A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses

Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J ) and many sub...

Full description

Saved in:
Bibliographic Details
Published inPsychometrika Vol. 88; no. 2; pp. 580 - 612
Main Authors Zeng, Zhenghao, Gu, Yuqi, Xu, Gongjun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J ) and many subjects (large N ). This is in contrary to the traditional regime with fixed J and large N . To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.
AbstractList Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J ) and many subjects (large N ). This is in contrary to the traditional regime with fixed J and large N . To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.
Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.
Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.
Author Zeng, Zhenghao
Gu, Yuqi
Xu, Gongjun
Author_xml – sequence: 1
  givenname: Zhenghao
  surname: Zeng
  fullname: Zeng, Zhenghao
  organization: Department of Statistics and Data Science, Carnegie Mellon University
– sequence: 2
  givenname: Yuqi
  surname: Gu
  fullname: Gu, Yuqi
  organization: Department of Statistics, Columbia University
– sequence: 3
  givenname: Gongjun
  orcidid: 0000-0003-4023-5413
  surname: Xu
  fullname: Xu, Gongjun
  email: gongjun@umich.edu
  organization: Department of Statistics, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36183034$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFuEzEQhi1URNPCC3BAlrhwMYztzdp7DFFpkVKQoJwtr3e23WpjB48j1LfHJQWkHnryWPo-e2b-E3YUU0TGXkt4LwHMB5JS61aAUgI6a42Qz9hC2hbur3DEFgBaCy2VPmYnRLcA0ElrX7Bj3UqrQTcL9mXFrzBSyuLskl9iuUkDH1PmG5-vUXwPfsZaF4yFr2dPxFfRz3c0Ef81lRv-cYo-3_FvSLsUCeklez76mfDVw3nKfnw6u1pfiM3X88_r1UYEbZZFNE2LfTv4Tg1Sj6NSHbQgOx8QA7bGDmEczdAOxo4y9MabxhoJiFr3uocl6FP27vDuLqefe6TithMFnGcfMe3JKaOgUU1nVUXfPkJv0z7XKSplZaPALLWt1JsHat9vcXC7PG3rZO7vpiqgDkDIiSjj-A-R4O7jcIc4XI3D_YnDySrZR1KYii9TiiX7aX5a1QeV6j_xGvP_tp-wfgPJzpxW
CitedBy_id crossref_primary_10_1016_j_ins_2024_120785
crossref_primary_10_1093_biomtc_ujae103
crossref_primary_10_1080_01621459_2025_2455198
Cites_doi 10.1093/biomet/61.2.215
10.18637/jss.v045.i03
10.1001/archpsyc.61.2.192
10.2307/1914288
10.1201/9781351077118
10.1007/s11336-016-9545-6
10.1214/aos/1176344136
10.1111/j.0006-341X.1999.00463.x
10.1177/1094428110383988
10.1111/rssb.12001
10.1080/01621459.2017.1340889
10.1007/BF02293554
10.1109/34.868688
10.1017/CBO9780511790942
10.1093/aje/kwj100
10.1093/pan/mpq025
10.1007/978-3-030-05584-4
10.1046/j.1360-0443.2000.9545537.x
10.1016/j.jphys.2016.05.018
10.1214/16-AOS1464
10.1002/sapm192761164
10.1080/01621459.2019.1635485
10.1037/1082-989X.10.1.21
10.1007/s10463-009-0258-9
10.21031/epod.65266
10.1007/s11336-018-9646-5
10.1137/07070111X
10.1007/s11336-022-09867-5
10.1080/10705510701575396
10.1002/9780470567333
10.1214/16-AOS1435
10.1137/S0895479898346995
10.1016/0167-9473(92)90042-E
10.1214/aos/1176346522
10.1007/s11336-022-09852-y
10.1214/09-AOS689
10.20982/tqmp.11.3.p189
10.1080/01621459.1997.10473658
10.1007/BF02289464
10.1111/j.1745-3984.1983.tb00212.x
10.1007/s11121-011-0201-1
10.1017/CBO9780511499531
10.1111/j.2517-6161.1977.tb01600.x
10.1145/2422436.2422439
10.1007/978-3-540-45062-7_2
10.1080/01621459.2021.1955689
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Psychometric Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s) under exclusive licence to The Psychometric Society.
Copyright_xml – notice: The Author(s) under exclusive licence to The Psychometric Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s) under exclusive licence to The Psychometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7TK
7WY
7WZ
7X7
7XB
87Z
88B
88E
88G
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
CJNVE
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
K60
K6~
K9.
L.-
M0C
M0P
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s11336-022-09887-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Neurosciences Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Education Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Education Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Education Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central China
ABI/INFORM Complete
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest One Education
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Law
Mathematics
EISSN 1860-0980
EndPage 612
ExternalDocumentID 36183034
10_1007_s11336_022_09887_1
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: SES-2150601
– fundername: National Science Foundation
  grantid: SES-1846747
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Institute of Education Sciences
  grantid: R305D200015
  funderid: http://dx.doi.org/10.13039/100005246
GroupedDBID --Z
-4V
-55
-5G
-BR
-EM
-W8
-Y2
-~C
-~X
.86
.GO
.VR
0-V
06D
09C
0R~
0VY
123
186
199
1N0
1SB
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABGDZ
ABGFU
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUC
ACDLN
ACGFS
ACHQT
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IRVIT
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
LPU
M0C
M0P
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NEJ
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9L
PF-
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RCA
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBS
SBU
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WHG
WIP
WK6
WK8
XOL
YLTOR
YYQ
Z45
Z81
Z83
Z8U
Z92
ZCG
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABFSG
ABXHF
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFHIU
AFOHR
AGQPQ
AGTDA
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPYYG
PHGZM
PHGZT
AAXMD
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7TK
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-446eb6da92d13ff22906019aceece678dcff7d6d78f1cb7a748710ee33b3b0503
IEDL.DBID 7X7
ISSN 0033-3123
1860-0980
IngestDate Fri Jul 11 03:36:50 EDT 2025
Sat Aug 23 13:54:38 EDT 2025
Mon Jul 21 05:56:27 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Tue Jul 01 02:08:24 EDT 2025
Fri Feb 21 02:45:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords clustering consistency
large-scale latent class analysis
tensor power method
EM algorithm
tensor decomposition
Language English
License https://www.cambridge.org/core/terms
2022. The Author(s) under exclusive licence to The Psychometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-446eb6da92d13ff22906019aceece678dcff7d6d78f1cb7a748710ee33b3b0503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4023-5413
PMID 36183034
PQID 2814207538
PQPubID 47416
PageCount 33
ParticipantIDs proquest_miscellaneous_2720424982
proquest_journals_2814207538
pubmed_primary_36183034
crossref_primary_10_1007_s11336_022_09887_1
crossref_citationtrail_10_1007_s11336_022_09887_1
springer_journals_10_1007_s11336_022_09887_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Psychometrika
PublicationTitleAbbrev Psychometrika
PublicationTitleAlternate Psychometrika
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ma, Ouyang, Xu (CR35) 2022
Lubke, Muthén (CR34) 2005; 10
Tucker (CR50) 1966; 31
Dean, Raftery (CR16) 2010; 62
Keel, Fichter, Quadflieg, Bulik, Baxter, Thornton, Halmi, Kaplan, Strober, Woodside (CR28) 2004; 61
Goodman (CR22) 1974; 61
Hagenaars, McCutcheon (CR24) 2002
Vermunt (CR53) 2010; 18
Neyman, Scott (CR39) 1948; 16
Bandeen-Roche, Miglioretti, Zeger, Rathouz (CR6) 1997; 92
Dunn, Jordan, Croft (CR18) 2006; 163
Chen, Li, Zhang (CR12) 2019; 115
Kongsted, Nielsen (CR30) 2017; 63
Wang, Hanges (CR55) 2011; 14
Allman, Matias, Rhodes (CR1) 2009; 37
Celeux, Govaert (CR8) 1992; 14
Ouyang, Xu (CR42) 2022
Shi, Malik (CR46) 2000; 22
Gelman, Hill (CR20) 2006
Sedat, Arican (CR45) 2015
Collins, Lanza (CR13) 2009
CR2
Tatsuoka (CR48) 1983; 20
CR4
Balakrishnan, Wainwright, Yu (CR5) 2017; 45
Bucholz, Hesselbrock, Heath, Kramer, Schuckit (CR7) 2000; 95
CR9
McCullagh (CR36) 2018
CR49
Rupp, Templin (CR43) 2008; 6
Xu, Shang (CR57) 2018; 113
Dempster, Laird, Rubin (CR17) 1977; 39
Hitchcock (CR26) 1927; 6
Muthén, Shedden (CR38) 1999; 55
George, Robitzsch (CR21) 2015; 11
CR15
Schwarz (CR44) 1978; 6
CR58
CR52
Kolda, Bader (CR29) 2009; 51
Nylund, Asparouhov, Muthén (CR41) 2007; 14
Kruskal (CR31) 1976; 41
von Davier, Lee (CR54) 2019
Lanza, Rhoades (CR32) 2013; 14
Van Buuren, Groothuis-Oudshoorn (CR51) 2011; 45
Anandkumar, Ge, Hsu, Kakade, Telgarsky (CR3) 2014; 15
CR27
McLachlan, Peel (CR37) 2004
Smilde, Bro, Geladi (CR47) 2005
CR23
Nishii (CR40) 1984; 12
Chen, Li, Zhang (CR11) 2019; 84
Harshman (CR25) 1970
Lazarsfeld, Henry (CR33) 1968
Xu (CR56) 2017; 45
De, De Moor, Vandewalle (CR14) 2000; 21
Fan, Tang (CR19) 2013; 75
Chen, Li, Liu, Ying (CR10) 2017; 82
S0033312300007407_CR19
Shi (S0033312300007407_CR46) 2000; 22
S0033312300007407_CR21
S0033312300007407_CR6
S0033312300007407_CR20
S0033312300007407_CR7
S0033312300007407_CR4
S0033312300007407_CR5
S0033312300007407_CR2
S0033312300007407_CR1
S0033312300007407_CR29
Harshman (S0033312300007407_CR25) 1970
S0033312300007407_CR28
S0033312300007407_CR27
S0033312300007407_CR26
Smilde (S0033312300007407_CR47) 2005
S0033312300007407_CR24
S0033312300007407_CR23
S0033312300007407_CR22
Anandkumar (S0033312300007407_CR3) 2014; 15
Van Buuren (S0033312300007407_CR51) 2011; 45
S0033312300007407_CR8
S0033312300007407_CR9
S0033312300007407_CR32
S0033312300007407_CR31
S0033312300007407_CR30
De (S0033312300007407_CR14) 2000; 21
S0033312300007407_CR39
Rupp (S0033312300007407_CR43) 2008; 6
S0033312300007407_CR38
S0033312300007407_CR36
S0033312300007407_CR34
Ma (S0033312300007407_CR35) 2022
S0033312300007407_CR42
S0033312300007407_CR41
S0033312300007407_CR40
S0033312300007407_CR49
S0033312300007407_CR48
S0033312300007407_CR44
Lazarsfeld (S0033312300007407_CR33) 1968
S0033312300007407_CR54
S0033312300007407_CR10
Sedat (S0033312300007407_CR45) 2015
S0033312300007407_CR53
S0033312300007407_CR52
S0033312300007407_CR50
McLachlan (S0033312300007407_CR37) 2004
S0033312300007407_CR18
S0033312300007407_CR17
S0033312300007407_CR16
S0033312300007407_CR15
S0033312300007407_CR58
S0033312300007407_CR13
S0033312300007407_CR57
S0033312300007407_CR56
S0033312300007407_CR12
S0033312300007407_CR11
S0033312300007407_CR55
References_xml – volume: 61
  start-page: 215
  issue: 2
  year: 1974
  end-page: 231
  ident: CR22
  article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models
  publication-title: Biometrika
  doi: 10.1093/biomet/61.2.215
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: CR51
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v045.i03
– ident: CR49
– volume: 61
  start-page: 192
  issue: 2
  year: 2004
  end-page: 200
  ident: CR28
  article-title: Application of a latent class analysis to empirically define eatingdisorder phenotypes
  publication-title: Archives of General Psychiatry
  doi: 10.1001/archpsyc.61.2.192
– volume: 16
  start-page: 1
  year: 1948
  end-page: 32
  ident: CR39
  article-title: Consistent estimates based on partially consistent observations
  publication-title: Econometrica: Journal of the Econometric Society
  doi: 10.2307/1914288
– year: 2018
  ident: CR36
  publication-title: Tensor methods in statistics: Monographs on statistics and applied probability
  doi: 10.1201/9781351077118
– ident: CR4
– volume: 82
  start-page: 660
  issue: 3
  year: 2017
  end-page: 692
  ident: CR10
  article-title: Regularized latent class analysis with application in cognitive diagnosis
  publication-title: Psychometrika
  doi: 10.1007/s11336-016-9545-6
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  ident: CR44
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– year: 2005
  ident: CR47
  publication-title: Multi-way analysis: Applications in the chemical sciences
– volume: 55
  start-page: 463
  issue: 2
  year: 1999
  end-page: 469
  ident: CR38
  article-title: Finite mixture modeling with mixture outcomes using the EM algorithm
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00463.x
– volume: 14
  start-page: 24
  issue: 1
  year: 2011
  end-page: 31
  ident: CR55
  article-title: Latent class procedures: Applications to organizational research
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428110383988
– volume: 75
  start-page: 531
  issue: 3
  year: 2013
  end-page: 552
  ident: CR19
  article-title: Tuning parameter selection in high dimensional penalized likelihood
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12001
– volume: 113
  start-page: 1284
  issue: 523
  year: 2018
  end-page: 1295
  ident: CR57
  article-title: Identifying latent structures in restricted latent class models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1340889
– ident: CR58
– volume: 41
  start-page: 281
  issue: 3
  year: 1976
  end-page: 293
  ident: CR31
  article-title: More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling
  publication-title: Psychometrika
  doi: 10.1007/BF02293554
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: CR46
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– year: 2006
  ident: CR20
  publication-title: Data analysis using regression and multilevel/hierarchical models
  doi: 10.1017/CBO9780511790942
– ident: CR15
– volume: 163
  start-page: 754
  issue: 8
  year: 2006
  end-page: 761
  ident: CR18
  article-title: Characterizing the course of low back pain: A latent class analysis
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwj100
– volume: 18
  start-page: 450
  year: 2010
  end-page: 469
  ident: CR53
  article-title: Latent class modeling with covariates: Two improved three-step approaches
  publication-title: Political analysis
  doi: 10.1093/pan/mpq025
– year: 2019
  ident: CR54
  publication-title: Handbook of diagnostic classification models
  doi: 10.1007/978-3-030-05584-4
– ident: CR9
– volume: 95
  start-page: 553
  issue: 4
  year: 2000
  end-page: 567
  ident: CR7
  article-title: A latent class analysis of antisocial personality disorder symptom data from a multi-centre family study of alcoholism
  publication-title: Addiction
  doi: 10.1046/j.1360-0443.2000.9545537.x
– volume: 63
  start-page: 55
  issue: 1
  year: 2017
  end-page: 58
  ident: CR30
  article-title: Latent class analysis in health research
  publication-title: Journal of Physiotherapy
  doi: 10.1016/j.jphys.2016.05.018
– volume: 45
  start-page: 675
  issue: 2
  year: 2017
  end-page: 707
  ident: CR56
  article-title: Identifiability of restricted latent class models with binary responses
  publication-title: The Annals of Statistics
  doi: 10.1214/16-AOS1464
– year: 1970
  ident: CR25
  publication-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis
– volume: 6
  start-page: 164
  issue: 1–4
  year: 1927
  end-page: 189
  ident: CR26
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: Journal of Mathematics and Physics
  doi: 10.1002/sapm192761164
– volume: 15
  start-page: 2773
  issue: 1
  year: 2014
  end-page: 2832
  ident: CR3
  article-title: Tensor decompositions for learning latent variable models
  publication-title: The Journal of Machine Learning Research
– volume: 115
  start-page: 1756
  year: 2019
  end-page: 1770
  ident: CR12
  article-title: Structured latent factor analysis for large-scale data: Identifiability, estimability, and their implications
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2019.1635485
– volume: 10
  start-page: 21
  issue: 1
  year: 2005
  ident: CR34
  article-title: Investigating population heterogeneity with factor mixture models
  publication-title: Psychological Methods
  doi: 10.1037/1082-989X.10.1.21
– volume: 62
  start-page: 11
  issue: 1
  year: 2010
  ident: CR16
  article-title: Latent class analysis variable selection
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-009-0258-9
– year: 2015
  ident: CR45
  article-title: A diagnostic comparison of Turkish and Korean students’ mathematics performances on the TIMSS 2011 assessment
  publication-title: Journal of Measurement and Evaluation in Education and Psychology
  doi: 10.21031/epod.65266
– volume: 6
  start-page: 219
  issue: 4
  year: 2008
  end-page: 262
  ident: CR43
  article-title: Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art
  publication-title: Measurement
– volume: 84
  start-page: 124
  issue: 1
  year: 2019
  end-page: 146
  ident: CR11
  article-title: Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis
  publication-title: Psychometrika
  doi: 10.1007/s11336-018-9646-5
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  ident: CR29
  article-title: Tensor decompositions and applications
  publication-title: SIAM Review
  doi: 10.1137/07070111X
– ident: CR2
– year: 2022
  ident: CR35
  article-title: Learning latent and hierarchical structures in cognitive diagnosis models
  publication-title: Psychometrika
  doi: 10.1007/s11336-022-09867-5
– volume: 14
  start-page: 535
  issue: 4
  year: 2007
  end-page: 569
  ident: CR41
  article-title: Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705510701575396
– year: 2009
  ident: CR13
  publication-title: Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences
  doi: 10.1002/9780470567333
– volume: 45
  start-page: 77
  issue: 1
  year: 2017
  end-page: 120
  ident: CR5
  article-title: Statistical guarantees for the EM algorithm: From population to sample-based analysis
  publication-title: The Annals of Statistics
  doi: 10.1214/16-AOS1435
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  end-page: 1342
  ident: CR14
  article-title: On the best rank-1 and rank-( ) approximation of higher-order tensors
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/S0895479898346995
– volume: 14
  start-page: 315
  issue: 3
  year: 1992
  end-page: 332
  ident: CR8
  article-title: A classification EM algorithm for clustering and two stochastic versions
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/0167-9473(92)90042-E
– volume: 12
  start-page: 758
  year: 1984
  end-page: 765
  ident: CR40
  article-title: Asymptotic properties of criteria for selection of variables in multiple regression
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346522
– year: 2022
  ident: CR42
  article-title: Identifiability of latent class models with covariates
  publication-title: Psychometrika
  doi: 10.1007/s11336-022-09852-y
– ident: CR27
– volume: 37
  start-page: 3099
  issue: 6A
  year: 2009
  end-page: 3132
  ident: CR1
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: The Annals of Statistics
  doi: 10.1214/09-AOS689
– ident: CR23
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  ident: CR17
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 11
  start-page: 189
  issue: 3
  year: 2015
  end-page: 205
  ident: CR21
  article-title: Cognitive diagnosis models in R: A didactic
  publication-title: The Quantitative Methods for Psychology
  doi: 10.20982/tqmp.11.3.p189
– volume: 92
  start-page: 1375
  issue: 440
  year: 1997
  end-page: 1386
  ident: CR6
  article-title: Latent variable regression for multiple discrete outcomes
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10473658
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  end-page: 311
  ident: CR50
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 20
  start-page: 345
  year: 1983
  end-page: 354
  ident: CR48
  article-title: Rule space: An approach for dealing with misconceptions based on item response theory
  publication-title: Journal of Educational Measurement
  doi: 10.1111/j.1745-3984.1983.tb00212.x
– ident: CR52
– volume: 14
  start-page: 157
  issue: 2
  year: 2013
  end-page: 168
  ident: CR32
  article-title: Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment
  publication-title: Prevention Science
  doi: 10.1007/s11121-011-0201-1
– year: 1968
  ident: CR33
  publication-title: Latent structure analysis
– year: 2004
  ident: CR37
  publication-title: Finite mixture models
– year: 2002
  ident: CR24
  publication-title: Applied latent class analysis
  doi: 10.1017/CBO9780511499531
– ident: S0033312300007407_CR29
  doi: 10.1137/07070111X
– ident: S0033312300007407_CR32
  doi: 10.1007/s11121-011-0201-1
– ident: S0033312300007407_CR1
  doi: 10.1214/09-AOS689
– ident: S0033312300007407_CR28
  doi: 10.1001/archpsyc.61.2.192
– ident: S0033312300007407_CR6
  doi: 10.1080/01621459.1997.10473658
– ident: S0033312300007407_CR13
  doi: 10.1002/9780470567333
– ident: S0033312300007407_CR16
  doi: 10.1007/s10463-009-0258-9
– ident: S0033312300007407_CR53
  doi: 10.1093/pan/mpq025
– volume-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis
  year: 1970
  ident: S0033312300007407_CR25
– volume: 15
  start-page: 2773
  year: 2014
  ident: S0033312300007407_CR3
  article-title: Tensor decompositions for learning latent variable models
  publication-title: The Journal of Machine Learning Research
– ident: S0033312300007407_CR41
  doi: 10.1080/10705510701575396
– ident: S0033312300007407_CR36
  doi: 10.1201/9781351077118
– ident: S0033312300007407_CR4
– year: 2015
  ident: S0033312300007407_CR45
  article-title: A diagnostic comparison of Turkish and Korean students’ mathematics performances on the TIMSS 2011 assessment
  publication-title: Journal of Measurement and Evaluation in Education and Psychology
– ident: S0033312300007407_CR57
  doi: 10.1080/01621459.2017.1340889
– ident: S0033312300007407_CR24
  doi: 10.1017/CBO9780511499531
– ident: S0033312300007407_CR31
  doi: 10.1007/BF02293554
– year: 2022
  ident: S0033312300007407_CR35
  article-title: Learning latent and hierarchical structures in cognitive diagnosis models
  publication-title: Psychometrika
– ident: S0033312300007407_CR55
  doi: 10.1177/1094428110383988
– ident: S0033312300007407_CR9
– volume-title: Finite mixture models
  year: 2004
  ident: S0033312300007407_CR37
– ident: S0033312300007407_CR17
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: S0033312300007407_CR49
– ident: S0033312300007407_CR38
  doi: 10.1111/j.0006-341X.1999.00463.x
– ident: S0033312300007407_CR12
  doi: 10.1080/01621459.2019.1635485
– ident: S0033312300007407_CR34
  doi: 10.1037/1082-989X.10.1.21
– ident: S0033312300007407_CR21
  doi: 10.20982/tqmp.11.3.p189
– volume-title: Multi-way analysis: Applications in the chemical sciences
  year: 2005
  ident: S0033312300007407_CR47
– ident: S0033312300007407_CR27
  doi: 10.1145/2422436.2422439
– ident: S0033312300007407_CR54
  doi: 10.1007/978-3-030-05584-4
– ident: S0033312300007407_CR19
  doi: 10.1111/rssb.12001
– ident: S0033312300007407_CR58
– ident: S0033312300007407_CR8
  doi: 10.1016/0167-9473(92)90042-E
– volume: 45
  start-page: 1
  year: 2011
  ident: S0033312300007407_CR51
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: Journal of Statistical Software
– volume-title: Latent structure analysis
  year: 1968
  ident: S0033312300007407_CR33
– volume: 22
  start-page: 888
  year: 2000
  ident: S0033312300007407_CR46
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– ident: S0033312300007407_CR18
  doi: 10.1093/aje/kwj100
– ident: S0033312300007407_CR40
  doi: 10.1214/aos/1176346522
– ident: S0033312300007407_CR11
  doi: 10.1007/s11336-018-9646-5
– ident: S0033312300007407_CR5
  doi: 10.1214/16-AOS1435
– ident: S0033312300007407_CR20
  doi: 10.1017/CBO9780511790942
– ident: S0033312300007407_CR50
  doi: 10.1007/BF02289464
– ident: S0033312300007407_CR26
  doi: 10.1002/sapm192761164
– volume: 21
  start-page: 1324
  year: 2000
  ident: S0033312300007407_CR14
  article-title: On the best rank-1 and rank-(R1,R2,…,Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${R}_1, {R}_2,\ldots,{R}_n$$\end{document}) approximation of higher-order tensors
  publication-title: SIAM Journal on Matrix Analysis and Applications
– ident: S0033312300007407_CR52
  doi: 10.1007/978-3-540-45062-7_2
– ident: S0033312300007407_CR7
  doi: 10.1046/j.1360-0443.2000.9545537.x
– ident: S0033312300007407_CR2
– volume: 6
  start-page: 219
  year: 2008
  ident: S0033312300007407_CR43
  article-title: Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art
  publication-title: Measurement
– ident: S0033312300007407_CR48
  doi: 10.1111/j.1745-3984.1983.tb00212.x
– ident: S0033312300007407_CR23
  doi: 10.1080/01621459.2021.1955689
– ident: S0033312300007407_CR44
  doi: 10.1214/aos/1176344136
– ident: S0033312300007407_CR30
  doi: 10.1016/j.jphys.2016.05.018
– ident: S0033312300007407_CR15
– ident: S0033312300007407_CR56
  doi: 10.1214/16-AOS1464
– ident: S0033312300007407_CR22
  doi: 10.1093/biomet/61.2.215
– ident: S0033312300007407_CR42
  doi: 10.1007/s11336-022-09852-y
– ident: S0033312300007407_CR39
  doi: 10.2307/1914288
– ident: S0033312300007407_CR10
  doi: 10.1007/s11336-016-9545-6
SSID ssj0009188
Score 2.390504
Snippet Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 580
SubjectTerms Algorithms
Assessment
Behavioral Science and Psychology
Computer Simulation
Educational Assessment
Humanities
Humans
Latent Class Analysis
Law
Likelihood Functions
Mathematical models
Mathematics
Maximum Likelihood Statistics
Models, Statistical
Psychology
Psychometrics
Statistical analysis
Statistical Theory and Methods
Statistics for Social Sciences
Testing and Evaluation
Theory and Methods
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL72I1tdqlQjeNNA8drM9Vmkp0vagLfS2JNnkJK20W8R_72RfRaqCt4XNZpeZZGa-zcw3CN0554x2oAFlOCMidYbEoeBExJapMNW0qzxQHE-i4Uw8z8N5WRS2rrLdqyPJ3FJvi90ATvmEWUY6Xb81APMchB67wyqesd6WapfGhf3lvnKM8bJU5uc5vrujnRhz53w0dzuDI3RYxou4Vyj4GO3ZRQvtj9RHCzVr4_V5giY9PAVEulyR_hiP87bQGOJRPPKZ3uQVNGHhGgLkDOd9MHHFRoL9n1j8mJfl4pciY9auT9Fs0J8-DUnZK4EYLsOMAKqzOkpVl6WUO5ezuEP0psAHGgsOKTXOyTRKZeyo0VJJACq0Yy3nmmvPCXOGGovlwl4gLLg0USSFNoaKUHW09qAklNyqmMpIBIhWIktMSSTu-1m8JVsKZC_mBMSc5GJOaIDu62feCxqNP0e3K00k5ZZaJyymgkGAw-MA3da3YTP4Ew61sMsNjPEtdwBQxixA54UG69fxCKxXh8PnP1Qq3U7--7dc_m_4FWr6hvRFMlkbNbLVxl5D2JLpm3yVfgHn8N-E
  priority: 102
  providerName: Springer Nature
Title A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses
URI https://link.springer.com/article/10.1007/s11336-022-09887-1
https://www.ncbi.nlm.nih.gov/pubmed/36183034
https://www.proquest.com/docview/2814207538
https://www.proquest.com/docview/2720424982
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcIEDotCW8JIrcStW48euNycUUChqm6gCIqWnle21TygBkhz498zsK6pQOe1q17tredbzsGe-D-AsxuhdRAlYryTXRfQ8S7TiOgvSJoUTfUuB4mic3kz0z2kyrRfcFnVaZaMTS0VdzD2tkX-XmdAS7ZvKLh6fOLFG0e5qTaGxAZsEXUYpXWZq1qC7Iqs0saIaMqnqopmqdA6DM0q_lbzXp4km_jVMb7zNNzulpQG63oWd2nNkg0rUH-FDmO3B9qiFXV3swVarzl72YTxg9xijzp_5cMRGJVE0Qw-V_abcb36Hsgl4ji7zkpXMmKzBJ2G0Nssuy0Jddlvl0IbFJ5hcD--vbnjNnsC9MsmSY5wXXFrYviyEirHEdUd_zqJV9AFNVOFjNEVamCwK74w1GLqIXghKOeUIJeYzdGbzWTgAppXxaWq0817oxPacozAlMSrYTJhUd0E0Q5f7GlqcGC4e8jUoMg13jsOdl8Odiy58a595rIA13m193EgkryfZIl__El342t7G6UF7HnYW5itsQyQ8GGJmsgtfKkm2n1Mp6rOewu6fN6Jdv_z_fTl8vy9HsEWU9FU62TF0ls-rcIKOy9Kdln_nKWwOfvz9NcTj5XD85xavTuTgFZaF6fg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFH6i4VB6qAptacpmJDi1FvEy48mhQixBATIRokHiNtge-1QlKQmq-FP9jTzPFlWo3LiNNGOP9TZ_z34LwJ733hqPHNBWcCpzb2kSSUFl4riOcsO6OjiK6TDu38iL2-h2Cf7WuTAhrLK2iYWhzic2nJEf8IRJjvubSA6nv2noGhVuV-sWGqVYXLrHP-iyzX6cnyJ_9zk_641O-rTqKkCtUNGcov_jTJzrLs-Z8L6od444R-NuYR2a7tx6r_I4V4ln1iitENKzjnNCGGFC9RSc9w0sS4GjWrB83BteXS_K_LKktP0iZK1xUaXplMl66A6GgF9OO92g2uzfrfAZvn12N1tseWcf4H2FVclRKVyrsOTGa_AubQq9ztZgpTGgjx9heERG6BVP7mkvJWnRmpogJiaDEG1Of6I0OHxGkD4nRS9OUldEIeE0mBwXqcHkuozadbNPcPMqlP0MrfFk7L4AkULZOFbSWMtkpDvGBMcoUsLphKlYtoHVpMtsVcw89NT4lS3KMAdyZ0jurCB3xtrwrRkzLUt5vPj1Zs2RrFLrWbYQwjbsNq9RIcMtix67yQN-E9r-oFOb8Dasl5xsfiditKAdgcv_XrN2Mfn_1_L15bXswNv-KB1kg_Ph5QascIRhZTDbJrTm9w9uC2HT3GxXskrg7rXV4wnxISUj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkCp6qAqlNIWCK7UnahE_dr05VBUFIl6Jqhak3Bbba59QAiSo4q_11zGzr6hC5cZtpX1Z8x575huAzzFG7yJywHoluS6i51miFddZkDYpnOhZShQHw_ToQp-MktEC_G16YaissrGJpaEuJp72yHdlJrRE_6ay3ViXRfw86H-_vuE0QYpOWptxGpWInIb7P5i-Tb8dHyCvv0jZPzzfP-L1hAHulUlmHHOh4NLC9mQhVIwl9jnGPBY9hw9oxgsfoynSwmRReGeswfBedENQyilHSCr43RewZFQiSMfMyMwBf0VWeQFF_WtS1Q07VdseJoZU-it5t0dKLv51io8i3UentKXz67-B13XUyvYqMVuBhTBehVeDFvJ1ugrLrSm9fwvDPXaO-fHklh8O2KAcUs0wOmZnVHfOf6NcBLzGcH3GyqmcrMFGYbQvzH6UTcLsV1W_G6ZrcPEsdH0Hi-PJOLwHppXxaWq0817oxHadoxQpMSrYTJhUd0A0pMt9DWtO0zWu8jkgM5E7R3LnJblz0YGd9p3rCtTjyac3G47ktYJP87k4duBTextVk85b7DhM7vAZGgCE6W0mO7BecbL9nUrRlnYVLv9rw9r5x_-_lg9Pr2UbXqJS5GfHw9MNWJYYj1VVbZuwOLu9Cx8xfpq5rVJQGVw-t2Y8AK25J_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tensor-EM+Method+for+Large-Scale+Latent+Class+Analysis+with+Binary+Responses&rft.jtitle=Psychometrika&rft.au=Zeng%2C+Zhenghao&rft.au=Gu%2C+Yuqi&rft.au=Xu%2C+Gongjun&rft.date=2023-06-01&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=88&rft.issue=2&rft.spage=580&rft.epage=612&rft_id=info:doi/10.1007%2Fs11336-022-09887-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11336_022_09887_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon