Differential Inequalities, Normality and Quasi-normality

We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality.

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 30; no. 2; pp. 277 - 282
Main Authors Liu, Xiao Jun, Nevo, Shahar, Pang, Xue Cheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that if D is a domain in , alpha > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For alpha = 1, the same assumptions imply quasi-normality but not necessarily normality.
We prove that if D is a domain in , [alpha] > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For [alpha] = 1, the same assumptions imply quasi-normality but not necessarily normality. [PUBLICATION ABSTRACT]
We prove that if D is a domain in ℂ, α > 1 and C > 0, then the family F of functions f meromorphic in D such that is normal in D . For α = 1, the same assumptions imply quasi-normality but not necessarily normality.
We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality.
Author Xiao Jun LIU Shahar NEVO Xue Cheng PANG
AuthorAffiliation Department of Mathematics, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China
Author_xml – sequence: 1
  givenname: Xiao Jun
  surname: Liu
  fullname: Liu, Xiao Jun
  email: Xiaojunliu2007@hotmail.com
  organization: Department of Mathematics, University of Shanghai for Science and Technology
– sequence: 2
  givenname: Shahar
  surname: Nevo
  fullname: Nevo, Shahar
  organization: Department of Mathematics, Bar-Ilan University
– sequence: 3
  givenname: Xue Cheng
  surname: Pang
  fullname: Pang, Xue Cheng
  organization: Department of Mathematics, East China Normal University
BookMark eNp9kE1LAzEQhoNUsK3-AG8VLx5cndl89ij1q1AUQc8h7CY1ZZttk91D_71bWkV66GHITHifeYd3QHqhDpaQS4Q7BJD3CQGRZdBVzlmeqRPSR0bHmRQoe_tecRRnZJDSAoDzMYg-UY_eORttaLypRtNg162pfONtuh291XG5HTYjE8rRR2uSz8Lv3zk5daZK9mL_DsnX89Pn5DWbvb9MJw-zrKCSNxkDWRaIyB2lxogiF6IoleMMbCkAcrTGlU4VgnJ0RgowjDsLEi0FtIrRIbnZ7V3Fet3a1OilT4WtKhNs3SaNHETnpCjtpNcH0kXdxtBdp5FJiVxivl0od6oi1ilF63ThG9P4OjTR-Eoj6G2iepeo7hLV20S16kg8IFfRL03cHGXyHZM6bZjb-O-mI9DV3ui7DvN1x_05MTVmKMaS_gBGKZPM
CitedBy_id crossref_primary_10_1007_s40315_024_00524_9
crossref_primary_10_4134_JKMS_j150546
crossref_primary_10_1007_s11430_021_9952_0
crossref_primary_10_1016_j_jmaa_2013_04_064
crossref_primary_10_1016_j_jmaa_2023_127337
crossref_primary_10_1112_blms_12111
crossref_primary_10_1017_S1446788717000180
Cites_doi 10.1007/978-1-4612-0907-2
10.1007/s11854-012-0017-3
10.1007/s11854-012-0016-4
10.1112/S002460939900644X
10.1090/S0273-0979-98-00755-1
10.1142/1904
ContentType Journal Article
Copyright Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10114-014-2542-8
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Civil Engineering Abstracts
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Differential Inequalities, Normality and Quasi-normality
EISSN 1439-7617
EndPage 282
ExternalDocumentID 3180299371
10_1007_s10114_014_2542_8
48941697
Genre Feature
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
92L
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
ACUHS
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
H13
PQBZA
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
TGP
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c375t-407dc1115f33aa6c266cd8f540ed60021eafdf8c6351fa760a45fe071e301e843
IEDL.DBID U2A
ISSN 1439-8516
IngestDate Fri Jul 11 05:27:17 EDT 2025
Fri Jul 25 19:22:13 EDT 2025
Tue Jul 01 03:37:58 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:32:30 EST 2025
Wed Feb 14 10:37:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Normal family
differential inequality
30D35
30A10
quasi-normal family
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-407dc1115f33aa6c266cd8f540ed60021eafdf8c6351fa760a45fe071e301e843
Notes 11-2039/O1
We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality.
Normal family, quasi-normal family, differential inequality
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1477157124
PQPubID 54875
PageCount 6
ParticipantIDs proquest_miscellaneous_1506375833
proquest_journals_1477157124
crossref_citationtrail_10_1007_s10114_014_2542_8
crossref_primary_10_1007_s10114_014_2542_8
springer_journals_10_1007_s10114_014_2542_8
chongqing_primary_48941697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationTitleAlternate Acta Mathematica Sinica
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SchwickWOn a normality criterion of H. L. RoydenNew Zealand J. Math.19942391920824.300221279130
SteinmetzNNormal families and linear differential equationJ. Anal. Math.201211712913210.1007/s11854-012-0017-3061869512944093
ChuangC TNormal Families of Meromorphic Functions1993SingaporeWorld Scientific10.1142/19040878.30026
HinkkanenANormal families and Ahlfor’s five island theoremNew Zealand J. Math.19932239410796.300291244021
PangX CZalcmanLNormal families and shared valuesBull. London Math. Soc.20003232533110.1112/S002460939900644X1030.300311750485
RoydenH LA criterion for the normality of a family of meromorphic functionsAnn. Acad. Sci. Fenn. Math.1985104995000588.30034802513
ZalcmanLNormal families: new perspectivesBull. Amer. Math. Soc. (N.S.)19983521523010.1090/S0273-0979-98-00755-11037.300211624862
SchiffJNormal Families1993New YorkSpringer10.1007/978-1-4612-0907-20770.30002
GuY XA criterion for normality of families of meromorphic functionsSci. Sinica (special issue)19791267274
GrahlJNevoSSpherical derivatives and normal familiesJ. Anal. Math.201211711912810.1007/s11854-012-0016-4061869502944092
A Hinkkanen (2542_CR4) 1993; 22
L Zalcman (2542_CR10) 1998; 35
J Grahl (2542_CR2) 2012; 117
Y X Gu (2542_CR3) 1979; 1
J Schiff (2542_CR7) 1993
C T Chuang (2542_CR1) 1993
H L Royden (2542_CR6) 1985; 10
W Schwick (2542_CR8) 1994; 23
N Steinmetz (2542_CR9) 2012; 117
X C Pang (2542_CR5) 2000; 32
References_xml – reference: SchiffJNormal Families1993New YorkSpringer10.1007/978-1-4612-0907-20770.30002
– reference: ChuangC TNormal Families of Meromorphic Functions1993SingaporeWorld Scientific10.1142/19040878.30026
– reference: SteinmetzNNormal families and linear differential equationJ. Anal. Math.201211712913210.1007/s11854-012-0017-3061869512944093
– reference: SchwickWOn a normality criterion of H. L. RoydenNew Zealand J. Math.19942391920824.300221279130
– reference: GrahlJNevoSSpherical derivatives and normal familiesJ. Anal. Math.201211711912810.1007/s11854-012-0016-4061869502944092
– reference: HinkkanenANormal families and Ahlfor’s five island theoremNew Zealand J. Math.19932239410796.300291244021
– reference: ZalcmanLNormal families: new perspectivesBull. Amer. Math. Soc. (N.S.)19983521523010.1090/S0273-0979-98-00755-11037.300211624862
– reference: PangX CZalcmanLNormal families and shared valuesBull. London Math. Soc.20003232533110.1112/S002460939900644X1030.300311750485
– reference: RoydenH LA criterion for the normality of a family of meromorphic functionsAnn. Acad. Sci. Fenn. Math.1985104995000588.30034802513
– reference: GuY XA criterion for normality of families of meromorphic functionsSci. Sinica (special issue)19791267274
– volume: 1
  start-page: 267
  year: 1979
  ident: 2542_CR3
  publication-title: Sci. Sinica (special issue)
– volume-title: Normal Families
  year: 1993
  ident: 2542_CR7
  doi: 10.1007/978-1-4612-0907-2
– volume: 117
  start-page: 129
  year: 2012
  ident: 2542_CR9
  publication-title: J. Anal. Math.
  doi: 10.1007/s11854-012-0017-3
– volume: 23
  start-page: 91
  year: 1994
  ident: 2542_CR8
  publication-title: New Zealand J. Math.
– volume: 117
  start-page: 119
  year: 2012
  ident: 2542_CR2
  publication-title: J. Anal. Math.
  doi: 10.1007/s11854-012-0016-4
– volume: 22
  start-page: 39
  year: 1993
  ident: 2542_CR4
  publication-title: New Zealand J. Math.
– volume: 32
  start-page: 325
  year: 2000
  ident: 2542_CR5
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/S002460939900644X
– volume: 10
  start-page: 499
  year: 1985
  ident: 2542_CR6
  publication-title: Ann. Acad. Sci. Fenn. Math.
– volume: 35
  start-page: 215
  year: 1998
  ident: 2542_CR10
  publication-title: Bull. Amer. Math. Soc. (N.S.)
  doi: 10.1090/S0273-0979-98-00755-1
– volume-title: Normal Families of Meromorphic Functions
  year: 1993
  ident: 2542_CR1
  doi: 10.1142/1904
SSID ssj0055906
Score 2.0001037
Snippet We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is...
We prove that if D is a domain in ℂ, α > 1 and C > 0, then the family F of functions f meromorphic in D such that is normal in D . For α = 1, the same...
We prove that if D is a domain in , [alpha] > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For [alpha] = 1, the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that if D is a domain in , alpha > 1 and C > 0, then the family F of...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 277
SubjectTerms Cgt
Functions (mathematics)
IFD
Mathematical models
Mathematics
Mathematics and Statistics
Science
Studies
Theorems
函数
定常态
微分不等式
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-InVKRV8UoPtmq8-iR8bQ1BEFHwLbZqqMNrptv_fS5t2KrjXJk3gLnf3u1zuDuCEhUIHhttSiCwhNDMRibU2hBvNURdqYaq6BfcPfPhC717Zq7twm7hnlY1OrBR1Vmp7R34RUiFCJtAcXY4_ie0aZaOrroXGMqygCpayAyvX_YfHp0YXI1wO6vyiKCaILXgT16yT59AXQFeaEnSSUC3Y6grvZfH2iTbjt5WaQ88_0dLKCA02YN2hR_-qZvcmLJliC9bu29Krk22Qt67lCYruyEcMWadNokN87hcWoFrc7SdF5uPA5IO033bgZdB_vhkS1x6B6EiwKXp-ItOoqlgeRUnCNZpanckcIZjJbLQtNEme5VIjpAjzRPAgoSw3CCkMCrWRNNqFTlEWZg_8SOIEwcI0jCnVqZacC5r2TJhGJg8y7sF-Sxo1rstgKCpjRHOx8CBoaKW0Kyxu-1uM1LwksiW1QlIrS2olPThtf2mWWzC52zBAOQGbqPlx8OC4HUbRsPGOpDDlDOcwxF_CppV5cNYw7scS_224v3jDA1jt2VNTPd3uQmf6NTOHiEym6ZE7ft9L8d2P
  priority: 102
  providerName: ProQuest
Title Differential Inequalities, Normality and Quasi-normality
URI http://lib.cqvip.com/qk/85800X/201402/48941697.html
https://link.springer.com/article/10.1007/s10114-014-2542-8
https://www.proquest.com/docview/1477157124
https://www.proquest.com/docview/1506375833
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIP4id2zlHBJ7XQrvnq4-a-UDZEHMyn0qapCqNTu_3_Xrq2m6KCT4HmmsAld_kdl_sF4II6XNqKaSpEGlgkUq7lSakspiRDXyi5yngLRmM2nJDbKZ3mddxpcdu9SElmnnqj2A2xO4a-xMKgBs24AjWKobu-xzVptQv3iwjZXpUUuZ6FcIIVqcyfhtCECi_z5Pkdp_t6MK3R5rcEaXbu9PdgNweMZnu1wvuwpZID2BmVbKvpIYhu_soJWuvMRNi4qpTEGPjaTDQm1VDbDJLIxI701Sq_HcGk33u8GVr5iwiWdDldYLDHI4neicauGwRM4ukqIxEj6lKRTrA5KoijWEhEEU4ccGYHhMYKUYRCO1aCuMdQTeaJOgHTFSjAqRM6HiEylIIxTsKWckJXxXbEDKiXqvHfVswXPhEeAjiPG2AXuvJlziWun7SY-WsWZK1qH1Xta1X7woDL8pdiuD-EG8UC-LlNpRikcO5QjoDEgPOyG61BpziCRM2XKEMRcnFdSWbAVbFwG0P8NmH9X9KnsN3Smyi7vN2A6uJjqc4QmyzCJlREf9CEWrvT7fR1O3i662Hb6Y3vH5rZTv0ESlfeJg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOiLZUhC40ldpLi0Wy_koOqKqAZSksJ5C4uYkzASSUhe4i1D_V38g4ibNtpXLba-w40ng8703GMwPwUcbaRqhcKUSZMVEgZ6m1yBRaRbbQaqzrFozO1PBCfL-Ulwvw2-fCuGuV3ibWhroYW_ePfDcWWsdSExx9vbtnrmuUi676FhqNWpzgr0dy2SZ7xwe0v5_6_cHh-f6QtV0FmOVaTslh0oWlEy5LzrNMWUIoWyQlMRcsXJAqxqwsysQSEsdlplWUCVkiITHSWcBEcFp3EV4ITkjuMtMHR97yEzmPmmwmnjJiMspHUZtUPfI8yHEXjFwyMkKulsP1uLq6J4T6GxNnRPef2GwNeYM1WG25avitUa5XsIDVa1gZdYVeJ28gOWgbrJChuA2JsTZJmuR-74SVo8OO5YdZVYQ0MLlh3bN1uJiL2N7CUjWucANCntAELeM8ToWwuU2U0iLvY5xzLKNCBbDZicbcNUU3jEhS4o6pDiDysjK2LWPuumncmlkBZidqQ6I2TtQmCeBz94pf7pnJPb8Bpj3OEzNTvgA-dMN0EF10Jatw_EBzJLE97ZLYAvjiN-6PJf73wc3nP_geXg7PR6fm9Pjs5B0s950G1ZfGe7A0_fmAW8SJpvl2rYgh_Ji35j8B9wQYtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8UwEB5cQPQgrljXCnpRi12ytAcP4vPhjgcfeIttOlVB-tT3RPxV_kUn3VxQwYPXZpo2k0zmGybzBWCNe1K7KAwVIo8dlmLgRFqjI1AL2gu1xIK34PRMHHTY0SW_HIDXuhamOO1epyTLmgbD0pT3t-_TbPtD4RvheAqDmUMBDpl0daryGF-eKWbr7Ry2aILXfb-9f7F34FTXCjg6kLxPEZNMNZk4z4IgjoUmF6XTMCPogqnJUnkYZ2kWanLFXhZL4caMZ0iuGMkYMGQB9TsIw8wUH5MBdfzdeusndO6W5UxB5BCUEXUa9btfNmQON938-oGG-tkpviPdL8nZwue1J2C8Aqv2brm6JmEA8ykYO22YXnvTELaqG1Zop7izCbKWVZoUf2_ZucHDBubbcZ7a1NC7dZpnM9D5F7XNwlDezXEO7CAkAcm9xIsY04kOhZAs8dFLAszcVFgw36hG3ZesG4qFEYHHSFrg1rpSuuIxN9dp3Kl3BmajakWqVkbVKrRgo3ml7u4X4cV6AlRlzz0KkKT0uCQwZMFq00yWaNIrcY7dJ5LhBPekqWKzYLOeuA9d_PTB-T9Jr8DIeautTg7Pjhdg1DfrqThDvghD_ccnXCKI1E-Wi2Vpw9V_28EbzR8ZfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+inequalities%2C+normality+and+quasi-normality&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Liu%2C+Xiao+Jun&rft.au=Nevo%2C+Shahar&rft.au=Pang%2C+Xue+Cheng&rft.date=2014-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=30&rft.issue=2&rft.spage=277&rft.epage=282&rft_id=info:doi/10.1007%2Fs10114-014-2542-8&rft.externalDocID=10_1007_s10114_014_2542_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85800X%2F85800X.jpg