Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network
Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 43; no. 4; pp. 1219 - 1228 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2662-4729 0158-9938 2662-4737 2662-4737 1879-5447 |
DOI | 10.1007/s13246-020-00924-w |
Cover
Loading…
Abstract | Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn’t easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer’s Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD. |
---|---|
AbstractList | Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn’t easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer’s Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD. Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer's disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn't easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer's Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase to 130 million by 2050. Alzheimer's disease (AD) is the most common form of dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to the increasing number of patients due to the aging society. It isn't easy to cure AD, but early detection is crucial. This paper proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and spatial atrophy patterns of the brain related to Alzheimer's Disease and MCI are extracted from structural MRI images using cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extraction of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD. |
Author | Gopi, Varun P. Anitha, V. S. Wahid, Khan A. Raju, Manu |
Author_xml | – sequence: 1 givenname: Manu surname: Raju fullname: Raju, Manu organization: Department of Electronics and Communication Engineering Government Engineering College Wayanad, APJ Abdul Kalam Technological University – sequence: 2 givenname: Varun P. orcidid: 0000-0001-5593-3949 surname: Gopi fullname: Gopi, Varun P. email: varun@nitt.edu organization: Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli – sequence: 3 givenname: V. S. surname: Anitha fullname: Anitha, V. S. organization: Department of Computer Science and Engineering, Government Engineering College Wayanad, APJ Abdul Kalam Technological University – sequence: 4 givenname: Khan A. surname: Wahid fullname: Wahid, Khan A. organization: Department of Electrical and Computer Engineering, University of Saskatchewan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32926392$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhi1UREvpC7BAkdh0Y_AtdrKsKm5SERtYW04yOXVx7OJJegSrvgavx5PgnNOC1EUlS-PRfP9oZv7n5CCmCIS85OwNZ8y8RS6F0pQJRhlrhaLbJ-RIaC2oMtIc_PuL9pCcIF4xxkTNudH1M3IoRSu0bMURCZ-XMHvaB4dYDd5tYkKPVRqrs_DrEvwE-c_t77WE4BCqBX3cVL3D3g0wVPNlBijFCSL6FF2gfYo3KSzzLqsiLHkX5m3K31-Qp6MLCCd38Zh8e__u6_lHevHlw6fzswvaS1PPVHbSiBqGeuCNUh2vOROu65Qams41grPGlV2Uq7leFxk7GDVXoh21lgq0kMfkdN_3OqcfC-BsJ489hOAipAWtUEo0ipVX0NcP0Ku05DL6ShkppWG1KdSrO2rpJhjsdfaTyz_t_R0L0OyBPifEDKPt_ezWI8zZ-WA5s6trdu-aLa7ZnWt2W6TigfS--6MiuRdhgeMG8v-xH1H9BaEiqtQ |
CitedBy_id | crossref_primary_10_2174_1573405618666220823115848 crossref_primary_10_1007_s13246_022_01165_9 crossref_primary_10_1007_s12021_023_09625_7 crossref_primary_10_1007_s11277_023_10346_y crossref_primary_10_1016_j_heliyon_2024_e39037 crossref_primary_10_3389_fnagi_2023_1212275 crossref_primary_10_1016_j_heliyon_2023_e21626 crossref_primary_10_1016_j_ejrad_2023_110934 crossref_primary_10_1007_s00521_024_10420_x crossref_primary_10_1186_s12880_024_01250_3 crossref_primary_10_3390_bioengineering10060714 crossref_primary_10_1016_j_cmpb_2021_106294 crossref_primary_10_1080_03772063_2023_2205857 crossref_primary_10_4018_IJSI_309720 crossref_primary_10_1186_s12859_022_04903_8 crossref_primary_10_1007_s12046_023_02219_8 crossref_primary_10_1007_s11760_023_02586_z crossref_primary_10_1016_j_aej_2024_03_008 crossref_primary_10_1016_j_bspc_2021_103192 crossref_primary_10_4015_S1016237222500259 crossref_primary_10_1080_1206212X_2024_2380648 crossref_primary_10_4015_S1016237222500375 crossref_primary_10_3389_frai_2024_1456069 crossref_primary_10_3390_app132413051 crossref_primary_10_3390_jpm12050815 crossref_primary_10_4015_S1016237221500368 crossref_primary_10_1142_S0219467824500311 crossref_primary_10_1109_ACCESS_2023_3285115 |
Cites_doi | 10.1109/ACCESS.2020.2979753 10.1016/j.nicl.2018.101645 10.1038/nrneurol.2009.215 10.1371/journal.pone.0225759 10.1007/978-3-319-24888-2_10 10.1016/j.cogsys.2019.01.005 10.1038/nrneurol.2009.217 10.1109/TPAMI.2017.2709749 10.1038/s41598-020-62490-1 10.1016/j.cmpb.2019.105242, 10.1109/TPAMI.2018.2889096 10.1007/978-3-319-75417-8_27 10.1007/s00500-018-3421-5 10.1007/s12021-018-9370-4 10.1007/s11682-015-9356-x 10.1007/s00429-013-0687-3 10.1007/978-3-642-41016-1_21 10.1109/TBME.2014.2372011 10.4028/www.scientific.net/AMR.760-762.2086 10.1016/j.jacr.2017.12.028 10.1155/2016/9523849 10.1109/SocialCom.2013.127 10.1109/IJCNN.2017.7966129 10.1109/ICIP.2016.7532332 10.1109/ECS.2015.7124883 10.1109/ISBI.2014.6868045 10.1109/ISBI.2018.8363543 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2020 Australasian College of Physical Scientists and Engineers in Medicine 2020. |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2020 – notice: Australasian College of Physical Scientists and Engineers in Medicine 2020. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-020-00924-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-4737 1879-5447 |
EndPage | 1228 |
ExternalDocumentID | 32926392 10_1007_s13246_020_00924_w |
Genre | Journal Article |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AASML AATNV AAUYE AAYZH ABAKF ABDZT ABECU ABJNI ABMQK ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AFBBN AFLOW AFQWF AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 3V. 4.4 408 40D 53G 5GY 67N 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABUWG ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC ALIPV AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CSCUP DWQXO EIOEI EN4 ESBYG FRRFC FYJPI FYUFA GGRSB GJIRD GNUQQ GQ7 HCIFZ HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW K9. KOV KTM M1P M2P O9- O93 O9I O9J P2P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSQYO Q9U R9I RLLFE S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UKHRP UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 7X8 |
ID | FETCH-LOGICAL-c375t-3b3725ed5d1844b15102abb44d8ba82108a0254a5163292fbef61429f6634e623 |
IEDL.DBID | 7X7 |
ISSN | 2662-4729 0158-9938 2662-4737 |
IngestDate | Thu Jul 10 20:33:46 EDT 2025 Fri Jul 25 05:00:16 EDT 2025 Thu Apr 03 07:24:29 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Tue Jul 01 02:52:55 EDT 2025 Fri Feb 21 02:33:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Structural MRI Three dimensional-convolutional neural network Alzheimer’s disease Mild cognitive impairment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3b3725ed5d1844b15102abb44d8ba82108a0254a5163292fbef61429f6634e623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5593-3949 |
PMID | 32926392 |
PQID | 2473337057 |
PQPubID | 33672 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2442840840 proquest_journals_2473337057 pubmed_primary_32926392 crossref_citationtrail_10_1007_s13246_020_00924_w crossref_primary_10_1007_s13246_020_00924_w springer_journals_10_1007_s13246_020_00924_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 2020-Dec 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Phys Eng Sci Med |
PublicationTitleAlternate | Phys Eng Sci Med |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR1) 2014; 62 Nordberg, Rinne, Kadir, Långström (CR4) 2010; 6 Beejesh, Gopi, Hemanth (CR3) 2019; 55 Liu, Cheng, Wang, Wang, Initiative (CR14) 2018; 16 Karasawa, Liu, Ohwada (CR17) 2018 CR12 CR10 Cárdenas-Peña, Collazos-Huertas, Castellanos-Dominguez (CR16) 2016 Young Kanghan, Chul (CR13) 2019 Punjabi, Martersteck, Wang, Parrish, Katsaggelos (CR30) 2019; 14 Lian, Liu, Zhang, Shen (CR22) 2018 Suk, Lee, Shen, Initiative (CR2) 2015; 220 Gayathri, Krishna, Gopi, Palanisamy (CR26) 2020; 8 Frisoni, Fox, Jack, Scheltens, Thompson (CR5) 2010; 6 Anagnostopoulos, Giannoukos, Spenger, Simmons, Mecocci, Soininen, Kłoszewska, Vellas, Lovestone, Tsolaki (CR27) 2013 CR7 Vu, Ho, Yang, Kim, Song (CR18) 2018 Zheng, Yang, Tian (CR8) 2018; 40 CR25 Ebrahimighahnavieh, Luo, Chiong (CR9) 2020; 187 CR24 CR23 CR21 CR20 Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi (CR19) 2019 Selvaraju, De M Cogswell (CR29) 2020 Tong, Gray, Gao, Chen, Rueckert (CR15) 2015 Cheng, Liu, Suk, Shen, Zhang, Initiative (CR28) 2015; 9 Giger (CR6) 2018 He, Zhang, Shi (CR11) 2013; 760–762 L Zheng (924_CR8) 2018; 40 924_CR20 924_CR21 A Beejesh (924_CR3) 2019; 55 924_CR23 924_CR24 924_CR25 GB Frisoni (924_CR5) 2010; 6 S Basaia (924_CR19) 2019 T Tong (924_CR15) 2015 TD Vu (924_CR18) 2018 C Lian (924_CR22) 2018 R Selvaraju (924_CR29) 2020 A Punjabi (924_CR30) 2019; 14 S Gayathri (924_CR26) 2020; 8 S Liu (924_CR1) 2014; 62 924_CR10 H Karasawa (924_CR17) 2018 924_CR12 MA Ebrahimighahnavieh (924_CR9) 2020; 187 ML Giger (924_CR6) 2018 M Liu (924_CR14) 2018; 16 B Cheng (924_CR28) 2015; 9 HI Suk (924_CR2) 2015; 220 D Cárdenas-Peña (924_CR16) 2016 BS He (924_CR11) 2013; 760–762 924_CR7 CN Anagnostopoulos (924_CR27) 2013 OH Young Kanghan (924_CR13) 2019 A Nordberg (924_CR4) 2010; 6 |
References_xml | – volume: 8 start-page: 57497 year: 2020 end-page: 57504 ident: CR26 article-title: Automated binary and multiclass classification of diabetic retinopathy using Haralick and multiresolution features publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979753 – year: 2019 ident: CR19 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage doi: 10.1016/j.nicl.2018.101645 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: CR5 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – volume: 14 start-page: 1 issue: 12 year: 2019 end-page: 14 ident: CR30 article-title: Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0225759 – start-page: 77 year: 2015 end-page: 84 ident: CR15 article-title: Nonlinear graph fusion for multi-modal classification of Alzheimer’s disease publication-title: International workshop on machine learning in medical imaging doi: 10.1007/978-3-319-24888-2_10 – start-page: 336 year: 2020 end-page: 359 ident: CR29 article-title: Grad cam visual explanations from deep networks via gradient based localization publication-title: International Journal of Computer Vision – ident: CR12 – volume: 55 start-page: 135 year: 2019 end-page: 145 ident: CR3 article-title: Brain MR kurtosis imaging study: contrasting gray and white matter publication-title: Cognitive Syst Res doi: 10.1016/j.cogsys.2019.01.005 – volume: 6 start-page: 78 issue: 2 year: 2010 ident: CR4 article-title: The use of pet in Alzheimer disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.217 – ident: CR10 – volume: 40 start-page: 1224 issue: 5 year: 2018 end-page: 1244 ident: CR8 article-title: SIFT meets CNN: a decade survey of instance retrieval publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2709749 – ident: CR25 – ident: CR23 – ident: CR21 – year: 2019 ident: CR13 article-title: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning publication-title: Sci Rep doi: 10.1038/s41598-020-62490-1 – volume: 187 start-page: 105242 year: 2020 ident: CR9 article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105242, – year: 2018 ident: CR22 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2889096 – start-page: 287 year: 2018 end-page: 296 ident: CR17 article-title: Deep 3d convolutional neural network architectures for Alzheimer’s disease diagnosis publication-title: Asian conference on intelligent information and database systems doi: 10.1007/978-3-319-75417-8_27 – year: 2018 ident: CR18 article-title: Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection publication-title: Soft Comput doi: 10.1007/s00500-018-3421-5 – volume: 16 start-page: 295 issue: 3–4 year: 2018 end-page: 308 ident: CR14 article-title: Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis publication-title: Neuroinformatics doi: 10.1007/s12021-018-9370-4 – volume: 9 start-page: 913 issue: 4 year: 2015 end-page: 926 ident: CR28 article-title: Multimodal manifold-regularized transfer learning for mci conversion prediction publication-title: Brain Imaging Behav doi: 10.1007/s11682-015-9356-x – volume: 220 start-page: 841 issue: 2 year: 2015 end-page: 859 ident: CR2 article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0687-3 – start-page: 193 year: 2013 end-page: 202 ident: CR27 article-title: Classification models for Alzheimer’s disease detection publication-title: International conference on engineering applications of neural networks doi: 10.1007/978-3-642-41016-1_21 – volume: 62 start-page: 1132 issue: 4 year: 2014 end-page: 1140 ident: CR1 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – ident: CR7 – volume: 760–762 start-page: 2086 year: 2013 end-page: 2090 ident: CR11 article-title: Hippocampus segmentation techniques: a survey publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.760-762.2086 – year: 2018 ident: CR6 article-title: Machine learning in medical imaging publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.12.028 – ident: CR24 – ident: CR20 – year: 2016 ident: CR16 article-title: Centered kernel alignment enhancing neural network pretraining for MRI-based dementia diagnosis publication-title: Comput Math Methods Med doi: 10.1155/2016/9523849 – volume: 40 start-page: 1224 issue: 5 year: 2018 ident: 924_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2709749 – ident: 924_CR24 doi: 10.1109/SocialCom.2013.127 – volume: 55 start-page: 135 year: 2019 ident: 924_CR3 publication-title: Cognitive Syst Res doi: 10.1016/j.cogsys.2019.01.005 – year: 2019 ident: 924_CR13 publication-title: Sci Rep doi: 10.1038/s41598-020-62490-1 – year: 2018 ident: 924_CR22 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2889096 – ident: 924_CR7 doi: 10.1109/IJCNN.2017.7966129 – volume: 187 start-page: 105242 year: 2020 ident: 924_CR9 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105242, – volume: 8 start-page: 57497 year: 2020 ident: 924_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979753 – start-page: 336 volume-title: International Journal of Computer Vision year: 2020 ident: 924_CR29 – ident: 924_CR12 doi: 10.1109/ICIP.2016.7532332 – year: 2018 ident: 924_CR6 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.12.028 – year: 2016 ident: 924_CR16 publication-title: Comput Math Methods Med doi: 10.1155/2016/9523849 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: 924_CR5 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – ident: 924_CR25 doi: 10.1109/ECS.2015.7124883 – volume: 14 start-page: 1 issue: 12 year: 2019 ident: 924_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0225759 – volume: 6 start-page: 78 issue: 2 year: 2010 ident: 924_CR4 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.217 – start-page: 77 volume-title: International workshop on machine learning in medical imaging year: 2015 ident: 924_CR15 doi: 10.1007/978-3-319-24888-2_10 – volume: 760–762 start-page: 2086 year: 2013 ident: 924_CR11 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.760-762.2086 – year: 2018 ident: 924_CR18 publication-title: Soft Comput doi: 10.1007/s00500-018-3421-5 – volume: 220 start-page: 841 issue: 2 year: 2015 ident: 924_CR2 publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0687-3 – ident: 924_CR10 doi: 10.1109/ISBI.2014.6868045 – ident: 924_CR21 – ident: 924_CR23 – year: 2019 ident: 924_CR19 publication-title: NeuroImage doi: 10.1016/j.nicl.2018.101645 – ident: 924_CR20 doi: 10.1109/ISBI.2018.8363543 – start-page: 193 volume-title: International conference on engineering applications of neural networks year: 2013 ident: 924_CR27 doi: 10.1007/978-3-642-41016-1_21 – volume: 16 start-page: 295 issue: 3–4 year: 2018 ident: 924_CR14 publication-title: Neuroinformatics doi: 10.1007/s12021-018-9370-4 – start-page: 287 volume-title: Asian conference on intelligent information and database systems year: 2018 ident: 924_CR17 doi: 10.1007/978-3-319-75417-8_27 – volume: 62 start-page: 1132 issue: 4 year: 2014 ident: 924_CR1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 9 start-page: 913 issue: 4 year: 2015 ident: 924_CR28 publication-title: Brain Imaging Behav doi: 10.1007/s11682-015-9356-x |
SSID | ssj0002511765 ssj0024368 |
Score | 2.4185438 |
Snippet | Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with dementia worldwide, and it may increase... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1219 |
SubjectTerms | Algorithms Artificial neural networks Atrophy Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain Classification Classifiers Dementia Diagnosis Feature extraction Image segmentation Magnetic resonance imaging Medical and Radiation Physics Medical imaging Neural networks Scientific Paper Social problems Support vector machines |
Title | Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network |
URI | https://link.springer.com/article/10.1007/s13246-020-00924-w https://www.ncbi.nlm.nih.gov/pubmed/32926392 https://www.proquest.com/docview/2473337057 https://www.proquest.com/docview/2442840840 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8BfRkPCNgGga7KpL1t1lLbaZIn1E4taA_VNK1S3yLbcUal0kL_CIknvgZfj0_CneO2IARSlEhx4iQ-2_e73O_OAN9iIZWyNmHSiohJo0uWWhx4cSTKZmKylqmyffZbFwP5exgP_Q-3uadVruZEN1EXU0P_yH9ymQghEoQXZ9c3jFaNIu-qX0JjG2qUuoyMr2SYPMu150LhUOPhoM5E6oNmqtA5RBJEv6W4arRB2O1LxfQKbb7ylDoF1NuHPY8cw3Yl6gPYspND2H2WT_AjjF04LTOEiMOiItGN5uG0DNvju0s7urKzx_sHKnJemZBI7_9Do-ZEki_CBcrVYuEVkdoJoTPipPu-iY-m3Jfu4Jjjn2DQ6_77dcH8cgrMiCReMKFFwmNbxAVadVKjqo-40lrKItUqRdMvVRQar2KEaDzjpbYl6m6elQhKpEWY9Bl2JtOJPYbQIshDIMOLAq0tVPIZVpKVkc54U7eMMgE0V22ZG59rnJa8GOebLMnU_jm2f-7aP78N4Pv6nusq08a7V9dXIsr9qJvnmz4SwNd1MY4XcoKoiZ0u6Ro0uGSEWwBHlWjXj6PPRsTGA_ixkvWm8rff5eT9dzmFD5z6mePA1GFnMVvaL4hkFrrhuivu0955A2rtXqfTx2On2__zF88OePsJDyzzuA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB6h7YFyqFpoIS0FV2pPrdWs7WySQ4UQsCw_5QTS3lLbcWClZZeyi1btidfgJfpQPAkzTrILQuWGFCkH58cZz3i-ib8ZA3yOpNLauZgrJ0OurCl44tDwolAWzdimLVtW-zxqdU7UfjfqzsG_OheGaJX1nOgn6nxo6R_5d6FiKWWM8GLj4jenXaNodbXeQqNUiwP3Z4Ih2-jH3jaO7xch2jvHWx1e7SrArYyjMZdGxiJyeZRjcKMMerxQaGOUyhOjE4yAEk0Z4jpCpCJSURhXoAsTaYG-WbkWFTrAKf-FkjIlCmHS3r1X28-n3qGHxUkklUmVpFOm6iFyIbov5XFjzMMnDx3hI3T7aGXWO7z2a3hVIVW2WarWG5hzg0VYuFe_cAn6Pn2XW0LgLC9Je70RGxZss__3zPXO3eXt9Q01-VUgRiT7U2b1iEj5ORujHjlsPCcSPUUEnDjwlS3gq6nWpj95pvpbOHkWQb-DxmA4cCvAHIJKBE4izzG6Q1CR4kPSIjSpaJqW1TaAZi3LzFa1zWmLjX42q8pM8s9Q_pmXfzYJ4Ov0nouysseTV6_WQ5RVVj7KZjoZwKdpM9onLbrogRte0TUY4KkQjwCWy6Gdvo4-GxGiCOBbPdazh_-_L--f7ss6zHeOfx5mh3tHBx_gpSCd8_ybVWiML6_cR0RRY7PmVZfBr-e2lTskFCl8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlVwQH3wSEtbI8EJLLK2s04OqEKlKx4V4gDS3oLtOIC07FJ20ao99W_0r_Tn8Es64yS7VKjckCLl4Dyc8Yznm_ibMcB6IpUx3muuvIy5crbkqUfDS2JZtrTL2q6q9nnc3j9Th92kOwN_mlwYolU2c2KYqIuBo3_k20JpKaVGeLFd1rSIk73O55vvnHaQopXWZjuNSkWO_I8xhm_DnYM9HOsNITpfT7_s83qHAe6kTkZcWqlF4oukwEBHWfR-sTDWKlWk1qQYDaWGssVNgqhFZKK0vkR3JrIS_bTybSp6gNP_Cy3RbaIt6a5-UOcvpOGht8UJJZNpnbBTpe0hiiHqL-V0Y_zDx_86xUdI99EqbXB-nVewUKNWtlup2WuY8f03MP-gluFb6IVUXu4IjbOiIvBdDdmgZLu9n5f-6trf3v_6TU1hRYgR4f6COTMkgn7BRqhTHhuviVBP0QEnPnxtF_hqqrsZToG1vghnzyLoJZjtD_p-BZhHgIkgShQFRnoIMDJ8SFbGNhMt23bGRdBqZJm7us45bbfRy6cVmkn-Oco_D_LPxxFsTu65qap8PHn1ajNEeW3xw3yqnxGsTZrRVmkBxvT94I6uwWBPxXhEsFwN7eR19NmIFkUEW81YTx_-_768e7ovn-AlWkn-7eD46D3MCVK5QMVZhdnR7Z3_gIBqZD8GzWVw_tym8hcIoC2p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-class+diagnosis+of+Alzheimer%E2%80%99s+disease+using+cascaded+three+dimensional-convolutional+neural+network&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Raju%2C+Manu&rft.au=Gopi%2C+Varun+P.&rft.au=Anitha%2C+V.+S.&rft.au=Wahid%2C+Khan+A.&rft.date=2020-12-01&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=43&rft.issue=4&rft.spage=1219&rft.epage=1228&rft_id=info:doi/10.1007%2Fs13246-020-00924-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13246_020_00924_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |