Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network

Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 43; no. 4; pp. 1219 - 1228
Main Authors Raju, Manu, Gopi, Varun P., Anitha, V. S., Wahid, Khan A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI10.1007/s13246-020-00924-w

Cover

Loading…
Abstract Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn’t easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer’s Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.
AbstractList Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn’t easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer’s Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.
Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer's disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn't easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer's Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer's disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn't easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer's Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.
Author Gopi, Varun P.
Anitha, V. S.
Wahid, Khan A.
Raju, Manu
Author_xml – sequence: 1
  givenname: Manu
  surname: Raju
  fullname: Raju, Manu
  organization: Department of Electronics and Communication Engineering Government Engineering College Wayanad, APJ Abdul Kalam Technological University
– sequence: 2
  givenname: Varun P.
  orcidid: 0000-0001-5593-3949
  surname: Gopi
  fullname: Gopi, Varun P.
  email: varun@nitt.edu
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli
– sequence: 3
  givenname: V. S.
  surname: Anitha
  fullname: Anitha, V. S.
  organization: Department of Computer Science and Engineering, Government Engineering College Wayanad, APJ Abdul Kalam Technological University
– sequence: 4
  givenname: Khan A.
  surname: Wahid
  fullname: Wahid, Khan A.
  organization: Department of Electrical and Computer Engineering, University of Saskatchewan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32926392$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1UREvpC7BAkdh0Y_AtdrKsKm5SERtYW04yOXVx7OJJegSrvgavx5PgnNOC1EUlS-PRfP9oZv7n5CCmCIS85OwNZ8y8RS6F0pQJRhlrhaLbJ-RIaC2oMtIc_PuL9pCcIF4xxkTNudH1M3IoRSu0bMURCZ-XMHvaB4dYDd5tYkKPVRqrs_DrEvwE-c_t77WE4BCqBX3cVL3D3g0wVPNlBijFCSL6FF2gfYo3KSzzLqsiLHkX5m3K31-Qp6MLCCd38Zh8e__u6_lHevHlw6fzswvaS1PPVHbSiBqGeuCNUh2vOROu65Qams41grPGlV2Uq7leFxk7GDVXoh21lgq0kMfkdN_3OqcfC-BsJ489hOAipAWtUEo0ipVX0NcP0Ku05DL6ShkppWG1KdSrO2rpJhjsdfaTyz_t_R0L0OyBPifEDKPt_ezWI8zZ-WA5s6trdu-aLa7ZnWt2W6TigfS--6MiuRdhgeMG8v-xH1H9BaEiqtQ
CitedBy_id crossref_primary_10_2174_1573405618666220823115848
crossref_primary_10_1007_s13246_022_01165_9
crossref_primary_10_1007_s12021_023_09625_7
crossref_primary_10_1007_s11277_023_10346_y
crossref_primary_10_1016_j_heliyon_2024_e39037
crossref_primary_10_3389_fnagi_2023_1212275
crossref_primary_10_1016_j_heliyon_2023_e21626
crossref_primary_10_1016_j_ejrad_2023_110934
crossref_primary_10_1007_s00521_024_10420_x
crossref_primary_10_1186_s12880_024_01250_3
crossref_primary_10_3390_bioengineering10060714
crossref_primary_10_1016_j_cmpb_2021_106294
crossref_primary_10_1080_03772063_2023_2205857
crossref_primary_10_4018_IJSI_309720
crossref_primary_10_1186_s12859_022_04903_8
crossref_primary_10_1007_s12046_023_02219_8
crossref_primary_10_1007_s11760_023_02586_z
crossref_primary_10_1016_j_aej_2024_03_008
crossref_primary_10_1016_j_bspc_2021_103192
crossref_primary_10_4015_S1016237222500259
crossref_primary_10_1080_1206212X_2024_2380648
crossref_primary_10_4015_S1016237222500375
crossref_primary_10_3389_frai_2024_1456069
crossref_primary_10_3390_app132413051
crossref_primary_10_3390_jpm12050815
crossref_primary_10_4015_S1016237221500368
crossref_primary_10_1142_S0219467824500311
crossref_primary_10_1109_ACCESS_2023_3285115
Cites_doi 10.1109/ACCESS.2020.2979753
10.1016/j.nicl.2018.101645
10.1038/nrneurol.2009.215
10.1371/journal.pone.0225759
10.1007/978-3-319-24888-2_10
10.1016/j.cogsys.2019.01.005
10.1038/nrneurol.2009.217
10.1109/TPAMI.2017.2709749
10.1038/s41598-020-62490-1
10.1016/j.cmpb.2019.105242,
10.1109/TPAMI.2018.2889096
10.1007/978-3-319-75417-8_27
10.1007/s00500-018-3421-5
10.1007/s12021-018-9370-4
10.1007/s11682-015-9356-x
10.1007/s00429-013-0687-3
10.1007/978-3-642-41016-1_21
10.1109/TBME.2014.2372011
10.4028/www.scientific.net/AMR.760-762.2086
10.1016/j.jacr.2017.12.028
10.1155/2016/9523849
10.1109/SocialCom.2013.127
10.1109/IJCNN.2017.7966129
10.1109/ICIP.2016.7532332
10.1109/ECS.2015.7124883
10.1109/ISBI.2014.6868045
10.1109/ISBI.2018.8363543
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2020
Australasian College of Physical Scientists and Engineers in Medicine 2020.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2020
– notice: Australasian College of Physical Scientists and Engineers in Medicine 2020.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-020-00924-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 1228
ExternalDocumentID 32926392
10_1007_s13246_020_00924_w
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
ALIPV
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
M1P
M2P
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q9U
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ID FETCH-LOGICAL-c375t-3b3725ed5d1844b15102abb44d8ba82108a0254a5163292fbef61429f6634e623
IEDL.DBID 7X7
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Thu Jul 10 20:33:46 EDT 2025
Fri Jul 25 05:00:16 EDT 2025
Thu Apr 03 07:24:29 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Tue Jul 01 02:52:55 EDT 2025
Fri Feb 21 02:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Structural MRI
Three dimensional-convolutional neural network
Alzheimer’s disease
Mild cognitive impairment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3b3725ed5d1844b15102abb44d8ba82108a0254a5163292fbef61429f6634e623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5593-3949
PMID 32926392
PQID 2473337057
PQPubID 33672
PageCount 10
ParticipantIDs proquest_miscellaneous_2442840840
proquest_journals_2473337057
pubmed_primary_32926392
crossref_citationtrail_10_1007_s13246_020_00924_w
crossref_primary_10_1007_s13246_020_00924_w
springer_journals_10_1007_s13246_020_00924_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
2020-Dec
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR1) 2014; 62
Nordberg, Rinne, Kadir, Långström (CR4) 2010; 6
Beejesh, Gopi, Hemanth (CR3) 2019; 55
Liu, Cheng, Wang, Wang, Initiative (CR14) 2018; 16
Karasawa, Liu, Ohwada (CR17) 2018
CR12
CR10
Cárdenas-Peña, Collazos-Huertas, Castellanos-Dominguez (CR16) 2016
Young Kanghan, Chul (CR13) 2019
Punjabi, Martersteck, Wang, Parrish, Katsaggelos (CR30) 2019; 14
Lian, Liu, Zhang, Shen (CR22) 2018
Suk, Lee, Shen, Initiative (CR2) 2015; 220
Gayathri, Krishna, Gopi, Palanisamy (CR26) 2020; 8
Frisoni, Fox, Jack, Scheltens, Thompson (CR5) 2010; 6
Anagnostopoulos, Giannoukos, Spenger, Simmons, Mecocci, Soininen, Kłoszewska, Vellas, Lovestone, Tsolaki (CR27) 2013
CR7
Vu, Ho, Yang, Kim, Song (CR18) 2018
Zheng, Yang, Tian (CR8) 2018; 40
CR25
Ebrahimighahnavieh, Luo, Chiong (CR9) 2020; 187
CR24
CR23
CR21
CR20
Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi (CR19) 2019
Selvaraju, De M Cogswell (CR29) 2020
Tong, Gray, Gao, Chen, Rueckert (CR15) 2015
Cheng, Liu, Suk, Shen, Zhang, Initiative (CR28) 2015; 9
Giger (CR6) 2018
He, Zhang, Shi (CR11) 2013; 760–762
L Zheng (924_CR8) 2018; 40
924_CR20
924_CR21
A Beejesh (924_CR3) 2019; 55
924_CR23
924_CR24
924_CR25
GB Frisoni (924_CR5) 2010; 6
S Basaia (924_CR19) 2019
T Tong (924_CR15) 2015
TD Vu (924_CR18) 2018
C Lian (924_CR22) 2018
R Selvaraju (924_CR29) 2020
A Punjabi (924_CR30) 2019; 14
S Gayathri (924_CR26) 2020; 8
S Liu (924_CR1) 2014; 62
924_CR10
H Karasawa (924_CR17) 2018
924_CR12
MA Ebrahimighahnavieh (924_CR9) 2020; 187
ML Giger (924_CR6) 2018
M Liu (924_CR14) 2018; 16
B Cheng (924_CR28) 2015; 9
HI Suk (924_CR2) 2015; 220
D Cárdenas-Peña (924_CR16) 2016
BS He (924_CR11) 2013; 760–762
924_CR7
CN Anagnostopoulos (924_CR27) 2013
OH Young Kanghan (924_CR13) 2019
A Nordberg (924_CR4) 2010; 6
References_xml – volume: 8
  start-page: 57497
  year: 2020
  end-page: 57504
  ident: CR26
  article-title: Automated binary and multiclass classification of diabetic retinopathy using Haralick and multiresolution features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979753
– year: 2019
  ident: CR19
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2018.101645
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: CR5
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.215
– volume: 14
  start-page: 1
  issue: 12
  year: 2019
  end-page: 14
  ident: CR30
  article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0225759
– start-page: 77
  year: 2015
  end-page: 84
  ident: CR15
  article-title: Nonlinear graph fusion for multi-modal classification of Alzheimer’s disease
  publication-title: International workshop on machine learning in medical imaging
  doi: 10.1007/978-3-319-24888-2_10
– start-page: 336
  year: 2020
  end-page: 359
  ident: CR29
  article-title: Grad cam visual explanations from deep networks via gradient based localization
  publication-title: International Journal of Computer Vision
– ident: CR12
– volume: 55
  start-page: 135
  year: 2019
  end-page: 145
  ident: CR3
  article-title: Brain MR kurtosis imaging study: contrasting gray and white matter
  publication-title: Cognitive Syst Res
  doi: 10.1016/j.cogsys.2019.01.005
– volume: 6
  start-page: 78
  issue: 2
  year: 2010
  ident: CR4
  article-title: The use of pet in Alzheimer disease
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.217
– ident: CR10
– volume: 40
  start-page: 1224
  issue: 5
  year: 2018
  end-page: 1244
  ident: CR8
  article-title: SIFT meets CNN: a decade survey of instance retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2709749
– ident: CR25
– ident: CR23
– ident: CR21
– year: 2019
  ident: CR13
  article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62490-1
– volume: 187
  start-page: 105242
  year: 2020
  ident: CR9
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105242,
– year: 2018
  ident: CR22
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2889096
– start-page: 287
  year: 2018
  end-page: 296
  ident: CR17
  article-title: Deep 3d convolutional neural network architectures for Alzheimer’s disease diagnosis
  publication-title: Asian conference on intelligent information and database systems
  doi: 10.1007/978-3-319-75417-8_27
– year: 2018
  ident: CR18
  article-title: Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3421-5
– volume: 16
  start-page: 295
  issue: 3–4
  year: 2018
  end-page: 308
  ident: CR14
  article-title: Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9370-4
– volume: 9
  start-page: 913
  issue: 4
  year: 2015
  end-page: 926
  ident: CR28
  article-title: Multimodal manifold-regularized transfer learning for mci conversion prediction
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-015-9356-x
– volume: 220
  start-page: 841
  issue: 2
  year: 2015
  end-page: 859
  ident: CR2
  article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0687-3
– start-page: 193
  year: 2013
  end-page: 202
  ident: CR27
  article-title: Classification models for Alzheimer’s disease detection
  publication-title: International conference on engineering applications of neural networks
  doi: 10.1007/978-3-642-41016-1_21
– volume: 62
  start-page: 1132
  issue: 4
  year: 2014
  end-page: 1140
  ident: CR1
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– ident: CR7
– volume: 760–762
  start-page: 2086
  year: 2013
  end-page: 2090
  ident: CR11
  article-title: Hippocampus segmentation techniques: a survey
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.760-762.2086
– year: 2018
  ident: CR6
  article-title: Machine learning in medical imaging
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.12.028
– ident: CR24
– ident: CR20
– year: 2016
  ident: CR16
  article-title: Centered kernel alignment enhancing neural network pretraining for MRI-based dementia diagnosis
  publication-title: Comput Math Methods Med
  doi: 10.1155/2016/9523849
– volume: 40
  start-page: 1224
  issue: 5
  year: 2018
  ident: 924_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2709749
– ident: 924_CR24
  doi: 10.1109/SocialCom.2013.127
– volume: 55
  start-page: 135
  year: 2019
  ident: 924_CR3
  publication-title: Cognitive Syst Res
  doi: 10.1016/j.cogsys.2019.01.005
– year: 2019
  ident: 924_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62490-1
– year: 2018
  ident: 924_CR22
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2889096
– ident: 924_CR7
  doi: 10.1109/IJCNN.2017.7966129
– volume: 187
  start-page: 105242
  year: 2020
  ident: 924_CR9
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105242,
– volume: 8
  start-page: 57497
  year: 2020
  ident: 924_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979753
– start-page: 336
  volume-title: International Journal of Computer Vision
  year: 2020
  ident: 924_CR29
– ident: 924_CR12
  doi: 10.1109/ICIP.2016.7532332
– year: 2018
  ident: 924_CR6
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.12.028
– year: 2016
  ident: 924_CR16
  publication-title: Comput Math Methods Med
  doi: 10.1155/2016/9523849
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 924_CR5
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.215
– ident: 924_CR25
  doi: 10.1109/ECS.2015.7124883
– volume: 14
  start-page: 1
  issue: 12
  year: 2019
  ident: 924_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0225759
– volume: 6
  start-page: 78
  issue: 2
  year: 2010
  ident: 924_CR4
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.217
– start-page: 77
  volume-title: International workshop on machine learning in medical imaging
  year: 2015
  ident: 924_CR15
  doi: 10.1007/978-3-319-24888-2_10
– volume: 760–762
  start-page: 2086
  year: 2013
  ident: 924_CR11
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.760-762.2086
– year: 2018
  ident: 924_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3421-5
– volume: 220
  start-page: 841
  issue: 2
  year: 2015
  ident: 924_CR2
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0687-3
– ident: 924_CR10
  doi: 10.1109/ISBI.2014.6868045
– ident: 924_CR21
– ident: 924_CR23
– year: 2019
  ident: 924_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2018.101645
– ident: 924_CR20
  doi: 10.1109/ISBI.2018.8363543
– start-page: 193
  volume-title: International conference on engineering applications of neural networks
  year: 2013
  ident: 924_CR27
  doi: 10.1007/978-3-642-41016-1_21
– volume: 16
  start-page: 295
  issue: 3–4
  year: 2018
  ident: 924_CR14
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9370-4
– start-page: 287
  volume-title: Asian conference on intelligent information and database systems
  year: 2018
  ident: 924_CR17
  doi: 10.1007/978-3-319-75417-8_27
– volume: 62
  start-page: 1132
  issue: 4
  year: 2014
  ident: 924_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 9
  start-page: 913
  issue: 4
  year: 2015
  ident: 924_CR28
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-015-9356-x
SSID ssj0002511765
ssj0024368
Score 2.4185438
Snippet Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1219
SubjectTerms Algorithms
Artificial neural networks
Atrophy
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain
Classification
Classifiers
Dementia
Diagnosis
Feature extraction
Image segmentation
Magnetic resonance imaging
Medical and Radiation Physics
Medical imaging
Neural networks
Scientific Paper
Social problems
Support vector machines
Title Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network
URI https://link.springer.com/article/10.1007/s13246-020-00924-w
https://www.ncbi.nlm.nih.gov/pubmed/32926392
https://www.proquest.com/docview/2473337057
https://www.proquest.com/docview/2442840840
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8BfRkPCNgGga7KpL1t1lLbaZIn1E4taA_VNK1S3yLbcUal0kL_CIknvgZfj0_CneO2IARSlEhx4iQ-2_e73O_OAN9iIZWyNmHSiohJo0uWWhx4cSTKZmKylqmyffZbFwP5exgP_Q-3uadVruZEN1EXU0P_yH9ymQghEoQXZ9c3jFaNIu-qX0JjG2qUuoyMr2SYPMu150LhUOPhoM5E6oNmqtA5RBJEv6W4arRB2O1LxfQKbb7ylDoF1NuHPY8cw3Yl6gPYspND2H2WT_AjjF04LTOEiMOiItGN5uG0DNvju0s7urKzx_sHKnJemZBI7_9Do-ZEki_CBcrVYuEVkdoJoTPipPu-iY-m3Jfu4Jjjn2DQ6_77dcH8cgrMiCReMKFFwmNbxAVadVKjqo-40lrKItUqRdMvVRQar2KEaDzjpbYl6m6elQhKpEWY9Bl2JtOJPYbQIshDIMOLAq0tVPIZVpKVkc54U7eMMgE0V22ZG59rnJa8GOebLMnU_jm2f-7aP78N4Pv6nusq08a7V9dXIsr9qJvnmz4SwNd1MY4XcoKoiZ0u6Ro0uGSEWwBHlWjXj6PPRsTGA_ixkvWm8rff5eT9dzmFD5z6mePA1GFnMVvaL4hkFrrhuivu0955A2rtXqfTx2On2__zF88OePsJDyzzuA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB6h7YFyqFpoIS0FV2pPrdWs7WySQ4UQsCw_5QTS3lLbcWClZZeyi1btidfgJfpQPAkzTrILQuWGFCkH58cZz3i-ib8ZA3yOpNLauZgrJ0OurCl44tDwolAWzdimLVtW-zxqdU7UfjfqzsG_OheGaJX1nOgn6nxo6R_5d6FiKWWM8GLj4jenXaNodbXeQqNUiwP3Z4Ih2-jH3jaO7xch2jvHWx1e7SrArYyjMZdGxiJyeZRjcKMMerxQaGOUyhOjE4yAEk0Z4jpCpCJSURhXoAsTaYG-WbkWFTrAKf-FkjIlCmHS3r1X28-n3qGHxUkklUmVpFOm6iFyIbov5XFjzMMnDx3hI3T7aGXWO7z2a3hVIVW2WarWG5hzg0VYuFe_cAn6Pn2XW0LgLC9Je70RGxZss__3zPXO3eXt9Q01-VUgRiT7U2b1iEj5ORujHjlsPCcSPUUEnDjwlS3gq6nWpj95pvpbOHkWQb-DxmA4cCvAHIJKBE4izzG6Q1CR4kPSIjSpaJqW1TaAZi3LzFa1zWmLjX42q8pM8s9Q_pmXfzYJ4Ov0nouysseTV6_WQ5RVVj7KZjoZwKdpM9onLbrogRte0TUY4KkQjwCWy6Gdvo4-GxGiCOBbPdazh_-_L--f7ss6zHeOfx5mh3tHBx_gpSCd8_ybVWiML6_cR0RRY7PmVZfBr-e2lTskFCl8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlVwQH3wSEtbI8EJLLK2s04OqEKlKx4V4gDS3oLtOIC07FJ20ao99W_0r_Tn8Es64yS7VKjckCLl4Dyc8Yznm_ibMcB6IpUx3muuvIy5crbkqUfDS2JZtrTL2q6q9nnc3j9Th92kOwN_mlwYolU2c2KYqIuBo3_k20JpKaVGeLFd1rSIk73O55vvnHaQopXWZjuNSkWO_I8xhm_DnYM9HOsNITpfT7_s83qHAe6kTkZcWqlF4oukwEBHWfR-sTDWKlWk1qQYDaWGssVNgqhFZKK0vkR3JrIS_bTybSp6gNP_Cy3RbaIt6a5-UOcvpOGht8UJJZNpnbBTpe0hiiHqL-V0Y_zDx_86xUdI99EqbXB-nVewUKNWtlup2WuY8f03MP-gluFb6IVUXu4IjbOiIvBdDdmgZLu9n5f-6trf3v_6TU1hRYgR4f6COTMkgn7BRqhTHhuviVBP0QEnPnxtF_hqqrsZToG1vghnzyLoJZjtD_p-BZhHgIkgShQFRnoIMDJ8SFbGNhMt23bGRdBqZJm7us45bbfRy6cVmkn-Oco_D_LPxxFsTu65qap8PHn1ajNEeW3xw3yqnxGsTZrRVmkBxvT94I6uwWBPxXhEsFwN7eR19NmIFkUEW81YTx_-_768e7ovn-AlWkn-7eD46D3MCVK5QMVZhdnR7Z3_gIBqZD8GzWVw_tym8hcIoC2p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-class+diagnosis+of+Alzheimer%E2%80%99s+disease+using+cascaded+three+dimensional-convolutional+neural+network&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Raju%2C+Manu&rft.au=Gopi%2C+Varun+P.&rft.au=Anitha%2C+V.+S.&rft.au=Wahid%2C+Khan+A.&rft.date=2020-12-01&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=43&rft.issue=4&rft.spage=1219&rft.epage=1228&rft_id=info:doi/10.1007%2Fs13246-020-00924-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13246_020_00924_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon