Differential Inequalities, Normality and Quasi-normality
We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality.
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 30; no. 2; pp. 277 - 282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that if D is a domain in , alpha > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For alpha = 1, the same assumptions imply quasi-normality but not necessarily normality. We prove that if D is a domain in , [alpha] > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For [alpha] = 1, the same assumptions imply quasi-normality but not necessarily normality. [PUBLICATION ABSTRACT] We prove that if D is a domain in ℂ, α > 1 and C > 0, then the family F of functions f meromorphic in D such that is normal in D . For α = 1, the same assumptions imply quasi-normality but not necessarily normality. We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality. |
Author | Xiao Jun LIU Shahar NEVO Xue Cheng PANG |
AuthorAffiliation | Department of Mathematics, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China |
Author_xml | – sequence: 1 givenname: Xiao Jun surname: Liu fullname: Liu, Xiao Jun email: Xiaojunliu2007@hotmail.com organization: Department of Mathematics, University of Shanghai for Science and Technology – sequence: 2 givenname: Shahar surname: Nevo fullname: Nevo, Shahar organization: Department of Mathematics, Bar-Ilan University – sequence: 3 givenname: Xue Cheng surname: Pang fullname: Pang, Xue Cheng organization: Department of Mathematics, East China Normal University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8VLx5cndl89ij1q1AUQc8h7CY1ZZttk91D_71bWkV66GHITHifeYd3QHqhDpaQS4Q7BJD3CQGRZdBVzlmeqRPSR0bHmRQoe_tecRRnZJDSAoDzMYg-UY_eORttaLypRtNg162pfONtuh291XG5HTYjE8rRR2uSz8Lv3zk5daZK9mL_DsnX89Pn5DWbvb9MJw-zrKCSNxkDWRaIyB2lxogiF6IoleMMbCkAcrTGlU4VgnJ0RgowjDsLEi0FtIrRIbnZ7V3Fet3a1OilT4WtKhNs3SaNHETnpCjtpNcH0kXdxtBdp5FJiVxivl0od6oi1ilF63ThG9P4OjTR-Eoj6G2iepeo7hLV20S16kg8IFfRL03cHGXyHZM6bZjb-O-mI9DV3ui7DvN1x_05MTVmKMaS_gBGKZPM |
CitedBy_id | crossref_primary_10_1007_s40315_024_00524_9 crossref_primary_10_4134_JKMS_j150546 crossref_primary_10_1007_s11430_021_9952_0 crossref_primary_10_1016_j_jmaa_2013_04_064 crossref_primary_10_1016_j_jmaa_2023_127337 crossref_primary_10_1112_blms_12111 crossref_primary_10_1017_S1446788717000180 |
Cites_doi | 10.1007/978-1-4612-0907-2 10.1007/s11854-012-0017-3 10.1007/s11854-012-0016-4 10.1112/S002460939900644X 10.1090/S0273-0979-98-00755-1 10.1142/1904 |
ContentType | Journal Article |
Copyright | Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10114-014-2542-8 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Civil Engineering Abstracts ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Differential Inequalities, Normality and Quasi-normality |
EISSN | 1439-7617 |
EndPage | 282 |
ExternalDocumentID | 3180299371 10_1007_s10114_014_2542_8 48941697 |
Genre | Feature |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 92L 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACDTI ACPIV ACUHS AEFQL AEMSY AGQEE AGRTI AIGIU BSONS H13 PQBZA AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR CITATION PHGZM PHGZT TGP 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c375t-407dc1115f33aa6c266cd8f540ed60021eafdf8c6351fa760a45fe071e301e843 |
IEDL.DBID | U2A |
ISSN | 1439-8516 |
IngestDate | Fri Jul 11 05:27:17 EDT 2025 Fri Jul 25 19:22:13 EDT 2025 Tue Jul 01 03:37:58 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:32:30 EST 2025 Wed Feb 14 10:37:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Normal family differential inequality 30D35 30A10 quasi-normal family |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-407dc1115f33aa6c266cd8f540ed60021eafdf8c6351fa760a45fe071e301e843 |
Notes | 11-2039/O1 We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is normal in D.For α = 1,the same assumptions imply quasi-normality but not necessarily normality. Normal family, quasi-normal family, differential inequality SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1477157124 |
PQPubID | 54875 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1506375833 proquest_journals_1477157124 crossref_citationtrail_10_1007_s10114_014_2542_8 crossref_primary_10_1007_s10114_014_2542_8 springer_journals_10_1007_s10114_014_2542_8 chongqing_primary_48941697 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationTitleAlternate | Acta Mathematica Sinica |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SchwickWOn a normality criterion of H. L. RoydenNew Zealand J. Math.19942391920824.300221279130 SteinmetzNNormal families and linear differential equationJ. Anal. Math.201211712913210.1007/s11854-012-0017-3061869512944093 ChuangC TNormal Families of Meromorphic Functions1993SingaporeWorld Scientific10.1142/19040878.30026 HinkkanenANormal families and Ahlfor’s five island theoremNew Zealand J. Math.19932239410796.300291244021 PangX CZalcmanLNormal families and shared valuesBull. London Math. Soc.20003232533110.1112/S002460939900644X1030.300311750485 RoydenH LA criterion for the normality of a family of meromorphic functionsAnn. Acad. Sci. Fenn. Math.1985104995000588.30034802513 ZalcmanLNormal families: new perspectivesBull. Amer. Math. Soc. (N.S.)19983521523010.1090/S0273-0979-98-00755-11037.300211624862 SchiffJNormal Families1993New YorkSpringer10.1007/978-1-4612-0907-20770.30002 GuY XA criterion for normality of families of meromorphic functionsSci. Sinica (special issue)19791267274 GrahlJNevoSSpherical derivatives and normal familiesJ. Anal. Math.201211711912810.1007/s11854-012-0016-4061869502944092 A Hinkkanen (2542_CR4) 1993; 22 L Zalcman (2542_CR10) 1998; 35 J Grahl (2542_CR2) 2012; 117 Y X Gu (2542_CR3) 1979; 1 J Schiff (2542_CR7) 1993 C T Chuang (2542_CR1) 1993 H L Royden (2542_CR6) 1985; 10 W Schwick (2542_CR8) 1994; 23 N Steinmetz (2542_CR9) 2012; 117 X C Pang (2542_CR5) 2000; 32 |
References_xml | – reference: SchiffJNormal Families1993New YorkSpringer10.1007/978-1-4612-0907-20770.30002 – reference: ChuangC TNormal Families of Meromorphic Functions1993SingaporeWorld Scientific10.1142/19040878.30026 – reference: SteinmetzNNormal families and linear differential equationJ. Anal. Math.201211712913210.1007/s11854-012-0017-3061869512944093 – reference: SchwickWOn a normality criterion of H. L. RoydenNew Zealand J. Math.19942391920824.300221279130 – reference: GrahlJNevoSSpherical derivatives and normal familiesJ. Anal. Math.201211711912810.1007/s11854-012-0016-4061869502944092 – reference: HinkkanenANormal families and Ahlfor’s five island theoremNew Zealand J. Math.19932239410796.300291244021 – reference: ZalcmanLNormal families: new perspectivesBull. Amer. Math. Soc. (N.S.)19983521523010.1090/S0273-0979-98-00755-11037.300211624862 – reference: PangX CZalcmanLNormal families and shared valuesBull. London Math. Soc.20003232533110.1112/S002460939900644X1030.300311750485 – reference: RoydenH LA criterion for the normality of a family of meromorphic functionsAnn. Acad. Sci. Fenn. Math.1985104995000588.30034802513 – reference: GuY XA criterion for normality of families of meromorphic functionsSci. Sinica (special issue)19791267274 – volume: 1 start-page: 267 year: 1979 ident: 2542_CR3 publication-title: Sci. Sinica (special issue) – volume-title: Normal Families year: 1993 ident: 2542_CR7 doi: 10.1007/978-1-4612-0907-2 – volume: 117 start-page: 129 year: 2012 ident: 2542_CR9 publication-title: J. Anal. Math. doi: 10.1007/s11854-012-0017-3 – volume: 23 start-page: 91 year: 1994 ident: 2542_CR8 publication-title: New Zealand J. Math. – volume: 117 start-page: 119 year: 2012 ident: 2542_CR2 publication-title: J. Anal. Math. doi: 10.1007/s11854-012-0016-4 – volume: 22 start-page: 39 year: 1993 ident: 2542_CR4 publication-title: New Zealand J. Math. – volume: 32 start-page: 325 year: 2000 ident: 2542_CR5 publication-title: Bull. London Math. Soc. doi: 10.1112/S002460939900644X – volume: 10 start-page: 499 year: 1985 ident: 2542_CR6 publication-title: Ann. Acad. Sci. Fenn. Math. – volume: 35 start-page: 215 year: 1998 ident: 2542_CR10 publication-title: Bull. Amer. Math. Soc. (N.S.) doi: 10.1090/S0273-0979-98-00755-1 – volume-title: Normal Families of Meromorphic Functions year: 1993 ident: 2542_CR1 doi: 10.1142/1904 |
SSID | ssj0055906 |
Score | 2.0001037 |
Snippet | We prove that ifD is a domain in C,α 〉 1 and C 〉 0,then the family F of functions f meromorphic in D such that |f′(z)|/1 + |f(z)|α 〉 C for every z ∈ D is... We prove that if D is a domain in ℂ, α > 1 and C > 0, then the family F of functions f meromorphic in D such that is normal in D . For α = 1, the same... We prove that if D is a domain in , [alpha] > 1 and C > 0, then the family F of functions f meromorphic in D such that ... is normal in D. For [alpha] = 1, the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that if D is a domain in , alpha > 1 and C > 0, then the family F of... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 277 |
SubjectTerms | Cgt Functions (mathematics) IFD Mathematical models Mathematics Mathematics and Statistics Science Studies Theorems 函数 定常态 微分不等式 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-InVKRV8UoPtmq8-iR8bQ1BEFHwLbZqqMNrptv_fS5t2KrjXJk3gLnf3u1zuDuCEhUIHhttSiCwhNDMRibU2hBvNURdqYaq6BfcPfPhC717Zq7twm7hnlY1OrBR1Vmp7R34RUiFCJtAcXY4_ie0aZaOrroXGMqygCpayAyvX_YfHp0YXI1wO6vyiKCaILXgT16yT59AXQFeaEnSSUC3Y6grvZfH2iTbjt5WaQ88_0dLKCA02YN2hR_-qZvcmLJliC9bu29Krk22Qt67lCYruyEcMWadNokN87hcWoFrc7SdF5uPA5IO033bgZdB_vhkS1x6B6EiwKXp-ItOoqlgeRUnCNZpanckcIZjJbLQtNEme5VIjpAjzRPAgoSw3CCkMCrWRNNqFTlEWZg_8SOIEwcI0jCnVqZacC5r2TJhGJg8y7sF-Sxo1rstgKCpjRHOx8CBoaKW0Kyxu-1uM1LwksiW1QlIrS2olPThtf2mWWzC52zBAOQGbqPlx8OC4HUbRsPGOpDDlDOcwxF_CppV5cNYw7scS_224v3jDA1jt2VNTPd3uQmf6NTOHiEym6ZE7ft9L8d2P priority: 102 providerName: ProQuest |
Title | Differential Inequalities, Normality and Quasi-normality |
URI | http://lib.cqvip.com/qk/85800X/201402/48941697.html https://link.springer.com/article/10.1007/s10114-014-2542-8 https://www.proquest.com/docview/1477157124 https://www.proquest.com/docview/1506375833 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIP4id2zlHBJ7XQrvnq4-a-UDZEHMyn0qapCqNTu_3_Xrq2m6KCT4HmmsAld_kdl_sF4II6XNqKaSpEGlgkUq7lSakspiRDXyi5yngLRmM2nJDbKZ3mddxpcdu9SElmnnqj2A2xO4a-xMKgBs24AjWKobu-xzVptQv3iwjZXpUUuZ6FcIIVqcyfhtCECi_z5Pkdp_t6MK3R5rcEaXbu9PdgNweMZnu1wvuwpZID2BmVbKvpIYhu_soJWuvMRNi4qpTEGPjaTDQm1VDbDJLIxI701Sq_HcGk33u8GVr5iwiWdDldYLDHI4neicauGwRM4ukqIxEj6lKRTrA5KoijWEhEEU4ccGYHhMYKUYRCO1aCuMdQTeaJOgHTFSjAqRM6HiEylIIxTsKWckJXxXbEDKiXqvHfVswXPhEeAjiPG2AXuvJlziWun7SY-WsWZK1qH1Xta1X7woDL8pdiuD-EG8UC-LlNpRikcO5QjoDEgPOyG61BpziCRM2XKEMRcnFdSWbAVbFwG0P8NmH9X9KnsN3Smyi7vN2A6uJjqc4QmyzCJlREf9CEWrvT7fR1O3i662Hb6Y3vH5rZTv0ESlfeJg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOiLZUhC40ldpLi0Wy_koOqKqAZSksJ5C4uYkzASSUhe4i1D_V38g4ibNtpXLba-w40ng8703GMwPwUcbaRqhcKUSZMVEgZ6m1yBRaRbbQaqzrFozO1PBCfL-Ulwvw2-fCuGuV3ibWhroYW_ePfDcWWsdSExx9vbtnrmuUi676FhqNWpzgr0dy2SZ7xwe0v5_6_cHh-f6QtV0FmOVaTslh0oWlEy5LzrNMWUIoWyQlMRcsXJAqxqwsysQSEsdlplWUCVkiITHSWcBEcFp3EV4ITkjuMtMHR97yEzmPmmwmnjJiMspHUZtUPfI8yHEXjFwyMkKulsP1uLq6J4T6GxNnRPef2GwNeYM1WG25avitUa5XsIDVa1gZdYVeJ28gOWgbrJChuA2JsTZJmuR-74SVo8OO5YdZVYQ0MLlh3bN1uJiL2N7CUjWucANCntAELeM8ToWwuU2U0iLvY5xzLKNCBbDZicbcNUU3jEhS4o6pDiDysjK2LWPuumncmlkBZidqQ6I2TtQmCeBz94pf7pnJPb8Bpj3OEzNTvgA-dMN0EF10Jatw_EBzJLE97ZLYAvjiN-6PJf73wc3nP_geXg7PR6fm9Pjs5B0s950G1ZfGe7A0_fmAW8SJpvl2rYgh_Ji35j8B9wQYtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8UwEB5cQPQgrljXCnpRi12ytAcP4vPhjgcfeIttOlVB-tT3RPxV_kUn3VxQwYPXZpo2k0zmGybzBWCNe1K7KAwVIo8dlmLgRFqjI1AL2gu1xIK34PRMHHTY0SW_HIDXuhamOO1epyTLmgbD0pT3t-_TbPtD4RvheAqDmUMBDpl0daryGF-eKWbr7Ry2aILXfb-9f7F34FTXCjg6kLxPEZNMNZk4z4IgjoUmF6XTMCPogqnJUnkYZ2kWanLFXhZL4caMZ0iuGMkYMGQB9TsIw8wUH5MBdfzdeusndO6W5UxB5BCUEXUa9btfNmQON938-oGG-tkpviPdL8nZwue1J2C8Aqv2brm6JmEA8ykYO22YXnvTELaqG1Zop7izCbKWVZoUf2_ZucHDBubbcZ7a1NC7dZpnM9D5F7XNwlDezXEO7CAkAcm9xIsY04kOhZAs8dFLAszcVFgw36hG3ZesG4qFEYHHSFrg1rpSuuIxN9dp3Kl3BmajakWqVkbVKrRgo3ml7u4X4cV6AlRlzz0KkKT0uCQwZMFq00yWaNIrcY7dJ5LhBPekqWKzYLOeuA9d_PTB-T9Jr8DIeautTg7Pjhdg1DfrqThDvghD_ccnXCKI1E-Wi2Vpw9V_28EbzR8ZfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+inequalities%2C+normality+and+quasi-normality&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Liu%2C+Xiao+Jun&rft.au=Nevo%2C+Shahar&rft.au=Pang%2C+Xue+Cheng&rft.date=2014-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=30&rft.issue=2&rft.spage=277&rft.epage=282&rft_id=info:doi/10.1007%2Fs10114-014-2542-8&rft.externalDocID=10_1007_s10114_014_2542_8 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85800X%2F85800X.jpg |