Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries

Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning e...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 216; pp. 22 - 27
Main Authors Chen, Shuangqiang, Wang, Yong, Ahn, Hyojun, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7753
1873-2755
DOI10.1016/j.jpowsour.2012.05.051

Cover

Loading…
Abstract Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin–graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh g−1. The as-prepared tin–graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets. ► Sn–GNS were prepared by a microwave hydrothermal synthesis and a one-step H2 reduction. ► Sn nanoparticles are homogenously sandwiched between highly conductive and flexible GNS. ► Altering the ratio between tin and graphene had critical influences on their morphologies. ► Sn–GNS exhibited a high lithium storage capacity of 1407 mAh g−1.
AbstractList Tin-graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin-graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh ga1. The as-prepared tin-graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets.
Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin–graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh g−1. The as-prepared tin–graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets. ► Sn–GNS were prepared by a microwave hydrothermal synthesis and a one-step H2 reduction. ► Sn nanoparticles are homogenously sandwiched between highly conductive and flexible GNS. ► Altering the ratio between tin and graphene had critical influences on their morphologies. ► Sn–GNS exhibited a high lithium storage capacity of 1407 mAh g−1.
Author Chen, Shuangqiang
Ahn, Hyojun
Wang, Guoxiu
Wang, Yong
Author_xml – sequence: 1
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, PR China
– sequence: 2
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, PR China
– sequence: 3
  givenname: Hyojun
  surname: Ahn
  fullname: Ahn, Hyojun
  organization: School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660-701, Republic of Korea
– sequence: 4
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  email: Guoxiu.wang@uts.edu.au
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26293772$$DView record in Pascal Francis
BookMark eNqFkU1qHDEQhUWwIWM7VwjaBLLpiX5aUjdkkWCcH3DwxlkLtbrk1tAtdSSNzexyh9wwJ4nMOFlkYyiogvpeQb13hk5CDIDQa0q2lFD5brfdrfEhx33aMkLZloha9AXa0E7xhikhTtCGcNU1Sgn-Ep3lvCOEUKrIBs3fvE3xwdwDng5jimWCtJgZ50OoY_YZR4cnfzfhFZKLdRcs4OLD75-_7pJZJwiAgwnRxmWN2RfIuGJ49mXy-wX7GPBgSoHkIV-gU2fmDK-e-jn6_unq9vJLc33z-evlx-vGciVKwzszyo70RrREgmTQKieJcL0clBucZWPHHBctHXo-kn4gboQexs61nZCqF_wcvT3eXVP8sYdc9OKzhXk2AeI-a0p4J0nfMlXRN0-oydbMLtX_fNZr8otJB80k67lSrHLyyFW3ck7g_iGU6McY9E7_jUE_xqCJqEWr8P1_QuuLKdWXkoyfn5d_OMqh-nXvIelsPdQMRp_AFj1G_9yJP_Ttrv8
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_jallcom_2019_151870
crossref_primary_10_1039_C2DT32137H
crossref_primary_10_1039_C4EE02578D
crossref_primary_10_1039_C4RA02348J
crossref_primary_10_1021_acsami_5b08340
crossref_primary_10_1002_advs_201600289
crossref_primary_10_1039_C7TA03323K
crossref_primary_10_1039_C4TA02021A
crossref_primary_10_1016_j_cis_2015_04_005
crossref_primary_10_1016_j_est_2024_114856
crossref_primary_10_1021_acsnano_0c05896
crossref_primary_10_1021_am500020e
crossref_primary_10_2139_ssrn_4188753
crossref_primary_10_1016_j_mser_2015_12_003
crossref_primary_10_20964_2018_12_28
crossref_primary_10_1021_acsnano_5b07333
crossref_primary_10_3390_molecules26144316
crossref_primary_10_1016_j_est_2020_101386
crossref_primary_10_1002_smll_201203155
crossref_primary_10_1016_j_progpolymsci_2016_12_010
crossref_primary_10_1039_c3cp50220a
crossref_primary_10_1021_cr3001884
crossref_primary_10_1039_C6RA01325B
crossref_primary_10_1016_j_est_2024_112208
crossref_primary_10_1021_nn406105n
crossref_primary_10_1016_j_matchemphys_2021_124611
crossref_primary_10_1016_j_electacta_2016_10_042
crossref_primary_10_1016_S1452_3981_23_06637_3
crossref_primary_10_1016_j_electacta_2014_02_066
crossref_primary_10_1016_j_jpowsour_2013_12_034
crossref_primary_10_1007_s10008_014_2497_9
crossref_primary_10_1021_cr400366s
crossref_primary_10_1039_C5TA06550J
crossref_primary_10_1007_s11581_014_1258_1
crossref_primary_10_1002_adma_201603421
crossref_primary_10_1016_j_electacta_2014_01_122
crossref_primary_10_1016_j_electacta_2014_06_024
crossref_primary_10_1016_j_apsusc_2017_04_252
crossref_primary_10_1111_jace_12849
crossref_primary_10_3390_molecules28093923
crossref_primary_10_1021_acs_jpcc_7b02784
crossref_primary_10_1016_j_electacta_2014_01_004
crossref_primary_10_1016_j_apsusc_2014_08_073
crossref_primary_10_1007_s11581_018_2670_8
crossref_primary_10_1016_j_apsusc_2015_01_236
crossref_primary_10_1002_adma_201700431
crossref_primary_10_1016_j_flatc_2017_08_002
crossref_primary_10_1016_j_jallcom_2017_06_005
crossref_primary_10_1016_j_jcis_2017_04_048
crossref_primary_10_1039_D2TC02233H
crossref_primary_10_1016_j_diamond_2022_109610
crossref_primary_10_1016_j_electacta_2014_07_077
crossref_primary_10_20964_2018_03_63
crossref_primary_10_1002_admi_201901552
crossref_primary_10_1016_j_scitotenv_2022_157769
crossref_primary_10_1149_2_0031706jss
crossref_primary_10_1007_s11581_015_1577_x
crossref_primary_10_1039_C4NR02999B
crossref_primary_10_1039_C5TA01228G
crossref_primary_10_1002_batt_202300304
crossref_primary_10_1016_j_matlet_2016_09_060
crossref_primary_10_1007_s13391_014_4153_z
crossref_primary_10_1039_C4CC08650C
crossref_primary_10_1016_j_jcis_2020_12_086
crossref_primary_10_1177_00219983231186459
crossref_primary_10_1039_c3nr02872k
crossref_primary_10_1016_j_jallcom_2013_09_033
crossref_primary_10_1039_C4NR07068B
crossref_primary_10_1016_j_matpr_2015_09_008
crossref_primary_10_1016_j_electacta_2017_05_139
crossref_primary_10_1002_adfm_201503711
crossref_primary_10_1016_j_ijhydene_2015_06_054
crossref_primary_10_1016_j_jallcom_2017_11_250
crossref_primary_10_1016_j_jpowsour_2014_10_008
crossref_primary_10_1039_C5RA11439J
crossref_primary_10_3390_ma13010119
crossref_primary_10_1016_j_electacta_2013_05_052
crossref_primary_10_1021_am508136k
crossref_primary_10_1016_j_jechem_2018_05_001
crossref_primary_10_1016_j_electacta_2014_02_005
crossref_primary_10_20964_2017_08_17
crossref_primary_10_1016_j_jpowsour_2012_11_085
crossref_primary_10_1038_srep09055
Cites_doi 10.1016/j.jpowsour.2008.09.093
10.1016/j.jpowsour.2008.11.111
10.1021/jp1114724
10.1021/ja01539a017
10.1039/c0jm04346j
10.1016/j.jpowsour.2004.12.016
10.1016/j.elecom.2010.07.005
10.1016/j.elecom.2011.02.013
10.1149/1.1799491
10.1016/j.jpowsour.2007.11.003
10.1016/j.ssi.2010.03.032
10.1007/s12274-010-0063-z
10.1039/c0jm01573c
10.1126/science.1192907
10.1039/c1ee01592c
10.1002/adma.200700748
10.1039/c0jm00638f
10.1021/nl8036323
10.1002/adma.201003178
10.1126/science.1199595
10.1126/science.1167130
10.1021/jp2061128
10.1016/j.elecom.2009.09.019
10.3365/eml.2009.12.183
10.1021/jp1050047
10.1038/nmat1849
10.1063/1.3643444
10.1039/c0jm00829j
10.1016/S1388-2481(03)00035-3
10.1007/s12274-010-0050-4
10.1039/C0JM03410J
10.1021/nl802484w
10.1016/j.carbon.2010.08.052
10.1016/j.jssc.2009.01.030
10.1103/PhysRevB.74.075422
10.1021/cm902413c
10.1016/j.jpowsour.2010.11.043
10.1039/c0jm04571c
10.1002/adma.200702928
10.1002/adfm.200500243
10.1016/j.jssc.2011.03.052
10.1002/adma.200802290
10.1016/j.carbon.2011.09.040
10.1038/nature04235
10.1021/ic1025747
10.1007/s11581-008-0236-x
10.1039/b914650d
10.1016/j.jpowsour.2011.04.015
10.1149/1.1647571
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7SU
7TB
8FD
C1K
FR3
KR7
L7M
DOI 10.1016/j.jpowsour.2012.05.051
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 27
ExternalDocumentID 26293772
10_1016_j_jpowsour_2012_05_051
S0378775312009202
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
EFKBS
IQODW
7SP
7SU
7TB
8FD
C1K
FR3
KR7
L7M
ID FETCH-LOGICAL-c375t-38ad6809a5406e62e47f605f96b7fbfc2d82f3541b93d09b0fde9ed8f48567953
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Fri Jul 11 03:02:39 EDT 2025
Mon Jul 21 09:14:24 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Tue Jul 01 04:22:47 EDT 2025
Fri Feb 23 02:31:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium ion batteries
Graphene nanosheets
Microwave hydrothermal synthesis
Tin nanoparticles
Hydrogen reduction
Performance evaluation
Nanosheet
Anode
Hydrogen
Nanoparticle
Alkaline storage battery
Lithium
Field emission
Electrode material
Synergism
Electrochemical characteristic
Storage capacity
Nanocomposite
High performance
Scanning electron microscopy
Transmission microscope
Sandwich structure
Secondary cell
Electron microscopy
Field emission microscopy
Lithium battery
Three dimensional model
Transmission electron microscopy
Hydrothermal synthesis
Graphene
Morphology
Nanostructured materials
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-38ad6809a5406e62e47f605f96b7fbfc2d82f3541b93d09b0fde9ed8f48567953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1038609427
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1038609427
pascalfrancis_primary_26293772
crossref_primary_10_1016_j_jpowsour_2012_05_051
crossref_citationtrail_10_1016_j_jpowsour_2012_05_051
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_05_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-15
PublicationDateYYYYMMDD 2012-10-15
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cheng, Lu, Deng, Chung, Zhang, Li (bib6) 2010; 3
Wang, Kim, Choe, Kim, Lee (bib29) 2011; 23
Kim, Kim, Park, Gwon, Seo, Kim, Kang (bib38) 2010; 3
Wu, Wu, Wang (bib5) 2011; 13
Alicea, Fisher (bib27) 2006; 74
Wang, Lee (bib12) 2005; 144
Zhang, Lei, Yin, Chen, Li, Wang, Wang (bib34) 2010; 20
Guo, Shu, Tang, Bai, Wang, Chen (bib49) 2008; 177
Li, Lv, Lu, Li (bib37) 2010; 114
Harrison, Manthiram (bib39) 2011; 50
Huang, Tu, Xia, Wang, Xiang, Zhang, Zhou (bib10) 2009; 188
Yang, Cao, Liu, Chen, Jiao (bib24) 2010; 181
Zhong, Wang, Chen, Liu (bib41) 2011; 115
Xu, Cao, Heath (bib33) 2010; 329
Tao, Gao, Wen, Wang, Li, Xu (bib7) 2009; 182
Pirkle, Chan, Venugopal, Hinojos, Magnuson, McDonnell, Colombo, Vogel, Ruoff, Wallace (bib26) 2011; 99
Wang, Lee (bib13) 2003; 5
Cui, Ruffo, Chan, Peng, Cui (bib2) 2009; 9
Basch, Albering (bib21) 2011; 196
Murugan, Muraliganth, Manthiram (bib48) 2009; 21
Abanin, Morozov, Ponomarenko, Gorbachev, Mayorov, Katsnelson, Watanabe, Taniguchi, Novoselov, Levitov, Geim (bib31) 2011; 332
Zhu, Zhu, Murali, Stoller, Ruoff (bib42) 2011; 196
Chen, Cao, Qian, Ai, Yang (bib22) 2010; 20
Zhang, Lei, Du, Yin, Chen, Li, Wang, Wang (bib47) 2011; 21
Do, Dai (bib9) 2009; 189
Derrien, Hassoun, Panero, Scrosati (bib17) 2007; 19
Elias, Nair, Mohiuddin, Morozov, Blake, Halsall, Ferrari, Boukhvalov, Katsnelson, Geim, Novoselov (bib28) 2009; 323
Wang, Lee, Chen (bib4) 2004; 151
Wang, Wang, Wang, Park, Dou, Ahn, Kim (bib35) 2009; 19
Wu, Chen, Chen, Wu, Li, Chen, Zhao (bib20) 2011; 115
Chen, Wang (bib43) 2010; 20
Liang, Zhu, Lian, Yang, Wang (bib46) 2011; 184
Lucas, Pollak, Kostecki (bib3) 2009; 11
Hummers, Offeman (bib44) 1958; 80
Wang, Zhou, Yao, Zhang, Liu (bib45) 2011; 49
Wu, Wang (bib19) 2011; 21
Han, Jang, Kim, Oh, Hyeon (bib14) 2005; 15
Geim, Novoselov (bib25) 2007; 6
Yoon, Manthiram (bib40) 2011; 21
Paek, Yoo, Honma (bib15) 2009; 9
Ji, Tan, Kuykendall, An, Fu, Battaglia, Zhang (bib36) 2011; 4
Malini, Uma, Sheela, Ganesan, Renganathan (bib1) 2009; 15
Chen, Chen, Wu, Pan, Wang (bib23) 2010; 12
Sun, Wang, Su, Xiao, Ahn, Wang (bib30) 2012; 50
Zhang, Feng, Zhai, Jiang, Li, Fan (bib18) 2009; 21
Zhang, Tan, Stormer, Kim (bib32) 2005; 438
Kim, Ahn, Kim, Kim, Kweon, Nam, Kim, Ahn, Hong (bib8) 2009; 5
Wang, Lee, Deivaraj (bib11) 2004; 151
Hassoun, Derrien, Panero, Scrosati (bib16) 2008; 20
Hummers (10.1016/j.jpowsour.2012.05.051_bib44) 1958; 80
Cheng (10.1016/j.jpowsour.2012.05.051_bib6) 2010; 3
Ji (10.1016/j.jpowsour.2012.05.051_bib36) 2011; 4
Wu (10.1016/j.jpowsour.2012.05.051_bib19) 2011; 21
Wang (10.1016/j.jpowsour.2012.05.051_bib45) 2011; 49
Cui (10.1016/j.jpowsour.2012.05.051_bib2) 2009; 9
Paek (10.1016/j.jpowsour.2012.05.051_bib15) 2009; 9
Li (10.1016/j.jpowsour.2012.05.051_bib37) 2010; 114
Wang (10.1016/j.jpowsour.2012.05.051_bib13) 2003; 5
Xu (10.1016/j.jpowsour.2012.05.051_bib33) 2010; 329
Lucas (10.1016/j.jpowsour.2012.05.051_bib3) 2009; 11
Elias (10.1016/j.jpowsour.2012.05.051_bib28) 2009; 323
Zhang (10.1016/j.jpowsour.2012.05.051_bib47) 2011; 21
Tao (10.1016/j.jpowsour.2012.05.051_bib7) 2009; 182
Han (10.1016/j.jpowsour.2012.05.051_bib14) 2005; 15
Alicea (10.1016/j.jpowsour.2012.05.051_bib27) 2006; 74
Wu (10.1016/j.jpowsour.2012.05.051_bib20) 2011; 115
Wang (10.1016/j.jpowsour.2012.05.051_bib35) 2009; 19
Derrien (10.1016/j.jpowsour.2012.05.051_bib17) 2007; 19
Sun (10.1016/j.jpowsour.2012.05.051_bib30) 2012; 50
Zhang (10.1016/j.jpowsour.2012.05.051_bib34) 2010; 20
Liang (10.1016/j.jpowsour.2012.05.051_bib46) 2011; 184
Malini (10.1016/j.jpowsour.2012.05.051_bib1) 2009; 15
Geim (10.1016/j.jpowsour.2012.05.051_bib25) 2007; 6
Kim (10.1016/j.jpowsour.2012.05.051_bib8) 2009; 5
Basch (10.1016/j.jpowsour.2012.05.051_bib21) 2011; 196
Zhang (10.1016/j.jpowsour.2012.05.051_bib32) 2005; 438
Yoon (10.1016/j.jpowsour.2012.05.051_bib40) 2011; 21
Chen (10.1016/j.jpowsour.2012.05.051_bib23) 2010; 12
Chen (10.1016/j.jpowsour.2012.05.051_bib22) 2010; 20
Pirkle (10.1016/j.jpowsour.2012.05.051_bib26) 2011; 99
Guo (10.1016/j.jpowsour.2012.05.051_bib49) 2008; 177
Wang (10.1016/j.jpowsour.2012.05.051_bib12) 2005; 144
Wu (10.1016/j.jpowsour.2012.05.051_bib5) 2011; 13
Wang (10.1016/j.jpowsour.2012.05.051_bib11) 2004; 151
Harrison (10.1016/j.jpowsour.2012.05.051_bib39) 2011; 50
Huang (10.1016/j.jpowsour.2012.05.051_bib10) 2009; 188
Wang (10.1016/j.jpowsour.2012.05.051_bib29) 2011; 23
Zhu (10.1016/j.jpowsour.2012.05.051_bib42) 2011; 196
Abanin (10.1016/j.jpowsour.2012.05.051_bib31) 2011; 332
Hassoun (10.1016/j.jpowsour.2012.05.051_bib16) 2008; 20
Murugan (10.1016/j.jpowsour.2012.05.051_bib48) 2009; 21
Do (10.1016/j.jpowsour.2012.05.051_bib9) 2009; 189
Zhang (10.1016/j.jpowsour.2012.05.051_bib18) 2009; 21
Yang (10.1016/j.jpowsour.2012.05.051_bib24) 2010; 181
Kim (10.1016/j.jpowsour.2012.05.051_bib38) 2010; 3
Chen (10.1016/j.jpowsour.2012.05.051_bib43) 2010; 20
Wang (10.1016/j.jpowsour.2012.05.051_bib4) 2004; 151
Zhong (10.1016/j.jpowsour.2012.05.051_bib41) 2011; 115
References_xml – volume: 189
  start-page: 204
  year: 2009
  ident: bib9
  publication-title: J. Power Sources
– volume: 115
  start-page: 6057
  year: 2011
  ident: bib20
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1845
  year: 2005
  ident: bib14
  publication-title: Adv. Funct. Mater.
– volume: 80
  start-page: 1339
  year: 1958
  ident: bib44
  publication-title: J. Am. Chem. Soc.
– volume: 177
  start-page: 205
  year: 2008
  ident: bib49
  publication-title: J. Power Sources
– volume: 9
  start-page: 72
  year: 2009
  ident: bib15
  publication-title: Nano Lett.
– volume: 4
  start-page: 3611
  year: 2011
  ident: bib36
  publication-title: Eng. Environ. Sci.
– volume: 11
  start-page: 2157
  year: 2009
  ident: bib3
  publication-title: Electrochem. Commun.
– volume: 151
  start-page: A563
  year: 2004
  ident: bib4
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 3290
  year: 2011
  ident: bib21
  publication-title: J. Power Sources
– volume: 438
  start-page: 201
  year: 2005
  ident: bib32
  publication-title: Nature
– volume: 19
  start-page: 8378
  year: 2009
  ident: bib35
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 755
  year: 2011
  ident: bib29
  publication-title: Adv. Mater.
– volume: 114
  start-page: 21770
  year: 2010
  ident: bib37
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 3613
  year: 2011
  ident: bib39
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 491
  year: 2009
  ident: bib2
  publication-title: Nano Lett.
– volume: 21
  start-page: 2299
  year: 2009
  ident: bib18
  publication-title: Adv. Mater.
– volume: 74
  start-page: 075422
  year: 2006
  ident: bib27
  publication-title: Phys. Rev. B
– volume: 181
  start-page: 678
  year: 2010
  ident: bib24
  publication-title: Solid State Ionics
– volume: 20
  start-page: 3169
  year: 2008
  ident: bib16
  publication-title: Adv. Mater.
– volume: 151
  start-page: A1804
  year: 2004
  ident: bib11
  publication-title: J. Electrochem. Soc.
– volume: 99
  start-page: 122108
  year: 2011
  ident: bib26
  publication-title: Appl. Phys. Lett.
– volume: 196
  start-page: 6473
  year: 2011
  ident: bib42
  publication-title: J. Power Sources
– volume: 184
  start-page: 1400
  year: 2011
  ident: bib46
  publication-title: J. Solid State Chem.
– volume: 49
  start-page: 133
  year: 2011
  ident: bib45
  publication-title: Carbon
– volume: 5
  start-page: 292
  year: 2003
  ident: bib13
  publication-title: Electrochem. Commun.
– volume: 21
  start-page: 4082
  year: 2011
  ident: bib40
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 895
  year: 2010
  ident: bib6
  publication-title: Nano Res.
– volume: 323
  start-page: 610
  year: 2009
  ident: bib28
  publication-title: Science
– volume: 50
  start-page: 727
  year: 2012
  ident: bib30
  publication-title: Carbon
– volume: 182
  start-page: 1055
  year: 2009
  ident: bib7
  publication-title: J. Solid State Chem.
– volume: 21
  start-page: 1673
  year: 2011
  ident: bib47
  publication-title: J. Mater. Chem.
– volume: 332
  start-page: 328
  year: 2011
  ident: bib31
  publication-title: Science
– volume: 144
  start-page: 220
  year: 2005
  ident: bib12
  publication-title: J. Power Sources
– volume: 12
  start-page: 1302
  year: 2010
  ident: bib23
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 183
  year: 2007
  ident: bib25
  publication-title: Nat. Mater.
– volume: 21
  start-page: 5004
  year: 2009
  ident: bib48
  publication-title: Chem. Mater.
– volume: 13
  start-page: 433
  year: 2011
  ident: bib5
  publication-title: Electrochem. Commun.
– volume: 19
  start-page: 2336
  year: 2007
  ident: bib17
  publication-title: Adv. Mater.
– volume: 3
  start-page: 813
  year: 2010
  ident: bib38
  publication-title: Nano Res.
– volume: 115
  start-page: 25115
  year: 2011
  ident: bib41
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 183
  year: 2009
  ident: bib8
  publication-title: Electron. Mater. Lett.
– volume: 188
  start-page: 588
  year: 2009
  ident: bib10
  publication-title: J. Power Sources
– volume: 20
  start-page: 9735
  year: 2010
  ident: bib43
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 6636
  year: 2011
  ident: bib19
  publication-title: J. Mater. Chem.
– volume: 329
  start-page: 1188
  year: 2010
  ident: bib33
  publication-title: Science
– volume: 20
  start-page: 5538
  year: 2010
  ident: bib34
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 7266
  year: 2010
  ident: bib22
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 301
  year: 2009
  ident: bib1
  publication-title: Ionics
– volume: 189
  start-page: 204
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.093
– volume: 188
  start-page: 588
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.111
– volume: 115
  start-page: 6057
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1114724
– volume: 80
  start-page: 1339
  year: 1958
  ident: 10.1016/j.jpowsour.2012.05.051_bib44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 21
  start-page: 6636
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib19
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04346j
– volume: 144
  start-page: 220
  year: 2005
  ident: 10.1016/j.jpowsour.2012.05.051_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.12.016
– volume: 12
  start-page: 1302
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib23
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.07.005
– volume: 13
  start-page: 433
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib5
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.02.013
– volume: 151
  start-page: A1804
  year: 2004
  ident: 10.1016/j.jpowsour.2012.05.051_bib11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1799491
– volume: 177
  start-page: 205
  year: 2008
  ident: 10.1016/j.jpowsour.2012.05.051_bib49
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.003
– volume: 181
  start-page: 678
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib24
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.03.032
– volume: 3
  start-page: 895
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib6
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0063-z
– volume: 20
  start-page: 9735
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib43
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01573c
– volume: 329
  start-page: 1188
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib33
  publication-title: Science
  doi: 10.1126/science.1192907
– volume: 4
  start-page: 3611
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib36
  publication-title: Eng. Environ. Sci.
  doi: 10.1039/c1ee01592c
– volume: 19
  start-page: 2336
  year: 2007
  ident: 10.1016/j.jpowsour.2012.05.051_bib17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700748
– volume: 20
  start-page: 5538
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib34
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00638f
– volume: 9
  start-page: 491
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib2
  publication-title: Nano Lett.
  doi: 10.1021/nl8036323
– volume: 23
  start-page: 755
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003178
– volume: 332
  start-page: 328
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib31
  publication-title: Science
  doi: 10.1126/science.1199595
– volume: 323
  start-page: 610
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib28
  publication-title: Science
  doi: 10.1126/science.1167130
– volume: 115
  start-page: 25115
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2061128
– volume: 11
  start-page: 2157
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib3
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.09.019
– volume: 5
  start-page: 183
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib8
  publication-title: Electron. Mater. Lett.
  doi: 10.3365/eml.2009.12.183
– volume: 114
  start-page: 21770
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1050047
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.jpowsour.2012.05.051_bib25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 99
  start-page: 122108
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3643444
– volume: 20
  start-page: 7266
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib22
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00829j
– volume: 5
  start-page: 292
  year: 2003
  ident: 10.1016/j.jpowsour.2012.05.051_bib13
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(03)00035-3
– volume: 3
  start-page: 813
  year: 2010
  ident: 10.1016/j.jpowsour.2012.05.051_bib38
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0050-4
– volume: 21
  start-page: 1673
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib47
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM03410J
– volume: 9
  start-page: 72
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib15
  publication-title: Nano Lett.
  doi: 10.1021/nl802484w
– volume: 49
  start-page: 133
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib45
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.08.052
– volume: 182
  start-page: 1055
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib7
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.01.030
– volume: 74
  start-page: 075422
  year: 2006
  ident: 10.1016/j.jpowsour.2012.05.051_bib27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.075422
– volume: 21
  start-page: 5004
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib48
  publication-title: Chem. Mater.
  doi: 10.1021/cm902413c
– volume: 196
  start-page: 3290
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.043
– volume: 21
  start-page: 4082
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib40
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04571c
– volume: 20
  start-page: 3169
  year: 2008
  ident: 10.1016/j.jpowsour.2012.05.051_bib16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702928
– volume: 15
  start-page: 1845
  year: 2005
  ident: 10.1016/j.jpowsour.2012.05.051_bib14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500243
– volume: 184
  start-page: 1400
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib46
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.03.052
– volume: 21
  start-page: 2299
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802290
– volume: 50
  start-page: 727
  year: 2012
  ident: 10.1016/j.jpowsour.2012.05.051_bib30
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.09.040
– volume: 438
  start-page: 201
  year: 2005
  ident: 10.1016/j.jpowsour.2012.05.051_bib32
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 50
  start-page: 3613
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib39
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1025747
– volume: 15
  start-page: 301
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib1
  publication-title: Ionics
  doi: 10.1007/s11581-008-0236-x
– volume: 19
  start-page: 8378
  year: 2009
  ident: 10.1016/j.jpowsour.2012.05.051_bib35
  publication-title: J. Mater. Chem.
  doi: 10.1039/b914650d
– volume: 196
  start-page: 6473
  year: 2011
  ident: 10.1016/j.jpowsour.2012.05.051_bib42
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.04.015
– volume: 151
  start-page: A563
  year: 2004
  ident: 10.1016/j.jpowsour.2012.05.051_bib4
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1647571
SSID ssj0001170
Score 2.374364
Snippet Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio...
Tin-graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Graphene
Graphene nanosheets
Hydrogen reduction
Lithium ion batteries
Materials
Microwave hydrothermal synthesis
Nanocomposites
Nanomaterials
Nanostructure
Scanning electron microscopy
Synthesis
Tin
Tin nanoparticles
Title Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries
URI https://dx.doi.org/10.1016/j.jpowsour.2012.05.051
https://www.proquest.com/docview/1038609427
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSU0ifdtllU6NVZ27JexxAaNg3JpQ3kJiRbIl4S28S7CbmU_of-w_6SzmjtPCghh4IPttFgoRnPQ5r5hpAviCpnGWo_wXxScMkSxdMySdOQKeW9KGId9-GRmB8X3074yQbZHWthMK1y0P1rnR619fBmNqzmrKvr2feUgbCBt51F4KAIKInodSDT2z9v0zyws0o8SYBoCUffqRJebC-69go3yTHFK48Injx7yEA972wPyxbW_S7-Ud3RHu29JC8GR5LurOf6imz45jV5dgde8A05O8Rsuyt76enpdXURa63Ogaa_buC2r3vaBop4xbS7LR-gy7r58-t3BLIGPUgb27SYd47JXb6nMIyC535ar84psJS6iM8J4fZbcrz39cfuPBm6KyQlk3yZMGUroVJtwWcTXuS-kAFim6CFk8GFMq9UHhgvMqdZlWqXhsprX6lQKC6k5uwd2Wzaxr8nNLcyK8o8lAqiE6ectVxqK50udAkqhE8IH5fUlAP0OHbAODNjjtnCjKwwyAqTcriyCZnd0HVr8I1HKfTIMXNPjAxYiEdpp_dYfPPJXIBPBFHIhHweeW7gJ8STFdv4dtUbRJkXECjn8sN_TOAjeYpPaBkz_olsLi9WfgtcnqWbRpmekic7-wfzo793DgVY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhc2hLKX3S7SNVoVd3_dDzGELDpsnupQnkJmRbIl4S28S7DbnlP-Qf9pd0RmtvE0rJoeCDsT1YaORvZqyZbwj5gqxyNkP0E5mLGJdZpHhcRHHsE6WcEyzUcc_mYnrCvp_y0y2yN9TCYFplj_1rTA9o3V-Z9LM5aatq8iPOYLGBt50E4iAklNxGdio2Itu7B4fT-QaQsblK2EyAgAkF7hQKL74u2uYK_5NjllcaSDx58i8b9bS1HcycX7e8-Au9g0naf06e9b4k3V0P9wXZcvVL8uQOw-Arcj7DhLsr-9PRs-vyMpRbXYBMd13DaVd1tPEUKYtp-6eCgC6r-tfNbeCyBiikta0bTD3H_C7XUXiMgvN-Vq0uKGiV5oGiEyLu1-Rk_9vx3jTqGyxERSb5MsqULYWKtQW3TTiROiY9hDdei1z63BdpqVKfcZbkOitjnce-dNqVyjPFhdQ8e0NGdVO7t4SmViasSH2hIEDJVW4tl9rKXDNdAIrwMeHDlJqiZx_HJhjnZkgzW5hBFQZVYWIORzImk41cu-bfeFBCDxoz91aSASPxoOzOPRVvXpkKcIsgEBmTz4PODXyHuLlia9esOoNE8wJi5VS--48BfCKPpsezI3N0MD98Tx7jHTSUCf9ARsvLlfsIHtAy3-lX-G9VRwgJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+hydrothermal+synthesis+of+high+performance+tin%E2%80%94graphene+nanocomposites+for+lithium+ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=SHUANGQIANG+CHEN&rft.au=YONG+WANG&rft.au=AHN%2C+Hyojun&rft.au=GUOXIU+WANG&rft.date=2012-10-15&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=216&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.05.051&rft.externalDBID=n%2Fa&rft.externalDocID=26293772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon