A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses
Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J ) and many sub...
Saved in:
Published in | Psychometrika Vol. 88; no. 2; pp. 580 - 612 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large
J
) and many subjects (large
N
). This is in contrary to the traditional regime with fixed
J
and large
N
. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when
N
and
J
both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration. |
---|---|
AbstractList | Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large
J
) and many subjects (large
N
). This is in contrary to the traditional regime with fixed
J
and large
N
. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when
N
and
J
both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration. Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration. Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration.Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science, researchers often have access to response data collected from large-scale surveys or assessments, featuring many items (large J) and many subjects (large N). This is in contrary to the traditional regime with fixed J and large N. To analyze such large-scale data, it is important to develop methods that are both computationally efficient and theoretically valid. In terms of computation, the conventional EM algorithm for latent class models tends to have a slow algorithmic convergence rate for large-scale data and may converge to some local optima instead of the maximum likelihood estimator (MLE). Motivated by this, we introduce the tensor decomposition perspective into latent class analysis with binary responses. Methodologically, we propose to use a moment-based tensor power method in the first step and then use the obtained estimates as initialization for the EM algorithm in the second step. Theoretically, we establish the clustering consistency of the MLE in assigning subjects into latent classes when N and J both go to infinity. Simulation studies suggest that the proposed tensor-EM pipeline enjoys both good accuracy and computational efficiency for large-scale data with binary responses. We also apply the proposed method to an educational assessment dataset as an illustration. |
Author | Zeng, Zhenghao Gu, Yuqi Xu, Gongjun |
Author_xml | – sequence: 1 givenname: Zhenghao surname: Zeng fullname: Zeng, Zhenghao organization: Department of Statistics and Data Science, Carnegie Mellon University – sequence: 2 givenname: Yuqi surname: Gu fullname: Gu, Yuqi organization: Department of Statistics, Columbia University – sequence: 3 givenname: Gongjun orcidid: 0000-0003-4023-5413 surname: Xu fullname: Xu, Gongjun email: gongjun@umich.edu organization: Department of Statistics, University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36183034$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFuEzEQhi1URNPCC3BAlrhwMYztzdp7DFFpkVKQoJwtr3e23WpjB48j1LfHJQWkHnryWPo-e2b-E3YUU0TGXkt4LwHMB5JS61aAUgI6a42Qz9hC2hbur3DEFgBaCy2VPmYnRLcA0ElrX7Bj3UqrQTcL9mXFrzBSyuLskl9iuUkDH1PmG5-vUXwPfsZaF4yFr2dPxFfRz3c0Ef81lRv-cYo-3_FvSLsUCeklez76mfDVw3nKfnw6u1pfiM3X88_r1UYEbZZFNE2LfTv4Tg1Sj6NSHbQgOx8QA7bGDmEczdAOxo4y9MabxhoJiFr3uocl6FP27vDuLqefe6TithMFnGcfMe3JKaOgUU1nVUXfPkJv0z7XKSplZaPALLWt1JsHat9vcXC7PG3rZO7vpiqgDkDIiSjj-A-R4O7jcIc4XI3D_YnDySrZR1KYii9TiiX7aX5a1QeV6j_xGvP_tp-wfgPJzpxW |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_120785 crossref_primary_10_1093_biomtc_ujae103 crossref_primary_10_1080_01621459_2025_2455198 |
Cites_doi | 10.1093/biomet/61.2.215 10.18637/jss.v045.i03 10.1001/archpsyc.61.2.192 10.2307/1914288 10.1201/9781351077118 10.1007/s11336-016-9545-6 10.1214/aos/1176344136 10.1111/j.0006-341X.1999.00463.x 10.1177/1094428110383988 10.1111/rssb.12001 10.1080/01621459.2017.1340889 10.1007/BF02293554 10.1109/34.868688 10.1017/CBO9780511790942 10.1093/aje/kwj100 10.1093/pan/mpq025 10.1007/978-3-030-05584-4 10.1046/j.1360-0443.2000.9545537.x 10.1016/j.jphys.2016.05.018 10.1214/16-AOS1464 10.1002/sapm192761164 10.1080/01621459.2019.1635485 10.1037/1082-989X.10.1.21 10.1007/s10463-009-0258-9 10.21031/epod.65266 10.1007/s11336-018-9646-5 10.1137/07070111X 10.1007/s11336-022-09867-5 10.1080/10705510701575396 10.1002/9780470567333 10.1214/16-AOS1435 10.1137/S0895479898346995 10.1016/0167-9473(92)90042-E 10.1214/aos/1176346522 10.1007/s11336-022-09852-y 10.1214/09-AOS689 10.20982/tqmp.11.3.p189 10.1080/01621459.1997.10473658 10.1007/BF02289464 10.1111/j.1745-3984.1983.tb00212.x 10.1007/s11121-011-0201-1 10.1017/CBO9780511499531 10.1111/j.2517-6161.1977.tb01600.x 10.1145/2422436.2422439 10.1007/978-3-540-45062-7_2 10.1080/01621459.2021.1955689 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to The Psychometric Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s) under exclusive licence to The Psychometric Society. |
Copyright_xml | – notice: The Author(s) under exclusive licence to The Psychometric Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s) under exclusive licence to The Psychometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7TK 7WY 7WZ 7X7 7XB 87Z 88B 88E 88G 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU CJNVE DWQXO FRNLG FYUFA F~G GHDGH GNUQQ K60 K6~ K9. L.- M0C M0P M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEDU PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s11336-022-09887-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Neurosciences Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Education Collection ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Education Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest Business Collection (Alumni Edition) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ProQuest Central China ABI/INFORM Complete Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Education Journals ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest One Education MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Law Mathematics |
EISSN | 1860-0980 |
EndPage | 612 |
ExternalDocumentID | 36183034 10_1007_s11336_022_09887_1 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: SES-2150601 – fundername: National Science Foundation grantid: SES-1846747 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Institute of Education Sciences grantid: R305D200015 funderid: http://dx.doi.org/10.13039/100005246 |
GroupedDBID | --Z -4V -55 -5G -BR -EM -W8 -Y2 -~C -~X .86 .GO .VR 0-V 06D 09C 0R~ 0VY 123 186 199 1N0 1SB 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABGDZ ABGFU ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUC ACDLN ACGFS ACHQT ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IRVIT ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM LPU M0C M0P M1P M2M M4Y MA- MVM N2Q N9A NB0 NDZJH NEJ NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P9L PF- PQBIZ PQBZA PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RCA RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBS SBU SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WHG WIP WK6 WK8 XOL YLTOR YYQ Z45 Z81 Z83 Z8U Z92 ZCG ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAYXX ABFSG ABXHF ACSTC ADHKG ADXHL AETEA AEZWR AFHIU AFOHR AGQPQ AGTDA AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IPYYG PHGZM PHGZT AAXMD CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7TK 7XB 8FK K9. L.- PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-446eb6da92d13ff22906019aceece678dcff7d6d78f1cb7a748710ee33b3b0503 |
IEDL.DBID | 7X7 |
ISSN | 0033-3123 1860-0980 |
IngestDate | Fri Jul 11 03:36:50 EDT 2025 Sat Aug 23 13:54:38 EDT 2025 Mon Jul 21 05:56:27 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Tue Jul 01 02:08:24 EDT 2025 Fri Feb 21 02:45:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | clustering consistency large-scale latent class analysis tensor power method EM algorithm tensor decomposition |
Language | English |
License | https://www.cambridge.org/core/terms 2022. The Author(s) under exclusive licence to The Psychometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-446eb6da92d13ff22906019aceece678dcff7d6d78f1cb7a748710ee33b3b0503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4023-5413 |
PMID | 36183034 |
PQID | 2814207538 |
PQPubID | 47416 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2720424982 proquest_journals_2814207538 pubmed_primary_36183034 crossref_primary_10_1007_s11336_022_09887_1 crossref_citationtrail_10_1007_s11336_022_09887_1 springer_journals_10_1007_s11336_022_09887_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Psychometrika |
PublicationTitleAbbrev | Psychometrika |
PublicationTitleAlternate | Psychometrika |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ma, Ouyang, Xu (CR35) 2022 Lubke, Muthén (CR34) 2005; 10 Tucker (CR50) 1966; 31 Dean, Raftery (CR16) 2010; 62 Keel, Fichter, Quadflieg, Bulik, Baxter, Thornton, Halmi, Kaplan, Strober, Woodside (CR28) 2004; 61 Goodman (CR22) 1974; 61 Hagenaars, McCutcheon (CR24) 2002 Vermunt (CR53) 2010; 18 Neyman, Scott (CR39) 1948; 16 Bandeen-Roche, Miglioretti, Zeger, Rathouz (CR6) 1997; 92 Dunn, Jordan, Croft (CR18) 2006; 163 Chen, Li, Zhang (CR12) 2019; 115 Kongsted, Nielsen (CR30) 2017; 63 Wang, Hanges (CR55) 2011; 14 Allman, Matias, Rhodes (CR1) 2009; 37 Celeux, Govaert (CR8) 1992; 14 Ouyang, Xu (CR42) 2022 Shi, Malik (CR46) 2000; 22 Gelman, Hill (CR20) 2006 Sedat, Arican (CR45) 2015 Collins, Lanza (CR13) 2009 CR2 Tatsuoka (CR48) 1983; 20 CR4 Balakrishnan, Wainwright, Yu (CR5) 2017; 45 Bucholz, Hesselbrock, Heath, Kramer, Schuckit (CR7) 2000; 95 CR9 McCullagh (CR36) 2018 CR49 Rupp, Templin (CR43) 2008; 6 Xu, Shang (CR57) 2018; 113 Dempster, Laird, Rubin (CR17) 1977; 39 Hitchcock (CR26) 1927; 6 Muthén, Shedden (CR38) 1999; 55 George, Robitzsch (CR21) 2015; 11 CR15 Schwarz (CR44) 1978; 6 CR58 CR52 Kolda, Bader (CR29) 2009; 51 Nylund, Asparouhov, Muthén (CR41) 2007; 14 Kruskal (CR31) 1976; 41 von Davier, Lee (CR54) 2019 Lanza, Rhoades (CR32) 2013; 14 Van Buuren, Groothuis-Oudshoorn (CR51) 2011; 45 Anandkumar, Ge, Hsu, Kakade, Telgarsky (CR3) 2014; 15 CR27 McLachlan, Peel (CR37) 2004 Smilde, Bro, Geladi (CR47) 2005 CR23 Nishii (CR40) 1984; 12 Chen, Li, Zhang (CR11) 2019; 84 Harshman (CR25) 1970 Lazarsfeld, Henry (CR33) 1968 Xu (CR56) 2017; 45 De, De Moor, Vandewalle (CR14) 2000; 21 Fan, Tang (CR19) 2013; 75 Chen, Li, Liu, Ying (CR10) 2017; 82 S0033312300007407_CR19 Shi (S0033312300007407_CR46) 2000; 22 S0033312300007407_CR21 S0033312300007407_CR6 S0033312300007407_CR20 S0033312300007407_CR7 S0033312300007407_CR4 S0033312300007407_CR5 S0033312300007407_CR2 S0033312300007407_CR1 S0033312300007407_CR29 Harshman (S0033312300007407_CR25) 1970 S0033312300007407_CR28 S0033312300007407_CR27 S0033312300007407_CR26 Smilde (S0033312300007407_CR47) 2005 S0033312300007407_CR24 S0033312300007407_CR23 S0033312300007407_CR22 Anandkumar (S0033312300007407_CR3) 2014; 15 Van Buuren (S0033312300007407_CR51) 2011; 45 S0033312300007407_CR8 S0033312300007407_CR9 S0033312300007407_CR32 S0033312300007407_CR31 S0033312300007407_CR30 De (S0033312300007407_CR14) 2000; 21 S0033312300007407_CR39 Rupp (S0033312300007407_CR43) 2008; 6 S0033312300007407_CR38 S0033312300007407_CR36 S0033312300007407_CR34 Ma (S0033312300007407_CR35) 2022 S0033312300007407_CR42 S0033312300007407_CR41 S0033312300007407_CR40 S0033312300007407_CR49 S0033312300007407_CR48 S0033312300007407_CR44 Lazarsfeld (S0033312300007407_CR33) 1968 S0033312300007407_CR54 S0033312300007407_CR10 Sedat (S0033312300007407_CR45) 2015 S0033312300007407_CR53 S0033312300007407_CR52 S0033312300007407_CR50 McLachlan (S0033312300007407_CR37) 2004 S0033312300007407_CR18 S0033312300007407_CR17 S0033312300007407_CR16 S0033312300007407_CR15 S0033312300007407_CR58 S0033312300007407_CR13 S0033312300007407_CR57 S0033312300007407_CR56 S0033312300007407_CR12 S0033312300007407_CR11 S0033312300007407_CR55 |
References_xml | – volume: 61 start-page: 215 issue: 2 year: 1974 end-page: 231 ident: CR22 article-title: Exploratory latent structure analysis using both identifiable and unidentifiable models publication-title: Biometrika doi: 10.1093/biomet/61.2.215 – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: CR51 article-title: mice: Multivariate imputation by chained equations in R publication-title: Journal of Statistical Software doi: 10.18637/jss.v045.i03 – ident: CR49 – volume: 61 start-page: 192 issue: 2 year: 2004 end-page: 200 ident: CR28 article-title: Application of a latent class analysis to empirically define eatingdisorder phenotypes publication-title: Archives of General Psychiatry doi: 10.1001/archpsyc.61.2.192 – volume: 16 start-page: 1 year: 1948 end-page: 32 ident: CR39 article-title: Consistent estimates based on partially consistent observations publication-title: Econometrica: Journal of the Econometric Society doi: 10.2307/1914288 – year: 2018 ident: CR36 publication-title: Tensor methods in statistics: Monographs on statistics and applied probability doi: 10.1201/9781351077118 – ident: CR4 – volume: 82 start-page: 660 issue: 3 year: 2017 end-page: 692 ident: CR10 article-title: Regularized latent class analysis with application in cognitive diagnosis publication-title: Psychometrika doi: 10.1007/s11336-016-9545-6 – volume: 6 start-page: 461 issue: 2 year: 1978 end-page: 464 ident: CR44 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics doi: 10.1214/aos/1176344136 – year: 2005 ident: CR47 publication-title: Multi-way analysis: Applications in the chemical sciences – volume: 55 start-page: 463 issue: 2 year: 1999 end-page: 469 ident: CR38 article-title: Finite mixture modeling with mixture outcomes using the EM algorithm publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00463.x – volume: 14 start-page: 24 issue: 1 year: 2011 end-page: 31 ident: CR55 article-title: Latent class procedures: Applications to organizational research publication-title: Organizational Research Methods doi: 10.1177/1094428110383988 – volume: 75 start-page: 531 issue: 3 year: 2013 end-page: 552 ident: CR19 article-title: Tuning parameter selection in high dimensional penalized likelihood publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12001 – volume: 113 start-page: 1284 issue: 523 year: 2018 end-page: 1295 ident: CR57 article-title: Identifying latent structures in restricted latent class models publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2017.1340889 – ident: CR58 – volume: 41 start-page: 281 issue: 3 year: 1976 end-page: 293 ident: CR31 article-title: More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling publication-title: Psychometrika doi: 10.1007/BF02293554 – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 ident: CR46 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – year: 2006 ident: CR20 publication-title: Data analysis using regression and multilevel/hierarchical models doi: 10.1017/CBO9780511790942 – ident: CR15 – volume: 163 start-page: 754 issue: 8 year: 2006 end-page: 761 ident: CR18 article-title: Characterizing the course of low back pain: A latent class analysis publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwj100 – volume: 18 start-page: 450 year: 2010 end-page: 469 ident: CR53 article-title: Latent class modeling with covariates: Two improved three-step approaches publication-title: Political analysis doi: 10.1093/pan/mpq025 – year: 2019 ident: CR54 publication-title: Handbook of diagnostic classification models doi: 10.1007/978-3-030-05584-4 – ident: CR9 – volume: 95 start-page: 553 issue: 4 year: 2000 end-page: 567 ident: CR7 article-title: A latent class analysis of antisocial personality disorder symptom data from a multi-centre family study of alcoholism publication-title: Addiction doi: 10.1046/j.1360-0443.2000.9545537.x – volume: 63 start-page: 55 issue: 1 year: 2017 end-page: 58 ident: CR30 article-title: Latent class analysis in health research publication-title: Journal of Physiotherapy doi: 10.1016/j.jphys.2016.05.018 – volume: 45 start-page: 675 issue: 2 year: 2017 end-page: 707 ident: CR56 article-title: Identifiability of restricted latent class models with binary responses publication-title: The Annals of Statistics doi: 10.1214/16-AOS1464 – year: 1970 ident: CR25 publication-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis – volume: 6 start-page: 164 issue: 1–4 year: 1927 end-page: 189 ident: CR26 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: Journal of Mathematics and Physics doi: 10.1002/sapm192761164 – volume: 15 start-page: 2773 issue: 1 year: 2014 end-page: 2832 ident: CR3 article-title: Tensor decompositions for learning latent variable models publication-title: The Journal of Machine Learning Research – volume: 115 start-page: 1756 year: 2019 end-page: 1770 ident: CR12 article-title: Structured latent factor analysis for large-scale data: Identifiability, estimability, and their implications publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2019.1635485 – volume: 10 start-page: 21 issue: 1 year: 2005 ident: CR34 article-title: Investigating population heterogeneity with factor mixture models publication-title: Psychological Methods doi: 10.1037/1082-989X.10.1.21 – volume: 62 start-page: 11 issue: 1 year: 2010 ident: CR16 article-title: Latent class analysis variable selection publication-title: Annals of the Institute of Statistical Mathematics doi: 10.1007/s10463-009-0258-9 – year: 2015 ident: CR45 article-title: A diagnostic comparison of Turkish and Korean students’ mathematics performances on the TIMSS 2011 assessment publication-title: Journal of Measurement and Evaluation in Education and Psychology doi: 10.21031/epod.65266 – volume: 6 start-page: 219 issue: 4 year: 2008 end-page: 262 ident: CR43 article-title: Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art publication-title: Measurement – volume: 84 start-page: 124 issue: 1 year: 2019 end-page: 146 ident: CR11 article-title: Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis publication-title: Psychometrika doi: 10.1007/s11336-018-9646-5 – volume: 51 start-page: 455 issue: 3 year: 2009 end-page: 500 ident: CR29 article-title: Tensor decompositions and applications publication-title: SIAM Review doi: 10.1137/07070111X – ident: CR2 – year: 2022 ident: CR35 article-title: Learning latent and hierarchical structures in cognitive diagnosis models publication-title: Psychometrika doi: 10.1007/s11336-022-09867-5 – volume: 14 start-page: 535 issue: 4 year: 2007 end-page: 569 ident: CR41 article-title: Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705510701575396 – year: 2009 ident: CR13 publication-title: Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences doi: 10.1002/9780470567333 – volume: 45 start-page: 77 issue: 1 year: 2017 end-page: 120 ident: CR5 article-title: Statistical guarantees for the EM algorithm: From population to sample-based analysis publication-title: The Annals of Statistics doi: 10.1214/16-AOS1435 – volume: 21 start-page: 1324 issue: 4 year: 2000 end-page: 1342 ident: CR14 article-title: On the best rank-1 and rank-( ) approximation of higher-order tensors publication-title: SIAM Journal on Matrix Analysis and Applications doi: 10.1137/S0895479898346995 – volume: 14 start-page: 315 issue: 3 year: 1992 end-page: 332 ident: CR8 article-title: A classification EM algorithm for clustering and two stochastic versions publication-title: Computational Statistics & Data Analysis doi: 10.1016/0167-9473(92)90042-E – volume: 12 start-page: 758 year: 1984 end-page: 765 ident: CR40 article-title: Asymptotic properties of criteria for selection of variables in multiple regression publication-title: The Annals of Statistics doi: 10.1214/aos/1176346522 – year: 2022 ident: CR42 article-title: Identifiability of latent class models with covariates publication-title: Psychometrika doi: 10.1007/s11336-022-09852-y – ident: CR27 – volume: 37 start-page: 3099 issue: 6A year: 2009 end-page: 3132 ident: CR1 article-title: Identifiability of parameters in latent structure models with many observed variables publication-title: The Annals of Statistics doi: 10.1214/09-AOS689 – ident: CR23 – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 22 ident: CR17 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 11 start-page: 189 issue: 3 year: 2015 end-page: 205 ident: CR21 article-title: Cognitive diagnosis models in R: A didactic publication-title: The Quantitative Methods for Psychology doi: 10.20982/tqmp.11.3.p189 – volume: 92 start-page: 1375 issue: 440 year: 1997 end-page: 1386 ident: CR6 article-title: Latent variable regression for multiple discrete outcomes publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1997.10473658 – volume: 31 start-page: 279 issue: 3 year: 1966 end-page: 311 ident: CR50 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 20 start-page: 345 year: 1983 end-page: 354 ident: CR48 article-title: Rule space: An approach for dealing with misconceptions based on item response theory publication-title: Journal of Educational Measurement doi: 10.1111/j.1745-3984.1983.tb00212.x – ident: CR52 – volume: 14 start-page: 157 issue: 2 year: 2013 end-page: 168 ident: CR32 article-title: Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment publication-title: Prevention Science doi: 10.1007/s11121-011-0201-1 – year: 1968 ident: CR33 publication-title: Latent structure analysis – year: 2004 ident: CR37 publication-title: Finite mixture models – year: 2002 ident: CR24 publication-title: Applied latent class analysis doi: 10.1017/CBO9780511499531 – ident: S0033312300007407_CR29 doi: 10.1137/07070111X – ident: S0033312300007407_CR32 doi: 10.1007/s11121-011-0201-1 – ident: S0033312300007407_CR1 doi: 10.1214/09-AOS689 – ident: S0033312300007407_CR28 doi: 10.1001/archpsyc.61.2.192 – ident: S0033312300007407_CR6 doi: 10.1080/01621459.1997.10473658 – ident: S0033312300007407_CR13 doi: 10.1002/9780470567333 – ident: S0033312300007407_CR16 doi: 10.1007/s10463-009-0258-9 – ident: S0033312300007407_CR53 doi: 10.1093/pan/mpq025 – volume-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis year: 1970 ident: S0033312300007407_CR25 – volume: 15 start-page: 2773 year: 2014 ident: S0033312300007407_CR3 article-title: Tensor decompositions for learning latent variable models publication-title: The Journal of Machine Learning Research – ident: S0033312300007407_CR41 doi: 10.1080/10705510701575396 – ident: S0033312300007407_CR36 doi: 10.1201/9781351077118 – ident: S0033312300007407_CR4 – year: 2015 ident: S0033312300007407_CR45 article-title: A diagnostic comparison of Turkish and Korean students’ mathematics performances on the TIMSS 2011 assessment publication-title: Journal of Measurement and Evaluation in Education and Psychology – ident: S0033312300007407_CR57 doi: 10.1080/01621459.2017.1340889 – ident: S0033312300007407_CR24 doi: 10.1017/CBO9780511499531 – ident: S0033312300007407_CR31 doi: 10.1007/BF02293554 – year: 2022 ident: S0033312300007407_CR35 article-title: Learning latent and hierarchical structures in cognitive diagnosis models publication-title: Psychometrika – ident: S0033312300007407_CR55 doi: 10.1177/1094428110383988 – ident: S0033312300007407_CR9 – volume-title: Finite mixture models year: 2004 ident: S0033312300007407_CR37 – ident: S0033312300007407_CR17 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: S0033312300007407_CR49 – ident: S0033312300007407_CR38 doi: 10.1111/j.0006-341X.1999.00463.x – ident: S0033312300007407_CR12 doi: 10.1080/01621459.2019.1635485 – ident: S0033312300007407_CR34 doi: 10.1037/1082-989X.10.1.21 – ident: S0033312300007407_CR21 doi: 10.20982/tqmp.11.3.p189 – volume-title: Multi-way analysis: Applications in the chemical sciences year: 2005 ident: S0033312300007407_CR47 – ident: S0033312300007407_CR27 doi: 10.1145/2422436.2422439 – ident: S0033312300007407_CR54 doi: 10.1007/978-3-030-05584-4 – ident: S0033312300007407_CR19 doi: 10.1111/rssb.12001 – ident: S0033312300007407_CR58 – ident: S0033312300007407_CR8 doi: 10.1016/0167-9473(92)90042-E – volume: 45 start-page: 1 year: 2011 ident: S0033312300007407_CR51 article-title: mice: Multivariate imputation by chained equations in R publication-title: Journal of Statistical Software – volume-title: Latent structure analysis year: 1968 ident: S0033312300007407_CR33 – volume: 22 start-page: 888 year: 2000 ident: S0033312300007407_CR46 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – ident: S0033312300007407_CR18 doi: 10.1093/aje/kwj100 – ident: S0033312300007407_CR40 doi: 10.1214/aos/1176346522 – ident: S0033312300007407_CR11 doi: 10.1007/s11336-018-9646-5 – ident: S0033312300007407_CR5 doi: 10.1214/16-AOS1435 – ident: S0033312300007407_CR20 doi: 10.1017/CBO9780511790942 – ident: S0033312300007407_CR50 doi: 10.1007/BF02289464 – ident: S0033312300007407_CR26 doi: 10.1002/sapm192761164 – volume: 21 start-page: 1324 year: 2000 ident: S0033312300007407_CR14 article-title: On the best rank-1 and rank-(R1,R2,…,Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${R}_1, {R}_2,\ldots,{R}_n$$\end{document}) approximation of higher-order tensors publication-title: SIAM Journal on Matrix Analysis and Applications – ident: S0033312300007407_CR52 doi: 10.1007/978-3-540-45062-7_2 – ident: S0033312300007407_CR7 doi: 10.1046/j.1360-0443.2000.9545537.x – ident: S0033312300007407_CR2 – volume: 6 start-page: 219 year: 2008 ident: S0033312300007407_CR43 article-title: Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art publication-title: Measurement – ident: S0033312300007407_CR48 doi: 10.1111/j.1745-3984.1983.tb00212.x – ident: S0033312300007407_CR23 doi: 10.1080/01621459.2021.1955689 – ident: S0033312300007407_CR44 doi: 10.1214/aos/1176344136 – ident: S0033312300007407_CR30 doi: 10.1016/j.jphys.2016.05.018 – ident: S0033312300007407_CR15 – ident: S0033312300007407_CR56 doi: 10.1214/16-AOS1464 – ident: S0033312300007407_CR22 doi: 10.1093/biomet/61.2.215 – ident: S0033312300007407_CR42 doi: 10.1007/s11336-022-09852-y – ident: S0033312300007407_CR39 doi: 10.2307/1914288 – ident: S0033312300007407_CR10 doi: 10.1007/s11336-016-9545-6 |
SSID | ssj0009188 |
Score | 2.390504 |
Snippet | Latent class models are powerful statistical modeling tools widely used in psychological, behavioral, and social sciences. In the modern era of data science,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 580 |
SubjectTerms | Algorithms Assessment Behavioral Science and Psychology Computer Simulation Educational Assessment Humanities Humans Latent Class Analysis Law Likelihood Functions Mathematical models Mathematics Maximum Likelihood Statistics Models, Statistical Psychology Psychometrics Statistical analysis Statistical Theory and Methods Statistics for Social Sciences Testing and Evaluation Theory and Methods |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL72I1tdqlQjeNNA8drM9Vmkp0vagLfS2JNnkJK20W8R_72RfRaqCt4XNZpeZZGa-zcw3CN0554x2oAFlOCMidYbEoeBExJapMNW0qzxQHE-i4Uw8z8N5WRS2rrLdqyPJ3FJvi90ATvmEWUY6Xb81APMchB67wyqesd6WapfGhf3lvnKM8bJU5uc5vrujnRhz53w0dzuDI3RYxou4Vyj4GO3ZRQvtj9RHCzVr4_V5giY9PAVEulyR_hiP87bQGOJRPPKZ3uQVNGHhGgLkDOd9MHHFRoL9n1j8mJfl4pciY9auT9Fs0J8-DUnZK4EYLsOMAKqzOkpVl6WUO5ezuEP0psAHGgsOKTXOyTRKZeyo0VJJACq0Yy3nmmvPCXOGGovlwl4gLLg0USSFNoaKUHW09qAklNyqmMpIBIhWIktMSSTu-1m8JVsKZC_mBMSc5GJOaIDu62feCxqNP0e3K00k5ZZaJyymgkGAw-MA3da3YTP4Ew61sMsNjPEtdwBQxixA54UG69fxCKxXh8PnP1Qq3U7--7dc_m_4FWr6hvRFMlkbNbLVxl5D2JLpm3yVfgHn8N-E priority: 102 providerName: Springer Nature |
Title | A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses |
URI | https://link.springer.com/article/10.1007/s11336-022-09887-1 https://www.ncbi.nlm.nih.gov/pubmed/36183034 https://www.proquest.com/docview/2814207538 https://www.proquest.com/docview/2720424982 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcIEDotCW8JIrcStW48euNycUUChqm6gCIqWnle21TygBkhz498zsK6pQOe1q17tredbzsGe-D-AsxuhdRAlYryTXRfQ8S7TiOgvSJoUTfUuB4mic3kz0z2kyrRfcFnVaZaMTS0VdzD2tkX-XmdAS7ZvKLh6fOLFG0e5qTaGxAZsEXUYpXWZq1qC7Iqs0saIaMqnqopmqdA6DM0q_lbzXp4km_jVMb7zNNzulpQG63oWd2nNkg0rUH-FDmO3B9qiFXV3swVarzl72YTxg9xijzp_5cMRGJVE0Qw-V_abcb36Hsgl4ji7zkpXMmKzBJ2G0Nssuy0Jddlvl0IbFJ5hcD--vbnjNnsC9MsmSY5wXXFrYviyEirHEdUd_zqJV9AFNVOFjNEVamCwK74w1GLqIXghKOeUIJeYzdGbzWTgAppXxaWq0817oxPacozAlMSrYTJhUd0E0Q5f7GlqcGC4e8jUoMg13jsOdl8Odiy58a595rIA13m193EgkryfZIl__El342t7G6UF7HnYW5itsQyQ8GGJmsgtfKkm2n1Mp6rOewu6fN6Jdv_z_fTl8vy9HsEWU9FU62TF0ls-rcIKOy9Kdln_nKWwOfvz9NcTj5XD85xavTuTgFZaF6fg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFH6i4VB6qAptacpmJDi1FvEy48mhQixBATIRokHiNtge-1QlKQmq-FP9jTzPFlWo3LiNNGOP9TZ_z34LwJ733hqPHNBWcCpzb2kSSUFl4riOcsO6OjiK6TDu38iL2-h2Cf7WuTAhrLK2iYWhzic2nJEf8IRJjvubSA6nv2noGhVuV-sWGqVYXLrHP-iyzX6cnyJ_9zk_641O-rTqKkCtUNGcov_jTJzrLs-Z8L6od444R-NuYR2a7tx6r_I4V4ln1iitENKzjnNCGGFC9RSc9w0sS4GjWrB83BteXS_K_LKktP0iZK1xUaXplMl66A6GgF9OO92g2uzfrfAZvn12N1tseWcf4H2FVclRKVyrsOTGa_AubQq9ztZgpTGgjx9heERG6BVP7mkvJWnRmpogJiaDEG1Of6I0OHxGkD4nRS9OUldEIeE0mBwXqcHkuozadbNPcPMqlP0MrfFk7L4AkULZOFbSWMtkpDvGBMcoUsLphKlYtoHVpMtsVcw89NT4lS3KMAdyZ0jurCB3xtrwrRkzLUt5vPj1Zs2RrFLrWbYQwjbsNq9RIcMtix67yQN-E9r-oFOb8Dasl5xsfiditKAdgcv_XrN2Mfn_1_L15bXswNv-KB1kg_Ph5QascIRhZTDbJrTm9w9uC2HT3GxXskrg7rXV4wnxISUj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkCp6qAqlNIWCK7UnahE_dr05VBUFIl6Jqhak3Bbba59QAiSo4q_11zGzr6hC5cZtpX1Z8x575huAzzFG7yJywHoluS6i51miFddZkDYpnOhZShQHw_ToQp-MktEC_G16YaissrGJpaEuJp72yHdlJrRE_6ay3ViXRfw86H-_vuE0QYpOWptxGpWInIb7P5i-Tb8dHyCvv0jZPzzfP-L1hAHulUlmHHOh4NLC9mQhVIwl9jnGPBY9hw9oxgsfoynSwmRReGeswfBedENQyilHSCr43RewZFQiSMfMyMwBf0VWeQFF_WtS1Q07VdseJoZU-it5t0dKLv51io8i3UentKXz67-B13XUyvYqMVuBhTBehVeDFvJ1ugrLrSm9fwvDPXaO-fHklh8O2KAcUs0wOmZnVHfOf6NcBLzGcH3GyqmcrMFGYbQvzH6UTcLsV1W_G6ZrcPEsdH0Hi-PJOLwHppXxaWq0817oxHadoxQpMSrYTJhUd0A0pMt9DWtO0zWu8jkgM5E7R3LnJblz0YGd9p3rCtTjyac3G47ktYJP87k4duBTextVk85b7DhM7vAZGgCE6W0mO7BecbL9nUrRlnYVLv9rw9r5x_-_lg9Pr2UbXqJS5GfHw9MNWJYYj1VVbZuwOLu9Cx8xfpq5rVJQGVw-t2Y8AK25J_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tensor-EM+Method+for+Large-Scale+Latent+Class+Analysis+with+Binary+Responses&rft.jtitle=Psychometrika&rft.au=Zeng%2C+Zhenghao&rft.au=Gu%2C+Yuqi&rft.au=Xu%2C+Gongjun&rft.date=2023-06-01&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=88&rft.issue=2&rft.spage=580&rft.epage=612&rft_id=info:doi/10.1007%2Fs11336-022-09887-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11336_022_09887_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon |