Slim-neck by GSConv: a lightweight-design for real-time detector architectures

Real-time object detection is significant for industrial and research fields. On edge devices, a giant model is difficult to achieve the real-time detecting requirement, and a lightweight model built from a large number of the depth-wise separable convolutional could not achieve the sufficient accur...

Full description

Saved in:
Bibliographic Details
Published inJournal of real-time image processing Vol. 21; no. 3; p. 62
Main Authors Li, Hulin, Li, Jun, Wei, Hanbing, Liu, Zheng, Zhan, Zhenfei, Ren, Qiliang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Real-time object detection is significant for industrial and research fields. On edge devices, a giant model is difficult to achieve the real-time detecting requirement, and a lightweight model built from a large number of the depth-wise separable convolutional could not achieve the sufficient accuracy. We introduce a new lightweight convolutional technique, GSConv, to lighten the model but maintain the accuracy. The GSConv accomplishes an excellent trade-off between the accuracy and speed. Furthermore, we provide a design suggestion based on the GSConv, slim-neck (SNs), to achieve a higher computational cost-effectiveness of the real-time detectors. The effectiveness of the SNs was robustly demonstrated in over twenty sets comparative experiments. In particular, the real-time detectors of ameliorated by the SNs obtain the state-of-the-art (70.9% AP 50 for the SODA10M at a speed of ~ 100 FPS on a Tesla T4) compared with the baselines. Code is available at https://github.com/alanli1997/slim-neck-by-gsconv .
ISSN:1861-8200
1861-8219
DOI:10.1007/s11554-024-01436-6