Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD)
Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with...
Saved in:
Published in | Medical & biological engineering & computing Vol. 59; no. 1; pp. 71 - 84 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention.
Graphical abstract |
---|---|
AbstractList | Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract. Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract.Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract. Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter (AAD) on hemodynamics throughout a cardiac cycle for real patients. In this study, two scans of thoracic aortic aneurysm (TAA) subject with different AADs (42.94 mm and 48.01 mm) and a scan of a normal subject (19.81 mm) were analyzed to assess the effects of hemodynamics on the progression of TAA with the same flow rate. Real-patient aortic geometries were scanned by computed tomography angiography (CTA), and steady and pulsatile flow conditions were used to simulate real patient aortic geometries. Aortic arches were obtained from routine clinical scans. Computational fluid dynamics (CFD) simulations were performed with in vivo boundary conditions, and 3D Navier-Stokes equations were solved by a UDF (user-defined function) code defining a real cardiac cycle of one patient using Fourier series (FS). Wall shear stress (WSS) and pressure distributions were presented from normal subject to TAA cases. The results show that during the peak systolic phase pressure load increased by 18.56% from normal subject to TAA case 1 and by 23.8% from normal subject to TAA case 2 in the aneurysm region. It is concluded that although overall WSS increased in aneurysm cases but was low in dilatation areas. As a result, abnormal changes in WSS and higher pressure load may lead to rupture and risk of further dilatation. CFD simulations were highly effective to guide clinical predictions and assess the progress of aneurysm regions in case of early surgical intervention. Graphical abstract |
Author | Karahan, Oguz Koru, Murat Etli, Mustafa Canbolat, Gokhan |
Author_xml | – sequence: 1 givenname: Mustafa surname: Etli fullname: Etli, Mustafa organization: Department of Cardiovascular Surgery, Alanya Alaaddin Keykubat University – sequence: 2 givenname: Gokhan orcidid: 0000-0001-6491-095X surname: Canbolat fullname: Canbolat, Gokhan email: gokhan.canbolat@alanya.edu.tr organization: Department of Mechanical Engineering, Alanya Alaaddin Keykubat University – sequence: 3 givenname: Oguz surname: Karahan fullname: Karahan, Oguz organization: Department of Cardiovascular Surgery, Alanya Alaaddin Keykubat University – sequence: 4 givenname: Murat surname: Koru fullname: Koru, Murat organization: Department of Mechanical Engineering Applied Science University of Isparta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33225424$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFP8ABReLSHtL6M_Ee0dJCpYpe4Bz5K61XSRz8UbS_gr_M7KaA1EMtWR5pnnfGM-8JOprC5BB6T_AFwbi9TIQI0taYYrhUtnXzCq1Iy0mNOedHaIUJhxQh8hidpLTFmBJB-Rt0zBilglO-Qr-_ldFFb9RQ-enRpezvVfZhqkJfzRC5Kddpdsb33lT5IURlIFAh5v0zuRJ3aUwQ2cqEcVbRJxD_8vmhmkIcoWwqeutMrh69OiAlHxpAph-Kt5XdTWr0JlVnm-vP52_R614Nyb17ek_Rj-ur75uv9e3dl5vNp9vasFbkmplWroVyjdBa9z0WZq2ZVgq32DWNtJZoK3qHlZZMciu44pCxWEpqtKWEnaKzpe4cw88Cc3ejT8YNA8wUSuoob5hYrzETgH58hm5DiTDAnmola-FIoD48UUWPznZz9KOKu-7vqgGgC2BiSCm6_h9CcLf3s1v87MDP7uBn14BIPhMZv-wvR-WHl6VskSboM927-P_bL6j-APS4tuA |
CitedBy_id | crossref_primary_10_1186_s43044_022_00238_0 crossref_primary_10_1590_0001_3765202320210859 crossref_primary_10_1007_s11517_022_02572_6 crossref_primary_10_1007_s13369_024_08810_3 crossref_primary_10_1142_S021951942350094X crossref_primary_10_3390_fluids8100272 crossref_primary_10_1016_j_enganabound_2024_03_003 crossref_primary_10_21605_cukurovaumfd_1410647 crossref_primary_10_1063_5_0248485 crossref_primary_10_1016_j_ijpharm_2024_124469 crossref_primary_10_3390_bioengineering11111169 crossref_primary_10_3389_fbioe_2025_1556091 crossref_primary_10_4103_2045_9912_345175 crossref_primary_10_1007_s11517_022_02665_2 crossref_primary_10_3390_bioengineering11030204 crossref_primary_10_46740_alku_1368103 crossref_primary_10_3390_bioengineering11090914 crossref_primary_10_3390_bioengineering10020164 |
Cites_doi | 10.1007/s10439-011-0447-6 10.1115/1.4004996 10.1007/s11517-014-1189-z 10.1114/1.1349703 10.1186/1475-925X-12-65 10.1114/1.140 10.1007/s11517-016-1592-8 10.1017/S002211200600036X 10.1093/ejcts/ezv459 10.1093/ejcts/ezs388 10.1115/1.1487357 10.1016/j.wneu.2016.01.031 10.1007/s11517-015-1253-3 10.1016/j.jmr.2013.07.002 10.1007/s11517-008-0361-8 10.1115/1.4037857 10.1007/s10439-011-0431-1 10.1080/10255842.2014.887698 10.1201/b11709 10.1001/jama.282.21.2035 10.1007/s10439-009-9835-6 10.1146/annurev.fluid.32.1.347 10.1115/1.1992521 10.1073/pnas.83.7.2114 10.1007/s10409-009-0227-9 10.1007/978-3-319-91659-0_3 10.1152/ajpheart.01301.2005 10.1007/s10439-013-0879-2 10.1007/s10439-010-9978-5 10.1114/1.1326031 10.1016/S0003-4975(10)66476-4 10.1007/s10439-015-1288-5 10.1016/j.medengphy.2013.11.003 10.1016/j.jbiomech.2011.11.041 10.1053/ejvs.1999.0872 10.1016/S0895-4356(98)00050-X 10.1007/s11517-016-1604-8 10.1017/CBO9780511896996 10.1161/01.str.0000144648.89172.of 10.1155/2018/7126532 10.1016/B978-0-323-03004-5.X5001-7 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2020 International Federation for Medical and Biological Engineering 2020. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2020 – notice: International Federation for Medical and Biological Engineering 2020. |
DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-020-02287-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 84 |
ExternalDocumentID | 33225424 10_1007_s11517_020_02287_6 |
Genre | Journal Article |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-3c7895ae65bbbff05c9b3baa070e668dd1bd5fe0ab8384d54a470ed0882cbd213 |
IEDL.DBID | U2A |
ISSN | 0140-0118 1741-0444 |
IngestDate | Thu Jul 10 16:46:40 EDT 2025 Fri Jul 25 19:02:55 EDT 2025 Wed Feb 19 02:30:28 EST 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Fri Feb 21 02:31:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Computed tomography angiography Patient-specific simulation Cardiovascular flow Thoracic aortic aneurysm Computational fluid dynamics (CFD) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3c7895ae65bbbff05c9b3baa070e668dd1bd5fe0ab8384d54a470ed0882cbd213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6491-095X |
PMID | 33225424 |
PQID | 2478377778 |
PQPubID | 54161 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2463599035 proquest_journals_2478377778 pubmed_primary_33225424 crossref_primary_10_1007_s11517_020_02287_6 crossref_citationtrail_10_1007_s11517_020_02287_6 springer_journals_10_1007_s11517_020_02287_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Wen, Yang, Tseng, Chai (CR4) 2010; 38 Gallo, De Santis, Negri (CR13) 2012; 40 Nichols, O’Rourke (CR35) 2005 Taylor, Hughes, Zarins (CR24) 1998; 26 CR38 Malek, Alper, Izumo (CR40) 1999; 282 Sonesson, Sandgren, Länne (CR5) 1999; 18 CR37 Munarriz, Gómez, Paredes, Castaño-Leon, Cepeda, Lagares (CR39) 2016; 88 Morris, Delassus, Callanan, Walsh, Wallis, Grace, McGloughlin (CR11) 2005; 127 Fan, Jiang, Zou, Li, Chen, Deng (CR14) 2009; 25 Tang, Cheng, Draney, Wilson, Tsao, Herfkens, Taylor (CR17) 2006; 291 Vinoth, Kumar, Adhikari (CR3) 2019; 506 Brown, Shi, Marzo, Staicu, Valverde, Beerbaum, Lawford, Hose (CR29) 2012; 45 Tse, Chang, Lee, Lim, Venkatesh, Ho (CR32) 2013; 43 Chandran, Yoganathan, Rittgers (CR36) 2012 Shahcheranhi, Dwyer, Cheer (CR30) 2002; 124 Myers, Moore, Ojha, Johnston, Ethier (CR33) 2001; 29 Olufsen, Peskin, Kim, Pedersen, Nadim, Larsen (CR15) 2000; 28 Qian, Liu, Itatani, Miyaji, Umezu (CR12) 2010; 38 Goubergrits, Mevert, Yevtushenko, Schaller, Kertzscher, Meier, Schubert, Riesenkampff, Kuehne (CR21) 2013; 41 Ladisa, Alberto Figueroa, Vignon-Clementel (CR22) 2011; 133 Metaxa, Iordanov, Maravelakis, Papaharilaou (CR7) 2017; 55 Cheng (CR8) 2019 Edelhoff, Walczak, Henning, Weichert, Suter (CR20) 2013; 235 Alimohammadi, Agu, Balabani, Díaz-Zuccarini (CR28) 2014; 36 Castro, Olivares, Putman, Cebral (CR18) 2014; 52 Lam, Fung, Cheng, Chow (CR34) 2008; 46 Davies, Remuzzi, Gordon, Dewey, Gimbrone (CR43) 1986; 83 Dabagh, Vasava, Jalali (CR9) 2015; 53 Kamangar, Badruddin, Govindaraju, Nik-Ghazali, Badarudin, Viswanathan, Ahmed, Khan (CR16) 2017; 55 Pedley (CR27) 1980 Numata, Itatani, Kanda, Doi, Yamazaki, Morimoto, Manabe, Ikemoto, Yaku (CR23) 2016; 49 Arzani, Dyverfeldt, Ebbers, Shadden (CR19) 2012; 40 CR25 Berger, Jou (CR26) 2000; 32 Palmer, Wheat (CR42) 1967; 4 Salsac, SPARKS, J-M, LASHERAS (CR10) 2006; 560 Valen-Sendstad, Piccinelli, KrishnankuttyRema, Steinman (CR1) 2015; 43 CR41 Chen, Müller-Eschner, von Tengg-Kobligk, Barber, Böckler, Hose, Ventikos (CR44) 2013; 12 Rizzo, Coady, Elefteriades (CR6) 1998; 51 Youssefi, Gomez, Arthurs, Sharma, Jahangiri, Alberto Figueroa (CR31) 2018; 140 Caballero, Laín (CR2) 2015; 18 A-V Salsac (2287_CR10) 2006; 560 P Youssefi (2287_CR31) 2018; 140 KB Chandran (2287_CR36) 2012 BT Tang (2287_CR17) 2006; 291 MS Olufsen (2287_CR15) 2000; 28 AG Brown (2287_CR29) 2012; 45 L Goubergrits (2287_CR21) 2013; 41 KM Tse (2287_CR32) 2013; 43 2287_CR41 SK Lam (2287_CR34) 2008; 46 K Valen-Sendstad (2287_CR1) 2015; 43 M Dabagh (2287_CR9) 2015; 53 L Morris (2287_CR11) 2005; 127 M Alimohammadi (2287_CR28) 2014; 36 A Arzani (2287_CR19) 2012; 40 MA Castro (2287_CR18) 2014; 52 S Numata (2287_CR23) 2016; 49 CA Taylor (2287_CR24) 1998; 26 RF Palmer (2287_CR42) 1967; 4 PF Davies (2287_CR43) 1986; 83 JA Rizzo (2287_CR6) 1998; 51 2287_CR25 SA Berger (2287_CR26) 2000; 32 D Chen (2287_CR44) 2013; 12 N Shahcheranhi (2287_CR30) 2002; 124 AD Caballero (2287_CR2) 2015; 18 B Sonesson (2287_CR5) 1999; 18 R Vinoth (2287_CR3) 2019; 506 E Metaxa (2287_CR7) 2017; 55 AM Malek (2287_CR40) 1999; 282 D Gallo (2287_CR13) 2012; 40 CY Wen (2287_CR4) 2010; 38 Y Fan (2287_CR14) 2009; 25 Y Qian (2287_CR12) 2010; 38 S Kamangar (2287_CR16) 2017; 55 D Edelhoff (2287_CR20) 2013; 235 2287_CR37 PM Munarriz (2287_CR39) 2016; 88 JG Myers (2287_CR33) 2001; 29 JF Ladisa (2287_CR22) 2011; 133 WW Nichols (2287_CR35) 2005 2287_CR38 CP Cheng (2287_CR8) 2019 TJ Pedley (2287_CR27) 1980 |
References_xml | – volume: 40 start-page: 860 year: 2012 end-page: 870 ident: CR19 article-title: In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0447-6 – volume: 133 start-page: 091008 year: 2011 ident: CR22 article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients publication-title: J Biomech Eng doi: 10.1115/1.4004996 – volume: 52 start-page: 827 year: 2014 end-page: 839 ident: CR18 article-title: Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1189-z – volume: 29 start-page: 109 year: 2001 end-page: 120 ident: CR33 article-title: Factors influencing blood flow patterns in the human right coronary artery publication-title: Ann Biomed Eng doi: 10.1114/1.1349703 – volume: 12 start-page: 1 year: 2013 end-page: 16 ident: CR44 article-title: A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-65 – volume: 26 start-page: 975 year: 1998 end-page: 987 ident: CR24 article-title: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis publication-title: Ann Biomed Eng doi: 10.1114/1.140 – volume: 55 start-page: 1277 year: 2017 end-page: 1286 ident: CR7 article-title: A novel approach for local abdominal aortic aneurysm growth quantification publication-title: Med Biol Eng Comput doi: 10.1007/s11517-016-1592-8 – volume: 560 start-page: 19 year: 2006 ident: CR10 article-title: Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms publication-title: J Fluid Mech doi: 10.1017/S002211200600036X – volume: 49 start-page: 1578 year: 2016 end-page: 1585 ident: CR23 article-title: Blood flow analysis of the aortic arch using computational fluid dynamics publication-title: Eur J Cardio-thoracic Surg doi: 10.1093/ejcts/ezv459 – volume: 43 start-page: 829 year: 2013 end-page: 838 ident: CR32 article-title: A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics publication-title: Eur J Cardio-thoracic Surg doi: 10.1093/ejcts/ezs388 – ident: CR37 – volume: 124 start-page: 378 year: 2002 end-page: 387 ident: CR30 article-title: Unsteady and three-dimensional simulation of blood flow in the human aortic arch publication-title: J Biomech Eng doi: 10.1115/1.1487357 – volume: 88 start-page: 311 year: 2016 end-page: 319 ident: CR39 article-title: Basic principles of hemodynamics and cerebral aneurysms publication-title: World Neurosurg doi: 10.1016/j.wneu.2016.01.031 – volume: 53 start-page: 463 year: 2015 end-page: 476 ident: CR9 article-title: Effects of severity and location of stenosis on the hemodynamics in human aorta and its branches publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1253-3 – volume: 235 start-page: 42 year: 2013 end-page: 49 ident: CR20 article-title: High-resolution MRI velocimetry compared with numerical simulations publication-title: J Magn Reson doi: 10.1016/j.jmr.2013.07.002 – ident: CR25 – volume: 46 start-page: 1129 year: 2008 end-page: 1138 ident: CR34 article-title: A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta publication-title: Med Biol Eng Comput doi: 10.1007/s11517-008-0361-8 – volume: 140 start-page: 1 year: 2018 end-page: 14 ident: CR31 article-title: Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta publication-title: J Biomech Eng doi: 10.1115/1.4037857 – volume: 40 start-page: 729 year: 2012 end-page: 741 ident: CR13 article-title: On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0431-1 – year: 2005 ident: CR35 publication-title: McDonald’s blood flow in arteries – volume: 18 start-page: 1200 year: 2015 end-page: 1216 ident: CR2 article-title: Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2014.887698 – year: 2012 ident: CR36 publication-title: Biofluid mechanics, 2 doi: 10.1201/b11709 – year: 2019 ident: CR8 publication-title: Handbook of vascular motion – volume: 282 start-page: 2035 year: 1999 end-page: 2042 ident: CR40 article-title: Hemodynamic shear stress and its role in atherosclerosis publication-title: J Am Med Assoc doi: 10.1001/jama.282.21.2035 – volume: 38 start-page: 391 year: 2010 end-page: 402 ident: CR4 article-title: Investigation of pulsatile flowfield in healthy thoracic aorta models publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9835-6 – volume: 32 start-page: 347 year: 2000 end-page: 382 ident: CR26 article-title: Flows in stenotic vessels publication-title: Annu Rewiev Fluid Mech doi: 10.1146/annurev.fluid.32.1.347 – volume: 127 start-page: 767 year: 2005 end-page: 775 ident: CR11 article-title: 3-D numerical simulation of blood flow through models of the human aorta publication-title: J Biomech Eng doi: 10.1115/1.1992521 – ident: CR38 – volume: 83 start-page: 2114 year: 1986 end-page: 2117 ident: CR43 article-title: Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.83.7.2114 – volume: 25 start-page: 249 year: 2009 end-page: 255 ident: CR14 article-title: Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation publication-title: Acta Mech Sin Xuebao doi: 10.1007/s10409-009-0227-9 – volume: 506 start-page: 29 year: 2019 end-page: 43 ident: CR3 article-title: Steady and transient flow CFD simulations in an aorta model of normal and aortic aneurysm subjects publication-title: Lect Notes Electr Eng doi: 10.1007/978-3-319-91659-0_3 – volume: 291 start-page: 668 year: 2006 end-page: 676 ident: CR17 article-title: Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.01301.2005 – volume: 41 start-page: 2575 year: 2013 end-page: 2587 ident: CR21 article-title: The impact of MRI-based inflow for the hemodynamic evaluation of aortic coarctation publication-title: Ann Biomed Eng doi: 10.1007/s10439-013-0879-2 – volume: 38 start-page: 2302 year: 2010 end-page: 2313 ident: CR12 article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure publication-title: Ann Biomed Eng doi: 10.1007/s10439-010-9978-5 – volume: 28 start-page: 1281 year: 2000 end-page: 1299 ident: CR15 article-title: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions publication-title: Ann Biomed Eng doi: 10.1114/1.1326031 – volume: 4 start-page: 38 year: 1967 end-page: 52 ident: CR42 article-title: Treatment of dissecting aneurysms of the aorta publication-title: Ann Thorac Surg doi: 10.1016/S0003-4975(10)66476-4 – volume: 43 start-page: 1422 year: 2015 end-page: 1431 ident: CR1 article-title: Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin? publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1288-5 – volume: 36 start-page: 275 year: 2014 end-page: 284 ident: CR28 article-title: Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.11.003 – ident: CR41 – volume: 45 start-page: 516 year: 2012 end-page: 523 ident: CR29 article-title: Accuracy vs. computational time: translating aortic simulations to the clinic publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.041 – volume: 18 start-page: 487 year: 1999 end-page: 493 ident: CR5 article-title: Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture publication-title: Eur J Vasc Endovasc Surg doi: 10.1053/ejvs.1999.0872 – volume: 51 start-page: 747 year: 1998 end-page: 754 ident: CR6 article-title: Procedures for estimating growth rates in thoracic aortic aneurysms publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(98)00050-X – volume: 55 start-page: 1451 year: 2017 end-page: 1461 ident: CR16 article-title: Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions publication-title: Med Biol Eng Comput doi: 10.1007/s11517-016-1604-8 – year: 1980 ident: CR27 publication-title: The fluid mechanics of large blood vessels doi: 10.1017/CBO9780511896996 – volume: 4 start-page: 38 year: 1967 ident: 2287_CR42 publication-title: Ann Thorac Surg doi: 10.1016/S0003-4975(10)66476-4 – volume: 55 start-page: 1451 year: 2017 ident: 2287_CR16 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-016-1604-8 – volume: 52 start-page: 827 year: 2014 ident: 2287_CR18 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1189-z – volume: 124 start-page: 378 year: 2002 ident: 2287_CR30 publication-title: J Biomech Eng doi: 10.1115/1.1487357 – volume: 41 start-page: 2575 year: 2013 ident: 2287_CR21 publication-title: Ann Biomed Eng doi: 10.1007/s10439-013-0879-2 – volume: 18 start-page: 487 year: 1999 ident: 2287_CR5 publication-title: Eur J Vasc Endovasc Surg doi: 10.1053/ejvs.1999.0872 – volume: 133 start-page: 091008 year: 2011 ident: 2287_CR22 publication-title: J Biomech Eng doi: 10.1115/1.4004996 – volume: 40 start-page: 729 year: 2012 ident: 2287_CR13 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0431-1 – volume: 25 start-page: 249 year: 2009 ident: 2287_CR14 publication-title: Acta Mech Sin Xuebao doi: 10.1007/s10409-009-0227-9 – ident: 2287_CR37 – volume: 127 start-page: 767 year: 2005 ident: 2287_CR11 publication-title: J Biomech Eng doi: 10.1115/1.1992521 – volume: 32 start-page: 347 year: 2000 ident: 2287_CR26 publication-title: Annu Rewiev Fluid Mech doi: 10.1146/annurev.fluid.32.1.347 – volume: 506 start-page: 29 year: 2019 ident: 2287_CR3 publication-title: Lect Notes Electr Eng doi: 10.1007/978-3-319-91659-0_3 – volume: 83 start-page: 2114 year: 1986 ident: 2287_CR43 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.83.7.2114 – ident: 2287_CR41 doi: 10.1161/01.str.0000144648.89172.of – volume: 291 start-page: 668 year: 2006 ident: 2287_CR17 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.01301.2005 – ident: 2287_CR38 doi: 10.1155/2018/7126532 – volume: 43 start-page: 829 year: 2013 ident: 2287_CR32 publication-title: Eur J Cardio-thoracic Surg doi: 10.1093/ejcts/ezs388 – volume: 235 start-page: 42 year: 2013 ident: 2287_CR20 publication-title: J Magn Reson doi: 10.1016/j.jmr.2013.07.002 – volume: 26 start-page: 975 year: 1998 ident: 2287_CR24 publication-title: Ann Biomed Eng doi: 10.1114/1.140 – volume-title: Handbook of vascular motion year: 2019 ident: 2287_CR8 – volume: 29 start-page: 109 year: 2001 ident: 2287_CR33 publication-title: Ann Biomed Eng doi: 10.1114/1.1349703 – volume-title: McDonald’s blood flow in arteries year: 2005 ident: 2287_CR35 – volume: 88 start-page: 311 year: 2016 ident: 2287_CR39 publication-title: World Neurosurg doi: 10.1016/j.wneu.2016.01.031 – volume: 560 start-page: 19 year: 2006 ident: 2287_CR10 publication-title: J Fluid Mech doi: 10.1017/S002211200600036X – volume: 55 start-page: 1277 year: 2017 ident: 2287_CR7 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-016-1592-8 – volume: 40 start-page: 860 year: 2012 ident: 2287_CR19 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0447-6 – volume: 43 start-page: 1422 year: 2015 ident: 2287_CR1 publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1288-5 – volume: 53 start-page: 463 year: 2015 ident: 2287_CR9 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1253-3 – volume: 45 start-page: 516 year: 2012 ident: 2287_CR29 publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.041 – volume: 12 start-page: 1 year: 2013 ident: 2287_CR44 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-65 – ident: 2287_CR25 doi: 10.1016/B978-0-323-03004-5.X5001-7 – volume: 18 start-page: 1200 year: 2015 ident: 2287_CR2 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2014.887698 – volume: 36 start-page: 275 year: 2014 ident: 2287_CR28 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.11.003 – volume-title: Biofluid mechanics, 2 year: 2012 ident: 2287_CR36 doi: 10.1201/b11709 – volume: 38 start-page: 2302 year: 2010 ident: 2287_CR12 publication-title: Ann Biomed Eng doi: 10.1007/s10439-010-9978-5 – volume: 49 start-page: 1578 year: 2016 ident: 2287_CR23 publication-title: Eur J Cardio-thoracic Surg doi: 10.1093/ejcts/ezv459 – volume: 140 start-page: 1 year: 2018 ident: 2287_CR31 publication-title: J Biomech Eng doi: 10.1115/1.4037857 – volume: 38 start-page: 391 year: 2010 ident: 2287_CR4 publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9835-6 – volume: 28 start-page: 1281 year: 2000 ident: 2287_CR15 publication-title: Ann Biomed Eng doi: 10.1114/1.1326031 – volume: 282 start-page: 2035 year: 1999 ident: 2287_CR40 publication-title: J Am Med Assoc doi: 10.1001/jama.282.21.2035 – volume-title: The fluid mechanics of large blood vessels year: 1980 ident: 2287_CR27 doi: 10.1017/CBO9780511896996 – volume: 51 start-page: 747 year: 1998 ident: 2287_CR6 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(98)00050-X – volume: 46 start-page: 1129 year: 2008 ident: 2287_CR34 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-008-0361-8 |
SSID | ssj0021524 |
Score | 2.4022331 |
Snippet | Vascular hemodynamics play an important role in cardiovascular diseases. This work aimed to investigate the effects of an increase in ascending aortic diameter... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 71 |
SubjectTerms | Aneurysms Angiography Aorta Aortic aneurysms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blood pressure Boundary conditions Cardiovascular diseases Computational fluid dynamics Computed tomography Computer Applications Flow velocity Fluid dynamics Fourier series Heart Hemodynamics Human Physiology Imaging Original Article Radiology Simulation Thorax Wall shear stresses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oBPFF_LZuSgQfFA3eNk3SPo0xvQzBPTm4byVfxQvXdtpW8K_wX945bW6LDNenQNM05CTnO78D8GblJNo6wnEXCFTbC81LZTTPfGZsqgPht1C2xbk6u8i_bOQmOty6mFa554kjo_atIx_5xyzXaEvhUxxf_uRUNYqiq7GExm24Q9BllNKlN4vBhbIpn1MYUZOOl2amq3Mo6jQn44kQYDRX_wqma9rmtUjpKIDWD-B-1BzZyUTqh3ArNI_g7tcYG38Mf8-HKfqyY9sFPKNtWFuziJ7K6V4l5Qax_juS3mHDtDQeM4Rr-af70WHLMzcXJ2Tkp2UNKbY71g2WvDbs99aMXYY-ehJZvRu2nvmpun3H3p6uP717Ahfrz99Oz3gst8Cd0LLnwumilCYoaa2t65V0pRXWGGQKQanC-9R6WYeVsYUoci9zk-MbTzq6sz5LxVM4aNomPAdWy6IMSGkha7LA0tIX1q288rJUGnlGAul-rSsXscipJMauWlCUiT4V0qca6VOpBN7P31xOSBw39j7ak7CKp7Krlj2UwOv5NZ4nCpLgQrcD9UEVDEW0kAk8m0g__04Q98uzPIEP-72wDP7_uby4eS6HcC-jRJnRr3MEB_2vIbxETae3r8btfAW7k_nr priority: 102 providerName: ProQuest |
Title | Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD) |
URI | https://link.springer.com/article/10.1007/s11517-020-02287-6 https://www.ncbi.nlm.nih.gov/pubmed/33225424 https://www.proquest.com/docview/2478377778 https://www.proquest.com/docview/2463599035 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7uLogvst5H1yGCD4oWpk2TtI8zu9NdFAcRB8anklvZgbEV2y7sr_Av7zlt2kFWBfvQBJKmISfJueYLIa9nhoOuw0xgHIJqWyaDVCgZRDZSOpQO8Vsw2mIlLtbxhw3f-ENh9RDtPrgku516f9gNmJMMUN1BzBYZiANyxFF3h1m8juajmgUcKR4DF0F-9kdl_tzG7-zolox5yz_asZ3smNz38iKd9wR-QO648iG5-8l7xB-RX6u297ns6HYPmVGVtCqox0wN8DQlRgTR5hIIbiCjKmyPKkSzvK6_15Cz1IxXElK0ztISxdkdrVuNthp6tVVdlbbx9kNa7Nqtpba_076mb06zs7ePyTpbfj29CPwlC4FhkjcBMzJJuXKCa62LYsZNqplWCrYCJ0RibagtL9xM6YQlseWxiqHEomRutI1C9oQcllXpnhFa8CR1QF_GC9S7wtQm2syssDwVEnaKCQmHsc6NRyDHizB2-R47GemTA33yjj65mJB34zc_evyNf9Y-GUiY-7VY51EsQQuHBzrwaiyGVYSuERjoqsU6IHgBY2Z8Qp72pB9_x3DPi6N4Qt4Pc2Hf-N_78vz_qr8g9yIMl-msOyfksPnZupcg7zR6Sg7kRsI7yc6n5Gi-OFtkmJ5_-7iEdLFcff4y7ZbADbIv_RU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDeBAkYCCQQWmzjO44AQalm2tN1TK_UW_IpYaZu0JAHtr-Cf8BuZyWuFKnprTpbiOJZnPJ6XvwF4OTESbR1huHEEqm1FzNNIxTywgdJ-7Ai_hbIt5tHsOPx6Ik824M9wF4bSKgeZ2ApqWxrykb8PwhhtKXySj2fnnKpGUXR1KKHRscW-W_1Ck636sLeL9H0VBNPPRzsz3lcV4EbEsubCxEkqlYuk1jrPJ9KkWmilkPddFCXW-trK3E2UTkQSWhmqEN9YUkWNtoEvcNxrcD0UIqUdlUy_jAYenoXhmDKJmnt_Sae7qodHa8zJWCPEmZhH_x6EF7TbC5HZ9sCb3oZbvabKPnWsdQc2XHEXbhz2sfh78HvedNGeJVuswTrKgpU569FaOd3jpFwkVn9HVjPYUCWNxxThaK6q0wpblpmxGCIjvzArSJFesqrR5CViPxeq7dLUveeS5ctmYZldFep0YSr2eme6--Y-HF8JIR7AZlEW7hGwXCapQ84SMieLz09tos3ERlamUYwyygN_WOvM9NjnVIJjma1Rm4k-GdIna-mTRR68Hb8565A_Lu29PZAw66VAla151oMX42vcvxSUwYUuG-qDKh-qBEJ68LAj_fg7QdI2DEIP3g28sB78_3N5fPlcnsPN2dHhQXawN99_AlsBJem0PqVt2Kx_NO4palm1ftayNoNvV72X_gKybzhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCsUX8W606ggKig7dZDKZ5EFEui6t1cUHC_sW55LgwjZpm0TZX-H_8dd5Tm6LFPvWPAUymQw5lzm3-Q7Ai4mV6OsIy21GoNpOKJ5EWvHABdr4KiP8Fqq2mEcHx-GnhVxswZ_hLAyVVQ46sVXUrrQUI98LQoW-FF7xXt6XRXydzt6fnnHqIEWZ1qGdRsciR9n6F7pv1bvDKdL6ZRDMPn7bP-B9hwFuhZI1F1bFidRZJI0xeT6RNjHCaI1ykEVR7JxvnMyziTaxiEMnQx3iE0dmqTUu8AXOew2uKyF9kjG12Dh7uC-GY_kkWvH9gZ3u2B5us4qT40boM4pH_26KFyzdC1nadvOb3YKbvdXKPnRsdhu2suIO7Hzp8_J34fe86TI_K7bcAHeUBStz1iO3cjrTSXVJrP6BbGfxRpc0H9OEqbmuTiq8c8yOjREZxYhZQUb1ilWNoYgR-7nU7ZCm7qOYLF81S8fcutAnS1uxV_uz6et7cHwlhLgP20VZZA-B5TJOMuQyIXPy_vzExcZOXORkEinUVx74w79ObY-DTu04VukGwZnokyJ90pY-aeTBm_Gd0w4F5NLRuwMJ014jVOmGfz14Pj5GWaYEDf7osqExaP6heSCkBw860o-fE6R5wyD04O3AC5vJ_7-WR5ev5RnsoBSlnw_nR4_hRkD1Om14aRe26_Mme4IGV22etpzN4PtVi9JfF6M8nQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+patient-specific+thoracic+aortic+aneurysms+and+comparison+with+normal+subject+via+computational+fluid+dynamics+%28CFD%29&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Etli%2C+Mustafa&rft.au=Canbolat%2C+Gokhan&rft.au=Karahan%2C+Oguz&rft.au=Koru%2C+Murat&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=59&rft.issue=1&rft.spage=71&rft.epage=84&rft_id=info:doi/10.1007%2Fs11517-020-02287-6&rft.externalDocID=10_1007_s11517_020_02287_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |