Deep learning approach for identification of H ii regions during reionization in 21-cm observations - II. Foreground contamination

The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 528; no. 3; pp. 5212 - 5230
Main Authors Bianco, Michele, Giri, Sambit K, Prelogović, David, Chen, Tianyue, Mertens, Florent G, Tolley, Emma, Mesinger, Andrei, Kneib, Jean-Paul
Format Journal Article
LanguageEnglish
Published London Oxford University Press 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources.
AbstractList The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources.
The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2's independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with AUC = 95 is possible for 8 &lt; z &lt; 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with V-ion &gt; (10cmpc)(3 )at z &gt; 9, for follow-up studies with infrared/optical telescopes to detect these sources.
The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as noise and galactic foreground contamination that pose a challenge for accurate detection. In this study, we present the SegU-Net v2 framework, an enhanced version of our convolutional neural network, built to identify neutral and ionized regions in the 21-cm signal contaminated with foreground emission. We trained our neural network on 21-cm image data processed by a foreground removal method based on Principal Component Analysis achieving an average classification accuracy of 71 per cent between redshift z = 7 and 11. We tested SegU-Net v2 against various foreground removal methods, including Gaussian Process Regression, Polynomial Fitting, and Foreground-Wedge Removal. Results show comparable performance, highlighting SegU-Net v2’s independence on these pre-processing methods. Statistical analysis shows that a perfect classification score with ${\rm AUC}=95~{{\ \rm per\ cent}}$ is possible for 8 < z < 10. While the network prediction lacks the ability to correctly identify ionized regions at higher redshift and differentiate well the few remaining neutral regions at lower redshift due to low contrast between 21-cm signal, noise, and foreground residual in images. Moreover, as the photon sources driving reionization are expected to be located inside ionized regions, we show that SegU-Net v2 can be used to correctly identify and measure the volume of isolated bubbles with $V_{\rm ion}\gt (10\, {\rm cMpc})^3$ at z > 9, for follow-up studies with infrared/optical telescopes to detect these sources.
Author Prelogović, David
Mertens, Florent G
Mesinger, Andrei
Giri, Sambit K
Kneib, Jean-Paul
Bianco, Michele
Chen, Tianyue
Tolley, Emma
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0002-6766-0017
  surname: Bianco
  fullname: Bianco, Michele
  email: mbianco@protonmail.com
– sequence: 2
  givenname: Sambit K
  orcidid: 0000-0002-2560-536X
  surname: Giri
  fullname: Giri, Sambit K
– sequence: 3
  givenname: David
  surname: Prelogović
  fullname: Prelogović, David
– sequence: 4
  givenname: Tianyue
  orcidid: 0000-0003-0173-6274
  surname: Chen
  fullname: Chen, Tianyue
– sequence: 5
  givenname: Florent G
  orcidid: 0000-0003-3802-4289
  surname: Mertens
  fullname: Mertens, Florent G
– sequence: 6
  givenname: Emma
  surname: Tolley
  fullname: Tolley, Emma
– sequence: 7
  givenname: Andrei
  orcidid: 0000-0003-3374-1772
  surname: Mesinger
  fullname: Mesinger, Andrei
– sequence: 8
  givenname: Jean-Paul
  surname: Kneib
  fullname: Kneib, Jean-Paul
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345587$$DView record from Swedish Publication Index
BookMark eNqFkTtLBDEUhYMouD5K-4CNzWgek3mU4nNBsFHbkMnerNHdZEwyirb-EX-Lv8y4KwqCWIWb-52TcM4GWnXeAUI7lOxT0vKDuQsqHsSkgIl6BY0or0TB2qpaRSNCuCiamtJ1tBHjHSGk5KwaoddjgB7PQAVn3RSrvg9e6VtsfMB2Ai5ZY7VK1jvsDT5_f7MWB5jmOeLJED41AfJkX5aQdZjRQs-x7yKEx8VlxAUej_fxqc_K4Ac3wdq7pObWLfZbaM2oWYTtr3MTXZ-eXB2dFxeXZ-Ojw4tC81qkoiSsFR0D1lBWdZOmVoKqsjK1KrtOGGagbYWpoeWgVGUE4U2rBZTamLzNAW2iYukbn6AfOtkHO1fhWXpl5bG9OZQ-TOV9upW8FKKpM7-75HMmDwPEJO_8EFz-ouSUcCJa3pQ_rjr4GAOYb19K5GcvctGL_Ool8_wXr21a5JCCsrM_VXtLlR_6fx74ACfrp7E
CitedBy_id crossref_primary_10_3847_1538_4357_ad6c40
crossref_primary_10_1093_mnras_stae1984
crossref_primary_10_1093_rasti_rzae019
crossref_primary_10_1051_0004_6361_202346495
crossref_primary_10_1088_1475_7516_2024_05_051
crossref_primary_10_1088_1475_7516_2025_02_055
crossref_primary_10_1093_mnras_stae1999
crossref_primary_10_1103_PhysRevD_110_043535
Cites_doi 10.1088/1538-3873/ab5bfd
10.1093/mnras/stab1822
10.1093/mnras/stt1591
10.1093/mnras/staa327
10.1093/mnras/stv2887
10.3847/1538-4357/ac2ffc
10.1093/mnras/sty2551
10.1111/j.1365-2966.2009.15156.x
10.7717/peerj.453
10.3847/1538-4357/aad8bb
10.1088/1475-7516/2021/05/026
10.1086/506597
10.3254/978-1-61499-476-3-1
10.21105/joss.02363
10.1093/mnras/stad2937
10.3847/2041-8213/ac9b22
10.1111/j.1365-2966.2008.13634.x
10.1051/0004-6361/201016082
10.1093/mnras/stad120
10.1093/mnras/stx649
10.3847/1538-4357/ac1c78
10.1088/0004-637X/763/2/90
10.1111/j.1365-2966.2011.18219.x
10.1093/mnras/stz1220
10.48550/arXiv.2303.14239
10.1111/j.1365-2966.2009.15081.x
10.1051/0004-6361/201833910
10.1207/s15516709cog0901_5
10.1093/mnras/staa487
10.1103/PhysRevD.89.023002
10.1111/j.1365-2966.2008.13897.x
10.1093/mnras/sts333
10.1111/j.1365-2966.2007.11519.x
10.1109/MCSE.2007.55
10.21105/joss.02582
10.1038/s41586-020-2649-2
10.1086/306175
10.1093/mnras/stab776
10.1093/mnras/sty683
10.1086/429857
10.1093/mnras/stx2539
10.1093/mnras/stz2224
10.1088/0004-637X/773/1/38
10.1103/PhysRevD.107.043502
10.1038/s41550-023-01937-7
10.1088/0004-637X/804/1/14
10.1093/mnras/stw2494
10.1007/s10686-013-9334-5
10.1088/0004-637X/695/1/183
10.3847/2041-8213/ac94d0
10.1111/j.1365-2966.2012.21032.x
10.1088/0004-637X/782/2/66
10.1111/j.1365-2966.2006.10502.x
10.1111/j.1365-2966.2010.17731.x
10.1086/506135
10.1088/0067-0049/180/2/330
10.1093/mnras/stab1518
10.1111/j.1365-2966.2012.21065.x
10.1093/mnras/staa414
10.1093/mnras/stac3060
10.1016/j.newar.2005.11.033
10.1086/303549
10.1093/mnras/staa098
10.1088/0004-637X/731/1/54
10.1093/mnras/stu2027
10.1111/j.1365-2966.2007.12421.x
10.1093/mnras/stx1841
10.1093/mnras/sty1786
10.1109/TPAMI.2012.120
10.1093/mnras/stad2102
10.1088/1475-7516/2019/09/053
10.1007/s11263-019-01228-7
10.1103/PhysRevD.90.023019
10.1111/j.1365-2966.2009.14426.x
10.1093/mnras/sty1207
10.1016/j.physrep.2006.08.002
10.1038/s41592-019-0686-2
10.1051/0004-6361/202244986
10.1086/324293
10.1038/nature07990
10.1007/s10714-022-02987-4
10.1103/PhysRevD.108.043030
10.1093/mnras/stu2601
10.1088/0004-637X/800/2/128
10.1093/mnras/staa1599
10.48550/arXiv.1909.12369
10.1016/j.newast.2005.09.004
10.1086/423025
10.1093/mnras/stab107
10.1093/mnras/stab1320
10.3847/1538-4357/aaebfa
10.1093/mnras/stab1158
10.1093/mnras/stu2474
10.1111/j.1365-2966.2004.08443.x
10.1093/mnras/stac3723
10.1093/mnras/stab3215
10.1086/521806
10.1093/mnras/stu1368
10.1126/science.1063991
ContentType Journal Article
Copyright 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024
2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
Copyright_xml – notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024
– notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
DBID TOX
AAYXX
CITATION
8FD
H8D
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1093/mnras/stae257
DatabaseName Oxford Journals Open Access Collection
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5230
ExternalDocumentID oai_DiVA_org_kth_345587
10_1093_mnras_stae257
10.1093/mnras/stae257
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGQPQ
AGSYK
AHGBF
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
8FD
H8D
L7M
AAMMB
ADTPV
AEFGJ
AFDQA
AGXDD
AIDQK
AIDYY
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c375t-40295b2e28126bd87a51a46f7a4bb5f2fe995f7e93eaa6f50389c5e4cff5f2093
IEDL.DBID TOX
ISSN 0035-8711
1365-2966
IngestDate Thu Aug 21 06:39:33 EDT 2025
Mon Jun 30 07:22:50 EDT 2025
Tue Jul 01 03:32:45 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Mon Jun 30 08:34:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords early Universe
techniques: image processing
techniques: interferometric
dark ages, reionization, first stars
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-40295b2e28126bd87a51a46f7a4bb5f2fe995f7e93eaa6f50389c5e4cff5f2093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2560-536X
0000-0003-0173-6274
0000-0002-6766-0017
0000-0003-3802-4289
0000-0003-3374-1772
OpenAccessLink https://dx.doi.org/10.1093/mnras/stae257
PQID 3103059384
PQPubID 42411
PageCount 19
ParticipantIDs swepub_primary_oai_DiVA_org_kth_345587
proquest_journals_3103059384
crossref_primary_10_1093_mnras_stae257
crossref_citationtrail_10_1093_mnras_stae257
oup_primary_10_1093_mnras_stae257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Akiba (2024021702285411700_bib4) 2019
Chapman (2024021702285411700_bib17) 2013; 429
Bakx (2024021702285411700_bib6) 2023
Di Matteo (2024021702285411700_bib28) 2004; 355
Koopmans (2024021702285411700_bib67) 2015
Hirling (2024021702285411700_bib55) 2023
Ross (2024021702285411700_bib98) 2019; 487
Gazagnes (2024021702285411700_bib38) 2021; 502
Kerrigan (2024021702285411700_bib64) 2018; 864
Offringa (2024021702285411700_bib87) 2014; 444
Pritchard (2024021702285411700_bib95) 2007; 376
Datta (2024021702285411700_bib25) 2007; 382
Gagnon-Hartman (2024021702285411700_bib37) 2021; 504
Selvaraju (2024021702285411700_bib105) 2019; 128
Furlanetto (2024021702285411700_bib35) 2004; 613
Bromm (2024021702285411700_bib13) 2009; 459
Chapman (2024021702285411700_bib15) 2019
Bowman (2024021702285411700_bib10) 2009; 695
Abadi (2024021702285411700_bib1) 2015
Briggs (2024021702285411700_bib12) 1995
Elbers (2024021702285411700_bib31) 2023
Beardsley (2024021702285411700_bib7) 2015; 800
Wang (2024021702285411700_bib116) 2020
Ghara (2024021702285411700_bib41) 2017; 464
Iliev (2024021702285411700_bib59) 2006; 369
Morales (2024021702285411700_bib82) 2006; 50
Madau (2024021702285411700_bib73) 1997; 475
Choudhury (2024021702285411700_bib23) 2018; 481
Perez (2024021702285411700_bib90) 2017
Planck Collaboration VI (2024021702285411700_bib91) 2020; 641
Dixon (2024021702285411700_bib30) 2016; 456
Murray (2024021702285411700_bib85) 2020; 5
Friedrich (2024021702285411700_bib34) 2011; 413
Schneider (2024021702285411700_bib104) 2023; 108
Choudhury (2024021702285411700_bib22) 2022; 54
Li (2024021702285411700_bib68) 2018
Thyagarajan (2024021702285411700_bib110) 2015; 804
Choudhuri (2024021702285411700_bib21) 2014; 445
Pawlik (2024021702285411700_bib88) 2011; 731
Furlanetto (2024021702285411700_bib36) 2006; 433
Sortino (2024021702285411700_bib107) 2023
Ferrara (2024021702285411700_bib32) 2014; 186
Chollet (2024021702285411700_bib20) 2017
Achanta (2024021702285411700_bib3) 2012; 34
Mehra (2024021702285411700_bib74) 2016; 03
Kapahtia (2024021702285411700_bib63) 2021; 2021
Ross (2024021702285411700_bib97) 2017; 468
Harnois-Déraps (2024021702285411700_bib53) 2013; 436
Liu (2024021702285411700_bib70) 2009; 394
Salehi (2024021702285411700_bib101) 2017
Mertens (2024021702285411700_bib78) 2018; 478
Zackrisson (2024021702285411700_bib119) 2020; 493
Mellema (2024021702285411700_bib77) 2015
Smirnov (2024021702285411700_bib106) 2011; 527
Giri (2024021702285411700_bib47) 2019; 489
Kingma (2024021702285411700_bib65) 2014
Zaroubi (2024021702285411700_bib120) 2012
Giri (2024021702285411700_bib44) 2021; 505
Hütsi (2024021702285411700_bib57) 2023; 107
Prelogović (2024021702285411700_bib94) 2021; 509
van der Walt (2024021702285411700_bib113) 2014; 2
Giri (2024021702285411700_bib45) 2018; 473
Platania (2024021702285411700_bib92) 1998; 505
Harker (2024021702285411700_bib52) 2009; 397
Giri (2024021702285411700_bib48) 2020; 5
Mellema (2024021702285411700_bib76) 2013; 36
Pober (2024021702285411700_bib93) 2014; 782
Ronneberger (2024021702285411700_bib96) 2015
Naidu (2024021702285411700_bib86) 2022
Liu (2024021702285411700_bib71) 2009; 398
Wyithe (2024021702285411700_bib118) 2015
Rumelhart (2024021702285411700_bib100) 1985; 9
Wang (2024021702285411700_bib117) 2023
Wang (2024021702285411700_bib115) 2013; 763
Cunnington (2024021702285411700_bib24) 2023; 518
Dillon (2024021702285411700_bib29) 2014; 89
Mesinger (2024021702285411700_bib80) 2007; 669
Chapman (2024021702285411700_bib16) 2012; 423
Santos (2024021702285411700_bib102) 2005; 625
Liu (2024021702285411700_bib72) 2014; 90
Iliev (2024021702285411700_bib60) 2012; 423
Friedman (2024021702285411700_bib33) 2022
Jelić (2024021702285411700_bib61) 2008; 389
Virtanen (2024021702285411700_bib112) 2020; 17
Murray (2024021702285411700_bib84) 2018; 869
Kapahtia (2024021702285411700_bib62) 2019; 2019
Mertens (2024021702285411700_bib79) 2020; 493
Morales (2024021702285411700_bib83) 2006; 648
Geil (2024021702285411700_bib39) 2017; 472
Ghara (2024021702285411700_bib40) 2020; 496
Abel (2024021702285411700_bib2) 2001; 295
Giri (2024021702285411700_bib46) 2018; 479
Hunter (2024021702285411700_bib56) 2007; 9
Liu (2024021702285411700_bib69) 2020; 132
Castellano (2024021702285411700_bib14) 2022
Mesinger (2024021702285411700_bib81) 2011; 411
Ghara (2024021702285411700_bib43) 2021; 503
Schaeffer (2024021702285411700_bib103) 2023; 526
Alonso (2024021702285411700_bib5) 2015; 447
The HERA Collaboration (2024021702285411700_bib108) 2022; 924
Chen (2024021702285411700_bib19) 2023
Mellema (2024021702285411700_bib75) 2006; 11
Harris (2024021702285411700_bib54) 2020; 585
Dayal (2024021702285411700_bib26) 2023
The HERA Collaboration (2024021702285411700_bib109) 2022; 925
Chen (2024021702285411700_bib18) 2023
Di Matteo (2024021702285411700_bib27) 2002; 564
Boylan-Kolchin (2024021702285411700_bib11) 2023
Gleser (2024021702285411700_bib50) 2008; 391
Ghara (2024021702285411700_bib42) 2020; 493
Gu (2024021702285411700_bib51) 2013; 773
Ross (2024021702285411700_bib99) 2021; 506
Bianco (2024021702285411700_bib8) 2021; 505
Bonaldi (2024021702285411700_bib9) 2015; 447
Pedregosa (2024021702285411700_bib89) 2011; 12
Giri (2024021702285411700_bib49) 2023; 669
Hutter (2024021702285411700_bib58) 2018; 477
Trott (2024021702285411700_bib111) 2020; 493
Komatsu (2024021702285411700_bib66) 2009; 180
Wang (2024021702285411700_bib114) 2006; 650
References_xml – volume: 132
  start-page: 062001
  year: 2020
  ident: 2024021702285411700_bib69
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1088/1538-3873/ab5bfd
– volume: 506
  start-page: 3717
  year: 2021
  ident: 2024021702285411700_bib99
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1822
– volume: 436
  start-page: 540
  year: 2013
  ident: 2024021702285411700_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1591
– volume: 493
  start-page: 1662
  year: 2020
  ident: 2024021702285411700_bib79
  publication-title: MNRAS
  doi: 10.1093/mnras/staa327
– year: 2022
  ident: 2024021702285411700_bib33
– start-page: 2623
  year: 2019
  ident: 2024021702285411700_bib4
  article-title: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 456
  start-page: 3011
  year: 2016
  ident: 2024021702285411700_bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2887
– volume: 924
  start-page: 51
  year: 2022
  ident: 2024021702285411700_bib108
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac2ffc
– volume: 481
  start-page: 3821
  year: 2018
  ident: 2024021702285411700_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2551
– volume: 398
  start-page: 401
  year: 2009
  ident: 2024021702285411700_bib71
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15156.x
– volume: 2
  start-page: e453
  year: 2014
  ident: 2024021702285411700_bib113
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 864
  start-page: 131
  year: 2018
  ident: 2024021702285411700_bib64
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad8bb
– volume: 2021
  start-page: 026
  year: 2021
  ident: 2024021702285411700_bib63
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/05/026
– volume: 650
  start-page: 529
  year: 2006
  ident: 2024021702285411700_bib114
  publication-title: ApJ
  doi: 10.1086/506597
– volume: 186
  start-page: 1
  year: 2014
  ident: 2024021702285411700_bib32
  publication-title: Proc. Int. Sch. Phys. Fermi
  doi: 10.3254/978-1-61499-476-3-1
– volume: 5
  start-page: 2363
  year: 2020
  ident: 2024021702285411700_bib48
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02363
– volume: 526
  start-page: 2942
  year: 2023
  ident: 2024021702285411700_bib103
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2937
– start-page: PoS(AASKA14)010
  year: 2015
  ident: 2024021702285411700_bib77
  article-title: Proc. Sci., HI tomographic imaging of the Cosmic Dawn andEpoch of Reionization with SKA
– start-page: L14
  year: 2022
  ident: 2024021702285411700_bib86
  doi: 10.3847/2041-8213/ac9b22
– volume: 389
  start-page: 1319
  year: 2008
  ident: 2024021702285411700_bib61
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13634.x
– volume: 527
  start-page: A106
  year: 2011
  ident: 2024021702285411700_bib106
  publication-title: A&A
  doi: 10.1051/0004-6361/201016082
– start-page: 2709
  volume-title: MNRAS
  year: 2023
  ident: 2024021702285411700_bib31
  doi: 10.1093/mnras/stad120
– year: 2014
  ident: 2024021702285411700_bib65
– volume: 468
  start-page: 3785
  year: 2017
  ident: 2024021702285411700_bib97
  publication-title: MNRAS
  doi: 10.1093/mnras/stx649
– volume: 925
  start-page: 221
  year: 2022
  ident: 2024021702285411700_bib109
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac1c78
– volume: 763
  start-page: 90
  year: 2013
  ident: 2024021702285411700_bib115
  publication-title: ApJ
  doi: 10.1088/0004-637X/763/2/90
– year: 2017
  ident: 2024021702285411700_bib90
– volume: 413
  start-page: 1353
  year: 2011
  ident: 2024021702285411700_bib34
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18219.x
– volume: 487
  start-page: 1101
  year: 2019
  ident: 2024021702285411700_bib98
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1220
– year: 2023
  ident: 2024021702285411700_bib26
  doi: 10.48550/arXiv.2303.14239
– volume: 397
  start-page: 1138
  year: 2009
  ident: 2024021702285411700_bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15081.x
– volume: 641
  start-page: A6
  year: 2020
  ident: 2024021702285411700_bib91
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 9
  start-page: 75
  year: 1985
  ident: 2024021702285411700_bib100
  publication-title: Cognitive Sci.
  doi: 10.1207/s15516709cog0901_5
– volume: 493
  start-page: 4728
  year: 2020
  ident: 2024021702285411700_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/staa487
– volume: 89
  start-page: 23002
  year: 2014
  ident: 2024021702285411700_bib29
  publication-title: PRD
  doi: 10.1103/PhysRevD.89.023002
– volume: 391
  start-page: 383
  year: 2008
  ident: 2024021702285411700_bib50
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13897.x
– volume: 429
  start-page: 165
  year: 2013
  ident: 2024021702285411700_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sts333
– volume: 376
  start-page: 1680
  year: 2007
  ident: 2024021702285411700_bib95
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11519.x
– volume: 9
  start-page: 90
  year: 2007
  ident: 2024021702285411700_bib56
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 5
  start-page: 2582
  year: 2020
  ident: 2024021702285411700_bib85
  publication-title: J. Open Source Soft.
  doi: 10.21105/joss.02582
– volume: 585
  start-page: 357
  year: 2020
  ident: 2024021702285411700_bib54
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 505
  start-page: 473
  year: 1998
  ident: 2024021702285411700_bib92
  publication-title: ApJ
  doi: 10.1086/306175
– year: 2015
  ident: 2024021702285411700_bib1
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2024021702285411700_bib89
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: 2024021702285411700_bib19
– volume: 503
  start-page: 4551
  year: 2021
  ident: 2024021702285411700_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stab776
– volume: 477
  start-page: 1549
  year: 2018
  ident: 2024021702285411700_bib58
  publication-title: MNRAS
  doi: 10.1093/mnras/sty683
– year: 1995
  ident: 2024021702285411700_bib12
– start-page: PoS(AASKA14)001
  volume-title: Proc. Sci. The Cosmic Dawn and Epoch of Reionization withthe Square Kilometre Array
  year: 2015
  ident: 2024021702285411700_bib67
– volume: 625
  start-page: 575
  year: 2005
  ident: 2024021702285411700_bib102
  publication-title: ApJ
  doi: 10.1086/429857
– volume: 473
  start-page: 2949
  year: 2018
  ident: 2024021702285411700_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2539
– volume: 489
  start-page: 1590
  year: 2019
  ident: 2024021702285411700_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2224
– volume: 773
  start-page: 38
  year: 2013
  ident: 2024021702285411700_bib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/1/38
– volume: 107
  start-page: 043502
  year: 2023
  ident: 2024021702285411700_bib57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.043502
– start-page: 731
  volume-title: Nat. Astron.
  year: 2023
  ident: 2024021702285411700_bib11
  doi: 10.1038/s41550-023-01937-7
– volume: 804
  start-page: 14
  year: 2015
  ident: 2024021702285411700_bib110
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/1/14
– volume: 464
  start-page: 2234
  year: 2017
  ident: 2024021702285411700_bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2494
– volume: 36
  start-page: 235
  year: 2013
  ident: 2024021702285411700_bib76
  publication-title: Exp. Astron.
  doi: 10.1007/s10686-013-9334-5
– volume: 695
  start-page: 183
  year: 2009
  ident: 2024021702285411700_bib10
  publication-title: ApJ
  doi: 10.1088/0004-637X/695/1/183
– start-page: L15
  volume-title: ApJL
  year: 2022
  ident: 2024021702285411700_bib14
  doi: 10.3847/2041-8213/ac94d0
– volume: 423
  start-page: 2222
  year: 2012
  ident: 2024021702285411700_bib60
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21032.x
– volume: 782
  start-page: 66
  year: 2014
  ident: 2024021702285411700_bib93
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/66
– volume: 369
  start-page: 1625
  year: 2006
  ident: 2024021702285411700_bib59
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10502.x
– volume: 03
  start-page: 8
  year: 2016
  ident: 2024021702285411700_bib74
  publication-title: Imperial J. Int. Res.
– volume: 411
  start-page: 955
  year: 2011
  ident: 2024021702285411700_bib81
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17731.x
– volume: 648
  start-page: 767
  year: 2006
  ident: 2024021702285411700_bib83
  publication-title: ApJ
  doi: 10.1086/506135
– volume: 180
  start-page: 330
  year: 2009
  ident: 2024021702285411700_bib66
  publication-title: ApJ
  doi: 10.1088/0067-0049/180/2/330
– volume: 505
  start-page: 3982
  year: 2021
  ident: 2024021702285411700_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1518
– volume: 423
  start-page: 2518
  year: 2012
  ident: 2024021702285411700_bib16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21065.x
– volume: 493
  start-page: 4711
  year: 2020
  ident: 2024021702285411700_bib111
  publication-title: MNRAS
  doi: 10.1093/mnras/staa414
– volume: 518
  start-page: 6262
  year: 2023
  ident: 2024021702285411700_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3060
– year: 2023
  ident: 2024021702285411700_bib55
– volume: 50
  start-page: 173
  year: 2006
  ident: 2024021702285411700_bib82
  publication-title: New Astron. Rev.
  doi: 10.1016/j.newar.2005.11.033
– volume: 475
  start-page: 429
  year: 1997
  ident: 2024021702285411700_bib73
  publication-title: ApJ
  doi: 10.1086/303549
– volume: 493
  start-page: 855
  year: 2020
  ident: 2024021702285411700_bib119
  publication-title: MNRAS
  doi: 10.1093/mnras/staa098
– volume: 731
  start-page: 54
  year: 2011
  ident: 2024021702285411700_bib88
  publication-title: ApJ
  doi: 10.1088/0004-637X/731/1/54
– volume: 445
  start-page: 4351
  year: 2014
  ident: 2024021702285411700_bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2027
– year: 2015
  ident: 2024021702285411700_bib96
– volume: 382
  start-page: 809
  year: 2007
  ident: 2024021702285411700_bib25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12421.x
– volume: 472
  start-page: 1324
  year: 2017
  ident: 2024021702285411700_bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1841
– volume: 479
  start-page: 5596
  year: 2018
  ident: 2024021702285411700_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1786
– volume: 34
  start-page: 2274
  year: 2012
  ident: 2024021702285411700_bib3
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2012.120
– year: 2017
  ident: 2024021702285411700_bib20
– start-page: 3724
  volume-title: MNRAS
  year: 2023
  ident: 2024021702285411700_bib18
  doi: 10.1093/mnras/stad2102
– volume: 2019
  start-page: 053
  year: 2019
  ident: 2024021702285411700_bib62
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/09/053
– volume: 128
  start-page: 336
  year: 2019
  ident: 2024021702285411700_bib105
  publication-title: Int. J. Comp. Vision
  doi: 10.1007/s11263-019-01228-7
– volume: 90
  start-page: 023019
  year: 2014
  ident: 2024021702285411700_bib72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.023019
– year: 2023
  ident: 2024021702285411700_bib117
– start-page: PoS(AASKA14)015
  volume-title: Proc. Sci., Imaging HII Regions from Galaxies and QuasarsDuring Reionisation with SKA
  year: 2015
  ident: 2024021702285411700_bib118
– volume: 394
  start-page: 1575
  year: 2009
  ident: 2024021702285411700_bib70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14426.x
– volume: 478
  start-page: 3640
  year: 2018
  ident: 2024021702285411700_bib78
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1207
– volume: 433
  start-page: 181
  year: 2006
  ident: 2024021702285411700_bib36
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.08.002
– volume: 17
  start-page: 261
  year: 2020
  ident: 2024021702285411700_bib112
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 669
  start-page: A6
  year: 2023
  ident: 2024021702285411700_bib49
  publication-title: A&A
  doi: 10.1051/0004-6361/202244986
– volume: 564
  start-page: 576
  year: 2002
  ident: 2024021702285411700_bib27
  publication-title: ApJ
  doi: 10.1086/324293
– volume: 459
  start-page: 49
  year: 2009
  ident: 2024021702285411700_bib13
  publication-title: Nature
  doi: 10.1038/nature07990
– volume: 54
  start-page: 102
  year: 2022
  ident: 2024021702285411700_bib22
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-022-02987-4
– volume: 108
  start-page: 043030
  year: 2023
  ident: 2024021702285411700_bib104
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.043030
– year: 2018
  ident: 2024021702285411700_bib68
– volume: 447
  start-page: 1973
  year: 2015
  ident: 2024021702285411700_bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2601
– year: 2023
  ident: 2024021702285411700_bib107
– volume: 800
  start-page: 128
  year: 2015
  ident: 2024021702285411700_bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/128
– volume: 496
  start-page: 739
  year: 2020
  ident: 2024021702285411700_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1599
– year: 2019
  ident: 2024021702285411700_bib15
  doi: 10.48550/arXiv.1909.12369
– volume: 11
  start-page: 374
  year: 2006
  ident: 2024021702285411700_bib75
  publication-title: New Astron.
  doi: 10.1016/j.newast.2005.09.004
– volume: 613
  start-page: 1
  year: 2004
  ident: 2024021702285411700_bib35
  publication-title: ApJ
  doi: 10.1086/423025
– volume: 502
  start-page: 1816
  year: 2021
  ident: 2024021702285411700_bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stab107
– volume: 505
  start-page: 1863
  year: 2021
  ident: 2024021702285411700_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1320
– volume: 869
  start-page: 25
  year: 2018
  ident: 2024021702285411700_bib84
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaebfa
– year: 2017
  ident: 2024021702285411700_bib101
– volume: 504
  start-page: 4716
  year: 2021
  ident: 2024021702285411700_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1158
– volume: 447
  start-page: 400
  year: 2015
  ident: 2024021702285411700_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2474
– volume: 355
  start-page: 1053
  year: 2004
  ident: 2024021702285411700_bib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08443.x
– start-page: 5076
  volume-title: MNRAS
  year: 2023
  ident: 2024021702285411700_bib6
  doi: 10.1093/mnras/stac3723
– volume: 509
  start-page: 3852
  year: 2021
  ident: 2024021702285411700_bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3215
– volume-title: Astrophysics and Space Science Library, Vol 396, The Epoch of Reionization
  year: 2012
  ident: 2024021702285411700_bib120
– volume: 669
  start-page: 663
  year: 2007
  ident: 2024021702285411700_bib80
  publication-title: ApJ
  doi: 10.1086/521806
– year: 2020
  ident: 2024021702285411700_bib116
– volume: 444
  start-page: 606
  year: 2014
  ident: 2024021702285411700_bib87
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1368
– volume: 295
  start-page: 93
  year: 2001
  ident: 2024021702285411700_bib2
  publication-title: Science
  doi: 10.1126/science.1063991
SSID ssj0004326
Score 2.5420725
Snippet The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the...
SourceID swepub
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5212
SubjectTerms Artificial neural networks
Contamination
dark ages
Deep learning
early Universe
first stars
Gaussian process
H II regions
Image contrast
Image enhancement
Infrared telescopes
Ionization
Machine learning
Neural networks
Noise prediction
Polynomials
Principal components analysis
Red shift
reionization
Signal classification
Statistical analysis
Statistical methods
techniques: image processing
techniques: interferometric
Title Deep learning approach for identification of H ii regions during reionization in 21-cm observations - II. Foreground contamination
URI https://www.proquest.com/docview/3103059384
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-345587
Volume 528
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTsMwDI4QJy6IXzH-ZCTEicLWNO1ynBjTQAIugHaLkjaBCtZO6zhw5kV4Fp4MJ80GCBBIPbSK20i123x27M-E7CcxZ9I0TZDFxgRRgg6KpCYMUDzJEAC0ucsmvLiM-zfR-YANfLyj-mELn9PjYTGW1TFiJY3mhT9bXIAtSf711eCjAJK6vmqOfxE9gJYn0_x295fF50tBm8OVn7lC3frSWyKLHhhCp9bkMpnTxQrZ6FQ2VF0On-EA3HkdiahWSOMC4W45dlFxHDx5zBF7uqtV8tLVegS-IcQdTHnDAQEq5JnPD3IqgdJA_-01z8F2aEALhLpuES9toLau0YS8gLAVpEMo1SyIW0EAZ2dHYHt72tKQIgOb9i5tao0dXyM3vdPrk37guy0EKU3YxDqSnKlQh7jkxyprJ5K1ZBSbREZKMRMazTkzieZUSxkbx8yXMh2lxuAovup1Ml-Uhd4gQHWsmjqVKcuySIZ48DDlSnLVZDpmpkEOp2oQqacitx0xHkW9JU6F05rwWmuQg5n4qObg-E1wD3X6l8z2VOPCf66VcM3WGKftCOeqrWD2FMu_3c1vOwJtUjxM7gWNGGsnm_-Ya4sshIiB6pS1bTI_GT_pHcQwE7XrfP9dZ8XvIhb3PA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+approach+for+identification+of+H+ii+regions+during+reionization+in+21-cm+observations+%E2%80%93+II.+Foreground+contamination&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Bianco%2C+Michele&rft.au=Giri%2C+Sambit+K&rft.au=Prelogovi%C4%87%2C+David&rft.au=Chen%2C+Tianyue&rft.date=2024-03-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=528&rft.issue=3&rft.spage=5212&rft.epage=5230&rft_id=info:doi/10.1093%2Fmnras%2Fstae257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon