A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone

Accurately and promptly detecting Fe 3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe 3+ and AA result...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluorescence Vol. 35; no. 2; pp. 1125 - 1137
Main Authors Kayani, Kawan F., Abdullah, Chalak Najat
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately and promptly detecting Fe 3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe 3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe 3+ was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe 3+ system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe 3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe 3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe 3+ and AA in practical samples with satisfactory results. Graphical Abstract
AbstractList Accurately and promptly detecting Fe 3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe 3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe 3+ was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe 3+ system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe 3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe 3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe 3+ and AA in practical samples with satisfactory results. Graphical Abstract
Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.
Accurately and promptly detecting Fe and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe was observed in the concentration range of 5-20 µM and 25-50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe system. Using the "off-on" fluorescent N-CDs probe, a linear range of 40-90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe and AA in practical samples with satisfactory results.
Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.
Author Kayani, Kawan F.
Abdullah, Chalak Najat
Author_xml – sequence: 1
  givenname: Kawan F.
  surname: Kayani
  fullname: Kayani, Kawan F.
  email: kawan.nasralddin@univsul.edu.iq
  organization: Department of Chemistry, College of Science, University of Sulaimani, Department of Chemistry, College of Science, Charmo University
– sequence: 2
  givenname: Chalak Najat
  surname: Abdullah
  fullname: Abdullah, Chalak Najat
  organization: Department of Biology, College of Science, University of Sulaimani
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38300485$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB7wByiQJZpQDPg54ymX3QRWClAEaC2PfSc4mrUX24NEnT-ONxsgSpHGj6vvHN_rc4wOQgyA0EtK3lJCuneZEtXLhjDREN6Suj5BR1R2vBF9Lw7unQ_Rcc7XhJBeCfUMHXLFCRFKHqGbBV7NZmo-RQd4BQVs8THgSwg5JvzeZHC43j_7kuIVhGYVt7WyNGmo1VUsGY-V--5zNbmnjyM-h9P1ev0Gm-DwItuYBm_xwnqHf3mDDb7cmFS2P-pIz9HT0UwZXtztJ-jb-dnX5cfm4suH9XJx0VjeydJw4INg3EnSDUPbWZC2FVI4oK51o-EMWkNHM3A7Ms5E7xgjTCqubOeg7wk_Qad7322KP2fIRW98tjBNJkCcs2Y9o5QqKnbo6wfodZxTqN1pTjvWyZ7fGr66o-ZhA05vk69D_dZ_v7cCbA_YFHNOMP5DKNG7DPU-Q10z1LcZ6p2reiCyvpjdt5Zk_PS4lO-lub4TriD9b_sR1R874q3I
CitedBy_id crossref_primary_10_1007_s10895_024_04086_w
crossref_primary_10_1016_j_foodcont_2024_110611
crossref_primary_10_1007_s00604_024_06937_6
crossref_primary_10_1007_s00604_024_06939_4
crossref_primary_10_1186_s13065_025_01415_3
crossref_primary_10_1007_s10895_025_04254_6
crossref_primary_10_1039_D4MA00185K
crossref_primary_10_1007_s11051_025_06278_2
crossref_primary_10_1016_j_jfca_2024_106577
crossref_primary_10_1039_D4RA06626J
crossref_primary_10_1039_D5RA00519A
crossref_primary_10_1039_D4MA00502C
crossref_primary_10_1016_j_molstruc_2024_139465
crossref_primary_10_1016_j_seppur_2025_132418
crossref_primary_10_1007_s10895_025_04160_x
crossref_primary_10_1007_s10895_025_04176_3
crossref_primary_10_1007_s10895_025_04152_x
crossref_primary_10_1038_s41598_025_90569_0
crossref_primary_10_1515_ntrev_2024_0138
crossref_primary_10_1016_j_microc_2024_112363
crossref_primary_10_1039_D4NA00652F
crossref_primary_10_1039_D4NA00763H
Cites_doi 10.1039/c7ra04122e
10.1021/acsanm.0c01088
10.1007/s11164-021-04404-y
10.1039/c8nr02405g
10.1016/j.cej.2020.126848
10.1016/j.jhazmat.2019.121654
10.1016/j.snb.2018.08.149
10.1007/s10853-019-03585-7
10.1021/acs.analchem.0c01997
10.1007/s00604-019-3361-5
10.1016/j.snb.2014.05.123
10.1002/slct.202303472
10.1007/s00216-020-02507-w
10.1016/j.saa.2018.09.028
10.1039/c9nh00476a
10.1016/j.inoche.2021.108636
10.1016/j.cej.2014.06.012
10.1002/slct.202000602
10.1039/c9ra11009g
10.1021/acsami.6b01325
10.1016/s1872-5805(19)30024-1
10.1021/acsanm.1c01400
10.1039/d2nj00601d
10.1016/j.aca.2022.339572
10.1021/acsami.7b03917
10.1016/j.apsusc.2018.11.095
10.1039/d1an00025j
10.1016/j.microc.2021.107016
10.1016/j.ab.2018.06.004
10.1007/s10895-023-03392-z
10.1021/acsnano.6b00043
10.1021/acsanm.2c01170
10.1039/c9bm00570f
10.1016/j.microc.2021.106656
10.3390/nano11123419
10.1016/j.foodchem.2020.126935
10.1016/j.ecoenv.2022.113350
10.1007/s10895-019-02454-5
10.1016/j.jcis.2018.12.016
10.1039/c9ay02696g
10.1016/j.carbon.2013.03.009
10.1016/j.jcis.2018.12.047
10.1021/acsanm.0c01426
10.1016/j.ab.2021.114334
10.1016/j.apsusc.2019.01.090
10.1016/j.snb.2020.128722
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s10895-024-03604-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1573-4994
EndPage 1137
ExternalDocumentID 38300485
10_1007_s10895_024_03604_0
Genre Journal Article
GroupedDBID ---
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~02
~EX
AAPKM
AAYXX
ABBRH
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c375t-3e3b423d507bb67ce5c6454de1d6dfa32e6a1fab3cf23249d22025838c7de9903
IEDL.DBID U2A
ISSN 1573-4994
1053-0509
IngestDate Thu Jul 10 23:18:21 EDT 2025
Fri Jul 25 11:01:09 EDT 2025
Mon Jul 21 05:28:27 EDT 2025
Tue Jul 01 05:27:15 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Sun Mar 02 01:13:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ascorbic acid
Carbon dots
Fe(III) ion detection
Smartphone
Visual detection
Language English
License 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3e3b423d507bb67ce5c6454de1d6dfa32e6a1fab3cf23249d22025838c7de9903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38300485
PQID 3172759390
PQPubID 2043853
PageCount 13
ParticipantIDs proquest_miscellaneous_2921118140
proquest_journals_3172759390
pubmed_primary_38300485
crossref_primary_10_1007_s10895_024_03604_0
crossref_citationtrail_10_1007_s10895_024_03604_0
springer_journals_10_1007_s10895_024_03604_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
PublicationTitle Journal of fluorescence
PublicationTitleAbbrev J Fluoresc
PublicationTitleAlternate J Fluoresc
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References F Taghavi (3604_CR5) 2021; 630
W Liu (3604_CR43) 2019; 34
Z Mohammadpour (3604_CR9) 2014; 255
3604_CR33
3604_CR32
3604_CR30
J Zhang (3604_CR31) 2022; 1198
3604_CR15
3604_CR37
Y Qiu (3604_CR40) 2020; 324
M Zan (3604_CR42) 2020; 10
Y Yang (3604_CR41) 2019; 186
3604_CR19
B Polatoğlu (3604_CR38) 2021; 47
3604_CR16
W Li (3604_CR3) 2020; 412
3604_CR4
SD Nonno (3604_CR34) 2021; 146
3604_CR1
L Cai (3604_CR2) 2020; 30
N Sohal (3604_CR10) 2020; 3
M Bhatt (3604_CR35) 2020; 3
C Ma (3604_CR17) 2019; 54
S Lu (3604_CR11) 2019; 7
H Li (3604_CR12) 2020; 5
H Miao (3604_CR44) 2018; 10
J Chen (3604_CR6) 2017; 9
Q Wang (3604_CR14) 2013; 59
MJ Molaei (3604_CR7) 2020; 12
X Gao (3604_CR46) 2019; 469
3604_CR21
P Song (3604_CR39) 2017; 7
3604_CR20
Z Chen (3604_CR26) 2014
CM Singaravelu (3604_CR8) 2021; 4
H Qi (3604_CR22) 2018; 15
3604_CR24
3604_CR23
T Feng (3604_CR13) 2016; 10
3604_CR29
3604_CR27
S Ding (3604_CR18) 2021; 130
JR Bhamore (3604_CR36) 2018; 277
X Lv (3604_CR28) 2020; 326
Z Huang (3604_CR25) 2021; 170
Z Cheng (3604_CR45) 2019; 207
References_xml – volume: 7
  start-page: 28637
  issue: 46
  year: 2017
  ident: 3604_CR39
  publication-title: RSC Adv
  doi: 10.1039/c7ra04122e
– volume: 3
  start-page: 5955
  issue: 6
  year: 2020
  ident: 3604_CR10
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.0c01088
– volume: 47
  start-page: 1865
  issue: 5
  year: 2021
  ident: 3604_CR38
  publication-title: Res Chem Intermed
  doi: 10.1007/s11164-021-04404-y
– volume: 10
  start-page: 8139
  year: 2018
  ident: 3604_CR44
  publication-title: Nanoscale
  doi: 10.1039/c8nr02405g
– ident: 3604_CR15
  doi: 10.1016/j.cej.2020.126848
– ident: 3604_CR16
  doi: 10.1016/j.jhazmat.2019.121654
– volume: 277
  start-page: 47
  year: 2018
  ident: 3604_CR36
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2018.08.149
– volume: 54
  start-page: 9372
  issue: 13
  year: 2019
  ident: 3604_CR17
  publication-title: J Mater Sci
  doi: 10.1007/s10853-019-03585-7
– ident: 3604_CR21
  doi: 10.1021/acs.analchem.0c01997
– volume: 186
  start-page: 0
  issue: 4
  year: 2019
  ident: 3604_CR41
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3361-5
– year: 2014
  ident: 3604_CR26
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2014.05.123
– ident: 3604_CR32
  doi: 10.1002/slct.202303472
– volume: 412
  start-page: 2805
  issue: 12
  year: 2020
  ident: 3604_CR3
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-020-02507-w
– volume: 207
  start-page: 262
  year: 2019
  ident: 3604_CR45
  publication-title: Spectrochim Acta - Part Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2018.09.028
– volume: 5
  start-page: 218
  issue: 2
  year: 2020
  ident: 3604_CR12
  publication-title: Nanoscale Horizons
  doi: 10.1039/c9nh00476a
– volume: 130
  start-page: 108636
  year: 2021
  ident: 3604_CR18
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2021.108636
– volume: 255
  start-page: 1
  year: 2014
  ident: 3604_CR9
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.06.012
– ident: 3604_CR30
  doi: 10.1002/slct.202000602
– volume: 10
  start-page: 10067
  issue: 17
  year: 2020
  ident: 3604_CR42
  publication-title: RSC Adv
  doi: 10.1039/c9ra11009g
– ident: 3604_CR20
  doi: 10.1021/acsami.6b01325
– volume: 34
  start-page: 390
  issue: 4
  year: 2019
  ident: 3604_CR43
  publication-title: New Carbon Mater
  doi: 10.1016/s1872-5805(19)30024-1
– volume: 4
  start-page: 6386
  issue: 6
  year: 2021
  ident: 3604_CR8
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.1c01400
– ident: 3604_CR27
  doi: 10.1039/d2nj00601d
– volume: 1198
  start-page: 339572
  year: 2022
  ident: 3604_CR31
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2022.339572
– volume: 9
  start-page: 18429
  issue: 22
  year: 2017
  ident: 3604_CR6
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b03917
– volume: 469
  start-page: 911
  year: 2019
  ident: 3604_CR46
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.11.095
– volume: 146
  start-page: 2749
  issue: 9
  year: 2021
  ident: 3604_CR34
  publication-title: Analyst
  doi: 10.1039/d1an00025j
– ident: 3604_CR33
  doi: 10.1016/j.microc.2021.107016
– ident: 3604_CR4
  doi: 10.1016/j.ab.2018.06.004
– ident: 3604_CR1
  doi: 10.1007/s10895-023-03392-z
– volume: 10
  start-page: 4410
  issue: 4
  year: 2016
  ident: 3604_CR13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00043
– ident: 3604_CR23
  doi: 10.1021/acsanm.2c01170
– volume: 7
  start-page: 3258
  year: 2019
  ident: 3604_CR11
  publication-title: Biomater Sci
  doi: 10.1039/c9bm00570f
– volume: 170
  start-page: 106656
  year: 2021
  ident: 3604_CR25
  publication-title: Microchem J
  doi: 10.1016/j.microc.2021.106656
– ident: 3604_CR19
  doi: 10.3390/nano11123419
– volume: 326
  start-page: 126935
  year: 2020
  ident: 3604_CR28
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.126935
– ident: 3604_CR29
  doi: 10.1016/j.ecoenv.2022.113350
– volume: 30
  start-page: 11
  issue: 1
  year: 2020
  ident: 3604_CR2
  publication-title: J Fluoresc
  doi: 10.1007/s10895-019-02454-5
– ident: 3604_CR24
  doi: 10.1016/j.jcis.2018.12.016
– volume: 12
  start-page: 1266
  issue: 10
  year: 2020
  ident: 3604_CR7
  publication-title: Anal Methods
  doi: 10.1039/c9ay02696g
– volume: 59
  start-page: 192
  year: 2013
  ident: 3604_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.03.009
– volume: 15
  start-page: 332
  year: 2018
  ident: 3604_CR22
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2018.12.047
– volume: 3
  start-page: 7096
  issue: 7
  year: 2020
  ident: 3604_CR35
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.0c01426
– volume: 630
  start-page: 1
  year: 2021
  ident: 3604_CR5
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2021.114334
– ident: 3604_CR37
  doi: 10.1016/j.apsusc.2019.01.090
– volume: 324
  start-page: 128722
  year: 2020
  ident: 3604_CR40
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2020.128722
SSID ssj0009848
Score 2.555704
Snippet Accurately and promptly detecting Fe 3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using...
Accurately and promptly detecting Fe and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a...
Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1125
SubjectTerms Analytical Chemistry
Ascorbic acid
Ascorbic Acid - analysis
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedicine
Biophysics
Biotechnology
Carbon - chemistry
Carbon dots
Ferric Compounds - analysis
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Limit of Detection
Nitrogen
Nitrogen - chemistry
Quantum Dots - chemistry
Smartphone
Smartphones
Spectrometry, Fluorescence
Synthesis
Title A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone
URI https://link.springer.com/article/10.1007/s10895-024-03604-0
https://www.ncbi.nlm.nih.gov/pubmed/38300485
https://www.proquest.com/docview/3172759390
https://www.proquest.com/docview/2921118140
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BKwQvFZRr6SEj8QACS00c53gMu126IPWlLCpPkY-xFKkk1SbLH-CPM86xW1SKxEukxEciz8T-RvPNDMAbNA6lQMnTyGU8MknAdRQgdyJ1GMnEWOzYFufx2TL6fCkvh6CwZmS7jy7Jbqe-EeyWdtHEEadd13Mn7sOuJNvdE7mWYb5NtZtG6RAe8_dxfx5Bt3DlLZ9od9TMH8PegBFZ3gv1CdzDah8eTsfSbPvwoONtmuYp_MrZbK2uuC9pxmbYdsSqil2QcVqv2Ec6oiyj-_OyXdWkKnxWX9OTqVppejqr24YRaGXfyoYmuTG-dmyObxeLxTumKsvyhmxUXRqWm9Kyn6Viil38IKXzxHZ8Bsv56dfpGR_qKnAjEtlygUITirIEBbWOE4PS-LxeFgMbW6dEiLEKnNLCOI-3MhvSKnv3qkks0uklnsNORdO_BHbihFTShYEOMaJrRvDABj17KhWxmEAwLnVhhqTjvvbFVbFNl-zFU5B4ik48xckE3m_GXPcpN_7Z-3CUYDH8fk0hPCyTmcio-fWmmYTkvSGqwnrdFGFGtm_gE35N4EUv-c3ryGz3W5ucwIdRFbaT3_0tr_6v-wE88gvbc8APYaddrfGIIE6rj2E3__T9y-lxp9m_AXaT8T0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCMproYCRQAKBpSaON86BQ9iw2tCyl3ZRb6njhxSpJNUmC-LMX-GHMs5jt6iAxKGXSIntieUZ25_lb2YAXhhlDWeGUxHYiAYq9GgeeIZaJqwJeKi0adkW8_FsEXw84Sdb8HPwhWnZ7sOVZLtSX3B2E603cUBx1XXciZ5KeWC-f8ODWv0uTVCrL31_-uF4MqN9LgGqWMgbygzLETlohD95Pg6V4crFstLG02NtJfPNWHpW5kxZhzEi7fuIBgQTKtQGV2yGcq_BdRQh3NxZ-PEmtK8IRO-O8-d-_r7lXcKxl-5g261tehtu9ZiUxJ0R3YEtU-7CzmRIBbcLN1qeqKrvwo-YJCt5Rl0KNZKYpiVyleQID8PVkrzHLVETfJ8XzbJC06RJdY5fJnKZ49ekamqCIJl8LmoUcqF9ZcnUvErT9DWRpSZxjWfivFAkVoUmXwtJJDn6gkbuiPTmHiyuZOzvw3aJ4h8C2beMS259L_dNgM8I4Yj2OraWYGM2Am8Y6kz1Qc5dro2zbBOe2aknQ_VkrXqy_RG8Wbc570J8_LP23qDBrJ_udcYcDOQRi7D4-boYleRuX2RpqlWd-RGetT0XYGwEDzrNr3_HhAt8JvgI3g6msBH-9748-r_qz2BndvzpMDtM5weP4aYb5I5_vgfbzXJlniC8avKnrXUTOL3q6fQL3M8s1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIIIGK1SaOE-fAIWxYdSlaIZVFvQXHDylSSVabLIgzf4ifyDiP3aICEodeIiV-xPKM7W_kb2YAnhllDWeGUxHYmAYq8mgeeIZaJqwJeKS0adkWs_BwHrw74Sdb8HPwhWnZ7sOVZOfT4KI0lc3-Qtv9M45vovUsDijuwI5H0dMqj8z3b2i01a-nKUr4ue9P3n4cH9I-rwBVLOINZYbliCI0QqE8DyNluHJxrbTxdKitZL4JpWdlzpR1eCPWvo_IQDChIm1w92bY7yW4HDjvY1xBcz_ZhPkVgehdc_48zt-Pv3OY9tx9bHvMTW7CjR6fkqRTqFuwZcoduDYe0sLtwJWWM6rq2_AjIelKnlKXTo2kpmlJXSU5RsO4WpI3eDxqgu-zollWqKY0rRb4ZSyXOX5Nq6YmCJjJp6LGTs60ryyZmBfT6fQlkaUmSY32cV4okqhCk6-FJJIcf0GFd6R6cwfmFzL3d2G7xO7vAzmwjEtufS_3TYDPGKGJ9jrmlmAhG4E3THWm-oDnLu_GabYJ1ezEk6F4slY82cEI9tZtFl24j3_W3h0kmPVLv86Yg4Q8ZjEWP10Xo5DcTYwsTbWqMz9Gu9tzwcZGcK-T_Pp3TLggaIKP4NWgCpvO_z6WB_9X_Qlc_ZBOsvfT2dFDuO7muKOi78J2s1yZR4i0mvxxq9wEPl_0avoFauwxCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Mode+Detection+Sensor+Based+on+Nitrogen-Doped+Carbon+Dots+for+Visual+Detection+of+Fe%28III%29+and+Ascorbic+Acid+via+a+Smartphone&rft.jtitle=Journal+of+fluorescence&rft.au=Kayani%2C+Kawan+F&rft.au=Abdullah%2C+Chalak+Najat&rft.date=2025-02-01&rft.issn=1573-4994&rft.eissn=1573-4994&rft.volume=35&rft.issue=2&rft.spage=1125&rft_id=info:doi/10.1007%2Fs10895-024-03604-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-4994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-4994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-4994&client=summon