Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions

Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking al...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 15; no. 10; pp. 1673 - 1684
Main Authors Li, Xinzhou, Young, Adam S., Raman, Steven S., Lu, David S., Lee, Yu-Hsiu, Tsao, Tsu-Chin, Wu, Holden H.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Methods Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. Results In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (d xy ) of 0.71 mm and median difference in axis orientation angle (d θ ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median d xy  = 0.90 mm, median d θ  = 1.53°; (b) median d xy  = 1.31 mm, median d θ  = 1.9°; (c) median d xy  = 1.09 mm, median d θ  = 0.91°. Conclusions The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
AbstractList Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).PURPOSEAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.METHODSMask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.RESULTSIn prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.CONCLUSIONSThe proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Methods Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. Results In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (d xy ) of 0.71 mm and median difference in axis orientation angle (d θ ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median d xy  = 0.90 mm, median d θ  = 1.53°; (b) median d xy  = 1.31 mm, median d θ  = 1.9°; (c) median d xy  = 1.09 mm, median d θ  = 0.91°. Conclusions The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
PurposeAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN).MethodsMask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references.ResultsIn prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°.ConclusionsThe proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°. The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
Author Lee, Yu-Hsiu
Wu, Holden H.
Li, Xinzhou
Young, Adam S.
Lu, David S.
Tsao, Tsu-Chin
Raman, Steven S.
Author_xml – sequence: 1
  givenname: Xinzhou
  surname: Li
  fullname: Li, Xinzhou
  organization: Department of Radiological Sciences, University of California Los Angeles, Department of Bioengineering, University of California Los Angeles
– sequence: 2
  givenname: Adam S.
  surname: Young
  fullname: Young, Adam S.
  organization: Department of Radiological Sciences, University of California Los Angeles
– sequence: 3
  givenname: Steven S.
  surname: Raman
  fullname: Raman, Steven S.
  organization: Department of Radiological Sciences, University of California Los Angeles
– sequence: 4
  givenname: David S.
  surname: Lu
  fullname: Lu, David S.
  organization: Department of Radiological Sciences, University of California Los Angeles
– sequence: 5
  givenname: Yu-Hsiu
  surname: Lee
  fullname: Lee, Yu-Hsiu
  organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles
– sequence: 6
  givenname: Tsu-Chin
  surname: Tsao
  fullname: Tsao, Tsu-Chin
  organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles
– sequence: 7
  givenname: Holden H.
  orcidid: 0000-0002-2585-5916
  surname: Wu
  fullname: Wu, Holden H.
  email: HoldenWu@mednet.ucla.edu
  organization: Department of Radiological Sciences, University of California Los Angeles, Department of Bioengineering, University of California Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32676870$$D View this record in MEDLINE/PubMed
BookMark eNp9kctO5DAQRS0E4jk_MItRJDazyUzZTmJniVoMIPGQEKwtxym3DGmnsR0k_h43gUFiwaJcXpxbulX3gGz70SMhPyn8oQDib6S0rmQJDHIx1pRyi-xT2dCyqVi7_f9PYY8cxPgAUNWC17tkj7NGNFLAPrk7mdK40smZwiP2AxYpaPPo_LKY4ua90vGxuC0X19eFHUNxdXtRLifXY1-sMZgpaY_jFAvnE4Zn9MmNPh6RHauHiD_e-yG5_3d6tzgvL2_OLhYnl6Xhok4lN8Ja3jYgehSUC7SybjQD1msNoqvqXgJvdcu17rASBqHtOmEr23Bjuez5Ifk9z12H8WnCmNTKRYPDMJtSrGI1ALQAGT3-gj6MU_DZXaZqYJxSyjP1652auhX2ah3cSocX9XGvDMgZMGGMMaBVxiW9WTqfzQ2KgtpEo-ZoVI5GvUWjZJayL9KP6d-K-CyKGfZLDJ-2v1G9AgGpn20
CitedBy_id crossref_primary_10_1109_TMC_2024_3435040
crossref_primary_10_1097_MD_0000000000028112
crossref_primary_10_1002_mp_17376
crossref_primary_10_1007_s41315_024_00340_3
crossref_primary_10_1002_jmri_27411
crossref_primary_10_3390_app15031443
crossref_primary_10_1016_j_jvir_2023_09_020
crossref_primary_10_1007_s11548_024_03077_3
crossref_primary_10_1109_JSEN_2024_3386120
crossref_primary_10_1016_j_ejro_2022_100430
crossref_primary_10_1155_2021_8997105
crossref_primary_10_1109_TIM_2024_3441017
crossref_primary_10_1155_2022_5936156
crossref_primary_10_3390_app132413039
crossref_primary_10_1109_ACCESS_2021_3128163
crossref_primary_10_1142_S2424905X23500046
Cites_doi 10.1055/s-0030-1261789
10.1016/j.mric.2015.05.006
10.1002/rcs.2041
10.1088/1361-6560/aae214
10.1007/s11548-017-1698-y
10.6028/nist.ir.89-4197
10.1002/mrm.26556
10.1177/0278364915579069
10.1148/radiol.2016152827
10.1109/TMI.2009.2027118
10.1016/j.mri.2013.12.021
10.1002/jmri.25749
10.1016/j.eururo.2012.06.004
10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l
10.1002/mrm.24389
10.1109/TMI.2018.2876796
10.1053/j.tvir.2007.09.005
10.1016/j.ejmp.2019.07.019
10.1148/radiol.2017161684
10.1109/TBME.2010.2046416
10.1007/978-3-319-10602-1_48
10.1002/mrm.1910360423
10.1007/s10514-017-9640-2
10.1109/TBME.2019.2944803
10.1007/978-3-319-66185-8_69
10.1109/isbi.2019.8759574
10.1109/TPAMI.2016.2577031
10.1109/EMBC.2015.7319484
10.1109/ICRA.2011.5980309
10.1117/12.840837
10.1007/978-3-642-28572-1_54
10.1007/978-3-540-75759-7_7
10.1109/ICCV.2017.322
10.1109/ICRA.2013.6630649
ContentType Journal Article
Copyright CARS 2020
CARS 2020.
Copyright_xml – notice: CARS 2020
– notice: CARS 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-020-02226-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 1684
ExternalDocumentID 32676870
10_1007_s11548_020_02226_8
Genre Journal Article
GrantInformation_xml – fundername: David Geffen School of Medicine, University of California, Los Angeles
  funderid: http://dx.doi.org/10.13039/100011075
– fundername: Siemens Healthineers
  funderid: http://dx.doi.org/10.13039/501100011699
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c375t-3c7ff39607de7137ef856a202daa07b45d8039a93aabe47ce09bb7f4f63cf38d3
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Thu Jul 10 19:24:45 EDT 2025
Fri Jul 25 09:57:26 EDT 2025
Wed Feb 19 02:29:26 EST 2025
Thu Apr 24 22:58:32 EDT 2025
Tue Jul 01 00:15:09 EDT 2025
Fri Feb 21 02:42:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Deep learning
Needle feature
Interventional MRI
Device tracking
Convolutional neural network
Real-time MRI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3c7ff39607de7137ef856a202daa07b45d8039a93aabe47ce09bb7f4f63cf38d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2585-5916
PMID 32676870
PQID 2450231113
PQPubID 2043910
PageCount 12
ParticipantIDs proquest_miscellaneous_2425000900
proquest_journals_2450231113
pubmed_primary_32676870
crossref_citationtrail_10_1007_s11548_020_02226_8
crossref_primary_10_1007_s11548_020_02226_8
springer_journals_10_1007_s11548_020_02226_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Campbell-Washburn, Faranesh, Lederman, Hansen (CR3) 2015; 23
Sørensen, Atkinson, Schaeffter, Hansen (CR32) 2009; 28
DiMaio, Kacher, Ellis, Fichtinger, Hata, Zientara, Panych, Kikinis, Jolesz (CR5) 2006; 119
Ho, Kim, Cheng, Gullapalli, Desai (CR17) 2015; 34
Gupta, Madoff (CR1) 2007; 10
CR18
Campbell-Washburn, Tavallaei, Pop, Grant, Chubb, Rhode, Wright (CR4) 2017; 46
Mwikirize, Nosher, Hacihaliloglu (CR20) 2018; 13
Moreira, Patel, Wartenberg, Li, Tuncali, Heffter, Burdette, Iordachita, Fischer, Hata, Tempany, Tokuda (CR19) 2018; 63
CR36
CR13
CR34
Stamey, Freiha, McNeal, Redwine, Whittemore, Schmid (CR38) 1993; 71
Verma, Choyke, Eberhardt, Oto, Tempany, Turkbey, Rosenkrantz (CR11) 2017; 285
Mehrtash, Ghafoorian, Pernelle, Ziaei, Heslinga, Tuncali, Fedorov, Kikinis, Tempany, Wells, Abolmaesumi, Kapur (CR15) 2019; 38
Ladd, Erhart, Debatin, Romanowski, Boesiger, McKinnon (CR12) 1996; 36
McWilliams, Lee, Yamamoto, Loh, Kee (CR2) 2010; 27
Mikaiel, Simonelli, Li, Lee, Lee, Sung, Lu, Tsao, Wu (CR14) 2020; 16
Tan, Lin, Khoshnoodi, Asvadi, Yoshida, Margolis, Lu, Wu, Sung, Lu, Huang, Raman (CR10) 2016; 283
Hansen, Sørensen (CR31) 2013; 69
CR6
Boggs, Rogers (CR35) 1990; 112
Zijlstra, Viergever, Seevinck (CR16) 2019; 64
CR7
Moore, Robertson, Arsanious, Middleton, Villers, Klotz, Taneja, Emberton (CR9) 2013; 63
CR29
CR28
CR27
CR26
CR25
CR24
Zijlstra, Bouwman, Braškutė, Viergever, Seevinck (CR8) 2016; 78
CR23
Renfrew, Griswold, Çavusoglu (CR39) 2018; 42
CR40
Uherčík, Kybic, Liebgott, Cachard (CR21) 2010; 57
Kim, Kim, Park, Park, Lee, Choi (CR37) 2014; 32
Goodfellow, Bengio, Courville (CR22) 2016
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick, Fleet, Pajdla, Schiele, Tuytelaars (CR33) 2014
Li, Lee, Mikaiel, Simonelli, Tsao, Wu (CR30) 2020; 67
2226_CR28
2226_CR29
YK Kim (2226_CR37) 2014; 32
TA Stamey (2226_CR38) 1993; 71
2226_CR7
PT Boggs (2226_CR35) 1990; 112
2226_CR6
ME Ladd (2226_CR12) 1996; 36
SP DiMaio (2226_CR5) 2006; 119
CM Moore (2226_CR9) 2013; 63
M Renfrew (2226_CR39) 2018; 42
T-Y Lin (2226_CR33) 2014
S Verma (2226_CR11) 2017; 285
X Li (2226_CR30) 2020; 67
S Gupta (2226_CR1) 2007; 10
F Zijlstra (2226_CR16) 2019; 64
2226_CR40
M Ho (2226_CR17) 2015; 34
I Goodfellow (2226_CR22) 2016
TS Sørensen (2226_CR32) 2009; 28
2226_CR23
2226_CR24
A Mehrtash (2226_CR15) 2019; 38
2226_CR25
2226_CR26
2226_CR27
C Mwikirize (2226_CR20) 2018; 13
2226_CR18
P Moreira (2226_CR19) 2018; 63
F Zijlstra (2226_CR8) 2016; 78
N Tan (2226_CR10) 2016; 283
MS Hansen (2226_CR31) 2013; 69
M Uherčík (2226_CR21) 2010; 57
S Mikaiel (2226_CR14) 2020; 16
AE Campbell-Washburn (2226_CR4) 2017; 46
JP McWilliams (2226_CR2) 2010; 27
2226_CR34
AE Campbell-Washburn (2226_CR3) 2015; 23
2226_CR13
2226_CR36
References_xml – volume: 27
  start-page: 302
  year: 2010
  end-page: 313
  ident: CR2
  article-title: Image-guided tumor ablation: emerging technologies and future directions
  publication-title: Semin Interv Radiol
  doi: 10.1055/s-0030-1261789
– ident: CR18
– volume: 23
  start-page: 669
  year: 2015
  end-page: 679
  ident: CR3
  article-title: Magnetic resonance sequences and rapid acquisition for MR-guided interventions
  publication-title: Magn Reson Imaging Clin
  doi: 10.1016/j.mric.2015.05.006
– volume: 16
  start-page: e2041
  issue: 2
  year: 2020
  ident: CR14
  article-title: MRI-guided targeted needle placement during motion using hydrostatic actuators
  publication-title: Int J Med Robot Comput Assist Surg
  doi: 10.1002/rcs.2041
– volume: 63
  start-page: 20NT02
  year: 2018
  ident: CR19
  article-title: Evaluation of robot-assisted MRI-guided prostate biopsy: needle path analysis during clinical trials
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aae214
– volume: 13
  start-page: 363
  year: 2018
  end-page: 374
  ident: CR20
  article-title: Signal attenuation maps for needle enhancement and localization in 2D ultrasound
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1698-y
– volume: 112
  start-page: 183
  year: 1990
  end-page: 194
  ident: CR35
  article-title: Orthogonal distance regression
  publication-title: Contemp Math
  doi: 10.6028/nist.ir.89-4197
– ident: CR6
– ident: CR29
– ident: CR40
– volume: 78
  start-page: 2035
  year: 2016
  end-page: 2041
  ident: CR8
  article-title: Fast Fourier-based simulation of off-resonance artifacts in steady-state gradient echo MRI applied to metal object localization
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26556
– volume: 34
  start-page: 1147
  year: 2015
  end-page: 1163
  ident: CR17
  article-title: Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot
  publication-title: Int J Rob Res
  doi: 10.1177/0278364915579069
– ident: CR25
– volume: 283
  start-page: 130
  year: 2016
  end-page: 139
  ident: CR10
  article-title: In-bore 3-T MR-guided transrectal targeted prostate biopsy: prostate imaging reporting and data system version 2–based diagnostic performance for detection of prostate cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2016152827
– ident: CR27
– volume: 119
  start-page: 120
  year: 2006
  end-page: 125
  ident: CR5
  article-title: Needle artifact localization in 3T MR images
  publication-title: Stud Health Technol Inform
– ident: CR23
– volume: 28
  start-page: 1974
  year: 2009
  end-page: 1985
  ident: CR32
  article-title: Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2027118
– volume: 32
  start-page: 610
  year: 2014
  end-page: 618
  ident: CR37
  article-title: Noncontrast MRI with diffusion-weighted imaging as the sole imaging modality for detecting liver malignancy in patients with high risk for hepatocellular carcinoma
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2013.12.021
– volume: 46
  start-page: 935
  year: 2017
  end-page: 950
  ident: CR4
  article-title: Real-time MRI guidance of cardiac interventions
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25749
– volume: 63
  start-page: 125
  year: 2013
  end-page: 140
  ident: CR9
  article-title: Image-guided prostate biopsy using magnetic resonance imaging–derived targets: a systematic review
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2012.06.004
– volume: 71
  start-page: 933
  year: 1993
  end-page: 938
  ident: CR38
  article-title: Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer
  publication-title: Cancer
  doi: 10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l
– volume: 69
  start-page: 1768
  year: 2013
  end-page: 1776
  ident: CR31
  article-title: Gadgetron: an open source framework for medical image reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24389
– volume: 38
  start-page: 1026
  year: 2019
  end-page: 1036
  ident: CR15
  article-title: Automatic needle segmentation and localization in MRI with 3D convolutional neural networks: application to MRI-targeted prostate biopsy
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2876796
– volume: 10
  start-page: 88
  year: 2007
  end-page: 101
  ident: CR1
  article-title: Image-guided percutaneous needle biopsy in cancer diagnosis and staging
  publication-title: Tech Vasc Interv Radiol
  doi: 10.1053/j.tvir.2007.09.005
– volume: 64
  start-page: 252
  year: 2019
  end-page: 260
  ident: CR16
  article-title: SMART tracking: simultaneous anatomical imaging and real-time passive device tracking for MR-guided interventions
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.07.019
– volume: 285
  start-page: 343
  year: 2017
  end-page: 356
  ident: CR11
  article-title: The current state of MR imaging–targeted biopsy techniques for detection of prostate cancer
  publication-title: Radiology
  doi: 10.1148/radiol.2017161684
– year: 2016
  ident: CR22
  publication-title: Deep learning
– ident: CR13
– volume: 57
  start-page: 1907
  year: 2010
  end-page: 1916
  ident: CR21
  article-title: Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2046416
– start-page: 740
  year: 2014
  end-page: 755
  ident: CR33
  article-title: Microsoft COCO: common objects in context
  publication-title: European conference on computer vision (ECCV)
  doi: 10.1007/978-3-319-10602-1_48
– ident: CR34
– ident: CR36
– ident: CR7
– volume: 36
  start-page: 646
  year: 1996
  end-page: 651
  ident: CR12
  article-title: Biopsy needle susceptibility artifacts
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910360423
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 42
  start-page: 83
  year: 2018
  end-page: 97
  ident: CR39
  article-title: Active localization and tracking of needle and target in robotic image-guided intervention systems
  publication-title: Auton Robots
  doi: 10.1007/s10514-017-9640-2
– volume: 67
  start-page: 1727
  issue: 6
  year: 2020
  end-page: 1738
  ident: CR30
  article-title: Respiratory motion prediction using fusion-based multi-rate Kalman filtering and real-time golden-angle radial MRI
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2944803
– volume: 78
  start-page: 2035
  year: 2016
  ident: 2226_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26556
– volume: 63
  start-page: 125
  year: 2013
  ident: 2226_CR9
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2012.06.004
– volume: 34
  start-page: 1147
  year: 2015
  ident: 2226_CR17
  publication-title: Int J Rob Res
  doi: 10.1177/0278364915579069
– volume: 112
  start-page: 183
  year: 1990
  ident: 2226_CR35
  publication-title: Contemp Math
  doi: 10.6028/nist.ir.89-4197
– ident: 2226_CR23
  doi: 10.1007/978-3-319-66185-8_69
– ident: 2226_CR29
– volume: 119
  start-page: 120
  year: 2006
  ident: 2226_CR5
  publication-title: Stud Health Technol Inform
– volume: 36
  start-page: 646
  year: 1996
  ident: 2226_CR12
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910360423
– volume: 46
  start-page: 935
  year: 2017
  ident: 2226_CR4
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25749
– volume: 285
  start-page: 343
  year: 2017
  ident: 2226_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2017161684
– volume: 23
  start-page: 669
  year: 2015
  ident: 2226_CR3
  publication-title: Magn Reson Imaging Clin
  doi: 10.1016/j.mric.2015.05.006
– ident: 2226_CR27
  doi: 10.1109/isbi.2019.8759574
– volume: 28
  start-page: 1974
  year: 2009
  ident: 2226_CR32
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2027118
– start-page: 740
  volume-title: European conference on computer vision (ECCV)
  year: 2014
  ident: 2226_CR33
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2226_CR26
  doi: 10.1109/TPAMI.2016.2577031
– ident: 2226_CR36
  doi: 10.1109/EMBC.2015.7319484
– volume: 67
  start-page: 1727
  issue: 6
  year: 2020
  ident: 2226_CR30
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2944803
– volume: 32
  start-page: 610
  year: 2014
  ident: 2226_CR37
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2013.12.021
– ident: 2226_CR40
  doi: 10.1109/ICRA.2011.5980309
– volume: 42
  start-page: 83
  year: 2018
  ident: 2226_CR39
  publication-title: Auton Robots
  doi: 10.1007/s10514-017-9640-2
– volume: 71
  start-page: 933
  year: 1993
  ident: 2226_CR38
  publication-title: Cancer
  doi: 10.1002/1097-0142(19930201)71:3+<933::aid-cncr2820711408>3.0.co;2-l
– volume: 38
  start-page: 1026
  year: 2019
  ident: 2226_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2876796
– ident: 2226_CR34
– volume: 283
  start-page: 130
  year: 2016
  ident: 2226_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2016152827
– volume: 64
  start-page: 252
  year: 2019
  ident: 2226_CR16
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.07.019
– volume: 69
  start-page: 1768
  year: 2013
  ident: 2226_CR31
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24389
– ident: 2226_CR7
  doi: 10.1117/12.840837
– ident: 2226_CR13
  doi: 10.1007/978-3-642-28572-1_54
– ident: 2226_CR28
– ident: 2226_CR24
– ident: 2226_CR6
  doi: 10.1007/978-3-540-75759-7_7
– volume: 16
  start-page: e2041
  issue: 2
  year: 2020
  ident: 2226_CR14
  publication-title: Int J Med Robot Comput Assist Surg
  doi: 10.1002/rcs.2041
– ident: 2226_CR25
  doi: 10.1109/ICCV.2017.322
– volume: 27
  start-page: 302
  year: 2010
  ident: 2226_CR2
  publication-title: Semin Interv Radiol
  doi: 10.1055/s-0030-1261789
– volume: 63
  start-page: 20NT02
  year: 2018
  ident: 2226_CR19
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aae214
– volume-title: Deep learning
  year: 2016
  ident: 2226_CR22
– ident: 2226_CR18
  doi: 10.1109/ICRA.2013.6630649
– volume: 10
  start-page: 88
  year: 2007
  ident: 2226_CR1
  publication-title: Tech Vasc Interv Radiol
  doi: 10.1053/j.tvir.2007.09.005
– volume: 13
  start-page: 363
  year: 2018
  ident: 2226_CR20
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1698-y
– volume: 57
  start-page: 1907
  year: 2010
  ident: 2226_CR21
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2046416
SSID ssj0045735
Score 2.3196278
Snippet Purpose Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is...
Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by...
PurposeAccurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1673
SubjectTerms Algorithms
Artificial neural networks
Biopsy
Computer Imaging
Computer Science
Datasets
Euclidean geometry
Feature extraction
Health Informatics
Humans
Image segmentation
Image-Guided Biopsy - methods
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medicine
Medicine & Public Health
Needles
Neural Networks, Computer
Original Article
Pattern Recognition and Graphics
Percutaneous treatment
Prostate
Prostate - pathology
Radiology
Real time
Surgery
Tracking
Vision
Title Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions
URI https://link.springer.com/article/10.1007/s11548-020-02226-8
https://www.ncbi.nlm.nih.gov/pubmed/32676870
https://www.proquest.com/docview/2450231113
https://www.proquest.com/docview/2425000900
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QHzxPtaLCL5poGmSJn1cxJvdB3FBn0quiii7sm3_v0m33VU8wOekaZmZZL6vM5kBOIkUk6FsCNax5ph5H4hTrQQ2Mid5ap2idbig10-uB-z2kT82l8KKNtu9DUnWJ_XssltA1zjQnUBSEiznYZEH7u6teBB32_OXcVG31SQyIThhJGquyvy8xld39A1jfouP1m7ncg1WGryIuhMFr8OcG27AatuLATVbcwOWek2QfBMeulU5qiuxoqH3TW8OlWNlwi9xFLLcn1FPFa_oHp_3-8hDVtS7v8HP1Yt1Fr27sak8XHSjqkAvn9Ihiy0YXF48nF_jpnkCNlTwElMj8px6fiKs80RUuFzyRHlxWaUioRm3MqKpSqlS2jFhXJRqLXKWJ9TkVFq6DQvD0dDtAnKpoyaWRFmesETblEpDUiU992HeAnQHSCvDzDSVxUODi7dsVhM5yD3zcs9quWeyA6fTZ94ndTX-nH3QqiZr9liRxYyH4nWE0A4cT4f97gghj4mkskCoAoyMog7sTFQ6fZ0Hrp5rCT9y1up4tvjv37L3v-n7sBwHe6vz_w5goRxX7tDjmFIfwWL36unu4qg23w9Twufd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tIAEXljdd2MVI3MBSHDuxc6zQorJLekCtxM3yKwiBWtQk_x87TVpWPKQ923GimbHn-zLjGYDzSDERyoZgHesEM-8DcaYVx0YUpMisU7QJF-TDdDBmf-6T-_ZSWNllu3chyeakXl52C-gaB7oTSEqKxQqseTAgQiLXOO535y9LeNNWk4iU4JSRqL0q8_Ea_7qjdxjzXXy0cTvX27DV4kXUnyt4B765yS5873oxoHZr7sJ63gbJ92DUr6tpU4kVTbxvenaomikTfomjkOX-gHJVPqE7fDUcIg9ZUX53gx_qR-ssenEzU3u46KZ1iR7fpEOW-zC-_j26GuC2eQI2lCcVpoYXBfX8hFvniSh3hUhSFUexVSrimiVWRDRTGVVKO8aNizKtecGKlJqCCksPYHUynbgjQC5z1MSCKJukLNU2o8KQTAnPfZi3AN0D0slQmrayeGhw8SyXNZGD3KWXu2zkLkUPLhbPvMzranw5-6RTjWz3WCljloTidYTQHpwthv3uCCGPuaRkIFQBRkZRDw7nKl28zgNXz7W4H7nsdLxc_PNv-fF_009hYzDKb-XtzfDvMWzGwfaaXMATWK1mtfvpMU2lfzUm_Aog-ek8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4aICFeNmAbdGObJ_E2LOLYiZ3HClbBtlYIUYk3y1eEQGnVJv9_di4tE2zSnu040bn4fCfnBnCcKCZi2xCsU51hFmwgLrTi2AhPfGGdok24YDzJL6bsx212-6SKv8l270OSbU1D7NJUVqdz60_XhW8RaePo-kSHJcdiA7bCdUyiXE_TYX8Xs4w3IzaJyAnOGUm6spmXz_jTND3Dm89ipY0JGu3C6w47omHL7D145cp9eNPPZUCdmu7D9rgLmL-Fm2FdzZqurKgMdurRoWqhTPw9jmLG-x0aq-UDusZnkwkK8BWNry_xXX1vnUVztzB1gI5uVi_R_ZPUyOU7mI6-35xd4G6QAjaUZxWmhntPg6_CrQtOKXdeZLlKk9QqlXDNMisSWqiCKqUd48YlhdbcM59T46mw9D1slrPSHQJyhaMmFUTZLGe5tgUVhhRKBD-IBWnQAyA9DaXpuozHYRePct0fOdJdBrrLhu5SDODb6pl522Pjn7uPetbITt-WMmVZbGRHCB3A19Vy0JQY_mgpJaNzFSFlkgzgoGXp6nUBxAa_i4eVk57H68P__i0f_m_7F9i-Oh_JX5eTnx9hJ42i16QFHsFmtajdpwBvKv25keDfwl3teA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+needle+tracking+using+Mask+R-CNN+for+MRI-guided+percutaneous+interventions&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Li%2C+Xinzhou&rft.au=Young%2C+Adam+S.&rft.au=Raman%2C+Steven+S.&rft.au=Lu%2C+David+S.&rft.date=2020-10-01&rft.pub=Springer+International+Publishing&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=15&rft.issue=10&rft.spage=1673&rft.epage=1684&rft_id=info:doi/10.1007%2Fs11548-020-02226-8&rft.externalDocID=10_1007_s11548_020_02226_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon