A deep learning algorithm to improve readers’ interpretation and speed of pancreatic cystic lesions on dual-phase enhanced CT

Purpose To develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. Materials and methods Dual-phase enhanced CT imag...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 47; no. 6; pp. 2135 - 2147
Main Authors Wang, Xiheng, Sun, Zhaoyong, Xue, Huadan, Qu, Taiping, Cheng, Sihang, Li, Juan, Li, Yatong, Mao, Li, Li, Xiuli, Zhu, Liang, Li, Xiao, Zhang, Longjing, Jin, Zhengyu, Yu, Yizhou
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. Materials and methods Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared. Results The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p  > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p  < 0.05), and all readers’ diagnostic time was shortened (all p  < 0.05). Conclusion The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist’s interpretation and speed of PCLs on CT. Graphical abstract
AbstractList Purpose To develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. Materials and methods Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared. Results The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p  > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p  < 0.05), and all readers’ diagnostic time was shortened (all p  < 0.05). Conclusion The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist’s interpretation and speed of PCLs on CT. Graphical abstract
To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model.PURPOSETo develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model.Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared.MATERIALS AND METHODSDual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared.The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers' diagnostic time was shortened (all p < 0.05).RESULTSThe accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers' diagnostic time was shortened (all p < 0.05).The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist's interpretation and speed of PCLs on CT.CONCLUSIONThe DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist's interpretation and speed of PCLs on CT.
PurposeTo develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model.Materials and methodsDual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared.ResultsThe accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers’ diagnostic time was shortened (all p < 0.05).ConclusionThe DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist’s interpretation and speed of PCLs on CT.
To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared. The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers' diagnostic time was shortened (all p < 0.05). The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist's interpretation and speed of PCLs on CT.
Author Sun, Zhaoyong
Wang, Xiheng
Jin, Zhengyu
Cheng, Sihang
Li, Juan
Li, Yatong
Li, Xiuli
Qu, Taiping
Zhu, Liang
Li, Xiao
Mao, Li
Zhang, Longjing
Xue, Huadan
Yu, Yizhou
Author_xml – sequence: 1
  givenname: Xiheng
  surname: Wang
  fullname: Wang, Xiheng
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 2
  givenname: Zhaoyong
  surname: Sun
  fullname: Sun, Zhaoyong
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 3
  givenname: Huadan
  surname: Xue
  fullname: Xue, Huadan
  email: bjdanna95@hotmail.com
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 4
  givenname: Taiping
  surname: Qu
  fullname: Qu, Taiping
  organization: Deepwise AI Lab, Deepwise Inc
– sequence: 5
  givenname: Sihang
  surname: Cheng
  fullname: Cheng, Sihang
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 6
  givenname: Juan
  surname: Li
  fullname: Li, Juan
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 7
  givenname: Yatong
  surname: Li
  fullname: Li, Yatong
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 8
  givenname: Li
  surname: Mao
  fullname: Mao, Li
  organization: Deepwise AI Lab, Deepwise Inc
– sequence: 9
  givenname: Xiuli
  surname: Li
  fullname: Li, Xiuli
  organization: Deepwise AI Lab, Deepwise Inc
– sequence: 10
  givenname: Liang
  surname: Zhu
  fullname: Zhu, Liang
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 11
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University
– sequence: 12
  givenname: Longjing
  surname: Zhang
  fullname: Zhang, Longjing
  organization: Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University
– sequence: 13
  givenname: Zhengyu
  surname: Jin
  fullname: Jin, Zhengyu
  email: jinzy@pumch.cn
  organization: Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
– sequence: 14
  givenname: Yizhou
  surname: Yu
  fullname: Yu, Yizhou
  organization: Deepwise AI Lab, Deepwise Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35344077$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi3Uipa2L8ACWWLDJjC-JllWR9ykSmzateWTTM5xldjBdpC6gtfg9XgSfEgLqIuubMnfN56Z_wU58sEjIS8ZvGUA9bsEwDWrgPMKhKzbSj4jp1xoXQGo5ui_-wm5SOkWAJhWjHH1nJwIJaSEuj4l3y9pjzjTEW30zu-oHXchuryfaA7UTXMM35BGtD3G9OvHT-p8xjhHzDa74Kn1PU0zYk_DQGfru4Jm19HuLh2OEVOhEi1kv9ixmvc2IUW_L2RxNtfn5HiwY8KL-_OM3Hx4f735VF19-fh5c3lVdaJWuZJMb1E1DJkQjd02yFVb94dpWtSCobLlTQBKzvTAlFRbZSVo1Qo2DLzW4oy8WeuWgb4umLKZXOpwHK3HsCTDtZRCi1ZCQV8_Qm_DEn3prlBasrZm7aHgq3tq2U7Ymzm6ycY787DaAvAV6GJIKeLwF2FgDhGaNUJTIjR_IjSySM0jqXPrpnO0bnxaFauayj9-h_Ff209YvwGKpq9e
CitedBy_id crossref_primary_10_1007_s11547_023_01666_x
crossref_primary_10_1016_j_giec_2024_10_006
crossref_primary_10_1016_j_acra_2023_09_043
crossref_primary_10_1016_j_giec_2023_03_008
crossref_primary_10_1007_s12553_023_00763_1
crossref_primary_10_1016_j_giec_2023_03_004
crossref_primary_10_3389_fonc_2022_990156
Cites_doi 10.1002/mp.13678
10.1016/j.jacr.2017.03.010
10.1016/j.ejrad.2019.05.024
10.1016/j.surg.2012.05.033
10.1007/s00261-016-0883-8
10.1109/EMBC.2019.8856745
10.1016/j.pan.2018.11.014
10.1016/j.patter.2020.100129
10.1038/nature14539
10.4103/2303-9027.170425
10.1097/SLA.0b013e31829385f7
10.1016/j.radi.2020.11.016
10.1016/j.pan.2017.07.007
10.1016/j.canlet.2019.10.023
10.1007/s00330-019-06628-4
10.1148/radiol.2015151169
10.21037/atm.2019.12.70
10.1148/radiol.2017170706
10.1097/SLA.0b013e3182a18f48
10.1097/MPA.0000000000001327
10.1016/j.jcct.2019.04.007
10.1148/radiol.2291020582
10.3892/br.2014.376
10.1148/radiology.195.2.7724753
10.2214/AJR.07.3340
10.1148/radiol.13131184
10.1109/TMI.2013.2246577
10.1109/TPAMI.2005.159
10.1038/s41598-019-43314-3
10.1016/j.media.2021.102232
10.1038/ajg.2018.14
10.1126/scitranslmed.aav4772
10.3390/jcm9124013
10.1007/978-3-030-00928-1_48
10.1053/j.gastro.2015.01.015
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00261-022-03479-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Computer Science Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 2147
ExternalDocumentID 35344077
10_1007_s00261_022_03479_4
Genre Journal Article
GrantInformation_xml – fundername: Elite Program of Dongcheng District of Beijing
  grantid: 2020-dchrcpyzz-28
– fundername: National Natural Science Foundation of China
  grantid: 81871512
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Research and Development Program
  grantid: 2020YFC2002702
– fundername: National Natural Science Foundation of China
  grantid: 81871512
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJOOF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PJZUB
PPXIY
PQGLB
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PKEHL
PQEST
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
ID FETCH-LOGICAL-c375t-416be581e1338ab8e2597d11259e631e5a81e30e4216f1545b5a4065931ff2763
IEDL.DBID AGYKE
ISSN 2366-0058
2366-004X
IngestDate Thu Jul 10 21:09:11 EDT 2025
Fri Jul 25 19:38:23 EDT 2025
Mon Jul 21 06:00:37 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Tue Jul 01 02:12:41 EDT 2025
Fri Feb 21 02:46:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Pancreatic cystic lesion
Computer-assisted
Diagnosis
Computed tomography
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-416be581e1338ab8e2597d11259e631e5a81e30e4216f1545b5a4065931ff2763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35344077
PQID 2664197196
PQPubID 31175
PageCount 13
ParticipantIDs proquest_miscellaneous_2644363940
proquest_journals_2664197196
pubmed_primary_35344077
crossref_primary_10_1007_s00261_022_03479_4
crossref_citationtrail_10_1007_s00261_022_03479_4
springer_journals_10_1007_s00261_022_03479_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Elta, Enestvedt, Sauer, Lennon (CR25) 2018; 113
Corral, Hussein, Kandel, Bolan, Bagci, Wallace (CR14) 2019; 48
Megibow, Baker, Morgan, Kamel, Sahani, Newman, Brugge, Berland, Pandharipande (CR29) 2017; 14
(CR2) 2019; 7
Qu, Wang, Fang, Mao, Li, Li, Qu, Li, Xue, Yu, Jin (CR12) 2022; 75
Peng, Long, Ding (CR21) 2005; 27
Fletcher, Wiersema, Farrell, Fidler, Burgart, Koyama, Johnson, Stephens, Ward, Harmsen (CR30) 2003; 229
Zerboni, Signoretti, Crippa, Falconi, Arcidiacono, Capurso (CR3) 2019; 19
CR35
LeCun, Bengio, Hinton (CR33) 2015; 521
CR11
Yasaka, Akai, Abe, Kiryu (CR34) 2018; 286
Sahora, Mino-Kenudson, Brugge, Thayer, Ferrone, Sahani, Pitman, Warshaw, Lillemoe, Fernandez-del Castillo (CR6) 2013; 258
Kim, Lee, Cho, Lee, Goo, Kim, Park (CR36) 2020; 30
Lu, Zhang, Ma, Peng, Lv, Zou (CR7) 2015; 4
Tanaka, Fernandez-Del Castillo, Kamisawa, Jang, Levy, Ohtsuka, Salvia, Shimizu, Tada, Wolfgang (CR10) 2017; 17
Heinrich, Jenkinson, Brady, Schnabel (CR20) 2013; 32
Kim, Park, Pyo, Yoon, Byun, Lee, Krajewski, Ramaiya (CR26) 2014; 259
Kurita, Kuwahara, Hara, Mizuno, Okuno, Matsumoto, Obata, Koda, Tajika, Shimizu, Nakajima, Kubota, Niwa (CR15) 2019; 9
Kolossvary, De Cecco, Feuchtner, Maurovich-Horvat (CR19) 2019; 13
CR5
Laffan, Horton, Klein, Berlanstein, Siegelman, Kawamoto, Johnson, Fishman, Hruban (CR1) 2008; 191
He, Liu, Lin, Wan, Li, Xu, Wang, Jin, Tian, Xue (CR24) 2019; 117
Wang, Zhang, Chen, Wei, Sun, Xie, Zhou, Zhou, Huang, Yang, Xie, Zhou, Zheng (CR27) 2015; 3
Boos, Brook, Chingkoe, Morrison, Mortele, Raptopoulos, Pedrosa, Brook (CR8) 2017; 42
CR23
CR22
Hollett, Jorgensen, Jeffrey (CR31) 1995; 195
Gillies, Kinahan, Hricak (CR32) 2016; 278
Ippolito, Maino, Pecorelli, De Vito, Riva, Talei Franzesi, Sironi (CR9) 2021; 27
Dalal, Carmicheal, Dhaliwal, Jain, Kaur, Batra (CR17) 2020; 469
Valsangkar, Morales-Oyarvide, Thayer, Ferrone, Wargo, Warshaw, Fernandez-del Castillo (CR4) 2012; 152
Li, Shi, Reichert, Lin, Tselousov, Braren, Fu, Schmid, Li, Menze (CR13) 2019; 2019
Ho, Phua, Wong, Bin Goh (CR16) 2020; 1
Al-Hawary, Francis, Chari, Fishman, Hough, Lu, Macari, Megibow, Miller, Mortele, Merchant, Minter, Tamm, Sahani, Simeone (CR28) 2014; 270
Avanzo, Wei, Stancanello, Vallieres, Rao, Morin, Mattonen, El Naqa (CR18) 2020; 47
G Zerboni (3479_CR3) 2019; 19
NP Valsangkar (3479_CR4) 2012; 152
KW Kim (3479_CR26) 2014; 259
M Kolossvary (3479_CR19) 2019; 13
JE Corral (3479_CR14) 2019; 48
M Avanzo (3479_CR18) 2020; 47
MM Al-Hawary (3479_CR28) 2014; 270
V Dalal (3479_CR17) 2020; 469
D Ippolito (3479_CR9) 2021; 27
W Wang (3479_CR27) 2015; 3
J Boos (3479_CR8) 2017; 42
X Lu (3479_CR7) 2015; 4
3479_CR23
W. Wu, J. Li, N. Pu, G. Li, X. Wang, G. Zhao, L. Wang, X. Tian, C. Yuan, Y. Miao, K. Jiang, J. Cao, X. Xu, X. Bai, Y. Yang, F. Liu, X. Bai, R. Kong, Z. Wang, D. Fu, W. Lou, S. Chinese Young Surgeon Study Group in Pancreatic (3479_CR2) 2019; 7
3479_CR22
RJ Gillies (3479_CR32) 2016; 278
K Yasaka (3479_CR34) 2018; 286
Y LeCun (3479_CR33) 2015; 521
3479_CR5
Y Kurita (3479_CR15) 2019; 9
M Tanaka (3479_CR10) 2017; 17
MD Hollett (3479_CR31) 1995; 195
MP Heinrich (3479_CR20) 2013; 32
TA Laffan (3479_CR1) 2008; 191
GH Elta (3479_CR25) 2018; 113
K Sahora (3479_CR6) 2013; 258
H Peng (3479_CR21) 2005; 27
AJ Megibow (3479_CR29) 2017; 14
H Kim (3479_CR36) 2020; 30
H Li (3479_CR13) 2019; 2019
M He (3479_CR24) 2019; 117
3479_CR35
SY Ho (3479_CR16) 2020; 1
JG Fletcher (3479_CR30) 2003; 229
T Qu (3479_CR12) 2022; 75
3479_CR11
References_xml – ident: CR22
– volume: 47
  start-page: e185
  year: 2020
  end-page: e202
  ident: CR18
  article-title: Machine and deep learning methods for radiomics
  publication-title: Med Phys.
  doi: 10.1002/mp.13678
– volume: 14
  start-page: 911
  year: 2017
  end-page: 923
  ident: CR29
  article-title: Management of Incidental Pancreatic Cysts: A White Paper of the ACR Incidental Findings Committee
  publication-title: J Am Coll Radiol.
  doi: 10.1016/j.jacr.2017.03.010
– volume: 117
  start-page: 102
  year: 2019
  end-page: 111
  ident: CR24
  article-title: Differentiation of atypical non-functional pancreatic neuroendocrine tumor and pancreatic ductal adenocarcinoma using CT based radiomics
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2019.05.024
– volume: 152
  start-page: S4
  year: 2012
  end-page: 12
  ident: CR4
  article-title: 851 resected cystic tumors of the pancreas: a 33-year experience at the Massachusetts General Hospital
  publication-title: Surgery.
  doi: 10.1016/j.surg.2012.05.033
– volume: 42
  start-page: 521
  year: 2017
  end-page: 530
  ident: CR8
  article-title: MDCT vs. MRI for incidental pancreatic cysts: measurement variability and impact on clinical management
  publication-title: Abdom Radiol (NY).
  doi: 10.1007/s00261-016-0883-8
– volume: 2019
  start-page: 2095
  year: 2019
  end-page: 2098
  ident: CR13
  article-title: Differential Diagnosis for Pancreatic Cysts in CT Scans Using Densely-Connected Convolutional Networks
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8856745
– volume: 19
  start-page: 2
  year: 2019
  end-page: 9
  ident: CR3
  article-title: Systematic review and meta-analysis: Prevalence of incidentally detected pancreatic cystic lesions in asymptomatic individuals
  publication-title: Pancreatology.
  doi: 10.1016/j.pan.2018.11.014
– volume: 1
  year: 2020
  ident: CR16
  article-title: Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability
  publication-title: Patterns (N Y).
  doi: 10.1016/j.patter.2020.100129
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR33
  article-title: Deep learning
  publication-title: Nature.
  doi: 10.1038/nature14539
– ident: CR35
– volume: 4
  start-page: 324
  year: 2015
  end-page: 329
  ident: CR7
  article-title: The diagnostic value of EUS in pancreatic cystic neoplasms compared with CT and MRI
  publication-title: Endosc Ultrasound.
  doi: 10.4103/2303-9027.170425
– volume: 259
  start-page: 72
  year: 2014
  end-page: 81
  ident: CR26
  article-title: Imaging features to distinguish malignant and benign branch-duct type intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis
  publication-title: Ann Surg.
  doi: 10.1097/SLA.0b013e31829385f7
– volume: 27
  start-page: 554
  year: 2021
  end-page: 560
  ident: CR9
  article-title: Incidental pancreatic cystic lesions: comparison between CT with model-based algorithm and MRI
  publication-title: Radiography (Lond).
  doi: 10.1016/j.radi.2020.11.016
– volume: 17
  start-page: 738
  year: 2017
  end-page: 753
  ident: CR10
  article-title: Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas
  publication-title: Pancreatology.
  doi: 10.1016/j.pan.2017.07.007
– ident: CR23
– volume: 469
  start-page: 228
  year: 2020
  end-page: 237
  ident: CR17
  article-title: Radiomics in stratification of pancreatic cystic lesions: Machine learning in action
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.10.023
– volume: 30
  start-page: 3295
  year: 2020
  end-page: 3305
  ident: CR36
  article-title: CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-019-06628-4
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR32
  article-title: Radiomics: Images Are More than Pictures, They Are Data
  publication-title: Radiology.
  doi: 10.1148/radiol.2015151169
– volume: 7
  start-page: 807
  year: 2019
  ident: CR2
  article-title: Surveillance and management for serous cystic neoplasms of the pancreas based on total hazards-a multi-center retrospective study from China
  publication-title: Ann Transl Med.
  doi: 10.21037/atm.2019.12.70
– volume: 286
  start-page: 887
  year: 2018
  end-page: 896
  ident: CR34
  article-title: Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study
  publication-title: Radiology.
  doi: 10.1148/radiol.2017170706
– volume: 258
  start-page: 466
  year: 2013
  end-page: 475
  ident: CR6
  article-title: Branch duct intraductal papillary mucinous neoplasms: does cyst size change the tip of the scale? A critical analysis of the revised international consensus guidelines in a large single-institutional series
  publication-title: Ann Surg.
  doi: 10.1097/SLA.0b013e3182a18f48
– volume: 48
  start-page: 805
  year: 2019
  end-page: 810
  ident: CR14
  article-title: Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging
  publication-title: Pancreas.
  doi: 10.1097/MPA.0000000000001327
– volume: 13
  start-page: 274
  year: 2019
  end-page: 280
  ident: CR19
  article-title: Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2019.04.007
– ident: CR11
– volume: 229
  start-page: 81
  year: 2003
  end-page: 90
  ident: CR30
  article-title: Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT
  publication-title: Radiology.
  doi: 10.1148/radiol.2291020582
– volume: 3
  start-page: 43
  year: 2015
  end-page: 50
  ident: CR27
  article-title: Serum carcinoembryonic antigen and carbohydrate antigen 19–9 for prediction of malignancy and invasiveness in intraductal papillary mucinous neoplasms of the pancreas: A meta-analysis
  publication-title: Biomed Rep.
  doi: 10.3892/br.2014.376
– volume: 195
  start-page: 359
  year: 1995
  end-page: 361
  ident: CR31
  article-title: Quantitative evaluation of pancreatic enhancement during dual-phase helical CT
  publication-title: Radiology.
  doi: 10.1148/radiology.195.2.7724753
– volume: 191
  start-page: 802
  year: 2008
  end-page: 807
  ident: CR1
  article-title: Prevalence of unsuspected pancreatic cysts on MDCT
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/AJR.07.3340
– volume: 270
  start-page: 248
  year: 2014
  end-page: 260
  ident: CR28
  article-title: Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association
  publication-title: Radiology.
  doi: 10.1148/radiol.13131184
– volume: 32
  start-page: 1239
  year: 2013
  end-page: 1248
  ident: CR20
  article-title: MRF-based deformable registration and ventilation estimation of lung CT
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2013.2246577
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: CR21
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: CR5
– volume: 9
  start-page: 6893
  year: 2019
  ident: CR15
  article-title: Diagnostic ability of artificial intelligence using deep learning analysis of cyst fluid in differentiating malignant from benign pancreatic cystic lesions
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-43314-3
– volume: 75
  year: 2022
  ident: CR12
  article-title: M(3)Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2021.102232
– volume: 113
  start-page: 464
  year: 2018
  end-page: 479
  ident: CR25
  article-title: ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts
  publication-title: Am J Gastroenterol.
  doi: 10.1038/ajg.2018.14
– volume: 258
  start-page: 466
  year: 2013
  ident: 3479_CR6
  publication-title: Ann Surg.
  doi: 10.1097/SLA.0b013e3182a18f48
– ident: 3479_CR5
  doi: 10.1126/scitranslmed.aav4772
– ident: 3479_CR35
  doi: 10.3390/jcm9124013
– volume: 229
  start-page: 81
  year: 2003
  ident: 3479_CR30
  publication-title: Radiology.
  doi: 10.1148/radiol.2291020582
– volume: 42
  start-page: 521
  year: 2017
  ident: 3479_CR8
  publication-title: Abdom Radiol (NY).
  doi: 10.1007/s00261-016-0883-8
– volume: 113
  start-page: 464
  year: 2018
  ident: 3479_CR25
  publication-title: Am J Gastroenterol.
  doi: 10.1038/ajg.2018.14
– volume: 47
  start-page: e185
  year: 2020
  ident: 3479_CR18
  publication-title: Med Phys.
  doi: 10.1002/mp.13678
– volume: 521
  start-page: 436
  year: 2015
  ident: 3479_CR33
  publication-title: Nature.
  doi: 10.1038/nature14539
– volume: 7
  start-page: 807
  year: 2019
  ident: 3479_CR2
  publication-title: Ann Transl Med.
  doi: 10.21037/atm.2019.12.70
– volume: 3
  start-page: 43
  year: 2015
  ident: 3479_CR27
  publication-title: Biomed Rep.
  doi: 10.3892/br.2014.376
– volume: 1
  year: 2020
  ident: 3479_CR16
  publication-title: Patterns (N Y).
  doi: 10.1016/j.patter.2020.100129
– volume: 27
  start-page: 1226
  year: 2005
  ident: 3479_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 19
  start-page: 2
  year: 2019
  ident: 3479_CR3
  publication-title: Pancreatology.
  doi: 10.1016/j.pan.2018.11.014
– volume: 286
  start-page: 887
  year: 2018
  ident: 3479_CR34
  publication-title: Radiology.
  doi: 10.1148/radiol.2017170706
– volume: 75
  year: 2022
  ident: 3479_CR12
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2021.102232
– ident: 3479_CR23
  doi: 10.1007/978-3-030-00928-1_48
– volume: 259
  start-page: 72
  year: 2014
  ident: 3479_CR26
  publication-title: Ann Surg.
  doi: 10.1097/SLA.0b013e31829385f7
– volume: 4
  start-page: 324
  year: 2015
  ident: 3479_CR7
  publication-title: Endosc Ultrasound.
  doi: 10.4103/2303-9027.170425
– volume: 27
  start-page: 554
  year: 2021
  ident: 3479_CR9
  publication-title: Radiography (Lond).
  doi: 10.1016/j.radi.2020.11.016
– volume: 9
  start-page: 6893
  year: 2019
  ident: 3479_CR15
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-43314-3
– volume: 2019
  start-page: 2095
  year: 2019
  ident: 3479_CR13
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc.
  doi: 10.1109/EMBC.2019.8856745
– volume: 278
  start-page: 563
  year: 2016
  ident: 3479_CR32
  publication-title: Radiology.
  doi: 10.1148/radiol.2015151169
– volume: 195
  start-page: 359
  year: 1995
  ident: 3479_CR31
  publication-title: Radiology.
  doi: 10.1148/radiology.195.2.7724753
– volume: 469
  start-page: 228
  year: 2020
  ident: 3479_CR17
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.10.023
– volume: 117
  start-page: 102
  year: 2019
  ident: 3479_CR24
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2019.05.024
– volume: 191
  start-page: 802
  year: 2008
  ident: 3479_CR1
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/AJR.07.3340
– ident: 3479_CR11
  doi: 10.1053/j.gastro.2015.01.015
– volume: 14
  start-page: 911
  year: 2017
  ident: 3479_CR29
  publication-title: J Am Coll Radiol.
  doi: 10.1016/j.jacr.2017.03.010
– volume: 270
  start-page: 248
  year: 2014
  ident: 3479_CR28
  publication-title: Radiology.
  doi: 10.1148/radiol.13131184
– volume: 30
  start-page: 3295
  year: 2020
  ident: 3479_CR36
  publication-title: Eur Radiol.
  doi: 10.1007/s00330-019-06628-4
– volume: 13
  start-page: 274
  year: 2019
  ident: 3479_CR19
  publication-title: J Cardiovasc Comput Tomogr.
  doi: 10.1016/j.jcct.2019.04.007
– ident: 3479_CR22
  doi: 10.1109/CVPR.2017.243
– volume: 48
  start-page: 805
  year: 2019
  ident: 3479_CR14
  publication-title: Pancreas.
  doi: 10.1097/MPA.0000000000001327
– volume: 32
  start-page: 1239
  year: 2013
  ident: 3479_CR20
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2013.2246577
– volume: 152
  start-page: S4
  year: 2012
  ident: 3479_CR4
  publication-title: Surgery.
  doi: 10.1016/j.surg.2012.05.033
– volume: 17
  start-page: 738
  year: 2017
  ident: 3479_CR10
  publication-title: Pancreatology.
  doi: 10.1016/j.pan.2017.07.007
SSID ssj0001651125
ssj0008379
Score 2.3585503
Snippet Purpose To develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on...
To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase...
PurposeTo develop a deep learning model (DLM) to improve readers’ interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2135
SubjectTerms Accuracy
Algorithms
Computed tomography
Contrast media
Deep learning
Differential diagnosis
Differentiation
Feature extraction
Gastroenterology
Hepatology
Image enhancement
Imaging
Lesions
Machine learning
Medical diagnosis
Medicine
Medicine & Public Health
Pancreas
Radiology
Radiomics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RkKpeqkJfaQENUm9gNVk7ye6pQqgIIcEJpL1FSTxmkWiSsuHQU_s3-vf6SzrjeIMQgksudpzHjD3fvAG-SDqkZkGnGDs4ZazlLZUbq2bOZOS0yyst-c5n59nJpTmdp_NgcFuGsMrVmegPatvWYiP_yoLEJLOcGeZb91NJ1yjxroYWGi9gQ0qXCVfn81HhYnTha-1NdMZac2zmIWnGp8555UNJLHssyZTKPBRMj9DmI0-pF0DHb-B1QI54OJB6E9ao2YKXZ8E3_hZ-H6Il6jD0gbjC8uaKP6Bf_MC-xWtvPCC8HUKX__35i9cP4g2xbCwuOxZm2DrkM2KAkzXWv6SUMy8rdrUl8kxJ31LdguUfUrPwIQR4dPEOLo-_XxydqNBeQdU6T3vFUKyidJqQqKllNSXWhHLL-CudUaYTSkse0zGZSZI5QVpVWhpxwzJV3YTPpfew3rQNfQSkOI0rKfoQW2ucm1WUOaLcmbLWU75EkKz-bVGH2uPSAuOmGKsme3oUTI_C06MwEeyP93RD5Y1nZ2-vSFaEXbgs7nkmgr1xmPePOEXKhto7mWOMzqQ_fAQfBlKPj9PMxqzw5hEcrGh_v_jT7_Lp-Xf5DK8mnu_ElLMN6_3tHe0wsumrXc--_wHIyfMq
  priority: 102
  providerName: ProQuest
Title A deep learning algorithm to improve readers’ interpretation and speed of pancreatic cystic lesions on dual-phase enhanced CT
URI https://link.springer.com/article/10.1007/s00261-022-03479-4
https://www.ncbi.nlm.nih.gov/pubmed/35344077
https://www.proquest.com/docview/2664197196
https://www.proquest.com/docview/2644363940
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVEJcSnkb2miRuMFWdnZtJ8ekalqBGiHUSOFk-THbRBQ7SpxDucDf4O_xSzpjr11KAamX9WEfXq9ndr7ZeSzAGw6HVCToJGEHI3WWEUuFOpMDowM0yoSJ4njn00lwMtXvZ_7MBoWtG2_3xiRZ7dRtsFulLkj2Pnc5_FHqLdgm_OH6HdgeHn_-8NvZSsAwwrcxMn_vfFMO3QKXtwyjlbwZP4RpM9PazeTLwaZMDtJvfyRxvOun7MKOBaBiWFPMI7iH-WO4f2pN7E_g-1BkiEthr5M4F_HFebFalPOvoizEojqDQLGqPaB__fgpFjfcFkWcZ2K9JJkoCiNoq6lRaSrSS84ITcPy8dxaUEuOApPLOYlRgfm88kQQh2dPYTo-Ojs8kfaWBpmq0C8lIboE_b6HrO3GSR9JoQozXv8BBspDP6Y65aLueYFhwJb4sWZrLhGH6dH29gw6eZHjCxDo-m7CuSPcLNPGDBIMDGJodJyqPhUOeM0_i1Kbwpxv0riI2uTL1cpGtLJRtbKRduBt22dZJ_D4b-u9hhQiy8zriDCM9gYh7VUOvG6riQ3ZthLnWGy4jdYq4GvmHXhek1D7OkXcQHpz6MC7hhyuB__3XF7erfkreNCrKIpPiPagU642uE-AqUy6sBXOQir74-Mu8cp4NJp0Lc_Qc3Q0-fiJaqe94RUA6xFY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBFwQbwIFjAQnsEhiJ9k9IFQVli3t9rSV9haSeNytVJLQTYV6gt_gJ_govoQZ51FVFb31kosdx_HMeN4zAK84HVIRo5MkO1ipjSGSSrSRY6tjtMomueJ859lePN3XXxbRYg3-9LkwHFbZ34nuojZVwTbyd8RIdDBOCGE-1N8ld41i72rfQqNFix08_UEq2-r99keC7-swnHyab01l11VAFiqJGkkSSI7RKEDWzrJ8hKQAJIbEjmiMsQowymhM-ajDILYsYORRptn7SD9jQyJHWvcaXNeKODlnpk8-Dzf_qK3tF6qYtHRfL7okHZeq55QdybHzPidvSn2eEV6Qbi94Zh3Dm9yB252kKjZb1LoLa1jegxuzzhd_H35uCoNYi67vxIHIjg7owJrlN9FU4tAZK1Act6HSf3_9Fofn4htFVhqxqol5isoKupNa8bUQxSmXjqZl2Y63EjST08VkvSR-K7BcupAFsTV_APtXcvAPYb2sSnwMAv3Iz7nIhG-MtnacY2wRE6uzQo3o4UHQn21adLXOueXGUTpUaXbwSAkeqYNHqj14M7xTt5U-Lp290YMs7ah-lZ7hqAcvh2GiV3bCZCVWJzxHaxVzP3oPHrWgHj6niGxIwU48eNvD_mzx_-_lyeV7eQE3p_PZbrq7vbfzFG6FDgfZjLQB683xCT4jqarJnztUFvD1qmnnH_Y_LUE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9VAcIKPhHgxfltEXRM96Ya2u23fOxCDwAuIvBADybvVtjvLI4G28koMJ_wb_hV_jr_EmX4RQuTGpZfdbrc7MzvfMwDvOB1SEaOTJDtYqY0hkoq0kSOrQ7TKRqnifOe9Sbh9qL9Mg-kC_OlyYTissrsT64vaFBnbyFeJkWhvFBHCrNo2LGJ_c_yp_CG5gxR7Wrt2Gg2K7OLFT1Lf5ms7mwTr974_3jrY2JZthwGZqSioJEkjKQZDD1lTS9IhkjIQGRJBghGGysMgoTHlova90LKwkQaJZk8k_Zj1iTRp3XuwGLFWNIDFz1uT_W89Hxg2lf58FZLO7uppm7JTJ-7Vqo_kSHqXUzmlvs4Wb8i6N_y0NfsbP4QHrdwq1htEewQLmD-Gpb3WM_8ELteFQSxF24XiSCQnR3Rk1exUVIU4rk0XKM6awOm_v36L42vRjiLJjZiXxEpFYQXdUI0wm4nsggtJ07Js1ZsLmsnJY7KcEfcVmM_qAAaxcfAUDu_k6J_BIC9yfAEC3cBNueSEa4y2dpRiaBEjq5NMDenhgNedbZy1lc-5AcdJ3NdsruEREzziGh6xduBD_07Z1P24dfZKB7K4vQPm8RXGOvC2HybqZZdMkmNxznO0ViF3p3fgeQPq_nOKiIgQK3LgYwf7q8X_v5fl2_fyBpaIbuKvO5Pdl3Dfr1GQbUorMKjOzvEViVhV-rrFZQHf75p8_gFcTzLT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+to+improve+readers%27+interpretation+and+speed+of+pancreatic+cystic+lesions+on+dual-phase+enhanced+CT&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Wang%2C+Xiheng&rft.au=Sun%2C+Zhaoyong&rft.au=Xue%2C+Huadan&rft.au=Qu%2C+Taiping&rft.date=2022-06-01&rft.issn=2366-0058&rft.eissn=2366-0058&rft.volume=47&rft.issue=6&rft.spage=2135&rft_id=info:doi/10.1007%2Fs00261-022-03479-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon