Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions
Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking al...
Saved in:
Published in | International journal for computer assisted radiology and surgery Vol. 15; no. 10; pp. 1673 - 1684 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).
Methods
Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.
Results
In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (d
xy
) of 0.71 mm and median difference in axis orientation angle (d
θ
) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median d
xy
= 0.90 mm, median d
θ
= 1.53°; (b) median d
xy
= 1.31 mm, median d
θ
= 1.9°; (c) median d
xy
= 1.09 mm, median d
θ
= 0.91°.
Conclusions
The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions. |
---|---|
AbstractList | Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).PURPOSEAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.METHODSMask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.RESULTSIn prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.CONCLUSIONSThe proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions. Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Methods Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. Results In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (d xy ) of 0.71 mm and median difference in axis orientation angle (d θ ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median d xy = 0.90 mm, median d θ = 1.53°; (b) median d xy = 1.31 mm, median d θ = 1.9°; (c) median d xy = 1.09 mm, median d θ = 0.91°. Conclusions The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions. PurposeAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).MethodsMask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.ResultsIn prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.ConclusionsThe proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions. Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°. The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions. |
Author | Lee, Yu-Hsiu Wu, Holden H. Li, Xinzhou Young, Adam S. Lu, David S. Tsao, Tsu-Chin Raman, Steven S. |
Author_xml | – sequence: 1 givenname: Xinzhou surname: Li fullname: Li, Xinzhou organization: Department of Radiological Sciences, University of California Los Angeles, Department of Bioengineering, University of California Los Angeles – sequence: 2 givenname: Adam S. surname: Young fullname: Young, Adam S. organization: Department of Radiological Sciences, University of California Los Angeles – sequence: 3 givenname: Steven S. surname: Raman fullname: Raman, Steven S. organization: Department of Radiological Sciences, University of California Los Angeles – sequence: 4 givenname: David S. surname: Lu fullname: Lu, David S. organization: Department of Radiological Sciences, University of California Los Angeles – sequence: 5 givenname: Yu-Hsiu surname: Lee fullname: Lee, Yu-Hsiu organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles – sequence: 6 givenname: Tsu-Chin surname: Tsao fullname: Tsao, Tsu-Chin organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles – sequence: 7 givenname: Holden H. orcidid: 0000-0002-2585-5916 surname: Wu fullname: Wu, Holden H. email: HoldenWu@mednet.ucla.edu organization: Department of Radiological Sciences, University of California Los Angeles, Department of Bioengineering, University of California Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32676870$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctO5DAQRS0E4jk_MItRJDazyUzZTmJniVoMIPGQEKwtxym3DGmnsR0k_h43gUFiwaJcXpxbulX3gGz70SMhPyn8oQDib6S0rmQJDHIx1pRyi-xT2dCyqVi7_f9PYY8cxPgAUNWC17tkj7NGNFLAPrk7mdK40smZwiP2AxYpaPPo_LKY4ua90vGxuC0X19eFHUNxdXtRLifXY1-sMZgpaY_jFAvnE4Zn9MmNPh6RHauHiD_e-yG5_3d6tzgvL2_OLhYnl6Xhok4lN8Ja3jYgehSUC7SybjQD1msNoqvqXgJvdcu17rASBqHtOmEr23Bjuez5Ifk9z12H8WnCmNTKRYPDMJtSrGI1ALQAGT3-gj6MU_DZXaZqYJxSyjP1652auhX2ah3cSocX9XGvDMgZMGGMMaBVxiW9WTqfzQ2KgtpEo-ZoVI5GvUWjZJayL9KP6d-K-CyKGfZLDJ-2v1G9AgGpn20 |
CitedBy_id | crossref_primary_10_1109_TMC_2024_3435040 crossref_primary_10_1097_MD_0000000000028112 crossref_primary_10_1002_mp_17376 crossref_primary_10_1007_s41315_024_00340_3 crossref_primary_10_1002_jmri_27411 crossref_primary_10_3390_app15031443 crossref_primary_10_1016_j_jvir_2023_09_020 crossref_primary_10_1007_s11548_024_03077_3 crossref_primary_10_1109_JSEN_2024_3386120 crossref_primary_10_1016_j_ejro_2022_100430 crossref_primary_10_1155_2021_8997105 crossref_primary_10_1109_TIM_2024_3441017 crossref_primary_10_1155_2022_5936156 crossref_primary_10_3390_app132413039 crossref_primary_10_1109_ACCESS_2021_3128163 crossref_primary_10_1142_S2424905X23500046 |
Cites_doi | 10.1055/s-0030-1261789 10.1016/j.mric.2015.05.006 10.1002/rcs.2041 10.1088/1361-6560/aae214 10.1007/s11548-017-1698-y 10.6028/nist.ir.89-4197 10.1002/mrm.26556 10.1177/0278364915579069 10.1148/radiol.2016152827 10.1109/TMI.2009.2027118 10.1016/j.mri.2013.12.021 10.1002/jmri.25749 10.1016/j.eururo.2012.06.004 10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l 10.1002/mrm.24389 10.1109/TMI.2018.2876796 10.1053/j.tvir.2007.09.005 10.1016/j.ejmp.2019.07.019 10.1148/radiol.2017161684 10.1109/TBME.2010.2046416 10.1007/978-3-319-10602-1_48 10.1002/mrm.1910360423 10.1007/s10514-017-9640-2 10.1109/TBME.2019.2944803 10.1007/978-3-319-66185-8_69 10.1109/isbi.2019.8759574 10.1109/TPAMI.2016.2577031 10.1109/EMBC.2015.7319484 10.1109/ICRA.2011.5980309 10.1117/12.840837 10.1007/978-3-642-28572-1_54 10.1007/978-3-540-75759-7_7 10.1109/ICCV.2017.322 10.1109/ICRA.2013.6630649 |
ContentType | Journal Article |
Copyright | CARS 2020 CARS 2020. |
Copyright_xml | – notice: CARS 2020 – notice: CARS 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1007/s11548-020-02226-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1861-6429 |
EndPage | 1684 |
ExternalDocumentID | 32676870 10_1007_s11548_020_02226_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: David Geffen School of Medicine, University of California, Los Angeles funderid: http://dx.doi.org/10.13039/100011075 – fundername: Siemens Healthineers funderid: http://dx.doi.org/10.13039/501100011699 |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM ABRTQ K9. 7X8 |
ID | FETCH-LOGICAL-c375t-3c7ff39607de7137ef856a202daa07b45d8039a93aabe47ce09bb7f4f63cf38d3 |
IEDL.DBID | U2A |
ISSN | 1861-6410 1861-6429 |
IngestDate | Thu Jul 10 19:24:45 EDT 2025 Fri Jul 25 09:57:26 EDT 2025 Wed Feb 19 02:29:26 EST 2025 Thu Apr 24 22:58:32 EDT 2025 Tue Jul 01 00:15:09 EDT 2025 Fri Feb 21 02:42:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Deep learning Needle feature Interventional MRI Device tracking Convolutional neural network Real-time MRI |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3c7ff39607de7137ef856a202daa07b45d8039a93aabe47ce09bb7f4f63cf38d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2585-5916 |
PMID | 32676870 |
PQID | 2450231113 |
PQPubID | 2043910 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2425000900 proquest_journals_2450231113 pubmed_primary_32676870 crossref_citationtrail_10_1007_s11548_020_02226_8 crossref_primary_10_1007_s11548_020_02226_8 springer_journals_10_1007_s11548_020_02226_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
PublicationTitle | International journal for computer assisted radiology and surgery |
PublicationTitleAbbrev | Int J CARS |
PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Campbell-Washburn, Faranesh, Lederman, Hansen (CR3) 2015; 23 Sørensen, Atkinson, Schaeffter, Hansen (CR32) 2009; 28 DiMaio, Kacher, Ellis, Fichtinger, Hata, Zientara, Panych, Kikinis, Jolesz (CR5) 2006; 119 Ho, Kim, Cheng, Gullapalli, Desai (CR17) 2015; 34 Gupta, Madoff (CR1) 2007; 10 CR18 Campbell-Washburn, Tavallaei, Pop, Grant, Chubb, Rhode, Wright (CR4) 2017; 46 Mwikirize, Nosher, Hacihaliloglu (CR20) 2018; 13 Moreira, Patel, Wartenberg, Li, Tuncali, Heffter, Burdette, Iordachita, Fischer, Hata, Tempany, Tokuda (CR19) 2018; 63 CR36 CR13 CR34 Stamey, Freiha, McNeal, Redwine, Whittemore, Schmid (CR38) 1993; 71 Verma, Choyke, Eberhardt, Oto, Tempany, Turkbey, Rosenkrantz (CR11) 2017; 285 Mehrtash, Ghafoorian, Pernelle, Ziaei, Heslinga, Tuncali, Fedorov, Kikinis, Tempany, Wells, Abolmaesumi, Kapur (CR15) 2019; 38 Ladd, Erhart, Debatin, Romanowski, Boesiger, McKinnon (CR12) 1996; 36 McWilliams, Lee, Yamamoto, Loh, Kee (CR2) 2010; 27 Mikaiel, Simonelli, Li, Lee, Lee, Sung, Lu, Tsao, Wu (CR14) 2020; 16 Tan, Lin, Khoshnoodi, Asvadi, Yoshida, Margolis, Lu, Wu, Sung, Lu, Huang, Raman (CR10) 2016; 283 Hansen, Sørensen (CR31) 2013; 69 CR6 Boggs, Rogers (CR35) 1990; 112 Zijlstra, Viergever, Seevinck (CR16) 2019; 64 CR7 Moore, Robertson, Arsanious, Middleton, Villers, Klotz, Taneja, Emberton (CR9) 2013; 63 CR29 CR28 CR27 CR26 CR25 CR24 Zijlstra, Bouwman, Braškutė, Viergever, Seevinck (CR8) 2016; 78 CR23 Renfrew, Griswold, Çavusoglu (CR39) 2018; 42 CR40 Uherčík, Kybic, Liebgott, Cachard (CR21) 2010; 57 Kim, Kim, Park, Park, Lee, Choi (CR37) 2014; 32 Goodfellow, Bengio, Courville (CR22) 2016 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick, Fleet, Pajdla, Schiele, Tuytelaars (CR33) 2014 Li, Lee, Mikaiel, Simonelli, Tsao, Wu (CR30) 2020; 67 2226_CR28 2226_CR29 YK Kim (2226_CR37) 2014; 32 TA Stamey (2226_CR38) 1993; 71 2226_CR7 PT Boggs (2226_CR35) 1990; 112 2226_CR6 ME Ladd (2226_CR12) 1996; 36 SP DiMaio (2226_CR5) 2006; 119 CM Moore (2226_CR9) 2013; 63 M Renfrew (2226_CR39) 2018; 42 T-Y Lin (2226_CR33) 2014 S Verma (2226_CR11) 2017; 285 X Li (2226_CR30) 2020; 67 S Gupta (2226_CR1) 2007; 10 F Zijlstra (2226_CR16) 2019; 64 2226_CR40 M Ho (2226_CR17) 2015; 34 I Goodfellow (2226_CR22) 2016 TS Sørensen (2226_CR32) 2009; 28 2226_CR23 2226_CR24 A Mehrtash (2226_CR15) 2019; 38 2226_CR25 2226_CR26 2226_CR27 C Mwikirize (2226_CR20) 2018; 13 2226_CR18 P Moreira (2226_CR19) 2018; 63 F Zijlstra (2226_CR8) 2016; 78 N Tan (2226_CR10) 2016; 283 MS Hansen (2226_CR31) 2013; 69 M Uherčík (2226_CR21) 2010; 57 S Mikaiel (2226_CR14) 2020; 16 AE Campbell-Washburn (2226_CR4) 2017; 46 JP McWilliams (2226_CR2) 2010; 27 2226_CR34 AE Campbell-Washburn (2226_CR3) 2015; 23 2226_CR13 2226_CR36 |
References_xml | – volume: 27 start-page: 302 year: 2010 end-page: 313 ident: CR2 article-title: Image-guided tumor ablation: emerging technologies and future directions publication-title: Semin Interv Radiol doi: 10.1055/s-0030-1261789 – ident: CR18 – volume: 23 start-page: 669 year: 2015 end-page: 679 ident: CR3 article-title: Magnetic resonance sequences and rapid acquisition for MR-guided interventions publication-title: Magn Reson Imaging Clin doi: 10.1016/j.mric.2015.05.006 – volume: 16 start-page: e2041 issue: 2 year: 2020 ident: CR14 article-title: MRI-guided targeted needle placement during motion using hydrostatic actuators publication-title: Int J Med Robot Comput Assist Surg doi: 10.1002/rcs.2041 – volume: 63 start-page: 20NT02 year: 2018 ident: CR19 article-title: Evaluation of robot-assisted MRI-guided prostate biopsy: needle path analysis during clinical trials publication-title: Phys Med Biol doi: 10.1088/1361-6560/aae214 – volume: 13 start-page: 363 year: 2018 end-page: 374 ident: CR20 article-title: Signal attenuation maps for needle enhancement and localization in 2D ultrasound publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1698-y – volume: 112 start-page: 183 year: 1990 end-page: 194 ident: CR35 article-title: Orthogonal distance regression publication-title: Contemp Math doi: 10.6028/nist.ir.89-4197 – ident: CR6 – ident: CR29 – ident: CR40 – volume: 78 start-page: 2035 year: 2016 end-page: 2041 ident: CR8 article-title: Fast Fourier-based simulation of off-resonance artifacts in steady-state gradient echo MRI applied to metal object localization publication-title: Magn Reson Med doi: 10.1002/mrm.26556 – volume: 34 start-page: 1147 year: 2015 end-page: 1163 ident: CR17 article-title: Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot publication-title: Int J Rob Res doi: 10.1177/0278364915579069 – ident: CR25 – volume: 283 start-page: 130 year: 2016 end-page: 139 ident: CR10 article-title: In-bore 3-T MR-guided transrectal targeted prostate biopsy: prostate imaging reporting and data system version 2–based diagnostic performance for detection of prostate cancer publication-title: Radiology doi: 10.1148/radiol.2016152827 – ident: CR27 – volume: 119 start-page: 120 year: 2006 end-page: 125 ident: CR5 article-title: Needle artifact localization in 3T MR images publication-title: Stud Health Technol Inform – ident: CR23 – volume: 28 start-page: 1974 year: 2009 end-page: 1985 ident: CR32 article-title: Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2027118 – volume: 32 start-page: 610 year: 2014 end-page: 618 ident: CR37 article-title: Noncontrast MRI with diffusion-weighted imaging as the sole imaging modality for detecting liver malignancy in patients with high risk for hepatocellular carcinoma publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2013.12.021 – volume: 46 start-page: 935 year: 2017 end-page: 950 ident: CR4 article-title: Real-time MRI guidance of cardiac interventions publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25749 – volume: 63 start-page: 125 year: 2013 end-page: 140 ident: CR9 article-title: Image-guided prostate biopsy using magnetic resonance imaging–derived targets: a systematic review publication-title: Eur Urol doi: 10.1016/j.eururo.2012.06.004 – volume: 71 start-page: 933 year: 1993 end-page: 938 ident: CR38 article-title: Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer publication-title: Cancer doi: 10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l – volume: 69 start-page: 1768 year: 2013 end-page: 1776 ident: CR31 article-title: Gadgetron: an open source framework for medical image reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.24389 – volume: 38 start-page: 1026 year: 2019 end-page: 1036 ident: CR15 article-title: Automatic needle segmentation and localization in MRI with 3D convolutional neural networks: application to MRI-targeted prostate biopsy publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876796 – volume: 10 start-page: 88 year: 2007 end-page: 101 ident: CR1 article-title: Image-guided percutaneous needle biopsy in cancer diagnosis and staging publication-title: Tech Vasc Interv Radiol doi: 10.1053/j.tvir.2007.09.005 – volume: 64 start-page: 252 year: 2019 end-page: 260 ident: CR16 article-title: SMART tracking: simultaneous anatomical imaging and real-time passive device tracking for MR-guided interventions publication-title: Phys Med doi: 10.1016/j.ejmp.2019.07.019 – volume: 285 start-page: 343 year: 2017 end-page: 356 ident: CR11 article-title: The current state of MR imaging–targeted biopsy techniques for detection of prostate cancer publication-title: Radiology doi: 10.1148/radiol.2017161684 – year: 2016 ident: CR22 publication-title: Deep learning – ident: CR13 – volume: 57 start-page: 1907 year: 2010 end-page: 1916 ident: CR21 article-title: Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2046416 – start-page: 740 year: 2014 end-page: 755 ident: CR33 article-title: Microsoft COCO: common objects in context publication-title: European conference on computer vision (ECCV) doi: 10.1007/978-3-319-10602-1_48 – ident: CR34 – ident: CR36 – ident: CR7 – volume: 36 start-page: 646 year: 1996 end-page: 651 ident: CR12 article-title: Biopsy needle susceptibility artifacts publication-title: Magn Reson Med doi: 10.1002/mrm.1910360423 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 42 start-page: 83 year: 2018 end-page: 97 ident: CR39 article-title: Active localization and tracking of needle and target in robotic image-guided intervention systems publication-title: Auton Robots doi: 10.1007/s10514-017-9640-2 – volume: 67 start-page: 1727 issue: 6 year: 2020 end-page: 1738 ident: CR30 article-title: Respiratory motion prediction using fusion-based multi-rate Kalman filtering and real-time golden-angle radial MRI publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2944803 – volume: 78 start-page: 2035 year: 2016 ident: 2226_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.26556 – volume: 63 start-page: 125 year: 2013 ident: 2226_CR9 publication-title: Eur Urol doi: 10.1016/j.eururo.2012.06.004 – volume: 34 start-page: 1147 year: 2015 ident: 2226_CR17 publication-title: Int J Rob Res doi: 10.1177/0278364915579069 – volume: 112 start-page: 183 year: 1990 ident: 2226_CR35 publication-title: Contemp Math doi: 10.6028/nist.ir.89-4197 – ident: 2226_CR23 doi: 10.1007/978-3-319-66185-8_69 – ident: 2226_CR29 – volume: 119 start-page: 120 year: 2006 ident: 2226_CR5 publication-title: Stud Health Technol Inform – volume: 36 start-page: 646 year: 1996 ident: 2226_CR12 publication-title: Magn Reson Med doi: 10.1002/mrm.1910360423 – volume: 46 start-page: 935 year: 2017 ident: 2226_CR4 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25749 – volume: 285 start-page: 343 year: 2017 ident: 2226_CR11 publication-title: Radiology doi: 10.1148/radiol.2017161684 – volume: 23 start-page: 669 year: 2015 ident: 2226_CR3 publication-title: Magn Reson Imaging Clin doi: 10.1016/j.mric.2015.05.006 – ident: 2226_CR27 doi: 10.1109/isbi.2019.8759574 – volume: 28 start-page: 1974 year: 2009 ident: 2226_CR32 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2027118 – start-page: 740 volume-title: European conference on computer vision (ECCV) year: 2014 ident: 2226_CR33 doi: 10.1007/978-3-319-10602-1_48 – ident: 2226_CR26 doi: 10.1109/TPAMI.2016.2577031 – ident: 2226_CR36 doi: 10.1109/EMBC.2015.7319484 – volume: 67 start-page: 1727 issue: 6 year: 2020 ident: 2226_CR30 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2944803 – volume: 32 start-page: 610 year: 2014 ident: 2226_CR37 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2013.12.021 – ident: 2226_CR40 doi: 10.1109/ICRA.2011.5980309 – volume: 42 start-page: 83 year: 2018 ident: 2226_CR39 publication-title: Auton Robots doi: 10.1007/s10514-017-9640-2 – volume: 71 start-page: 933 year: 1993 ident: 2226_CR38 publication-title: Cancer doi: 10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l – volume: 38 start-page: 1026 year: 2019 ident: 2226_CR15 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2876796 – ident: 2226_CR34 – volume: 283 start-page: 130 year: 2016 ident: 2226_CR10 publication-title: Radiology doi: 10.1148/radiol.2016152827 – volume: 64 start-page: 252 year: 2019 ident: 2226_CR16 publication-title: Phys Med doi: 10.1016/j.ejmp.2019.07.019 – volume: 69 start-page: 1768 year: 2013 ident: 2226_CR31 publication-title: Magn Reson Med doi: 10.1002/mrm.24389 – ident: 2226_CR7 doi: 10.1117/12.840837 – ident: 2226_CR13 doi: 10.1007/978-3-642-28572-1_54 – ident: 2226_CR28 – ident: 2226_CR24 – ident: 2226_CR6 doi: 10.1007/978-3-540-75759-7_7 – volume: 16 start-page: e2041 issue: 2 year: 2020 ident: 2226_CR14 publication-title: Int J Med Robot Comput Assist Surg doi: 10.1002/rcs.2041 – ident: 2226_CR25 doi: 10.1109/ICCV.2017.322 – volume: 27 start-page: 302 year: 2010 ident: 2226_CR2 publication-title: Semin Interv Radiol doi: 10.1055/s-0030-1261789 – volume: 63 start-page: 20NT02 year: 2018 ident: 2226_CR19 publication-title: Phys Med Biol doi: 10.1088/1361-6560/aae214 – volume-title: Deep learning year: 2016 ident: 2226_CR22 – ident: 2226_CR18 doi: 10.1109/ICRA.2013.6630649 – volume: 10 start-page: 88 year: 2007 ident: 2226_CR1 publication-title: Tech Vasc Interv Radiol doi: 10.1053/j.tvir.2007.09.005 – volume: 13 start-page: 363 year: 2018 ident: 2226_CR20 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1698-y – volume: 57 start-page: 1907 year: 2010 ident: 2226_CR21 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2046416 |
SSID | ssj0045735 |
Score | 2.3196278 |
Snippet | Purpose
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is... Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by... PurposeAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1673 |
SubjectTerms | Algorithms Artificial neural networks Biopsy Computer Imaging Computer Science Datasets Euclidean geometry Feature extraction Health Informatics Humans Image segmentation Image-Guided Biopsy - methods Imaging Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medicine Medicine & Public Health Needles Neural Networks, Computer Original Article Pattern Recognition and Graphics Percutaneous treatment Prostate Prostate - pathology Radiology Real time Surgery Tracking Vision |
Title | Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions |
URI | https://link.springer.com/article/10.1007/s11548-020-02226-8 https://www.ncbi.nlm.nih.gov/pubmed/32676870 https://www.proquest.com/docview/2450231113 https://www.proquest.com/docview/2425000900 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QHzxPtaLCL5poGmSJn1cxJvdB3FBn0quiii7sm3_v0m33VU8wOekaZmZZL6vM5kBOIkUk6FsCNax5ph5H4hTrQQ2Mid5ap2idbig10-uB-z2kT82l8KKNtu9DUnWJ_XssltA1zjQnUBSEiznYZEH7u6teBB32_OXcVG31SQyIThhJGquyvy8xld39A1jfouP1m7ncg1WGryIuhMFr8OcG27AatuLATVbcwOWek2QfBMeulU5qiuxoqH3TW8OlWNlwi9xFLLcn1FPFa_oHp_3-8hDVtS7v8HP1Yt1Fr27sak8XHSjqkAvn9Ihiy0YXF48nF_jpnkCNlTwElMj8px6fiKs80RUuFzyRHlxWaUioRm3MqKpSqlS2jFhXJRqLXKWJ9TkVFq6DQvD0dDtAnKpoyaWRFmesETblEpDUiU992HeAnQHSCvDzDSVxUODi7dsVhM5yD3zcs9quWeyA6fTZ94ndTX-nH3QqiZr9liRxYyH4nWE0A4cT4f97gghj4mkskCoAoyMog7sTFQ6fZ0Hrp5rCT9y1up4tvjv37L3v-n7sBwHe6vz_w5goRxX7tDjmFIfwWL36unu4qg23w9Twufd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tIAEXljdd2MVI3MBSHDuxc6zQorJLekCtxM3yKwiBWtQk_x87TVpWPKQ923GimbHn-zLjGYDzSDERyoZgHesEM-8DcaYVx0YUpMisU7QJF-TDdDBmf-6T-_ZSWNllu3chyeakXl52C-gaB7oTSEqKxQqseTAgQiLXOO535y9LeNNWk4iU4JSRqL0q8_Ea_7qjdxjzXXy0cTvX27DV4kXUnyt4B765yS5873oxoHZr7sJ63gbJ92DUr6tpU4kVTbxvenaomikTfomjkOX-gHJVPqE7fDUcIg9ZUX53gx_qR-ssenEzU3u46KZ1iR7fpEOW-zC-_j26GuC2eQI2lCcVpoYXBfX8hFvniSh3hUhSFUexVSrimiVWRDRTGVVKO8aNizKtecGKlJqCCksPYHUynbgjQC5z1MSCKJukLNU2o8KQTAnPfZi3AN0D0slQmrayeGhw8SyXNZGD3KWXu2zkLkUPLhbPvMzranw5-6RTjWz3WCljloTidYTQHpwthv3uCCGPuaRkIFQBRkZRDw7nKl28zgNXz7W4H7nsdLxc_PNv-fF_009hYzDKb-XtzfDvMWzGwfaaXMATWK1mtfvpMU2lfzUm_Aog-ek8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4aICFeNmAbdGObJ_E2LOLYiZ3HClbBtlYIUYk3y1eEQGnVJv9_di4tE2zSnu040bn4fCfnBnCcKCZi2xCsU51hFmwgLrTi2AhPfGGdok24YDzJL6bsx212-6SKv8l270OSbU1D7NJUVqdz60_XhW8RaePo-kSHJcdiA7bCdUyiXE_TYX8Xs4w3IzaJyAnOGUm6spmXz_jTND3Dm89ipY0JGu3C6w47omHL7D145cp9eNPPZUCdmu7D9rgLmL-Fm2FdzZqurKgMdurRoWqhTPw9jmLG-x0aq-UDusZnkwkK8BWNry_xXX1vnUVztzB1gI5uVi_R_ZPUyOU7mI6-35xd4G6QAjaUZxWmhntPg6_CrQtOKXdeZLlKk9QqlXDNMisSWqiCKqUd48YlhdbcM59T46mw9D1slrPSHQJyhaMmFUTZLGe5tgUVhhRKBD-IBWnQAyA9DaXpuozHYRePct0fOdJdBrrLhu5SDODb6pl522Pjn7uPetbITt-WMmVZbGRHCB3A19Vy0JQY_mgpJaNzFSFlkgzgoGXp6nUBxAa_i4eVk57H68P__i0f_m_7F9i-Oh_JX5eTnx9hJ42i16QFHsFmtajdpwBvKv25keDfwl3teA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+needle+tracking+using+Mask+R-CNN+for+MRI-guided+percutaneous+interventions&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Li%2C+Xinzhou&rft.au=Young%2C+Adam+S.&rft.au=Raman%2C+Steven+S.&rft.au=Lu%2C+David+S.&rft.date=2020-10-01&rft.pub=Springer+International+Publishing&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=15&rft.issue=10&rft.spage=1673&rft.epage=1684&rft_id=info:doi/10.1007%2Fs11548-020-02226-8&rft.externalDocID=10_1007_s11548_020_02226_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |