
10.1186/s40687-016-0068-7
10.3934/jcd.2019009
10.1098/rspa.2019.0630
10.1137/1109059
10.3390/jrfm13070158
10.1515/mcma-2013-0001
10.1016/j.crma.2006.09.018
10.1017/s096249291500001x
10.1142/s0219530520500116
10.1137/19m125649x
10.1214/14-aap1030
10.1007/s40304-018-0127-z
10.1007/s00365-021-09541-6
10.1016/s0893-6080(03)00083-2
10.1137/16m106371x
10.1016/j.neucom.2018.06.056
10.1137/090765766
10.1111/mafi.12100
10.1103/physrevb.97.035116
10.1214/20-EJP423
10.2139/ssrn.3214596
10.1016/j.jcp.2019.109119
10.2139/ssrn.3071506
10.1016/j.jcp.2020.109409
10.3150/bj/1072215199
10.1214/aoap/1075828058
10.1007/s00332-018-9525-3
10.1016/j.spa.2007.03.005
10.1109/mis.2020.2971597
10.1016/j.jcp.2019.108929
10.1090/mcom/3013
10.1016/j.crma.2006.09.019
10.4208/cicp.oa-2020-0130
10.1515/mcma-2018-2020
10.1515/jnma-2019-0074
10.1109/72.712178
10.1016/j.spa.2004.01.001
10.3150/14-bej667
10.1073/pnas.1718942115
10.1002/cpa.3160280302
10.1137/17m1157015
10.1007/s10915-019-00908-3
10.1111/j.1469-1809.1937.tb02153.x
10.1007/s40687-018-0172-y
10.1016/j.jcp.2020.109339
10.1007/s10690-019-09271-7
10.1007/s11425-020-1773-8
10.1051/m2an/2010054
10.1214/17-aihp880
10.1186/s41546-016-0007-y
10.2139/ssrn.3594076
10.1006/jcom.1999.0508
10.1007/s42985-019-0006-9
10.1007/s42985-020-00062-8
10.1287/opre.2015.1425
10.1073/pnas.1922204117
10.1016/j.spa.2010.03.015
10.1090/mcom/3514
10.1017/s0956792520000182
10.1017/s0956792521000139
10.1007/s40304-017-0103-z
10.1007/s10208-021-09514-y
10.1093/imanum/drab027
10.1137/18m1222399
10.2139/ssrn.1995503
10.1051/m2an:2004005
10.1016/j.jcp.2020.109792
10.1142/s0219493721500489
10.1142/s0219024913500064
10.1016/0021-9991(90)90007-n
10.1016/j.jcp.2018.10.045
10.1215/kjm/1250524667
10.1051/cocv/2020018
10.1007/s40687-018-0160-2
10.1287/opre.1070.0496
10.1111/j.1540-6261.1985.tb02383.x
10.1103/physrevlett.122.226401
10.1364/oe.384875
10.1214/13-aap943
10.4310/cis.2006.v6.n3.a5
10.1016/j.jcp.2018.08.029
10.1007/s42985-021-00089-5
10.1017/s0956792521000073
10.1137/090755060
10.1137/19m1274377
10.1006/jcom.1998.0471
10.1098/rspa.1929.0094
10.1093/rfs/8.2.475
10.1109/tac.2007.904450
10.1214/105051605000000674
10.1016/j.spa.2013.10.005
10.1214/105051605000000412
10.21314/jcf.2011.233
10.1186/s41546-020-00047-w
10.1073/pnas.2024713118
10.1016/j.physd.2021.132955
10.1214/10-aap723
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2021 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/ac337f
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1361-6544
EndPage 310
ExternalDocumentID 10_1088_1361_6544_ac337f
nonac337f
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2044-390685587
  funderid: https://doi.org/10.13039/501100001659
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c375t-45cef4cf76f607905a97835e145aa4ba83f9b2191fa9dc3591f289906e66e9dc3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Thu Apr 24 22:54:16 EDT 2025
Tue Jul 01 02:47:33 EDT 2025
Wed Aug 21 03:34:58 EDT 2024
Wed Jun 07 11:19:00 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-45cef4cf76f607905a97835e145aa4ba83f9b2191fa9dc3591f289906e66e9dc3
Notes NON-105297.R1
London Mathematical Society
ORCID 0000-0002-3553-7313
0000-0003-0272-9500
0000-0002-9840-3339
PageCount 33
ParticipantIDs iop_journals_10_1088_1361_6544_ac337f
crossref_primary_10_1088_1361_6544_ac337f
crossref_citationtrail_10_1088_1361_6544_ac337f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-06
PublicationDateYYYYMMDD 2022-01-06
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-06
  day: 06
PublicationDecade 2020
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Pfau (nonac337fbib137) 2020; 2
Heinrich (nonac337fbib85) 1998; 14
Khoo (nonac337fbib112) 2019; 41
Strang (nonac337fbib150) 1973
Heinrich (nonac337fbib86) 2001
Karatzas (nonac337fbib109) 1998
Arjovsky (nonac337fbib2) 2017; vol 70
Henry-Labordère (nonac337fbib88) 2012
Han (nonac337fbib80) 2020
Watanabe (nonac337fbib158) 1965; 4
Fan (nonac337fbib55) 2019
Hutzenthaler (nonac337fbib102) 2020; 58
Beck (nonac337fbib5) 2019
Giles (nonac337fbib61) 2008; 56
Lasry (nonac337fbib120) 2007; 2
Gobet (nonac337fbib65) 2010; 48
Gobet (nonac337fbib68) 2016; 38
Duffie (nonac337fbib43) 1996; 6
Kang (nonac337fbib108) 2021; 425
Carleo (nonac337fbib26) 2017; 355
Lye (nonac337fbib127) 2020; 410
Ji (nonac337fbib105) 2020; 35
Ruszczyński (nonac337fbib146) 2020; 26
Li (nonac337fbib124) 2020
Giles (nonac337fbib62) 2015; 24
Han (nonac337fbib82) 2020; 5
Nakamura-Zimmerer (nonac337fbib132) 2021; 43
Hutzenthaler (nonac337fbib100) 2020; 476
Jentzen (nonac337fbib104) 2021; 19
Grohs (nonac337fbib75) 2019
Geiss (nonac337fbib60) 2016; 126
Farahmand (nonac337fbib57) 2017
Lee (nonac337fbib121) 1990; 91
Beck (nonac337fbib6) 2019; 29
Luo (nonac337fbib126) 2019; 122
E (nonac337fbib47) 2016; 2
Khoo (nonac337fbib110) 2019; 6
Kutyniok (nonac337fbib115) 2021
Zhang (nonac337fbib163) 2004; 14
Ruthotto (nonac337fbib147) 2020; 117
Skorokhod (nonac337fbib149) 1964; 9
Warin (nonac337fbib156) 2018
E (nonac337fbib50) 2021
Huang (nonac337fbib95) 2006; 6
Rao (nonac337fbib143) 2009; vol 135
Han (nonac337fbib84) 2019; 399
Lagaris (nonac337fbib117) 1998; 9
Lin (nonac337fbib125) 2021; 118
Crépey (nonac337fbib34) 2013; 16
Han (nonac337fbib81) 2018; 115
Hutzenthaler (nonac337fbib101) 2019; 25
Zhang (nonac337fbib165) 2020; 253
Chen (nonac337fbib33) 2020; 28
E (nonac337fbib49) 2020; 63
Fujii (nonac337fbib59) 2019; 26
Hutzenthaler (nonac337fbib99) 2020; 1
Fahim (nonac337fbib54) 2011; 21
Beck (nonac337fbib7) 2020
Chan-Wai-Nam (nonac337fbib30) 2019; 79
Bellman (nonac337fbib14) 1957
Pardoux (nonac337fbib136) 1999; 114
Jianyu (nonac337fbib107) 2003; 16
Crisan (nonac337fbib36) 2012; 3
Heinrich (nonac337fbib87) 1999; 15
Henry-Labordère (nonac337fbib91) 2019; 55
Khoo (nonac337fbib111) 2020
Warin (nonac337fbib155) 2017
Huré (nonac337fbib96) 2020; 89
Darbon (nonac337fbib39) 2016; 3
Pham (nonac337fbib138) 2015; 40
Crisan (nonac337fbib35) 2010; 44
Reisinger (nonac337fbib144) 2020; 18
Celledoni (nonac337fbib29) 2020; 32
Lasry (nonac337fbib119) 2006; 10
Guyon (nonac337fbib77) 2011; 14
E (nonac337fbib46) 2019; 6
Von Petersdorff (nonac337fbib153) 2004; 38
Jacquier (nonac337fbib103) 2019
Lasry (nonac337fbib118) 2006; 9
Crisan (nonac337fbib38) 2010; 120
Kingma (nonac337fbib113) 2015
E (nonac337fbib48) 2019; 79
Bally (nonac337fbib4) 2003; 9
Carmona (nonac337fbib28) 2021; 59
Becker (nonac337fbib13) 2021; 32
Cai (nonac337fbib25) 2018; 97
Uchiyama (nonac337fbib152) 1993
Gonon (nonac337fbib71) 2021
Sirignano (nonac337fbib148) 2018; 375
Chang (nonac337fbib31) 2016; 1
Beck (nonac337fbib8) 2020; 28
Han (nonac337fbib83) 2020; 423
Bressan (nonac337fbib23) 2007; vol 1
Gobet (nonac337fbib69) 2016; 85
Labart (nonac337fbib116) 2013; 19
Delarue (nonac337fbib40) 2006; 16
Grohs (nonac337fbib74) 2018
Massaroli (nonac337fbib129) 2019
Crisan (nonac337fbib37) 2014; 24
Fan (nonac337fbib56) 2020; 404
E (nonac337fbib51) 2018; 6
Guo (nonac337fbib76) 2015; 25
Dirac (nonac337fbib41) 1929; 123
Bergman (nonac337fbib19) 1995; 8
Fisher (nonac337fbib58) 1937; 7
Hutzenthaler (nonac337fbib98) 2020
Zhang (nonac337fbib161) 2020; 42
Han (nonac337fbib79) 2020; vol 107
Gobet (nonac337fbib67) 2005; 15
Goodfellow (nonac337fbib72) 2014
Li (nonac337fbib123) 2018; 18
Beck (nonac337fbib9) 2021
Hornung (nonac337fbib93) 2020
Giles (nonac337fbib63) 2019
Xuan (nonac337fbib159) 2021
Henry-Labordère (nonac337fbib89) 2017
Zhang (nonac337fbib164) 2020
E (nonac337fbib45) 2017; 5
Pardoux (nonac337fbib135) 1991
Becker (nonac337fbib11) 2019; 20
Bender (nonac337fbib16) 2017; 27
McKean (nonac337fbib130) 1975; 28
Zang (nonac337fbib160) 2020; 411
E (nonac337fbib44) 2017; 5
Raissi (nonac337fbib141) 2018
Henry-Labordère (nonac337fbib90) 2014; 124
Becker (nonac337fbib10) 2020; 28
Hutzenthaler (nonac337fbib97) 2021
Gobet (nonac337fbib70) 2016; 22
Bender (nonac337fbib15) 2007; 117
Wang (nonac337fbib154) 2018
Han (nonac337fbib78) 2016
Gobet (nonac337fbib66) 2008
Sutton (nonac337fbib151) 2018
Raissi (nonac337fbib140) 2018; 19
Zhang (nonac337fbib162) 2019; 397
Bouchard (nonac337fbib22) 2004; 111
Leland (nonac337fbib122) 1985; 40
Dockhorn (nonac337fbib42) 2019
Nüsken (nonac337fbib133) 2021; 2
Arjovsky (nonac337fbib1) 2017
Becker (nonac337fbib12) 2020; 13
Briand (nonac337fbib24) 2014; 24
Magill (nonac337fbib128) 2018
Carmona (nonac337fbib27) 2019
Goudenège (nonac337fbib73) 2019
Pham (nonac337fbib139) 2021; 2
Berner (nonac337fbib20) 2020; 2
Avellaneda (nonac337fbib3) 1995; 2
Billaud-Friess (nonac337fbib21) 2018
Jiang (nonac337fbib106) 2015; 63
Chen (nonac337fbib32) 2018
Benning (nonac337fbib17) 2019; 6
Hermann (nonac337fbib92) 2020; 12
Ruiz-Balet (nonac337fbib145) 2021
Warin (nonac337fbib157) 2018; 24
Huang (nonac337fbib94) 2007; 52
Raissi (nonac337fbib142) 2019; 378
Kolmogorov (nonac337fbib114) 1937; 1
Müller (nonac337fbib131) 2019
Elbrächter (nonac337fbib52) 2021
Evans (nonac337fbib53) 2010; vol 19
Gnoatto (nonac337fbib64) 2020
Berg (nonac337fbib18) 2018; 317
Oksendal (nonac337fbib134) 2013
References_xml – volume: 355
  start-page: 602
  year: 2017
  ident: nonac337fbib26
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 253
  year: 2020
  ident: nonac337fbib165
  article-title: DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107206
– volume: 24
  start-page: 652
  year: 2014
  ident: nonac337fbib37
  article-title: Second order discretisation of backward SDEs and simulation with the cubature method
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/13-aap932
– volume: 5
  start-page: 349
  year: 2017
  ident: nonac337fbib45
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0117-6
– volume: 114
  start-page: 123
  year: 1999
  ident: nonac337fbib136
  article-title: Forward-backward stochastic differential equations and quasilinear parabolic PDEs
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s004409970001
– volume: 2
  year: 2020
  ident: nonac337fbib137
  article-title: Ab initio solution of the many-electron Schrödinger equation with deep neural networks
  publication-title: Phys. Rev. Res.
  doi: 10.1103/physrevresearch.2.033429
– year: 2018
  ident: nonac337fbib74
  article-title: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations
  publication-title: Mem. Am. Math. Soc.
– volume: 397
  year: 2019
  ident: nonac337fbib162
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.048
– volume: 2
  start-page: 73
  year: 1995
  ident: nonac337fbib3
  article-title: Pricing and hedging derivative securities in markets with uncertain volatilities
  publication-title: Appl. Math. Finance
  doi: 10.1080/13504869500000005
– volume: 2
  start-page: 1
  year: 2021
  ident: nonac337fbib133
  article-title: Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
  publication-title: Partial Differ. Equ. Appl.
  doi: 10.1007/s42985-021-00102-x
– year: 2020
  ident: nonac337fbib80
  article-title: Convergence of deep fictitious play for stochastic differential games
– year: 2015
  ident: nonac337fbib113
  article-title: Adam: a method for stochastic optimisation
– volume: 2
  start-page: 229
  year: 2007
  ident: nonac337fbib120
  article-title: Mean field games
  publication-title: Japanese J. Math.
  doi: 10.1007/s11537-007-0657-8
– start-page: 1
  year: 2021
  ident: nonac337fbib50
  article-title: The Barron space and the flow-induced function spaces for neural network models
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09549-y
– volume: 43
  start-page: A1221
  year: 2021
  ident: nonac337fbib132
  article-title: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19m1288802
– volume: 40
  start-page: 255
  year: 2015
  ident: nonac337fbib138
  article-title: Feynman–Kac representation of fully nonlinear PDEs and applications
  publication-title: Acta Math. Vietnamica
  doi: 10.1007/s40306-015-0128-x
– volume: 42
  start-page: A639
  year: 2020
  ident: nonac337fbib161
  article-title: Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19m1260141
– volume: 6
  start-page: 1075
  year: 1996
  ident: nonac337fbib43
  article-title: Recursive valuation of defaultable securities and the timing of resolution of uncertainty
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1035463324
– volume: 19
  start-page: 1167
  year: 2021
  ident: nonac337fbib104
  article-title: A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients
  publication-title: Commun. Math. Sci.
  doi: 10.4310/cms.2021.v19.n5.a1
– volume: 79
  start-page: 1534
  year: 2019
  ident: nonac337fbib48
  article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-00903-0
– start-page: 2672
  year: 2014
  ident: nonac337fbib72
  article-title: Generative adversarial nets
– volume: 126
  start-page: 2123
  year: 2016
  ident: nonac337fbib60
  article-title: Simulation of BSDEs with jumps by Wiener chaos expansion
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2016.01.006
– volume: 12
  start-page: 891
  year: 2020
  ident: nonac337fbib92
  article-title: Deep-neural-network solution of the electronic Schrödinger equation
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0544-y
– volume: 3
  start-page: 19
  year: 2016
  ident: nonac337fbib39
  article-title: Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere
  publication-title: Res. Math. Sci.
  doi: 10.1186/s40687-016-0068-7
– volume: 6
  start-page: 171
  year: 2019
  ident: nonac337fbib17
  article-title: Deep learning as optimal control problems: models and numerical methods
  publication-title: J. Comput. Dyn.
  doi: 10.3934/jcd.2019009
– volume: 476
  start-page: 20190630
  year: 2020
  ident: nonac337fbib100
  article-title: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2019.0630
– volume: 9
  start-page: 445
  year: 1964
  ident: nonac337fbib149
  article-title: Branching diffusion processes
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1109059
– volume: 13
  start-page: 158
  year: 2020
  ident: nonac337fbib12
  article-title: Pricing and hedging American-style options with deep learning
  publication-title: J. Risk Financ. Manag.
  doi: 10.3390/jrfm13070158
– volume: 19
  start-page: 11
  year: 2013
  ident: nonac337fbib116
  article-title: A parallel algorithm for solving BSDEs
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2013-0001
– volume: 10
  start-page: 679
  year: 2006
  ident: nonac337fbib119
  article-title: Jeux à champ moyen: II. Horizon fini et contrôle optimal
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2006.09.018
– volume: vol 107
  start-page: 221
  year: 2020
  ident: nonac337fbib79
  article-title: Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games
– volume: 24
  start-page: 259
  year: 2015
  ident: nonac337fbib62
  article-title: Multilevel Monte Carlo methods
  publication-title: Acta Numer.
  doi: 10.1017/s096249291500001x
– volume: 18
  start-page: 951
  year: 2020
  ident: nonac337fbib144
  article-title: Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems
  publication-title: Anal. Appl.
  doi: 10.1142/s0219530520500116
– start-page: 6572
  year: 2018
  ident: nonac337fbib32
  article-title: Neural ordinary differential equations
– volume: 2
  start-page: 631
  year: 2020
  ident: nonac337fbib20
  article-title: Analysis of the generalisation error: empirical risk minimisation over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/19m125649x
– volume: 25
  start-page: 1540
  year: 2015
  ident: nonac337fbib76
  article-title: A monotone scheme for high-dimensional fully nonlinear PDEs
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/14-aap1030
– year: 2018
  ident: nonac337fbib156
  article-title: Monte Carlo for high-dimensional degenerated semi linear and full non linear PDEs
– volume: 6
  start-page: 1
  year: 2018
  ident: nonac337fbib51
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– start-page: 1
  year: 2021
  ident: nonac337fbib52
  article-title: DNN expression rate analysis of high-dimensional PDEs: application to option pricing
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09541-6
– volume: 16
  start-page: 729
  year: 2003
  ident: nonac337fbib107
  article-title: Numerical solution of elliptic partial differential equation using radial basis function neural networks
  publication-title: Neural Netw.
  doi: 10.1016/s0893-6080(03)00083-2
– year: 2019
  ident: nonac337fbib42
  article-title: A discussion on solving partial differential equations using neural networks
– volume: 38
  start-page: C652
  year: 2016
  ident: nonac337fbib68
  article-title: Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelisation on GPUs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16m106371x
– year: 2017
  ident: nonac337fbib1
  article-title: Towards principled methods for training generative adversarial networks
– year: 2020
  ident: nonac337fbib7
  article-title: Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations
– year: 2019
  ident: nonac337fbib103
  article-title: Deep curve-dependent PDEs for affine rough volatility
– volume: 317
  start-page: 28
  year: 2018
  ident: nonac337fbib18
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– year: 2021
  ident: nonac337fbib145
  article-title: Neural ODE control for classification, approximation and transport
– start-page: 4071
  year: 2018
  ident: nonac337fbib128
  article-title: Neural networks trained to solve differential equations learn general representations
– volume: 3
  start-page: 534
  year: 2012
  ident: nonac337fbib36
  article-title: Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing
  publication-title: SIAM J. Finan. Math.
  doi: 10.1137/090765766
– volume: 27
  start-page: 866
  year: 2017
  ident: nonac337fbib16
  article-title: A primal-dual algorithm for Bsdes
  publication-title: Math. Finance
  doi: 10.1111/mafi.12100
– volume: 97
  year: 2018
  ident: nonac337fbib25
  article-title: Approximating quantum many-body wave functions using artificial neural networks
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.97.035116
– volume: 25
  start-page: 1
  year: 2019
  ident: nonac337fbib101
  article-title: Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks
  publication-title: Electron. J. Probab.
  doi: 10.1214/20-EJP423
– year: 2018
  ident: nonac337fbib154
  article-title: Deep learning-based BSDE solver for LIBOR market model with application to Bermudan swaption pricing and hedging
  doi: 10.2139/ssrn.3214596
– year: 2017
  ident: nonac337fbib155
  article-title: Variations on branching methods for non linear PDEs
– volume: 404
  year: 2020
  ident: nonac337fbib56
  article-title: Solving electrical impedance tomography with deep learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109119
– year: 2017
  ident: nonac337fbib89
  article-title: Deep primal-dual algorithm for BSDEs: applications of machine learning to CVA and IM
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.3071506
– start-page: 200
  year: 1991
  ident: nonac337fbib135
  article-title: Backward stochastic differential equations and quasilinear parabolic partial differential equations
– start-page: 125
  year: 2018
  ident: nonac337fbib21
  article-title: Stochastic methods for solving high-dimensional partial differential equations
– year: 2016
  ident: nonac337fbib78
  article-title: Deep learning approximation for stochastic control problems
– volume: 411
  year: 2020
  ident: nonac337fbib160
  article-title: Weak adversarial networks for high-dimensional partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109409
– volume: 9
  start-page: 1003
  year: 2003
  ident: nonac337fbib4
  article-title: A quantisation algorithm for solving multidimensional discrete-time optimal stopping problems
  publication-title: Bernoulli
  doi: 10.3150/bj/1072215199
– year: 2019
  ident: nonac337fbib131
  article-title: Deep Ritz revisited
– start-page: 58
  year: 2001
  ident: nonac337fbib86
  article-title: Multilevel Monte Carlo methods
– volume: 14
  start-page: 459
  year: 2004
  ident: nonac337fbib163
  article-title: Numerical scheme for BSDEs
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1075828058
– year: 2019
  ident: nonac337fbib5
  article-title: Deep splitting method for parabolic PDEs
– volume: 29
  start-page: 1563
  year: 2019
  ident: nonac337fbib6
  article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-018-9525-3
– start-page: 6799
  year: 2019
  ident: nonac337fbib129
  article-title: Port–Hamiltonian approach to neural network training
– year: 1973
  ident: nonac337fbib150
– volume: 117
  start-page: 1793
  year: 2007
  ident: nonac337fbib15
  article-title: A forward scheme for backward SDEs
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2007.03.005
– volume: 35
  start-page: 71
  year: 2020
  ident: nonac337fbib105
  article-title: Three algorithms for solving high-dimensional fully-coupled FBSDEs through deep learning
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/mis.2020.2971597
– volume: 399
  year: 2019
  ident: nonac337fbib84
  article-title: Solving many-electron Schrödinger equation using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108929
– volume: 19
  start-page: 932
  year: 2018
  ident: nonac337fbib140
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: 85
  start-page: 1359
  year: 2016
  ident: nonac337fbib69
  article-title: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3013
– volume: 9
  start-page: 619
  year: 2006
  ident: nonac337fbib118
  article-title: Jeux à champ moyen. I: Le cas stationnaire
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2006.09.019
– volume: 28
  start-page: 2109
  year: 2020
  ident: nonac337fbib10
  article-title: Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.oa-2020-0130
– year: 2020
  ident: nonac337fbib93
  article-title: Space–time deep neural network approximations for high-dimensional partial differential equations
– volume: 24
  start-page: 225
  year: 2018
  ident: nonac337fbib157
  article-title: Nesting Monte Carlo for high-dimensional non-linear PDEs
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2018-2020
– year: 2019
  ident: nonac337fbib75
  article-title: Deep neural network approximations for Monte Carlo algorithms
  publication-title: Partial. Differ. Equ. Appl.
– volume: 28
  start-page: 197
  year: 2020
  ident: nonac337fbib8
  article-title: Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2019-0074
– volume: 9
  start-page: 987
  year: 1998
  ident: nonac337fbib117
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 111
  start-page: 175
  year: 2004
  ident: nonac337fbib22
  article-title: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2004.01.001
– volume: 22
  start-page: 530
  year: 2016
  ident: nonac337fbib70
  article-title: Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression
  publication-title: Bernoulli
  doi: 10.3150/14-bej667
– volume: 115
  start-page: 8505
  year: 2018
  ident: nonac337fbib81
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1718942115
– year: 2020
  ident: nonac337fbib124
  article-title: Neural operator: graph kernel network for partial differential equations
– volume: 28
  start-page: 323
  year: 1975
  ident: nonac337fbib130
  article-title: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160280302
– volume: 20
  start-page: 1
  year: 2019
  ident: nonac337fbib11
  article-title: Deep optimal stopping
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 929
  year: 2020
  ident: nonac337fbib102
  article-title: Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17m1157015
– start-page: 3120
  year: 2017
  ident: nonac337fbib57
  article-title: Deep reinforcement learning for partial differential equation control
– volume: 79
  start-page: 1667
  year: 2019
  ident: nonac337fbib30
  article-title: Machine learning for semi linear PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-019-00908-3
– volume: 7
  start-page: 355
  year: 1937
  ident: nonac337fbib58
  article-title: The wave of advance of advantageous genes
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– volume: 6
  start-page: 1
  year: 2019
  ident: nonac337fbib46
  article-title: A mean-field optimal control formulation of deep learning
  publication-title: Res. Math. Sci.
  doi: 10.1007/s40687-018-0172-y
– volume: 410
  year: 2020
  ident: nonac337fbib127
  article-title: Deep learning observables in computational fluid dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109339
– volume: 26
  start-page: 391
  year: 2019
  ident: nonac337fbib59
  article-title: Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs
  publication-title: Asia-Pacific Financ. Markets
  doi: 10.1007/s10690-019-09271-7
– volume: vol 70
  start-page: 214
  year: 2017
  ident: nonac337fbib2
  article-title: Wasserstein generative adversarial networks
– year: 2021
  ident: nonac337fbib159
  article-title: Optimal policies for a pandemic: a stochastic game approach and a deep learning algorithm
– year: 2019
  ident: nonac337fbib63
  article-title: Generalised multilevel Picard approximations
– start-page: 99
  year: 1993
  ident: nonac337fbib152
  article-title: Solving inverse problems in nonlinear PDEs by recurrent neural networks
– volume: 63
  start-page: 2233
  year: 2020
  ident: nonac337fbib49
  article-title: Machine learning from a continuous viewpoint: I
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-020-1773-8
– volume: 44
  start-page: 1107
  year: 2010
  ident: nonac337fbib35
  article-title: Probabilistic methods for semilinear partial differential equations. Applications to finance
  publication-title: ESAIM: Math. Modelling Numer. Anal.
  doi: 10.1051/m2an/2010054
– volume: 55
  start-page: 184
  year: 2019
  ident: nonac337fbib91
  article-title: Branching diffusion representation of semilinear PDEs and Monte Carlo approximation
  publication-title: Ann. Inst. Henri Poincare
  doi: 10.1214/17-aihp880
– volume: 1
  start-page: 1
  year: 2016
  ident: nonac337fbib31
  article-title: A branching particle system approximation for a class of FBSDEs
  publication-title: Probab. Uncertain. Quantitat. Risk
  doi: 10.1186/s41546-016-0007-y
– year: 2020
  ident: nonac337fbib64
  article-title: Deep xVA solver–a neural network based counterparty credit risk management framework
  doi: 10.2139/ssrn.3594076
– volume: 15
  start-page: 317
  year: 1999
  ident: nonac337fbib87
  article-title: Monte Carlo complexity of parametric integration
  publication-title: J. Complexity
  doi: 10.1006/jcom.1999.0508
– year: 1957
  ident: nonac337fbib14
– volume: 1
  start-page: 1
  year: 2020
  ident: nonac337fbib99
  article-title: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations
  publication-title: SN Partial Differ. Equ. Appl.
  doi: 10.1007/s42985-019-0006-9
– volume: 2
  start-page: 1
  year: 2021
  ident: nonac337fbib139
  article-title: Neural networks-based backward scheme for fully nonlinear PDEs
  publication-title: SN Partial Differ. Equ. Appl.
  doi: 10.1007/s42985-020-00062-8
– volume: 63
  start-page: 1489
  year: 2015
  ident: nonac337fbib106
  article-title: An approximate dynamic programming algorithm for monotone value functions
  publication-title: Oper. Res.
  doi: 10.1287/opre.2015.1425
– volume: 117
  start-page: 9183
  year: 2020
  ident: nonac337fbib147
  article-title: A machine learning framework for solving high-dimensional mean field game and mean field control problems
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1922204117
– volume: 120
  start-page: 1133
  year: 2010
  ident: nonac337fbib38
  article-title: On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2010.03.015
– volume: 89
  start-page: 1547
  year: 2020
  ident: nonac337fbib96
  article-title: Deep backward schemes for high-dimensional nonlinear PDEs
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3514
– start-page: 1
  year: 2020
  ident: nonac337fbib111
  article-title: Solving parametric PDE problems with artificial neural networks
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/s0956792520000182
– volume: 32
  start-page: 888
  year: 2020
  ident: nonac337fbib29
  article-title: Structure-preserving deep learning
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/s0956792521000139
– volume: 5
  start-page: 1
  year: 2017
  ident: nonac337fbib44
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0103-z
– start-page: 1
  year: 2021
  ident: nonac337fbib97
  article-title: Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-021-09514-y
– year: 2021
  ident: nonac337fbib71
  article-title: Uniform error estimates for artificial neural network approximations for heat equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drab027
– volume: 41
  start-page: A3182
  year: 2019
  ident: nonac337fbib112
  article-title: SwitchNet: a neural network model for forward and inverse scattering problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18m1222399
– year: 2012
  ident: nonac337fbib88
  article-title: Counterparty risk valuation: a marked branching diffusion approach
  doi: 10.2139/ssrn.1995503
– volume: 38
  start-page: 93
  year: 2004
  ident: nonac337fbib153
  article-title: Numerical solution of parabolic equations in high dimensions
  publication-title: ESAIM: Math. Modelling Numer. Anal.
  doi: 10.1051/m2an:2004005
– volume: vol 19
  year: 2010
  ident: nonac337fbib53
– year: 2013
  ident: nonac337fbib134
– volume: vol 1
  year: 2007
  ident: nonac337fbib23
– volume: 423
  year: 2020
  ident: nonac337fbib83
  article-title: Solving high-dimensional eigenvalue problems using deep neural networks: a diffusion Monte Carlo like approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109792
– start-page: 2150048
  year: 2021
  ident: nonac337fbib9
  article-title: On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations
  publication-title: Stoch. Dyn.
  doi: 10.1142/s0219493721500489
– volume: 16
  start-page: 1350006
  year: 2013
  ident: nonac337fbib34
  article-title: Counterparty risk and funding: the four wings of the TVA
  publication-title: Int. J. Theor. Appl. Finan.
  doi: 10.1142/s0219024913500064
– volume: 91
  start-page: 110
  year: 1990
  ident: nonac337fbib121
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-n
– volume: 378
  start-page: 686
  year: 2019
  ident: nonac337fbib142
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 4
  start-page: 385
  year: 1965
  ident: nonac337fbib158
  article-title: On the branching process for Brownian particles with an absorbing boundary
  publication-title: J. Math. Kyoto Univ.
  doi: 10.1215/kjm/1250524667
– volume: 26
  start-page: 96
  year: 2020
  ident: nonac337fbib146
  article-title: A dual method for evaluation of dynamic risk in diffusion processes
  publication-title: ESAIM: Control Optim. Calculus Variations
  doi: 10.1051/cocv/2020018
– volume: 18
  start-page: 1
  year: 2018
  ident: nonac337fbib123
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 1
  year: 2019
  ident: nonac337fbib110
  article-title: Solving for high-dimensional committor functions using artificial neural networks
  publication-title: Res. Math. Sci.
  doi: 10.1007/s40687-018-0160-2
– volume: 56
  start-page: 607
  year: 2008
  ident: nonac337fbib61
  article-title: Multilevel Monte Carlo path simulation
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0496
– year: 2018
  ident: nonac337fbib151
– volume: 40
  start-page: 1283
  year: 1985
  ident: nonac337fbib122
  article-title: Option pricing and replication with transactions costs
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1985.tb02383.x
– volume: 122
  year: 2019
  ident: nonac337fbib126
  article-title: Backflow transformations via neural networks for quantum many-body wave functions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.122.226401
– volume: 28
  start-page: 11618
  year: 2020
  ident: nonac337fbib33
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
  doi: 10.1364/oe.384875
– volume: 24
  start-page: 1129
  year: 2014
  ident: nonac337fbib24
  article-title: Simulation of BSDEs by Wiener chaos expansion
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/13-aap943
– volume: 6
  start-page: 221
  year: 2006
  ident: nonac337fbib95
  article-title: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle
  publication-title: Commun. Inf. Syst.
  doi: 10.4310/cis.2006.v6.n3.a5
– volume: 375
  start-page: 1339
  year: 2018
  ident: nonac337fbib148
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 2
  start-page: 80
  year: 2016
  ident: nonac337fbib47
  article-title: Multilevel Picard iterations for solving smooth semilinear parabolic heat equations
  publication-title: Partial. Differ. Equ. Appl.
  doi: 10.1007/s42985-021-00089-5
– year: 1998
  ident: nonac337fbib109
– volume: 32
  start-page: 470
  year: 2021
  ident: nonac337fbib13
  article-title: Solving high-dimensional optimal stopping problems using deep learning
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/s0956792521000073
– year: 2008
  ident: nonac337fbib66
  article-title: Numerical simulation of BSDEs using empirical regression methods: theory and practice
– year: 2019
  ident: nonac337fbib73
  article-title: Variance reduction applied to machine learning for pricing Bermudan/American options in high dimension
– volume: 1
  start-page: 1
  year: 1937
  ident: nonac337fbib114
  article-title: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem
  publication-title: Moscow Univ. Bull. Math.
– volume: 48
  start-page: 257
  year: 2010
  ident: nonac337fbib65
  article-title: Solving BSDE with adaptive control variate
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090755060
– start-page: 1
  year: 2021
  ident: nonac337fbib115
  article-title: A theoretical analysis of deep neural networks and parametric PDEs
  publication-title: Constr. Approx.
– volume: 59
  start-page: 1455
  year: 2021
  ident: nonac337fbib28
  article-title: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/19m1274377
– volume: 14
  start-page: 151
  year: 1998
  ident: nonac337fbib85
  article-title: Monte Carlo complexity of global solution of integral equations
  publication-title: J. Complexity
  doi: 10.1006/jcom.1998.0471
– volume: 123
  start-page: 714
  year: 1929
  ident: nonac337fbib41
  article-title: Quantum mechanics of many-electron systems
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1929.0094
– volume: 8
  start-page: 475
  year: 1995
  ident: nonac337fbib19
  article-title: Option pricing with differential interest rates
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/8.2.475
– volume: 52
  start-page: 1560
  year: 2007
  ident: nonac337fbib94
  article-title: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/tac.2007.904450
– volume: 16
  start-page: 140
  year: 2006
  ident: nonac337fbib40
  article-title: A forward–backward stochastic algorithm for quasi-linear PDEs
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000674
– volume: 124
  start-page: 1112
  year: 2014
  ident: nonac337fbib90
  article-title: A numerical algorithm for a class of BSDEs via the branching process
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2013.10.005
– year: 2020
  ident: nonac337fbib98
  article-title: Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities
– year: 2019
  ident: nonac337fbib27
  article-title: Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II. The finite horizon case
– year: 2019
  ident: nonac337fbib55
  article-title: Solving inverse wave scattering with deep learning
– year: 2020
  ident: nonac337fbib164
  article-title: FBSDE based neural network algorithms for high-dimensional quasilinear parabolic PDEs
– volume: 15
  start-page: 2172
  year: 2005
  ident: nonac337fbib67
  article-title: A regression-based Monte Carlo method to solve backward stochastic differential equations
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000412
– volume: 14
  start-page: 37
  year: 2011
  ident: nonac337fbib77
  article-title: Uncertain volatility model: a Monte-Carlo approach
  publication-title: J.Comput. Finance
  doi: 10.21314/jcf.2011.233
– volume: 5
  start-page: 1
  year: 2020
  ident: nonac337fbib82
  article-title: Convergence of the deep BSDE method for coupled FBSDEs
  publication-title: Probab. Uncertain. Quantit. Risk
  doi: 10.1186/s41546-020-00047-w
– volume: 118
  start-page: e2024713118
  year: 2021
  ident: nonac337fbib125
  article-title: Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2024713118
– year: 2018
  ident: nonac337fbib141
  article-title: Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations
– volume: vol 135
  start-page: 497
  year: 2009
  ident: nonac337fbib143
  article-title: A survey of numerical methods for optimal control
– volume: 425
  year: 2021
  ident: nonac337fbib108
  article-title: Algorithms of data generation for deep learning and feedback design: a survey
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132955
– volume: 21
  start-page: 1322
  year: 2011
  ident: nonac337fbib54
  article-title: A probabilistic numerical method for fully nonlinear parabolic PDEs
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/10-aap723
SSID ssj0011823
Score 2.655661
SecondaryResourceType review_article
Snippet In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms backward stochastic differential equations
deep learning
high dimension
nonlinear Monte Carlo
partial differential equations
Title Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning
URI https://iopscience.iop.org/article/10.1088/1361-6544/ac337f
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt_hayUEPHrq73TRpqifxwSKselDwIIQkTVRc3WVbL_56M223rCIi3tIySYdJmkySme8D2DfGsI5JeKBirQOc_QKddFyAzodIbDsRBWtJ74p376LLe3Y_Bcd1LsxgWE39TV8sgYJLE1YBcaIVUh4GnEVRSxlKYzcNs1T4ZQaz965v6isE7zjXPPJxHLLqjvKnFr6sSdP-uxNLzMUSPIyVKyNLXprvuW6aj2-4jf_UfhkWK9eTnJSiKzBl31ZhYQKQ0D_1ahTXbBXmivBQk63Bw0n_cTB6zp9eM-K9XOIHLB5EEAQ7JikSBJTgHuTm7Dw7IpizQt5KEA41Ij1EwCKnatQfkHxAXov4TUsqworHdbi7OL897QYVL0NgaMzyIGLGusi4mDveRoAvVZwf2TBiSkVaCeoS7WfC0KkkNZT5Am7r2txybvHNBsx4HewmEJdq21ZOaGeQj9xovx2yqU79Ni-iKedb0Br3jDQVaDlyZ_RlcXkuhER7SrSnLO25BYd1jWEJ2PGL7IHvJln9tdkvco0vcl55SZkMZScWcpi67T-2swPzHcyewBMcvgsz-ejdNrxPk-u9Yux-AoSG7iU
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BEQgG3ojy9AADQ9qmjp2EDQEVr0IHkBiQjO3YBdGXmrDw67ETU7UIISQ2J7o4l7Njn-277wM4kFKSuoypx0MhPDv6eSKua886H1GsanGUs5Y0b-nFQ3D1SB4dz2meC9MfuKG_YooFUHBhQhcQF1V9TH2PkiCocolxqKuDRE_DDMEU5xl8d63RMYJxnkdc8mHoE3dO-VMtE_PStHn32DTTWILnLwWL6JK3ynsmKvLjG3bjP75gGRadC4pOCvEVmFK9VVgYAyY0V80Rmmu6CrN5mKhM1-DppNPuD1-zl26KjLeLTMe1GxLIgh6jxBIFFCAfqHV2nh4jm7uCegUYBx-ipkXCQqd82OmjrI-6eRynQo64or0OD43z-9MLz_EzeBKHJPMCIpUOpA6ppjUL9MXzfSTlB4TzQPAI61iYEdHXPE4kJqZgl3c1qihV9s4GlIwOahOQToSqcR0JLS0vuRRmWaQSkZjlXoATSstQ_WodJh14ueXQ6LD8ED2KmLUpszZlhU3LcDR6YlAAd_wie2iairm_N_1FbndCzijPMGE-q4cRM2249cd69mGuddZgN5e319swX7cJFXZTh-5AKRu-q13j5mRiL-_Kn5p284k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+solving+high+dimensional+PDEs%3A+from+nonlinear+Monte+Carlo+to+machine+learning&rft.jtitle=Nonlinearity&rft.au=E%2C+Weinan&rft.au=Han%2C+Jiequn&rft.au=Jentzen%2C+Arnulf&rft.date=2022-01-06&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=35&rft.issue=1&rft.spage=278&rft.epage=310&rft_id=info:doi/10.1088%2F1361-6544%2Fac337f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_ac337f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon