Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD)

Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 59; no. 1; pp. 71 - 84
Main Authors Etli, Mustafa, Canbolat, Gokhan, Karahan, Oguz, Koru, Murat
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract
AbstractList Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract.
Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention.
Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract.Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract.
Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract
Author Karahan, Oguz
Koru, Murat
Etli, Mustafa
Canbolat, Gokhan
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Etli
  fullname: Etli, Mustafa
  organization: Department of Cardiovascular Surgery, Alanya Alaaddin Keykubat University
– sequence: 2
  givenname: Gokhan
  orcidid: 0000-0001-6491-095X
  surname: Canbolat
  fullname: Canbolat, Gokhan
  email: gokhan.canbolat@alanya.edu.tr
  organization: Department of Mechanical Engineering, Alanya Alaaddin Keykubat University
– sequence: 3
  givenname: Oguz
  surname: Karahan
  fullname: Karahan, Oguz
  organization: Department of Cardiovascular Surgery, Alanya Alaaddin Keykubat University
– sequence: 4
  givenname: Murat
  surname: Koru
  fullname: Koru, Murat
  organization: Department of Mechanical Engineering Applied Science University of Isparta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33225424$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFP8ABReLSHtL6M_Ee0dJCpYpe4Bz5K61XSRz8UbS_gr_M7KaA1EMtWR5pnnfGM-8JOprC5BB6T_AFwbi9TIQI0taYYrhUtnXzCq1Iy0mNOedHaIUJhxQh8hidpLTFmBJB-Rt0zBilglO-Qr-_ldFFb9RQ-enRpezvVfZhqkJfzRC5Kddpdsb33lT5IURlIFAh5v0zuRJ3aUwQ2cqEcVbRJxD_8vmhmkIcoWwqeutMrh69OiAlHxpAph-Kt5XdTWr0JlVnm-vP52_R614Nyb17ek_Rj-ur75uv9e3dl5vNp9vasFbkmplWroVyjdBa9z0WZq2ZVgq32DWNtJZoK3qHlZZMciu44pCxWEpqtKWEnaKzpe4cw88Cc3ejT8YNA8wUSuoob5hYrzETgH58hm5DiTDAnmola-FIoD48UUWPznZz9KOKu-7vqgGgC2BiSCm6_h9CcLf3s1v87MDP7uBn14BIPhMZv-wvR-WHl6VskSboM927-P_bL6j-APS4tuA
CitedBy_id crossref_primary_10_1186_s43044_022_00238_0
crossref_primary_10_1590_0001_3765202320210859
crossref_primary_10_1007_s11517_022_02572_6
crossref_primary_10_1007_s13369_024_08810_3
crossref_primary_10_1142_S021951942350094X
crossref_primary_10_3390_fluids8100272
crossref_primary_10_1016_j_enganabound_2024_03_003
crossref_primary_10_21605_cukurovaumfd_1410647
crossref_primary_10_1063_5_0248485
crossref_primary_10_1016_j_ijpharm_2024_124469
crossref_primary_10_3390_bioengineering11111169
crossref_primary_10_3389_fbioe_2025_1556091
crossref_primary_10_4103_2045_9912_345175
crossref_primary_10_1007_s11517_022_02665_2
crossref_primary_10_3390_bioengineering11030204
crossref_primary_10_46740_alku_1368103
crossref_primary_10_3390_bioengineering11090914
crossref_primary_10_3390_bioengineering10020164
Cites_doi 10.1007/s10439-011-0447-6
10.1115/1.4004996
10.1007/s11517-014-1189-z
10.1114/1.1349703
10.1186/1475-925X-12-65
10.1114/1.140
10.1007/s11517-016-1592-8
10.1017/S002211200600036X
10.1093/ejcts/ezv459
10.1093/ejcts/ezs388
10.1115/1.1487357
10.1016/j.wneu.2016.01.031
10.1007/s11517-015-1253-3
10.1016/j.jmr.2013.07.002
10.1007/s11517-008-0361-8
10.1115/1.4037857
10.1007/s10439-011-0431-1
10.1080/10255842.2014.887698
10.1201/b11709
10.1001/jama.282.21.2035
10.1007/s10439-009-9835-6
10.1146/annurev.fluid.32.1.347
10.1115/1.1992521
10.1073/pnas.83.7.2114
10.1007/s10409-009-0227-9
10.1007/978-3-319-91659-0_3
10.1152/ajpheart.01301.2005
10.1007/s10439-013-0879-2
10.1007/s10439-010-9978-5
10.1114/1.1326031
10.1016/S0003-4975(10)66476-4
10.1007/s10439-015-1288-5
10.1016/j.medengphy.2013.11.003
10.1016/j.jbiomech.2011.11.041
10.1053/ejvs.1999.0872
10.1016/S0895-4356(98)00050-X
10.1007/s11517-016-1604-8
10.1017/CBO9780511896996
10.1161/01.str.0000144648.89172.of
10.1155/2018/7126532
10.1016/B978-0-323-03004-5.X5001-7
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2020
International Federation for Medical and Biological Engineering 2020.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2020
– notice: International Federation for Medical and Biological Engineering 2020.
DBID AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-020-02287-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 84
ExternalDocumentID 33225424
10_1007_s11517_020_02287_6
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-3c7895ae65bbbff05c9b3baa070e668dd1bd5fe0ab8384d54a470ed0882cbd213
IEDL.DBID U2A
ISSN 0140-0118
1741-0444
IngestDate Thu Jul 10 16:46:40 EDT 2025
Fri Jul 25 19:02:55 EDT 2025
Wed Feb 19 02:30:28 EST 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Fri Feb 21 02:31:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computed tomography angiography
Patient-specific simulation
Cardiovascular flow
Thoracic aortic aneurysm
Computational fluid dynamics (CFD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3c7895ae65bbbff05c9b3baa070e668dd1bd5fe0ab8384d54a470ed0882cbd213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6491-095X
PMID 33225424
PQID 2478377778
PQPubID 54161
PageCount 14
ParticipantIDs proquest_miscellaneous_2463599035
proquest_journals_2478377778
pubmed_primary_33225424
crossref_primary_10_1007_s11517_020_02287_6
crossref_citationtrail_10_1007_s11517_020_02287_6
springer_journals_10_1007_s11517_020_02287_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wen, Yang, Tseng, Chai (CR4) 2010; 38
Gallo, De Santis, Negri (CR13) 2012; 40
Nichols, O’Rourke (CR35) 2005
Taylor, Hughes, Zarins (CR24) 1998; 26
CR38
Malek, Alper, Izumo (CR40) 1999; 282
Sonesson, Sandgren, Länne (CR5) 1999; 18
CR37
Munarriz, Gómez, Paredes, Castaño-Leon, Cepeda, Lagares (CR39) 2016; 88
Morris, Delassus, Callanan, Walsh, Wallis, Grace, McGloughlin (CR11) 2005; 127
Fan, Jiang, Zou, Li, Chen, Deng (CR14) 2009; 25
Tang, Cheng, Draney, Wilson, Tsao, Herfkens, Taylor (CR17) 2006; 291
Vinoth, Kumar, Adhikari (CR3) 2019; 506
Brown, Shi, Marzo, Staicu, Valverde, Beerbaum, Lawford, Hose (CR29) 2012; 45
Tse, Chang, Lee, Lim, Venkatesh, Ho (CR32) 2013; 43
Chandran, Yoganathan, Rittgers (CR36) 2012
Shahcheranhi, Dwyer, Cheer (CR30) 2002; 124
Myers, Moore, Ojha, Johnston, Ethier (CR33) 2001; 29
Olufsen, Peskin, Kim, Pedersen, Nadim, Larsen (CR15) 2000; 28
Qian, Liu, Itatani, Miyaji, Umezu (CR12) 2010; 38
Goubergrits, Mevert, Yevtushenko, Schaller, Kertzscher, Meier, Schubert, Riesenkampff, Kuehne (CR21) 2013; 41
Ladisa, Alberto Figueroa, Vignon-Clementel (CR22) 2011; 133
Metaxa, Iordanov, Maravelakis, Papaharilaou (CR7) 2017; 55
Cheng (CR8) 2019
Edelhoff, Walczak, Henning, Weichert, Suter (CR20) 2013; 235
Alimohammadi, Agu, Balabani, Díaz-Zuccarini (CR28) 2014; 36
Castro, Olivares, Putman, Cebral (CR18) 2014; 52
Lam, Fung, Cheng, Chow (CR34) 2008; 46
Davies, Remuzzi, Gordon, Dewey, Gimbrone (CR43) 1986; 83
Dabagh, Vasava, Jalali (CR9) 2015; 53
Kamangar, Badruddin, Govindaraju, Nik-Ghazali, Badarudin, Viswanathan, Ahmed, Khan (CR16) 2017; 55
Pedley (CR27) 1980
Numata, Itatani, Kanda, Doi, Yamazaki, Morimoto, Manabe, Ikemoto, Yaku (CR23) 2016; 49
Arzani, Dyverfeldt, Ebbers, Shadden (CR19) 2012; 40
CR25
Berger, Jou (CR26) 2000; 32
Palmer, Wheat (CR42) 1967; 4
Salsac, SPARKS, J-M, LASHERAS (CR10) 2006; 560
Valen-Sendstad, Piccinelli, KrishnankuttyRema, Steinman (CR1) 2015; 43
CR41
Chen, Müller-Eschner, von Tengg-Kobligk, Barber, Böckler, Hose, Ventikos (CR44) 2013; 12
Rizzo, Coady, Elefteriades (CR6) 1998; 51
Youssefi, Gomez, Arthurs, Sharma, Jahangiri, Alberto Figueroa (CR31) 2018; 140
Caballero, Laín (CR2) 2015; 18
A-V Salsac (2287_CR10) 2006; 560
P Youssefi (2287_CR31) 2018; 140
KB Chandran (2287_CR36) 2012
BT Tang (2287_CR17) 2006; 291
MS Olufsen (2287_CR15) 2000; 28
AG Brown (2287_CR29) 2012; 45
L Goubergrits (2287_CR21) 2013; 41
KM Tse (2287_CR32) 2013; 43
2287_CR41
SK Lam (2287_CR34) 2008; 46
K Valen-Sendstad (2287_CR1) 2015; 43
M Dabagh (2287_CR9) 2015; 53
L Morris (2287_CR11) 2005; 127
M Alimohammadi (2287_CR28) 2014; 36
A Arzani (2287_CR19) 2012; 40
MA Castro (2287_CR18) 2014; 52
S Numata (2287_CR23) 2016; 49
CA Taylor (2287_CR24) 1998; 26
RF Palmer (2287_CR42) 1967; 4
PF Davies (2287_CR43) 1986; 83
JA Rizzo (2287_CR6) 1998; 51
2287_CR25
SA Berger (2287_CR26) 2000; 32
D Chen (2287_CR44) 2013; 12
N Shahcheranhi (2287_CR30) 2002; 124
AD Caballero (2287_CR2) 2015; 18
B Sonesson (2287_CR5) 1999; 18
R Vinoth (2287_CR3) 2019; 506
E Metaxa (2287_CR7) 2017; 55
AM Malek (2287_CR40) 1999; 282
D Gallo (2287_CR13) 2012; 40
CY Wen (2287_CR4) 2010; 38
Y Fan (2287_CR14) 2009; 25
Y Qian (2287_CR12) 2010; 38
S Kamangar (2287_CR16) 2017; 55
D Edelhoff (2287_CR20) 2013; 235
2287_CR37
PM Munarriz (2287_CR39) 2016; 88
JG Myers (2287_CR33) 2001; 29
JF Ladisa (2287_CR22) 2011; 133
WW Nichols (2287_CR35) 2005
2287_CR38
CP Cheng (2287_CR8) 2019
TJ Pedley (2287_CR27) 1980
References_xml – volume: 40
  start-page: 860
  year: 2012
  end-page: 870
  ident: CR19
  article-title: In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0447-6
– volume: 133
  start-page: 091008
  year: 2011
  ident: CR22
  article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients
  publication-title: J Biomech Eng
  doi: 10.1115/1.4004996
– volume: 52
  start-page: 827
  year: 2014
  end-page: 839
  ident: CR18
  article-title: Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1189-z
– volume: 29
  start-page: 109
  year: 2001
  end-page: 120
  ident: CR33
  article-title: Factors influencing blood flow patterns in the human right coronary artery
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1349703
– volume: 12
  start-page: 1
  year: 2013
  end-page: 16
  ident: CR44
  article-title: A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-65
– volume: 26
  start-page: 975
  year: 1998
  end-page: 987
  ident: CR24
  article-title: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.140
– volume: 55
  start-page: 1277
  year: 2017
  end-page: 1286
  ident: CR7
  article-title: A novel approach for local abdominal aortic aneurysm growth quantification
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-016-1592-8
– volume: 560
  start-page: 19
  year: 2006
  ident: CR10
  article-title: Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200600036X
– volume: 49
  start-page: 1578
  year: 2016
  end-page: 1585
  ident: CR23
  article-title: Blood flow analysis of the aortic arch using computational fluid dynamics
  publication-title: Eur J Cardio-thoracic Surg
  doi: 10.1093/ejcts/ezv459
– volume: 43
  start-page: 829
  year: 2013
  end-page: 838
  ident: CR32
  article-title: A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics
  publication-title: Eur J Cardio-thoracic Surg
  doi: 10.1093/ejcts/ezs388
– ident: CR37
– volume: 124
  start-page: 378
  year: 2002
  end-page: 387
  ident: CR30
  article-title: Unsteady and three-dimensional simulation of blood flow in the human aortic arch
  publication-title: J Biomech Eng
  doi: 10.1115/1.1487357
– volume: 88
  start-page: 311
  year: 2016
  end-page: 319
  ident: CR39
  article-title: Basic principles of hemodynamics and cerebral aneurysms
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2016.01.031
– volume: 53
  start-page: 463
  year: 2015
  end-page: 476
  ident: CR9
  article-title: Effects of severity and location of stenosis on the hemodynamics in human aorta and its branches
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1253-3
– volume: 235
  start-page: 42
  year: 2013
  end-page: 49
  ident: CR20
  article-title: High-resolution MRI velocimetry compared with numerical simulations
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2013.07.002
– ident: CR25
– volume: 46
  start-page: 1129
  year: 2008
  end-page: 1138
  ident: CR34
  article-title: A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-008-0361-8
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR31
  article-title: Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037857
– volume: 40
  start-page: 729
  year: 2012
  end-page: 741
  ident: CR13
  article-title: On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0431-1
– year: 2005
  ident: CR35
  publication-title: McDonald’s blood flow in arteries
– volume: 18
  start-page: 1200
  year: 2015
  end-page: 1216
  ident: CR2
  article-title: Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2014.887698
– year: 2012
  ident: CR36
  publication-title: Biofluid mechanics, 2
  doi: 10.1201/b11709
– year: 2019
  ident: CR8
  publication-title: Handbook of vascular motion
– volume: 282
  start-page: 2035
  year: 1999
  end-page: 2042
  ident: CR40
  article-title: Hemodynamic shear stress and its role in atherosclerosis
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.282.21.2035
– volume: 38
  start-page: 391
  year: 2010
  end-page: 402
  ident: CR4
  article-title: Investigation of pulsatile flowfield in healthy thoracic aorta models
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9835-6
– volume: 32
  start-page: 347
  year: 2000
  end-page: 382
  ident: CR26
  article-title: Flows in stenotic vessels
  publication-title: Annu Rewiev Fluid Mech
  doi: 10.1146/annurev.fluid.32.1.347
– volume: 127
  start-page: 767
  year: 2005
  end-page: 775
  ident: CR11
  article-title: 3-D numerical simulation of blood flow through models of the human aorta
  publication-title: J Biomech Eng
  doi: 10.1115/1.1992521
– ident: CR38
– volume: 83
  start-page: 2114
  year: 1986
  end-page: 2117
  ident: CR43
  article-title: Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.83.7.2114
– volume: 25
  start-page: 249
  year: 2009
  end-page: 255
  ident: CR14
  article-title: Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation
  publication-title: Acta Mech Sin Xuebao
  doi: 10.1007/s10409-009-0227-9
– volume: 506
  start-page: 29
  year: 2019
  end-page: 43
  ident: CR3
  article-title: Steady and transient flow CFD simulations in an aorta model of normal and aortic aneurysm subjects
  publication-title: Lect Notes Electr Eng
  doi: 10.1007/978-3-319-91659-0_3
– volume: 291
  start-page: 668
  year: 2006
  end-page: 676
  ident: CR17
  article-title: Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.01301.2005
– volume: 41
  start-page: 2575
  year: 2013
  end-page: 2587
  ident: CR21
  article-title: The impact of MRI-based inflow for the hemodynamic evaluation of aortic coarctation
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-013-0879-2
– volume: 38
  start-page: 2302
  year: 2010
  end-page: 2313
  ident: CR12
  article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-010-9978-5
– volume: 28
  start-page: 1281
  year: 2000
  end-page: 1299
  ident: CR15
  article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1326031
– volume: 4
  start-page: 38
  year: 1967
  end-page: 52
  ident: CR42
  article-title: Treatment of dissecting aneurysms of the aorta
  publication-title: Ann Thorac Surg
  doi: 10.1016/S0003-4975(10)66476-4
– volume: 43
  start-page: 1422
  year: 2015
  end-page: 1431
  ident: CR1
  article-title: Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin?
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-015-1288-5
– volume: 36
  start-page: 275
  year: 2014
  end-page: 284
  ident: CR28
  article-title: Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.11.003
– ident: CR41
– volume: 45
  start-page: 516
  year: 2012
  end-page: 523
  ident: CR29
  article-title: Accuracy vs. computational time: translating aortic simulations to the clinic
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.041
– volume: 18
  start-page: 487
  year: 1999
  end-page: 493
  ident: CR5
  article-title: Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1053/ejvs.1999.0872
– volume: 51
  start-page: 747
  year: 1998
  end-page: 754
  ident: CR6
  article-title: Procedures for estimating growth rates in thoracic aortic aneurysms
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(98)00050-X
– volume: 55
  start-page: 1451
  year: 2017
  end-page: 1461
  ident: CR16
  article-title: Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-016-1604-8
– year: 1980
  ident: CR27
  publication-title: The fluid mechanics of large blood vessels
  doi: 10.1017/CBO9780511896996
– volume: 4
  start-page: 38
  year: 1967
  ident: 2287_CR42
  publication-title: Ann Thorac Surg
  doi: 10.1016/S0003-4975(10)66476-4
– volume: 55
  start-page: 1451
  year: 2017
  ident: 2287_CR16
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-016-1604-8
– volume: 52
  start-page: 827
  year: 2014
  ident: 2287_CR18
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1189-z
– volume: 124
  start-page: 378
  year: 2002
  ident: 2287_CR30
  publication-title: J Biomech Eng
  doi: 10.1115/1.1487357
– volume: 41
  start-page: 2575
  year: 2013
  ident: 2287_CR21
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-013-0879-2
– volume: 18
  start-page: 487
  year: 1999
  ident: 2287_CR5
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1053/ejvs.1999.0872
– volume: 133
  start-page: 091008
  year: 2011
  ident: 2287_CR22
  publication-title: J Biomech Eng
  doi: 10.1115/1.4004996
– volume: 40
  start-page: 729
  year: 2012
  ident: 2287_CR13
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0431-1
– volume: 25
  start-page: 249
  year: 2009
  ident: 2287_CR14
  publication-title: Acta Mech Sin Xuebao
  doi: 10.1007/s10409-009-0227-9
– ident: 2287_CR37
– volume: 127
  start-page: 767
  year: 2005
  ident: 2287_CR11
  publication-title: J Biomech Eng
  doi: 10.1115/1.1992521
– volume: 32
  start-page: 347
  year: 2000
  ident: 2287_CR26
  publication-title: Annu Rewiev Fluid Mech
  doi: 10.1146/annurev.fluid.32.1.347
– volume: 506
  start-page: 29
  year: 2019
  ident: 2287_CR3
  publication-title: Lect Notes Electr Eng
  doi: 10.1007/978-3-319-91659-0_3
– volume: 83
  start-page: 2114
  year: 1986
  ident: 2287_CR43
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.83.7.2114
– ident: 2287_CR41
  doi: 10.1161/01.str.0000144648.89172.of
– volume: 291
  start-page: 668
  year: 2006
  ident: 2287_CR17
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.01301.2005
– ident: 2287_CR38
  doi: 10.1155/2018/7126532
– volume: 43
  start-page: 829
  year: 2013
  ident: 2287_CR32
  publication-title: Eur J Cardio-thoracic Surg
  doi: 10.1093/ejcts/ezs388
– volume: 235
  start-page: 42
  year: 2013
  ident: 2287_CR20
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2013.07.002
– volume: 26
  start-page: 975
  year: 1998
  ident: 2287_CR24
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.140
– volume-title: Handbook of vascular motion
  year: 2019
  ident: 2287_CR8
– volume: 29
  start-page: 109
  year: 2001
  ident: 2287_CR33
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1349703
– volume-title: McDonald’s blood flow in arteries
  year: 2005
  ident: 2287_CR35
– volume: 88
  start-page: 311
  year: 2016
  ident: 2287_CR39
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2016.01.031
– volume: 560
  start-page: 19
  year: 2006
  ident: 2287_CR10
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200600036X
– volume: 55
  start-page: 1277
  year: 2017
  ident: 2287_CR7
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-016-1592-8
– volume: 40
  start-page: 860
  year: 2012
  ident: 2287_CR19
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0447-6
– volume: 43
  start-page: 1422
  year: 2015
  ident: 2287_CR1
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-015-1288-5
– volume: 53
  start-page: 463
  year: 2015
  ident: 2287_CR9
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1253-3
– volume: 45
  start-page: 516
  year: 2012
  ident: 2287_CR29
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.041
– volume: 12
  start-page: 1
  year: 2013
  ident: 2287_CR44
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-65
– ident: 2287_CR25
  doi: 10.1016/B978-0-323-03004-5.X5001-7
– volume: 18
  start-page: 1200
  year: 2015
  ident: 2287_CR2
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2014.887698
– volume: 36
  start-page: 275
  year: 2014
  ident: 2287_CR28
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.11.003
– volume-title: Biofluid mechanics, 2
  year: 2012
  ident: 2287_CR36
  doi: 10.1201/b11709
– volume: 38
  start-page: 2302
  year: 2010
  ident: 2287_CR12
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-010-9978-5
– volume: 49
  start-page: 1578
  year: 2016
  ident: 2287_CR23
  publication-title: Eur J Cardio-thoracic Surg
  doi: 10.1093/ejcts/ezv459
– volume: 140
  start-page: 1
  year: 2018
  ident: 2287_CR31
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037857
– volume: 38
  start-page: 391
  year: 2010
  ident: 2287_CR4
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9835-6
– volume: 28
  start-page: 1281
  year: 2000
  ident: 2287_CR15
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1326031
– volume: 282
  start-page: 2035
  year: 1999
  ident: 2287_CR40
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.282.21.2035
– volume-title: The fluid mechanics of large blood vessels
  year: 1980
  ident: 2287_CR27
  doi: 10.1017/CBO9780511896996
– volume: 51
  start-page: 747
  year: 1998
  ident: 2287_CR6
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(98)00050-X
– volume: 46
  start-page: 1129
  year: 2008
  ident: 2287_CR34
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-008-0361-8
SSID ssj0021524
Score 2.4022331
Snippet Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Aneurysms
Angiography
Aorta
Aortic aneurysms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood pressure
Boundary conditions
Cardiovascular diseases
Computational fluid dynamics
Computed tomography
Computer Applications
Flow velocity
Fluid dynamics
Fourier series
Heart
Hemodynamics
Human Physiology
Imaging
Original Article
Radiology
Simulation
Thorax
Wall shear stresses
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oBPFF_LZuSgQfFA3eNk3SPo0xvQzBPTm4byVfxQvXdtpW8K_wX945bW6LDNenQNM05CTnO78D8GblJNo6wnEXCFTbC81LZTTPfGZsqgPht1C2xbk6u8i_bOQmOty6mFa554kjo_atIx_5xyzXaEvhUxxf_uRUNYqiq7GExm24Q9BllNKlN4vBhbIpn1MYUZOOl2amq3Mo6jQn44kQYDRX_wqma9rmtUjpKIDWD-B-1BzZyUTqh3ArNI_g7tcYG38Mf8-HKfqyY9sFPKNtWFuziJ7K6V4l5Qax_juS3mHDtDQeM4Rr-af70WHLMzcXJ2Tkp2UNKbY71g2WvDbs99aMXYY-ehJZvRu2nvmpun3H3p6uP717Ahfrz99Oz3gst8Cd0LLnwumilCYoaa2t65V0pRXWGGQKQanC-9R6WYeVsYUoci9zk-MbTzq6sz5LxVM4aNomPAdWy6IMSGkha7LA0tIX1q288rJUGnlGAul-rSsXscipJMauWlCUiT4V0qca6VOpBN7P31xOSBw39j7ak7CKp7Krlj2UwOv5NZ4nCpLgQrcD9UEVDEW0kAk8m0g__04Q98uzPIEP-72wDP7_uby4eS6HcC-jRJnRr3MEB_2vIbxETae3r8btfAW7k_nr
  priority: 102
  providerName: ProQuest
Title Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD)
URI https://link.springer.com/article/10.1007/s11517-020-02287-6
https://www.ncbi.nlm.nih.gov/pubmed/33225424
https://www.proquest.com/docview/2478377778
https://www.proquest.com/docview/2463599035
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7uLogvst5H1yGCD4oWpk2TtI8zu9NdFAcRB8anklvZgbEV2y7sr_Av7zlt2kFWBfvQBJKmISfJueYLIa9nhoOuw0xgHIJqWyaDVCgZRDZSOpQO8Vsw2mIlLtbxhw3f-ENh9RDtPrgku516f9gNmJMMUN1BzBYZiANyxFF3h1m8juajmgUcKR4DF0F-9kdl_tzG7-zolox5yz_asZ3smNz38iKd9wR-QO648iG5-8l7xB-RX6u297ns6HYPmVGVtCqox0wN8DQlRgTR5hIIbiCjKmyPKkSzvK6_15Cz1IxXElK0ztISxdkdrVuNthp6tVVdlbbx9kNa7Nqtpba_076mb06zs7ePyTpbfj29CPwlC4FhkjcBMzJJuXKCa62LYsZNqplWCrYCJ0RibagtL9xM6YQlseWxiqHEomRutI1C9oQcllXpnhFa8CR1QF_GC9S7wtQm2syssDwVEnaKCQmHsc6NRyDHizB2-R47GemTA33yjj65mJB34zc_evyNf9Y-GUiY-7VY51EsQQuHBzrwaiyGVYSuERjoqsU6IHgBY2Z8Qp72pB9_x3DPi6N4Qt4Pc2Hf-N_78vz_qr8g9yIMl-msOyfksPnZupcg7zR6Sg7kRsI7yc6n5Gi-OFtkmJ5_-7iEdLFcff4y7ZbADbIv_RU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDeBAkYCCQQWmzjO44AQalm2tN1TK_UW_IpYaZu0JAHtr-Cf8BuZyWuFKnprTpbiOJZnPJ6XvwF4OTESbR1huHEEqm1FzNNIxTywgdJ-7Ai_hbIt5tHsOPx6Ik824M9wF4bSKgeZ2ApqWxrykb8PwhhtKXySj2fnnKpGUXR1KKHRscW-W_1Ck636sLeL9H0VBNPPRzsz3lcV4EbEsubCxEkqlYuk1jrPJ9KkWmilkPddFCXW-trK3E2UTkQSWhmqEN9YUkWNtoEvcNxrcD0UIqUdlUy_jAYenoXhmDKJmnt_Sae7qodHa8zJWCPEmZhH_x6EF7TbC5HZ9sCb3oZbvabKPnWsdQc2XHEXbhz2sfh78HvedNGeJVuswTrKgpU569FaOd3jpFwkVn9HVjPYUCWNxxThaK6q0wpblpmxGCIjvzArSJFesqrR5CViPxeq7dLUveeS5ctmYZldFep0YSr2eme6--Y-HF8JIR7AZlEW7hGwXCapQ84SMieLz09tos3ERlamUYwyygN_WOvM9NjnVIJjma1Rm4k-GdIna-mTRR68Hb8565A_Lu29PZAw66VAla151oMX42vcvxSUwYUuG-qDKh-qBEJ68LAj_fg7QdI2DEIP3g28sB78_3N5fPlcnsPN2dHhQXawN99_AlsBJem0PqVt2Kx_NO4palm1ftayNoNvV72X_gKybzhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCsUX8W606ggKig7dZDKZ5EFEui6t1cUHC_sW55LgwjZpm0TZX-H_8dd5Tm6LFPvWPAUymQw5lzm3-Q7Ai4mV6OsIy21GoNpOKJ5EWvHABdr4KiP8Fqq2mEcHx-GnhVxswZ_hLAyVVQ46sVXUrrQUI98LQoW-FF7xXt6XRXydzt6fnnHqIEWZ1qGdRsciR9n6F7pv1bvDKdL6ZRDMPn7bP-B9hwFuhZI1F1bFidRZJI0xeT6RNjHCaI1ykEVR7JxvnMyziTaxiEMnQx3iE0dmqTUu8AXOew2uKyF9kjG12Dh7uC-GY_kkWvH9gZ3u2B5us4qT40boM4pH_26KFyzdC1nadvOb3YKbvdXKPnRsdhu2suIO7Hzp8_J34fe86TI_K7bcAHeUBStz1iO3cjrTSXVJrP6BbGfxRpc0H9OEqbmuTiq8c8yOjREZxYhZQUb1ilWNoYgR-7nU7ZCm7qOYLF81S8fcutAnS1uxV_uz6et7cHwlhLgP20VZZA-B5TJOMuQyIXPy_vzExcZOXORkEinUVx74w79ObY-DTu04VukGwZnokyJ90pY-aeTBm_Gd0w4F5NLRuwMJ014jVOmGfz14Pj5GWaYEDf7osqExaP6heSCkBw860o-fE6R5wyD04O3AC5vJ_7-WR5ev5RnsoBSlnw_nR4_hRkD1Om14aRe26_Mme4IGV22etpzN4PtVi9JfF6M8nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+patient-specific+thoracic+aortic+aneurysms+and+comparison+with+normal+subject+via+computational+fluid+dynamics+%28CFD%29&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Etli%2C+Mustafa&rft.au=Canbolat%2C+Gokhan&rft.au=Karahan%2C+Oguz&rft.au=Koru%2C+Murat&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=59&rft.issue=1&rft.spage=71&rft.epage=84&rft_id=info:doi/10.1007%2Fs11517-020-02287-6&rft.externalDocID=10_1007_s11517_020_02287_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon