A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone
Accurately and promptly detecting Fe 3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe 3+ and AA result...
Saved in:
Published in | Journal of fluorescence Vol. 35; no. 2; pp. 1125 - 1137 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately and promptly detecting Fe
3+
and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe
3+
and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe
3+
was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe
3+
system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe
3+
and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe
3+
and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe
3+
and AA in practical samples with satisfactory results.
Graphical Abstract |
---|---|
AbstractList | Accurately and promptly detecting Fe
3+
and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe
3+
and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe
3+
was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe
3+
system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe
3+
and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe
3+
and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe
3+
and AA in practical samples with satisfactory results.
Graphical Abstract Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results. Accurately and promptly detecting Fe and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe and AA in practical samples with satisfactory results. Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results. |
Author | Kayani, Kawan F. Abdullah, Chalak Najat |
Author_xml | – sequence: 1 givenname: Kawan F. surname: Kayani fullname: Kayani, Kawan F. email: kawan.nasralddin@univsul.edu.iq organization: Department of Chemistry, College of Science, University of Sulaimani, Department of Chemistry, College of Science, Charmo University – sequence: 2 givenname: Chalak Najat surname: Abdullah fullname: Abdullah, Chalak Najat organization: Department of Biology, College of Science, University of Sulaimani |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38300485$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7wByiQJZpQDPg54ymX3QRWClAEaC2PfSc4mrUX24NEnT-ONxsgSpHGj6vvHN_rc4wOQgyA0EtK3lJCuneZEtXLhjDREN6Suj5BR1R2vBF9Lw7unQ_Rcc7XhJBeCfUMHXLFCRFKHqGbBV7NZmo-RQd4BQVs8THgSwg5JvzeZHC43j_7kuIVhGYVt7WyNGmo1VUsGY-V--5zNbmnjyM-h9P1ev0Gm-DwItuYBm_xwnqHf3mDDb7cmFS2P-pIz9HT0UwZXtztJ-jb-dnX5cfm4suH9XJx0VjeydJw4INg3EnSDUPbWZC2FVI4oK51o-EMWkNHM3A7Ms5E7xgjTCqubOeg7wk_Qad7322KP2fIRW98tjBNJkCcs2Y9o5QqKnbo6wfodZxTqN1pTjvWyZ7fGr66o-ZhA05vk69D_dZ_v7cCbA_YFHNOMP5DKNG7DPU-Q10z1LcZ6p2reiCyvpjdt5Zk_PS4lO-lub4TriD9b_sR1R874q3I |
CitedBy_id | crossref_primary_10_1007_s10895_024_04086_w crossref_primary_10_1016_j_foodcont_2024_110611 crossref_primary_10_1007_s00604_024_06937_6 crossref_primary_10_1007_s00604_024_06939_4 crossref_primary_10_1186_s13065_025_01415_3 crossref_primary_10_1007_s10895_025_04254_6 crossref_primary_10_1039_D4MA00185K crossref_primary_10_1007_s11051_025_06278_2 crossref_primary_10_1016_j_jfca_2024_106577 crossref_primary_10_1039_D4RA06626J crossref_primary_10_1039_D5RA00519A crossref_primary_10_1039_D4MA00502C crossref_primary_10_1016_j_molstruc_2024_139465 crossref_primary_10_1016_j_seppur_2025_132418 crossref_primary_10_1007_s10895_025_04160_x crossref_primary_10_1007_s10895_025_04176_3 crossref_primary_10_1007_s10895_025_04152_x crossref_primary_10_1038_s41598_025_90569_0 crossref_primary_10_1515_ntrev_2024_0138 crossref_primary_10_1016_j_microc_2024_112363 crossref_primary_10_1039_D4NA00652F crossref_primary_10_1039_D4NA00763H |
Cites_doi | 10.1039/c7ra04122e 10.1021/acsanm.0c01088 10.1007/s11164-021-04404-y 10.1039/c8nr02405g 10.1016/j.cej.2020.126848 10.1016/j.jhazmat.2019.121654 10.1016/j.snb.2018.08.149 10.1007/s10853-019-03585-7 10.1021/acs.analchem.0c01997 10.1007/s00604-019-3361-5 10.1016/j.snb.2014.05.123 10.1002/slct.202303472 10.1007/s00216-020-02507-w 10.1016/j.saa.2018.09.028 10.1039/c9nh00476a 10.1016/j.inoche.2021.108636 10.1016/j.cej.2014.06.012 10.1002/slct.202000602 10.1039/c9ra11009g 10.1021/acsami.6b01325 10.1016/s1872-5805(19)30024-1 10.1021/acsanm.1c01400 10.1039/d2nj00601d 10.1016/j.aca.2022.339572 10.1021/acsami.7b03917 10.1016/j.apsusc.2018.11.095 10.1039/d1an00025j 10.1016/j.microc.2021.107016 10.1016/j.ab.2018.06.004 10.1007/s10895-023-03392-z 10.1021/acsnano.6b00043 10.1021/acsanm.2c01170 10.1039/c9bm00570f 10.1016/j.microc.2021.106656 10.3390/nano11123419 10.1016/j.foodchem.2020.126935 10.1016/j.ecoenv.2022.113350 10.1007/s10895-019-02454-5 10.1016/j.jcis.2018.12.016 10.1039/c9ay02696g 10.1016/j.carbon.2013.03.009 10.1016/j.jcis.2018.12.047 10.1021/acsanm.0c01426 10.1016/j.ab.2021.114334 10.1016/j.apsusc.2019.01.090 10.1016/j.snb.2020.128722 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s10895-024-03604-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-4994 |
EndPage | 1137 |
ExternalDocumentID | 38300485 10_1007_s10895_024_03604_0 |
Genre | Journal Article |
GroupedDBID | --- -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 ZMTXR ZOVNA ~02 ~EX AAPKM AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ ADHKG AGQPQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c375t-3e3b423d507bb67ce5c6454de1d6dfa32e6a1fab3cf23249d22025838c7de9903 |
IEDL.DBID | U2A |
ISSN | 1573-4994 1053-0509 |
IngestDate | Thu Jul 10 23:18:21 EDT 2025 Fri Jul 25 11:01:09 EDT 2025 Mon Jul 21 05:28:27 EDT 2025 Tue Jul 01 05:27:15 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Sun Mar 02 01:13:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Ascorbic acid Carbon dots Fe(III) ion detection Smartphone Visual detection |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3e3b423d507bb67ce5c6454de1d6dfa32e6a1fab3cf23249d22025838c7de9903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 38300485 |
PQID | 3172759390 |
PQPubID | 2043853 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2921118140 proquest_journals_3172759390 pubmed_primary_38300485 crossref_primary_10_1007_s10895_024_03604_0 crossref_citationtrail_10_1007_s10895_024_03604_0 springer_journals_10_1007_s10895_024_03604_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands |
PublicationTitle | Journal of fluorescence |
PublicationTitleAbbrev | J Fluoresc |
PublicationTitleAlternate | J Fluoresc |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | F Taghavi (3604_CR5) 2021; 630 W Liu (3604_CR43) 2019; 34 Z Mohammadpour (3604_CR9) 2014; 255 3604_CR33 3604_CR32 3604_CR30 J Zhang (3604_CR31) 2022; 1198 3604_CR15 3604_CR37 Y Qiu (3604_CR40) 2020; 324 M Zan (3604_CR42) 2020; 10 Y Yang (3604_CR41) 2019; 186 3604_CR19 B Polatoğlu (3604_CR38) 2021; 47 3604_CR16 W Li (3604_CR3) 2020; 412 3604_CR4 SD Nonno (3604_CR34) 2021; 146 3604_CR1 L Cai (3604_CR2) 2020; 30 N Sohal (3604_CR10) 2020; 3 M Bhatt (3604_CR35) 2020; 3 C Ma (3604_CR17) 2019; 54 S Lu (3604_CR11) 2019; 7 H Li (3604_CR12) 2020; 5 H Miao (3604_CR44) 2018; 10 J Chen (3604_CR6) 2017; 9 Q Wang (3604_CR14) 2013; 59 MJ Molaei (3604_CR7) 2020; 12 X Gao (3604_CR46) 2019; 469 3604_CR21 P Song (3604_CR39) 2017; 7 3604_CR20 Z Chen (3604_CR26) 2014 CM Singaravelu (3604_CR8) 2021; 4 H Qi (3604_CR22) 2018; 15 3604_CR24 3604_CR23 T Feng (3604_CR13) 2016; 10 3604_CR29 3604_CR27 S Ding (3604_CR18) 2021; 130 JR Bhamore (3604_CR36) 2018; 277 X Lv (3604_CR28) 2020; 326 Z Huang (3604_CR25) 2021; 170 Z Cheng (3604_CR45) 2019; 207 |
References_xml | – volume: 7 start-page: 28637 issue: 46 year: 2017 ident: 3604_CR39 publication-title: RSC Adv doi: 10.1039/c7ra04122e – volume: 3 start-page: 5955 issue: 6 year: 2020 ident: 3604_CR10 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.0c01088 – volume: 47 start-page: 1865 issue: 5 year: 2021 ident: 3604_CR38 publication-title: Res Chem Intermed doi: 10.1007/s11164-021-04404-y – volume: 10 start-page: 8139 year: 2018 ident: 3604_CR44 publication-title: Nanoscale doi: 10.1039/c8nr02405g – ident: 3604_CR15 doi: 10.1016/j.cej.2020.126848 – ident: 3604_CR16 doi: 10.1016/j.jhazmat.2019.121654 – volume: 277 start-page: 47 year: 2018 ident: 3604_CR36 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2018.08.149 – volume: 54 start-page: 9372 issue: 13 year: 2019 ident: 3604_CR17 publication-title: J Mater Sci doi: 10.1007/s10853-019-03585-7 – ident: 3604_CR21 doi: 10.1021/acs.analchem.0c01997 – volume: 186 start-page: 0 issue: 4 year: 2019 ident: 3604_CR41 publication-title: Microchim Acta doi: 10.1007/s00604-019-3361-5 – year: 2014 ident: 3604_CR26 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2014.05.123 – ident: 3604_CR32 doi: 10.1002/slct.202303472 – volume: 412 start-page: 2805 issue: 12 year: 2020 ident: 3604_CR3 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-020-02507-w – volume: 207 start-page: 262 year: 2019 ident: 3604_CR45 publication-title: Spectrochim Acta - Part Mol Biomol Spectrosc doi: 10.1016/j.saa.2018.09.028 – volume: 5 start-page: 218 issue: 2 year: 2020 ident: 3604_CR12 publication-title: Nanoscale Horizons doi: 10.1039/c9nh00476a – volume: 130 start-page: 108636 year: 2021 ident: 3604_CR18 publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2021.108636 – volume: 255 start-page: 1 year: 2014 ident: 3604_CR9 publication-title: Chem Eng J doi: 10.1016/j.cej.2014.06.012 – ident: 3604_CR30 doi: 10.1002/slct.202000602 – volume: 10 start-page: 10067 issue: 17 year: 2020 ident: 3604_CR42 publication-title: RSC Adv doi: 10.1039/c9ra11009g – ident: 3604_CR20 doi: 10.1021/acsami.6b01325 – volume: 34 start-page: 390 issue: 4 year: 2019 ident: 3604_CR43 publication-title: New Carbon Mater doi: 10.1016/s1872-5805(19)30024-1 – volume: 4 start-page: 6386 issue: 6 year: 2021 ident: 3604_CR8 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.1c01400 – ident: 3604_CR27 doi: 10.1039/d2nj00601d – volume: 1198 start-page: 339572 year: 2022 ident: 3604_CR31 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2022.339572 – volume: 9 start-page: 18429 issue: 22 year: 2017 ident: 3604_CR6 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b03917 – volume: 469 start-page: 911 year: 2019 ident: 3604_CR46 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.11.095 – volume: 146 start-page: 2749 issue: 9 year: 2021 ident: 3604_CR34 publication-title: Analyst doi: 10.1039/d1an00025j – ident: 3604_CR33 doi: 10.1016/j.microc.2021.107016 – ident: 3604_CR4 doi: 10.1016/j.ab.2018.06.004 – ident: 3604_CR1 doi: 10.1007/s10895-023-03392-z – volume: 10 start-page: 4410 issue: 4 year: 2016 ident: 3604_CR13 publication-title: ACS Nano doi: 10.1021/acsnano.6b00043 – ident: 3604_CR23 doi: 10.1021/acsanm.2c01170 – volume: 7 start-page: 3258 year: 2019 ident: 3604_CR11 publication-title: Biomater Sci doi: 10.1039/c9bm00570f – volume: 170 start-page: 106656 year: 2021 ident: 3604_CR25 publication-title: Microchem J doi: 10.1016/j.microc.2021.106656 – ident: 3604_CR19 doi: 10.3390/nano11123419 – volume: 326 start-page: 126935 year: 2020 ident: 3604_CR28 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.126935 – ident: 3604_CR29 doi: 10.1016/j.ecoenv.2022.113350 – volume: 30 start-page: 11 issue: 1 year: 2020 ident: 3604_CR2 publication-title: J Fluoresc doi: 10.1007/s10895-019-02454-5 – ident: 3604_CR24 doi: 10.1016/j.jcis.2018.12.016 – volume: 12 start-page: 1266 issue: 10 year: 2020 ident: 3604_CR7 publication-title: Anal Methods doi: 10.1039/c9ay02696g – volume: 59 start-page: 192 year: 2013 ident: 3604_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2013.03.009 – volume: 15 start-page: 332 year: 2018 ident: 3604_CR22 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2018.12.047 – volume: 3 start-page: 7096 issue: 7 year: 2020 ident: 3604_CR35 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.0c01426 – volume: 630 start-page: 1 year: 2021 ident: 3604_CR5 publication-title: Anal Biochem doi: 10.1016/j.ab.2021.114334 – ident: 3604_CR37 doi: 10.1016/j.apsusc.2019.01.090 – volume: 324 start-page: 128722 year: 2020 ident: 3604_CR40 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2020.128722 |
SSID | ssj0009848 |
Score | 2.555704 |
Snippet | Accurately and promptly detecting Fe
3+
and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using... Accurately and promptly detecting Fe and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a... Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1125 |
SubjectTerms | Analytical Chemistry Ascorbic acid Ascorbic Acid - analysis Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedicine Biophysics Biotechnology Carbon - chemistry Carbon dots Ferric Compounds - analysis Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Limit of Detection Nitrogen Nitrogen - chemistry Quantum Dots - chemistry Smartphone Smartphones Spectrometry, Fluorescence Synthesis |
Title | A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone |
URI | https://link.springer.com/article/10.1007/s10895-024-03604-0 https://www.ncbi.nlm.nih.gov/pubmed/38300485 https://www.proquest.com/docview/3172759390 https://www.proquest.com/docview/2921118140 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BKwQvFZRr6SEj8QACS00c53gMu126IPWlLCpPkY-xFKkk1SbLH-CPM86xW1SKxEukxEciz8T-RvPNDMAbNA6lQMnTyGU8MknAdRQgdyJ1GMnEWOzYFufx2TL6fCkvh6CwZmS7jy7Jbqe-EeyWdtHEEadd13Mn7sOuJNvdE7mWYb5NtZtG6RAe8_dxfx5Bt3DlLZ9od9TMH8PegBFZ3gv1CdzDah8eTsfSbPvwoONtmuYp_MrZbK2uuC9pxmbYdsSqil2QcVqv2Ec6oiyj-_OyXdWkKnxWX9OTqVppejqr24YRaGXfyoYmuTG-dmyObxeLxTumKsvyhmxUXRqWm9Kyn6Viil38IKXzxHZ8Bsv56dfpGR_qKnAjEtlygUITirIEBbWOE4PS-LxeFgMbW6dEiLEKnNLCOI-3MhvSKnv3qkks0uklnsNORdO_BHbihFTShYEOMaJrRvDABj17KhWxmEAwLnVhhqTjvvbFVbFNl-zFU5B4ik48xckE3m_GXPcpN_7Z-3CUYDH8fk0hPCyTmcio-fWmmYTkvSGqwnrdFGFGtm_gE35N4EUv-c3ryGz3W5ucwIdRFbaT3_0tr_6v-wE88gvbc8APYaddrfGIIE6rj2E3__T9y-lxp9m_AXaT8T0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCMproYCRQAKBpSaON86BQ9iw2tCyl3ZRb6njhxSpJNUmC-LMX-GHMs5jt6iAxKGXSIntieUZ25_lb2YAXhhlDWeGUxHYiAYq9GgeeIZaJqwJeKi0adkW8_FsEXw84Sdb8HPwhWnZ7sOVZLtSX3B2E603cUBx1XXciZ5KeWC-f8ODWv0uTVCrL31_-uF4MqN9LgGqWMgbygzLETlohD95Pg6V4crFstLG02NtJfPNWHpW5kxZhzEi7fuIBgQTKtQGV2yGcq_BdRQh3NxZ-PEmtK8IRO-O8-d-_r7lXcKxl-5g261tehtu9ZiUxJ0R3YEtU-7CzmRIBbcLN1qeqKrvwo-YJCt5Rl0KNZKYpiVyleQID8PVkrzHLVETfJ8XzbJC06RJdY5fJnKZ49ekamqCIJl8LmoUcqF9ZcnUvErT9DWRpSZxjWfivFAkVoUmXwtJJDn6gkbuiPTmHiyuZOzvw3aJ4h8C2beMS259L_dNgM8I4Yj2OraWYGM2Am8Y6kz1Qc5dro2zbBOe2aknQ_VkrXqy_RG8Wbc570J8_LP23qDBrJ_udcYcDOQRi7D4-boYleRuX2RpqlWd-RGetT0XYGwEDzrNr3_HhAt8JvgI3g6msBH-9748-r_qz2BndvzpMDtM5weP4aYb5I5_vgfbzXJlniC8avKnrXUTOL3q6fQL3M8s1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIIIGK1SaOE-fAIWxYdSlaIZVFvQXHDylSSVabLIgzf4ifyDiP3aICEodeIiV-xPKM7W_kb2YAnhllDWeGUxHYmAYq8mgeeIZaJqwJeKS0adkWs_BwHrw74Sdb8HPwhWnZ7sOVZOfT4KI0lc3-Qtv9M45vovUsDijuwI5H0dMqj8z3b2i01a-nKUr4ue9P3n4cH9I-rwBVLOINZYbliCI0QqE8DyNluHJxrbTxdKitZL4JpWdlzpR1eCPWvo_IQDChIm1w92bY7yW4HDjvY1xBcz_ZhPkVgehdc_48zt-Pv3OY9tx9bHvMTW7CjR6fkqRTqFuwZcoduDYe0sLtwJWWM6rq2_AjIelKnlKXTo2kpmlJXSU5RsO4WpI3eDxqgu-zollWqKY0rRb4ZSyXOX5Nq6YmCJjJp6LGTs60ryyZmBfT6fQlkaUmSY32cV4okqhCk6-FJJIcf0GFd6R6cwfmFzL3d2G7xO7vAzmwjEtufS_3TYDPGKGJ9jrmlmAhG4E3THWm-oDnLu_GabYJ1ezEk6F4slY82cEI9tZtFl24j3_W3h0kmPVLv86Yg4Q8ZjEWP10Xo5DcTYwsTbWqMz9Gu9tzwcZGcK-T_Pp3TLggaIKP4NWgCpvO_z6WB_9X_Qlc_ZBOsvfT2dFDuO7muKOi78J2s1yZR4i0mvxxq9wEPl_0avoFauwxCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Mode+Detection+Sensor+Based+on+Nitrogen-Doped+Carbon+Dots+for+Visual+Detection+of+Fe%28III%29+and+Ascorbic+Acid+via+a+Smartphone&rft.jtitle=Journal+of+fluorescence&rft.au=Kayani%2C+Kawan+F&rft.au=Abdullah%2C+Chalak+Najat&rft.date=2025-02-01&rft.issn=1573-4994&rft.eissn=1573-4994&rft.volume=35&rft.issue=2&rft.spage=1125&rft_id=info:doi/10.1007%2Fs10895-024-03604-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-4994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-4994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-4994&client=summon |