Deep learning approach for identification of H ii regions during reionization in 21-cm observations - II. Foreground contamination
The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 528; no. 3; pp. 5212 - 5230 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources. |
---|---|
AbstractList | The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources. The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with AUC = 95 is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with V-ion > (10cmpc)(3 )at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources. The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2’s independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources. |
Author | Prelogović, David Mertens, Florent G Mesinger, Andrei Giri, Sambit K Kneib, Jean-Paul Bianco, Michele Chen, Tianyue Tolley, Emma |
Author_xml | – sequence: 1 givenname: Michele orcidid: 0000-0002-6766-0017 surname: Bianco fullname: Bianco, Michele email: mbianco@protonmail.com – sequence: 2 givenname: Sambit K orcidid: 0000-0002-2560-536X surname: Giri fullname: Giri, Sambit K – sequence: 3 givenname: David surname: Prelogović fullname: Prelogović, David – sequence: 4 givenname: Tianyue orcidid: 0000-0003-0173-6274 surname: Chen fullname: Chen, Tianyue – sequence: 5 givenname: Florent G orcidid: 0000-0003-3802-4289 surname: Mertens fullname: Mertens, Florent G – sequence: 6 givenname: Emma surname: Tolley fullname: Tolley, Emma – sequence: 7 givenname: Andrei orcidid: 0000-0003-3374-1772 surname: Mesinger fullname: Mesinger, Andrei – sequence: 8 givenname: Jean-Paul surname: Kneib fullname: Kneib, Jean-Paul |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345587$$DView record from Swedish Publication Index |
BookMark | eNqFkTtLBDEUhYMouD5K-4CNzWgek3mU4nNBsFHbkMnerNHdZEwyirb-EX-Lv8y4KwqCWIWb-52TcM4GWnXeAUI7lOxT0vKDuQsqHsSkgIl6BY0or0TB2qpaRSNCuCiamtJ1tBHjHSGk5KwaoddjgB7PQAVn3RSrvg9e6VtsfMB2Ai5ZY7VK1jvsDT5_f7MWB5jmOeLJED41AfJkX5aQdZjRQs-x7yKEx8VlxAUej_fxqc_K4Ac3wdq7pObWLfZbaM2oWYTtr3MTXZ-eXB2dFxeXZ-Ojw4tC81qkoiSsFR0D1lBWdZOmVoKqsjK1KrtOGGagbYWpoeWgVGUE4U2rBZTamLzNAW2iYukbn6AfOtkHO1fhWXpl5bG9OZQ-TOV9upW8FKKpM7-75HMmDwPEJO_8EFz-ouSUcCJa3pQ_rjr4GAOYb19K5GcvctGL_Ool8_wXr21a5JCCsrM_VXtLlR_6fx74ACfrp7E |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad6c40 crossref_primary_10_1093_mnras_stae1984 crossref_primary_10_1093_rasti_rzae019 crossref_primary_10_1051_0004_6361_202346495 crossref_primary_10_1088_1475_7516_2024_05_051 crossref_primary_10_1088_1475_7516_2025_02_055 crossref_primary_10_1093_mnras_stae1999 crossref_primary_10_1103_PhysRevD_110_043535 |
Cites_doi | 10.1088/1538-3873/ab5bfd 10.1093/mnras/stab1822 10.1093/mnras/stt1591 10.1093/mnras/staa327 10.1093/mnras/stv2887 10.3847/1538-4357/ac2ffc 10.1093/mnras/sty2551 10.1111/j.1365-2966.2009.15156.x 10.7717/peerj.453 10.3847/1538-4357/aad8bb 10.1088/1475-7516/2021/05/026 10.1086/506597 10.3254/978-1-61499-476-3-1 10.21105/joss.02363 10.1093/mnras/stad2937 10.3847/2041-8213/ac9b22 10.1111/j.1365-2966.2008.13634.x 10.1051/0004-6361/201016082 10.1093/mnras/stad120 10.1093/mnras/stx649 10.3847/1538-4357/ac1c78 10.1088/0004-637X/763/2/90 10.1111/j.1365-2966.2011.18219.x 10.1093/mnras/stz1220 10.48550/arXiv.2303.14239 10.1111/j.1365-2966.2009.15081.x 10.1051/0004-6361/201833910 10.1207/s15516709cog0901_5 10.1093/mnras/staa487 10.1103/PhysRevD.89.023002 10.1111/j.1365-2966.2008.13897.x 10.1093/mnras/sts333 10.1111/j.1365-2966.2007.11519.x 10.1109/MCSE.2007.55 10.21105/joss.02582 10.1038/s41586-020-2649-2 10.1086/306175 10.1093/mnras/stab776 10.1093/mnras/sty683 10.1086/429857 10.1093/mnras/stx2539 10.1093/mnras/stz2224 10.1088/0004-637X/773/1/38 10.1103/PhysRevD.107.043502 10.1038/s41550-023-01937-7 10.1088/0004-637X/804/1/14 10.1093/mnras/stw2494 10.1007/s10686-013-9334-5 10.1088/0004-637X/695/1/183 10.3847/2041-8213/ac94d0 10.1111/j.1365-2966.2012.21032.x 10.1088/0004-637X/782/2/66 10.1111/j.1365-2966.2006.10502.x 10.1111/j.1365-2966.2010.17731.x 10.1086/506135 10.1088/0067-0049/180/2/330 10.1093/mnras/stab1518 10.1111/j.1365-2966.2012.21065.x 10.1093/mnras/staa414 10.1093/mnras/stac3060 10.1016/j.newar.2005.11.033 10.1086/303549 10.1093/mnras/staa098 10.1088/0004-637X/731/1/54 10.1093/mnras/stu2027 10.1111/j.1365-2966.2007.12421.x 10.1093/mnras/stx1841 10.1093/mnras/sty1786 10.1109/TPAMI.2012.120 10.1093/mnras/stad2102 10.1088/1475-7516/2019/09/053 10.1007/s11263-019-01228-7 10.1103/PhysRevD.90.023019 10.1111/j.1365-2966.2009.14426.x 10.1093/mnras/sty1207 10.1016/j.physrep.2006.08.002 10.1038/s41592-019-0686-2 10.1051/0004-6361/202244986 10.1086/324293 10.1038/nature07990 10.1007/s10714-022-02987-4 10.1103/PhysRevD.108.043030 10.1093/mnras/stu2601 10.1088/0004-637X/800/2/128 10.1093/mnras/staa1599 10.48550/arXiv.1909.12369 10.1016/j.newast.2005.09.004 10.1086/423025 10.1093/mnras/stab107 10.1093/mnras/stab1320 10.3847/1538-4357/aaebfa 10.1093/mnras/stab1158 10.1093/mnras/stu2474 10.1111/j.1365-2966.2004.08443.x 10.1093/mnras/stac3723 10.1093/mnras/stab3215 10.1086/521806 10.1093/mnras/stu1368 10.1126/science.1063991 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. |
Copyright_xml | – notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024 – notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. |
DBID | TOX AAYXX CITATION 8FD H8D L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1093/mnras/stae257 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 5230 |
ExternalDocumentID | oai_DiVA_org_kth_345587 10_1093_mnras_stae257 10.1093/mnras/stae257 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABVLG ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGQPQ AGSYK AHGBF AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION 8FD H8D L7M AAMMB ADTPV AEFGJ AFDQA AGXDD AIDQK AIDYY AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c375t-40295b2e28126bd87a51a46f7a4bb5f2fe995f7e93eaa6f50389c5e4cff5f2093 |
IEDL.DBID | TOX |
ISSN | 0035-8711 1365-2966 |
IngestDate | Thu Aug 21 06:39:33 EDT 2025 Mon Jun 30 07:22:50 EDT 2025 Tue Jul 01 03:32:45 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Mon Jun 30 08:34:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | early Universe techniques: image processing techniques: interferometric dark ages, reionization, first stars |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-40295b2e28126bd87a51a46f7a4bb5f2fe995f7e93eaa6f50389c5e4cff5f2093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2560-536X 0000-0003-0173-6274 0000-0002-6766-0017 0000-0003-3802-4289 0000-0003-3374-1772 |
OpenAccessLink | https://dx.doi.org/10.1093/mnras/stae257 |
PQID | 3103059384 |
PQPubID | 42411 |
PageCount | 19 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_345587 proquest_journals_3103059384 crossref_primary_10_1093_mnras_stae257 crossref_citationtrail_10_1093_mnras_stae257 oup_primary_10_1093_mnras_stae257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Akiba (2024021702285411700_bib4) 2019 Chapman (2024021702285411700_bib17) 2013; 429 Bakx (2024021702285411700_bib6) 2023 Di Matteo (2024021702285411700_bib28) 2004; 355 Koopmans (2024021702285411700_bib67) 2015 Hirling (2024021702285411700_bib55) 2023 Ross (2024021702285411700_bib98) 2019; 487 Gazagnes (2024021702285411700_bib38) 2021; 502 Kerrigan (2024021702285411700_bib64) 2018; 864 Offringa (2024021702285411700_bib87) 2014; 444 Pritchard (2024021702285411700_bib95) 2007; 376 Datta (2024021702285411700_bib25) 2007; 382 Gagnon-Hartman (2024021702285411700_bib37) 2021; 504 Selvaraju (2024021702285411700_bib105) 2019; 128 Furlanetto (2024021702285411700_bib35) 2004; 613 Bromm (2024021702285411700_bib13) 2009; 459 Chapman (2024021702285411700_bib15) 2019 Bowman (2024021702285411700_bib10) 2009; 695 Abadi (2024021702285411700_bib1) 2015 Briggs (2024021702285411700_bib12) 1995 Elbers (2024021702285411700_bib31) 2023 Beardsley (2024021702285411700_bib7) 2015; 800 Wang (2024021702285411700_bib116) 2020 Ghara (2024021702285411700_bib41) 2017; 464 Iliev (2024021702285411700_bib59) 2006; 369 Morales (2024021702285411700_bib82) 2006; 50 Madau (2024021702285411700_bib73) 1997; 475 Choudhury (2024021702285411700_bib23) 2018; 481 Perez (2024021702285411700_bib90) 2017 Planck Collaboration VI (2024021702285411700_bib91) 2020; 641 Dixon (2024021702285411700_bib30) 2016; 456 Murray (2024021702285411700_bib85) 2020; 5 Friedrich (2024021702285411700_bib34) 2011; 413 Schneider (2024021702285411700_bib104) 2023; 108 Choudhury (2024021702285411700_bib22) 2022; 54 Li (2024021702285411700_bib68) 2018 Thyagarajan (2024021702285411700_bib110) 2015; 804 Choudhuri (2024021702285411700_bib21) 2014; 445 Pawlik (2024021702285411700_bib88) 2011; 731 Furlanetto (2024021702285411700_bib36) 2006; 433 Sortino (2024021702285411700_bib107) 2023 Ferrara (2024021702285411700_bib32) 2014; 186 Chollet (2024021702285411700_bib20) 2017 Achanta (2024021702285411700_bib3) 2012; 34 Mehra (2024021702285411700_bib74) 2016; 03 Kapahtia (2024021702285411700_bib63) 2021; 2021 Ross (2024021702285411700_bib97) 2017; 468 Harnois-Déraps (2024021702285411700_bib53) 2013; 436 Liu (2024021702285411700_bib70) 2009; 394 Salehi (2024021702285411700_bib101) 2017 Mertens (2024021702285411700_bib78) 2018; 478 Zackrisson (2024021702285411700_bib119) 2020; 493 Mellema (2024021702285411700_bib77) 2015 Smirnov (2024021702285411700_bib106) 2011; 527 Giri (2024021702285411700_bib47) 2019; 489 Kingma (2024021702285411700_bib65) 2014 Zaroubi (2024021702285411700_bib120) 2012 Giri (2024021702285411700_bib44) 2021; 505 Hütsi (2024021702285411700_bib57) 2023; 107 Prelogović (2024021702285411700_bib94) 2021; 509 van der Walt (2024021702285411700_bib113) 2014; 2 Giri (2024021702285411700_bib45) 2018; 473 Platania (2024021702285411700_bib92) 1998; 505 Harker (2024021702285411700_bib52) 2009; 397 Giri (2024021702285411700_bib48) 2020; 5 Mellema (2024021702285411700_bib76) 2013; 36 Pober (2024021702285411700_bib93) 2014; 782 Ronneberger (2024021702285411700_bib96) 2015 Naidu (2024021702285411700_bib86) 2022 Liu (2024021702285411700_bib71) 2009; 398 Wyithe (2024021702285411700_bib118) 2015 Rumelhart (2024021702285411700_bib100) 1985; 9 Wang (2024021702285411700_bib117) 2023 Wang (2024021702285411700_bib115) 2013; 763 Cunnington (2024021702285411700_bib24) 2023; 518 Dillon (2024021702285411700_bib29) 2014; 89 Mesinger (2024021702285411700_bib80) 2007; 669 Chapman (2024021702285411700_bib16) 2012; 423 Santos (2024021702285411700_bib102) 2005; 625 Liu (2024021702285411700_bib72) 2014; 90 Iliev (2024021702285411700_bib60) 2012; 423 Friedman (2024021702285411700_bib33) 2022 Jelić (2024021702285411700_bib61) 2008; 389 Virtanen (2024021702285411700_bib112) 2020; 17 Murray (2024021702285411700_bib84) 2018; 869 Kapahtia (2024021702285411700_bib62) 2019; 2019 Mertens (2024021702285411700_bib79) 2020; 493 Morales (2024021702285411700_bib83) 2006; 648 Geil (2024021702285411700_bib39) 2017; 472 Ghara (2024021702285411700_bib40) 2020; 496 Abel (2024021702285411700_bib2) 2001; 295 Giri (2024021702285411700_bib46) 2018; 479 Hunter (2024021702285411700_bib56) 2007; 9 Liu (2024021702285411700_bib69) 2020; 132 Castellano (2024021702285411700_bib14) 2022 Mesinger (2024021702285411700_bib81) 2011; 411 Ghara (2024021702285411700_bib43) 2021; 503 Schaeffer (2024021702285411700_bib103) 2023; 526 Alonso (2024021702285411700_bib5) 2015; 447 The HERA Collaboration (2024021702285411700_bib108) 2022; 924 Chen (2024021702285411700_bib19) 2023 Mellema (2024021702285411700_bib75) 2006; 11 Harris (2024021702285411700_bib54) 2020; 585 Dayal (2024021702285411700_bib26) 2023 The HERA Collaboration (2024021702285411700_bib109) 2022; 925 Chen (2024021702285411700_bib18) 2023 Di Matteo (2024021702285411700_bib27) 2002; 564 Boylan-Kolchin (2024021702285411700_bib11) 2023 Gleser (2024021702285411700_bib50) 2008; 391 Ghara (2024021702285411700_bib42) 2020; 493 Gu (2024021702285411700_bib51) 2013; 773 Ross (2024021702285411700_bib99) 2021; 506 Bianco (2024021702285411700_bib8) 2021; 505 Bonaldi (2024021702285411700_bib9) 2015; 447 Pedregosa (2024021702285411700_bib89) 2011; 12 Giri (2024021702285411700_bib49) 2023; 669 Hutter (2024021702285411700_bib58) 2018; 477 Trott (2024021702285411700_bib111) 2020; 493 Komatsu (2024021702285411700_bib66) 2009; 180 Wang (2024021702285411700_bib114) 2006; 650 |
References_xml | – volume: 132 start-page: 062001 year: 2020 ident: 2024021702285411700_bib69 publication-title: Publ. Astron. Soc. Pac. doi: 10.1088/1538-3873/ab5bfd – volume: 506 start-page: 3717 year: 2021 ident: 2024021702285411700_bib99 publication-title: MNRAS doi: 10.1093/mnras/stab1822 – volume: 436 start-page: 540 year: 2013 ident: 2024021702285411700_bib53 publication-title: MNRAS doi: 10.1093/mnras/stt1591 – volume: 493 start-page: 1662 year: 2020 ident: 2024021702285411700_bib79 publication-title: MNRAS doi: 10.1093/mnras/staa327 – year: 2022 ident: 2024021702285411700_bib33 – start-page: 2623 year: 2019 ident: 2024021702285411700_bib4 article-title: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – volume: 456 start-page: 3011 year: 2016 ident: 2024021702285411700_bib30 publication-title: MNRAS doi: 10.1093/mnras/stv2887 – volume: 924 start-page: 51 year: 2022 ident: 2024021702285411700_bib108 publication-title: ApJ doi: 10.3847/1538-4357/ac2ffc – volume: 481 start-page: 3821 year: 2018 ident: 2024021702285411700_bib23 publication-title: MNRAS doi: 10.1093/mnras/sty2551 – volume: 398 start-page: 401 year: 2009 ident: 2024021702285411700_bib71 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15156.x – volume: 2 start-page: e453 year: 2014 ident: 2024021702285411700_bib113 publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 864 start-page: 131 year: 2018 ident: 2024021702285411700_bib64 publication-title: ApJ doi: 10.3847/1538-4357/aad8bb – volume: 2021 start-page: 026 year: 2021 ident: 2024021702285411700_bib63 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/05/026 – volume: 650 start-page: 529 year: 2006 ident: 2024021702285411700_bib114 publication-title: ApJ doi: 10.1086/506597 – volume: 186 start-page: 1 year: 2014 ident: 2024021702285411700_bib32 publication-title: Proc. Int. Sch. Phys. Fermi doi: 10.3254/978-1-61499-476-3-1 – volume: 5 start-page: 2363 year: 2020 ident: 2024021702285411700_bib48 publication-title: J. Open Source Softw. doi: 10.21105/joss.02363 – volume: 526 start-page: 2942 year: 2023 ident: 2024021702285411700_bib103 publication-title: MNRAS doi: 10.1093/mnras/stad2937 – start-page: PoS(AASKA14)010 year: 2015 ident: 2024021702285411700_bib77 article-title: Proc. Sci., HI tomographic imaging of the Cosmic Dawn andEpoch of Reionization with SKA – start-page: L14 year: 2022 ident: 2024021702285411700_bib86 doi: 10.3847/2041-8213/ac9b22 – volume: 389 start-page: 1319 year: 2008 ident: 2024021702285411700_bib61 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13634.x – volume: 527 start-page: A106 year: 2011 ident: 2024021702285411700_bib106 publication-title: A&A doi: 10.1051/0004-6361/201016082 – start-page: 2709 volume-title: MNRAS year: 2023 ident: 2024021702285411700_bib31 doi: 10.1093/mnras/stad120 – year: 2014 ident: 2024021702285411700_bib65 – volume: 468 start-page: 3785 year: 2017 ident: 2024021702285411700_bib97 publication-title: MNRAS doi: 10.1093/mnras/stx649 – volume: 925 start-page: 221 year: 2022 ident: 2024021702285411700_bib109 publication-title: ApJ doi: 10.3847/1538-4357/ac1c78 – volume: 763 start-page: 90 year: 2013 ident: 2024021702285411700_bib115 publication-title: ApJ doi: 10.1088/0004-637X/763/2/90 – year: 2017 ident: 2024021702285411700_bib90 – volume: 413 start-page: 1353 year: 2011 ident: 2024021702285411700_bib34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18219.x – volume: 487 start-page: 1101 year: 2019 ident: 2024021702285411700_bib98 publication-title: MNRAS doi: 10.1093/mnras/stz1220 – year: 2023 ident: 2024021702285411700_bib26 doi: 10.48550/arXiv.2303.14239 – volume: 397 start-page: 1138 year: 2009 ident: 2024021702285411700_bib52 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15081.x – volume: 641 start-page: A6 year: 2020 ident: 2024021702285411700_bib91 publication-title: A&A doi: 10.1051/0004-6361/201833910 – volume: 9 start-page: 75 year: 1985 ident: 2024021702285411700_bib100 publication-title: Cognitive Sci. doi: 10.1207/s15516709cog0901_5 – volume: 493 start-page: 4728 year: 2020 ident: 2024021702285411700_bib42 publication-title: MNRAS doi: 10.1093/mnras/staa487 – volume: 89 start-page: 23002 year: 2014 ident: 2024021702285411700_bib29 publication-title: PRD doi: 10.1103/PhysRevD.89.023002 – volume: 391 start-page: 383 year: 2008 ident: 2024021702285411700_bib50 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13897.x – volume: 429 start-page: 165 year: 2013 ident: 2024021702285411700_bib17 publication-title: MNRAS doi: 10.1093/mnras/sts333 – volume: 376 start-page: 1680 year: 2007 ident: 2024021702285411700_bib95 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11519.x – volume: 9 start-page: 90 year: 2007 ident: 2024021702285411700_bib56 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 5 start-page: 2582 year: 2020 ident: 2024021702285411700_bib85 publication-title: J. Open Source Soft. doi: 10.21105/joss.02582 – volume: 585 start-page: 357 year: 2020 ident: 2024021702285411700_bib54 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 505 start-page: 473 year: 1998 ident: 2024021702285411700_bib92 publication-title: ApJ doi: 10.1086/306175 – year: 2015 ident: 2024021702285411700_bib1 – volume: 12 start-page: 2825 year: 2011 ident: 2024021702285411700_bib89 publication-title: J. Mach. Learn. Res. – year: 2023 ident: 2024021702285411700_bib19 – volume: 503 start-page: 4551 year: 2021 ident: 2024021702285411700_bib43 publication-title: MNRAS doi: 10.1093/mnras/stab776 – volume: 477 start-page: 1549 year: 2018 ident: 2024021702285411700_bib58 publication-title: MNRAS doi: 10.1093/mnras/sty683 – year: 1995 ident: 2024021702285411700_bib12 – start-page: PoS(AASKA14)001 volume-title: Proc. Sci. The Cosmic Dawn and Epoch of Reionization withthe Square Kilometre Array year: 2015 ident: 2024021702285411700_bib67 – volume: 625 start-page: 575 year: 2005 ident: 2024021702285411700_bib102 publication-title: ApJ doi: 10.1086/429857 – volume: 473 start-page: 2949 year: 2018 ident: 2024021702285411700_bib45 publication-title: MNRAS doi: 10.1093/mnras/stx2539 – volume: 489 start-page: 1590 year: 2019 ident: 2024021702285411700_bib47 publication-title: MNRAS doi: 10.1093/mnras/stz2224 – volume: 773 start-page: 38 year: 2013 ident: 2024021702285411700_bib51 publication-title: ApJ doi: 10.1088/0004-637X/773/1/38 – volume: 107 start-page: 043502 year: 2023 ident: 2024021702285411700_bib57 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.043502 – start-page: 731 volume-title: Nat. Astron. year: 2023 ident: 2024021702285411700_bib11 doi: 10.1038/s41550-023-01937-7 – volume: 804 start-page: 14 year: 2015 ident: 2024021702285411700_bib110 publication-title: ApJ doi: 10.1088/0004-637X/804/1/14 – volume: 464 start-page: 2234 year: 2017 ident: 2024021702285411700_bib41 publication-title: MNRAS doi: 10.1093/mnras/stw2494 – volume: 36 start-page: 235 year: 2013 ident: 2024021702285411700_bib76 publication-title: Exp. Astron. doi: 10.1007/s10686-013-9334-5 – volume: 695 start-page: 183 year: 2009 ident: 2024021702285411700_bib10 publication-title: ApJ doi: 10.1088/0004-637X/695/1/183 – start-page: L15 volume-title: ApJL year: 2022 ident: 2024021702285411700_bib14 doi: 10.3847/2041-8213/ac94d0 – volume: 423 start-page: 2222 year: 2012 ident: 2024021702285411700_bib60 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21032.x – volume: 782 start-page: 66 year: 2014 ident: 2024021702285411700_bib93 publication-title: ApJ doi: 10.1088/0004-637X/782/2/66 – volume: 369 start-page: 1625 year: 2006 ident: 2024021702285411700_bib59 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10502.x – volume: 03 start-page: 8 year: 2016 ident: 2024021702285411700_bib74 publication-title: Imperial J. Int. Res. – volume: 411 start-page: 955 year: 2011 ident: 2024021702285411700_bib81 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17731.x – volume: 648 start-page: 767 year: 2006 ident: 2024021702285411700_bib83 publication-title: ApJ doi: 10.1086/506135 – volume: 180 start-page: 330 year: 2009 ident: 2024021702285411700_bib66 publication-title: ApJ doi: 10.1088/0067-0049/180/2/330 – volume: 505 start-page: 3982 year: 2021 ident: 2024021702285411700_bib8 publication-title: MNRAS doi: 10.1093/mnras/stab1518 – volume: 423 start-page: 2518 year: 2012 ident: 2024021702285411700_bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21065.x – volume: 493 start-page: 4711 year: 2020 ident: 2024021702285411700_bib111 publication-title: MNRAS doi: 10.1093/mnras/staa414 – volume: 518 start-page: 6262 year: 2023 ident: 2024021702285411700_bib24 publication-title: MNRAS doi: 10.1093/mnras/stac3060 – year: 2023 ident: 2024021702285411700_bib55 – volume: 50 start-page: 173 year: 2006 ident: 2024021702285411700_bib82 publication-title: New Astron. Rev. doi: 10.1016/j.newar.2005.11.033 – volume: 475 start-page: 429 year: 1997 ident: 2024021702285411700_bib73 publication-title: ApJ doi: 10.1086/303549 – volume: 493 start-page: 855 year: 2020 ident: 2024021702285411700_bib119 publication-title: MNRAS doi: 10.1093/mnras/staa098 – volume: 731 start-page: 54 year: 2011 ident: 2024021702285411700_bib88 publication-title: ApJ doi: 10.1088/0004-637X/731/1/54 – volume: 445 start-page: 4351 year: 2014 ident: 2024021702285411700_bib21 publication-title: MNRAS doi: 10.1093/mnras/stu2027 – year: 2015 ident: 2024021702285411700_bib96 – volume: 382 start-page: 809 year: 2007 ident: 2024021702285411700_bib25 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12421.x – volume: 472 start-page: 1324 year: 2017 ident: 2024021702285411700_bib39 publication-title: MNRAS doi: 10.1093/mnras/stx1841 – volume: 479 start-page: 5596 year: 2018 ident: 2024021702285411700_bib46 publication-title: MNRAS doi: 10.1093/mnras/sty1786 – volume: 34 start-page: 2274 year: 2012 ident: 2024021702285411700_bib3 publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2012.120 – year: 2017 ident: 2024021702285411700_bib20 – start-page: 3724 volume-title: MNRAS year: 2023 ident: 2024021702285411700_bib18 doi: 10.1093/mnras/stad2102 – volume: 2019 start-page: 053 year: 2019 ident: 2024021702285411700_bib62 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/09/053 – volume: 128 start-page: 336 year: 2019 ident: 2024021702285411700_bib105 publication-title: Int. J. Comp. Vision doi: 10.1007/s11263-019-01228-7 – volume: 90 start-page: 023019 year: 2014 ident: 2024021702285411700_bib72 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.023019 – year: 2023 ident: 2024021702285411700_bib117 – start-page: PoS(AASKA14)015 volume-title: Proc. Sci., Imaging HII Regions from Galaxies and QuasarsDuring Reionisation with SKA year: 2015 ident: 2024021702285411700_bib118 – volume: 394 start-page: 1575 year: 2009 ident: 2024021702285411700_bib70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14426.x – volume: 478 start-page: 3640 year: 2018 ident: 2024021702285411700_bib78 publication-title: MNRAS doi: 10.1093/mnras/sty1207 – volume: 433 start-page: 181 year: 2006 ident: 2024021702285411700_bib36 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.08.002 – volume: 17 start-page: 261 year: 2020 ident: 2024021702285411700_bib112 publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 669 start-page: A6 year: 2023 ident: 2024021702285411700_bib49 publication-title: A&A doi: 10.1051/0004-6361/202244986 – volume: 564 start-page: 576 year: 2002 ident: 2024021702285411700_bib27 publication-title: ApJ doi: 10.1086/324293 – volume: 459 start-page: 49 year: 2009 ident: 2024021702285411700_bib13 publication-title: Nature doi: 10.1038/nature07990 – volume: 54 start-page: 102 year: 2022 ident: 2024021702285411700_bib22 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-022-02987-4 – volume: 108 start-page: 043030 year: 2023 ident: 2024021702285411700_bib104 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.043030 – year: 2018 ident: 2024021702285411700_bib68 – volume: 447 start-page: 1973 year: 2015 ident: 2024021702285411700_bib9 publication-title: MNRAS doi: 10.1093/mnras/stu2601 – year: 2023 ident: 2024021702285411700_bib107 – volume: 800 start-page: 128 year: 2015 ident: 2024021702285411700_bib7 publication-title: ApJ doi: 10.1088/0004-637X/800/2/128 – volume: 496 start-page: 739 year: 2020 ident: 2024021702285411700_bib40 publication-title: MNRAS doi: 10.1093/mnras/staa1599 – year: 2019 ident: 2024021702285411700_bib15 doi: 10.48550/arXiv.1909.12369 – volume: 11 start-page: 374 year: 2006 ident: 2024021702285411700_bib75 publication-title: New Astron. doi: 10.1016/j.newast.2005.09.004 – volume: 613 start-page: 1 year: 2004 ident: 2024021702285411700_bib35 publication-title: ApJ doi: 10.1086/423025 – volume: 502 start-page: 1816 year: 2021 ident: 2024021702285411700_bib38 publication-title: MNRAS doi: 10.1093/mnras/stab107 – volume: 505 start-page: 1863 year: 2021 ident: 2024021702285411700_bib44 publication-title: MNRAS doi: 10.1093/mnras/stab1320 – volume: 869 start-page: 25 year: 2018 ident: 2024021702285411700_bib84 publication-title: ApJ doi: 10.3847/1538-4357/aaebfa – year: 2017 ident: 2024021702285411700_bib101 – volume: 504 start-page: 4716 year: 2021 ident: 2024021702285411700_bib37 publication-title: MNRAS doi: 10.1093/mnras/stab1158 – volume: 447 start-page: 400 year: 2015 ident: 2024021702285411700_bib5 publication-title: MNRAS doi: 10.1093/mnras/stu2474 – volume: 355 start-page: 1053 year: 2004 ident: 2024021702285411700_bib28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08443.x – start-page: 5076 volume-title: MNRAS year: 2023 ident: 2024021702285411700_bib6 doi: 10.1093/mnras/stac3723 – volume: 509 start-page: 3852 year: 2021 ident: 2024021702285411700_bib94 publication-title: MNRAS doi: 10.1093/mnras/stab3215 – volume-title: Astrophysics and Space Science Library, Vol 396, The Epoch of Reionization year: 2012 ident: 2024021702285411700_bib120 – volume: 669 start-page: 663 year: 2007 ident: 2024021702285411700_bib80 publication-title: ApJ doi: 10.1086/521806 – year: 2020 ident: 2024021702285411700_bib116 – volume: 444 start-page: 606 year: 2014 ident: 2024021702285411700_bib87 publication-title: MNRAS doi: 10.1093/mnras/stu1368 – volume: 295 start-page: 93 year: 2001 ident: 2024021702285411700_bib2 publication-title: Science doi: 10.1126/science.1063991 |
SSID | ssj0004326 |
Score | 2.5420725 |
Snippet | The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the... |
SourceID | swepub proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5212 |
SubjectTerms | Artificial neural networks Contamination dark ages Deep learning early Universe first stars Gaussian process H II regions Image contrast Image enhancement Infrared telescopes Ionization Machine learning Neural networks Noise prediction Polynomials Principal components analysis Red shift reionization Signal classification Statistical analysis Statistical methods techniques: image processing techniques: interferometric |
Title | Deep learning approach for identification of H ii regions during reionization in 21-cm observations - II. Foreground contamination |
URI | https://www.proquest.com/docview/3103059384 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345587 |
Volume | 528 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTsMwDI4QJy6IXzH-ZCTEicLWNO1ynBjTQAIugHaLkjaBCtZO6zhw5kV4Fp4MJ80GCBBIPbSK20i123x27M-E7CcxZ9I0TZDFxgRRgg6KpCYMUDzJEAC0ucsmvLiM-zfR-YANfLyj-mELn9PjYTGW1TFiJY3mhT9bXIAtSf711eCjAJK6vmqOfxE9gJYn0_x295fF50tBm8OVn7lC3frSWyKLHhhCp9bkMpnTxQrZ6FQ2VF0On-EA3HkdiahWSOMC4W45dlFxHDx5zBF7uqtV8tLVegS-IcQdTHnDAQEq5JnPD3IqgdJA_-01z8F2aEALhLpuES9toLau0YS8gLAVpEMo1SyIW0EAZ2dHYHt72tKQIgOb9i5tao0dXyM3vdPrk37guy0EKU3YxDqSnKlQh7jkxyprJ5K1ZBSbREZKMRMazTkzieZUSxkbx8yXMh2lxuAovup1Ml-Uhd4gQHWsmjqVKcuySIZ48DDlSnLVZDpmpkEOp2oQqacitx0xHkW9JU6F05rwWmuQg5n4qObg-E1wD3X6l8z2VOPCf66VcM3WGKftCOeqrWD2FMu_3c1vOwJtUjxM7gWNGGsnm_-Ya4sshIiB6pS1bTI_GT_pHcQwE7XrfP9dZ8XvIhb3PA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+approach+for+identification+of+H+ii+regions+during+reionization+in+21-cm+observations+%E2%80%93+II.+Foreground+contamination&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Bianco%2C+Michele&rft.au=Giri%2C+Sambit+K&rft.au=Prelogovi%C4%87%2C+David&rft.au=Chen%2C+Tianyue&rft.date=2024-03-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=528&rft.issue=3&rft.spage=5212&rft.epage=5230&rft_id=info:doi/10.1093%2Fmnras%2Fstae257&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |