Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries
Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning e...
Saved in:
Published in | Journal of power sources Vol. 216; pp. 22 - 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7753 1873-2755 |
DOI | 10.1016/j.jpowsour.2012.05.051 |
Cover
Loading…
Abstract | Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin–graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh g−1. The as-prepared tin–graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets.
► Sn–GNS were prepared by a microwave hydrothermal synthesis and a one-step H2 reduction. ► Sn nanoparticles are homogenously sandwiched between highly conductive and flexible GNS. ► Altering the ratio between tin and graphene had critical influences on their morphologies. ► Sn–GNS exhibited a high lithium storage capacity of 1407 mAh g−1. |
---|---|
AbstractList | Tin-graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin-graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh ga1. The as-prepared tin-graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets. Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio between tin and graphene nanosheets has critical influences on their morphologies and electrochemical performances. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) analysis confirm the homogeneous distribution of tin nanoparticles on the surface of graphene nanosheets. When applied as an anode material in lithium ion batteries, tin–graphene nanocomposite exhibits a high lithium storage capacity of 1407 mAh g−1. The as-prepared tin–graphene nanocomposite also demonstrates an excellent high rate capacity and a stable cycle performance. The superior electrochemical performance could be attributed to the synergistic effect of the three-dimensional nanoarchitecture, in which tin nanoparticles are sandwiched between highly conductive and flexible graphene nanosheets. ► Sn–GNS were prepared by a microwave hydrothermal synthesis and a one-step H2 reduction. ► Sn nanoparticles are homogenously sandwiched between highly conductive and flexible GNS. ► Altering the ratio between tin and graphene had critical influences on their morphologies. ► Sn–GNS exhibited a high lithium storage capacity of 1407 mAh g−1. |
Author | Chen, Shuangqiang Ahn, Hyojun Wang, Guoxiu Wang, Yong |
Author_xml | – sequence: 1 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang organization: School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, PR China – sequence: 2 givenname: Yong surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, PR China – sequence: 3 givenname: Hyojun surname: Ahn fullname: Ahn, Hyojun organization: School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660-701, Republic of Korea – sequence: 4 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu email: Guoxiu.wang@uts.edu.au organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26293772$$DView record in Pascal Francis |
BookMark | eNqFkU1qHDEQhUWwIWM7VwjaBLLpiX5aUjdkkWCcH3DwxlkLtbrk1tAtdSSNzexyh9wwJ4nMOFlkYyiogvpeQb13hk5CDIDQa0q2lFD5brfdrfEhx33aMkLZloha9AXa0E7xhikhTtCGcNU1Sgn-Ep3lvCOEUKrIBs3fvE3xwdwDng5jimWCtJgZ50OoY_YZR4cnfzfhFZKLdRcs4OLD75-_7pJZJwiAgwnRxmWN2RfIuGJ49mXy-wX7GPBgSoHkIV-gU2fmDK-e-jn6_unq9vJLc33z-evlx-vGciVKwzszyo70RrREgmTQKieJcL0clBucZWPHHBctHXo-kn4gboQexs61nZCqF_wcvT3eXVP8sYdc9OKzhXk2AeI-a0p4J0nfMlXRN0-oydbMLtX_fNZr8otJB80k67lSrHLyyFW3ck7g_iGU6McY9E7_jUE_xqCJqEWr8P1_QuuLKdWXkoyfn5d_OMqh-nXvIelsPdQMRp_AFj1G_9yJP_Ttrv8 |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2019_151870 crossref_primary_10_1039_C2DT32137H crossref_primary_10_1039_C4EE02578D crossref_primary_10_1039_C4RA02348J crossref_primary_10_1021_acsami_5b08340 crossref_primary_10_1002_advs_201600289 crossref_primary_10_1039_C7TA03323K crossref_primary_10_1039_C4TA02021A crossref_primary_10_1016_j_cis_2015_04_005 crossref_primary_10_1016_j_est_2024_114856 crossref_primary_10_1021_acsnano_0c05896 crossref_primary_10_1021_am500020e crossref_primary_10_2139_ssrn_4188753 crossref_primary_10_1016_j_mser_2015_12_003 crossref_primary_10_20964_2018_12_28 crossref_primary_10_1021_acsnano_5b07333 crossref_primary_10_3390_molecules26144316 crossref_primary_10_1016_j_est_2020_101386 crossref_primary_10_1002_smll_201203155 crossref_primary_10_1016_j_progpolymsci_2016_12_010 crossref_primary_10_1039_c3cp50220a crossref_primary_10_1021_cr3001884 crossref_primary_10_1039_C6RA01325B crossref_primary_10_1016_j_est_2024_112208 crossref_primary_10_1021_nn406105n crossref_primary_10_1016_j_matchemphys_2021_124611 crossref_primary_10_1016_j_electacta_2016_10_042 crossref_primary_10_1016_S1452_3981_23_06637_3 crossref_primary_10_1016_j_electacta_2014_02_066 crossref_primary_10_1016_j_jpowsour_2013_12_034 crossref_primary_10_1007_s10008_014_2497_9 crossref_primary_10_1021_cr400366s crossref_primary_10_1039_C5TA06550J crossref_primary_10_1007_s11581_014_1258_1 crossref_primary_10_1002_adma_201603421 crossref_primary_10_1016_j_electacta_2014_01_122 crossref_primary_10_1016_j_electacta_2014_06_024 crossref_primary_10_1016_j_apsusc_2017_04_252 crossref_primary_10_1111_jace_12849 crossref_primary_10_3390_molecules28093923 crossref_primary_10_1021_acs_jpcc_7b02784 crossref_primary_10_1016_j_electacta_2014_01_004 crossref_primary_10_1016_j_apsusc_2014_08_073 crossref_primary_10_1007_s11581_018_2670_8 crossref_primary_10_1016_j_apsusc_2015_01_236 crossref_primary_10_1002_adma_201700431 crossref_primary_10_1016_j_flatc_2017_08_002 crossref_primary_10_1016_j_jallcom_2017_06_005 crossref_primary_10_1016_j_jcis_2017_04_048 crossref_primary_10_1039_D2TC02233H crossref_primary_10_1016_j_diamond_2022_109610 crossref_primary_10_1016_j_electacta_2014_07_077 crossref_primary_10_20964_2018_03_63 crossref_primary_10_1002_admi_201901552 crossref_primary_10_1016_j_scitotenv_2022_157769 crossref_primary_10_1149_2_0031706jss crossref_primary_10_1007_s11581_015_1577_x crossref_primary_10_1039_C4NR02999B crossref_primary_10_1039_C5TA01228G crossref_primary_10_1002_batt_202300304 crossref_primary_10_1016_j_matlet_2016_09_060 crossref_primary_10_1007_s13391_014_4153_z crossref_primary_10_1039_C4CC08650C crossref_primary_10_1016_j_jcis_2020_12_086 crossref_primary_10_1177_00219983231186459 crossref_primary_10_1039_c3nr02872k crossref_primary_10_1016_j_jallcom_2013_09_033 crossref_primary_10_1039_C4NR07068B crossref_primary_10_1016_j_matpr_2015_09_008 crossref_primary_10_1016_j_electacta_2017_05_139 crossref_primary_10_1002_adfm_201503711 crossref_primary_10_1016_j_ijhydene_2015_06_054 crossref_primary_10_1016_j_jallcom_2017_11_250 crossref_primary_10_1016_j_jpowsour_2014_10_008 crossref_primary_10_1039_C5RA11439J crossref_primary_10_3390_ma13010119 crossref_primary_10_1016_j_electacta_2013_05_052 crossref_primary_10_1021_am508136k crossref_primary_10_1016_j_jechem_2018_05_001 crossref_primary_10_1016_j_electacta_2014_02_005 crossref_primary_10_20964_2017_08_17 crossref_primary_10_1016_j_jpowsour_2012_11_085 crossref_primary_10_1038_srep09055 |
Cites_doi | 10.1016/j.jpowsour.2008.09.093 10.1016/j.jpowsour.2008.11.111 10.1021/jp1114724 10.1021/ja01539a017 10.1039/c0jm04346j 10.1016/j.jpowsour.2004.12.016 10.1016/j.elecom.2010.07.005 10.1016/j.elecom.2011.02.013 10.1149/1.1799491 10.1016/j.jpowsour.2007.11.003 10.1016/j.ssi.2010.03.032 10.1007/s12274-010-0063-z 10.1039/c0jm01573c 10.1126/science.1192907 10.1039/c1ee01592c 10.1002/adma.200700748 10.1039/c0jm00638f 10.1021/nl8036323 10.1002/adma.201003178 10.1126/science.1199595 10.1126/science.1167130 10.1021/jp2061128 10.1016/j.elecom.2009.09.019 10.3365/eml.2009.12.183 10.1021/jp1050047 10.1038/nmat1849 10.1063/1.3643444 10.1039/c0jm00829j 10.1016/S1388-2481(03)00035-3 10.1007/s12274-010-0050-4 10.1039/C0JM03410J 10.1021/nl802484w 10.1016/j.carbon.2010.08.052 10.1016/j.jssc.2009.01.030 10.1103/PhysRevB.74.075422 10.1021/cm902413c 10.1016/j.jpowsour.2010.11.043 10.1039/c0jm04571c 10.1002/adma.200702928 10.1002/adfm.200500243 10.1016/j.jssc.2011.03.052 10.1002/adma.200802290 10.1016/j.carbon.2011.09.040 10.1038/nature04235 10.1021/ic1025747 10.1007/s11581-008-0236-x 10.1039/b914650d 10.1016/j.jpowsour.2011.04.015 10.1149/1.1647571 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 7SU 7TB 8FD C1K FR3 KR7 L7M |
DOI | 10.1016/j.jpowsour.2012.05.051 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2755 |
EndPage | 27 |
ExternalDocumentID | 26293772 10_1016_j_jpowsour_2012_05_051 S0378775312009202 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ EFKBS IQODW 7SP 7SU 7TB 8FD C1K FR3 KR7 L7M |
ID | FETCH-LOGICAL-c375t-38ad6809a5406e62e47f605f96b7fbfc2d82f3541b93d09b0fde9ed8f48567953 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Fri Jul 11 03:02:39 EDT 2025 Mon Jul 21 09:14:24 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Tue Jul 01 04:22:47 EDT 2025 Fri Feb 23 02:31:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion batteries Graphene nanosheets Microwave hydrothermal synthesis Tin nanoparticles Hydrogen reduction Performance evaluation Nanosheet Anode Hydrogen Nanoparticle Alkaline storage battery Lithium Field emission Electrode material Synergism Electrochemical characteristic Storage capacity Nanocomposite High performance Scanning electron microscopy Transmission microscope Sandwich structure Secondary cell Electron microscopy Field emission microscopy Lithium battery Three dimensional model Transmission electron microscopy Hydrothermal synthesis Graphene Morphology Nanostructured materials |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-38ad6809a5406e62e47f605f96b7fbfc2d82f3541b93d09b0fde9ed8f48567953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1038609427 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1038609427 pascalfrancis_primary_26293772 crossref_primary_10_1016_j_jpowsour_2012_05_051 crossref_citationtrail_10_1016_j_jpowsour_2012_05_051 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_05_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-15 |
PublicationDateYYYYMMDD | 2012-10-15 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cheng, Lu, Deng, Chung, Zhang, Li (bib6) 2010; 3 Wang, Kim, Choe, Kim, Lee (bib29) 2011; 23 Kim, Kim, Park, Gwon, Seo, Kim, Kang (bib38) 2010; 3 Wu, Wu, Wang (bib5) 2011; 13 Alicea, Fisher (bib27) 2006; 74 Wang, Lee (bib12) 2005; 144 Zhang, Lei, Yin, Chen, Li, Wang, Wang (bib34) 2010; 20 Guo, Shu, Tang, Bai, Wang, Chen (bib49) 2008; 177 Li, Lv, Lu, Li (bib37) 2010; 114 Harrison, Manthiram (bib39) 2011; 50 Huang, Tu, Xia, Wang, Xiang, Zhang, Zhou (bib10) 2009; 188 Yang, Cao, Liu, Chen, Jiao (bib24) 2010; 181 Zhong, Wang, Chen, Liu (bib41) 2011; 115 Xu, Cao, Heath (bib33) 2010; 329 Tao, Gao, Wen, Wang, Li, Xu (bib7) 2009; 182 Pirkle, Chan, Venugopal, Hinojos, Magnuson, McDonnell, Colombo, Vogel, Ruoff, Wallace (bib26) 2011; 99 Wang, Lee (bib13) 2003; 5 Cui, Ruffo, Chan, Peng, Cui (bib2) 2009; 9 Basch, Albering (bib21) 2011; 196 Murugan, Muraliganth, Manthiram (bib48) 2009; 21 Abanin, Morozov, Ponomarenko, Gorbachev, Mayorov, Katsnelson, Watanabe, Taniguchi, Novoselov, Levitov, Geim (bib31) 2011; 332 Zhu, Zhu, Murali, Stoller, Ruoff (bib42) 2011; 196 Chen, Cao, Qian, Ai, Yang (bib22) 2010; 20 Zhang, Lei, Du, Yin, Chen, Li, Wang, Wang (bib47) 2011; 21 Do, Dai (bib9) 2009; 189 Derrien, Hassoun, Panero, Scrosati (bib17) 2007; 19 Elias, Nair, Mohiuddin, Morozov, Blake, Halsall, Ferrari, Boukhvalov, Katsnelson, Geim, Novoselov (bib28) 2009; 323 Wang, Lee, Chen (bib4) 2004; 151 Wang, Wang, Wang, Park, Dou, Ahn, Kim (bib35) 2009; 19 Wu, Chen, Chen, Wu, Li, Chen, Zhao (bib20) 2011; 115 Chen, Wang (bib43) 2010; 20 Liang, Zhu, Lian, Yang, Wang (bib46) 2011; 184 Lucas, Pollak, Kostecki (bib3) 2009; 11 Hummers, Offeman (bib44) 1958; 80 Wang, Zhou, Yao, Zhang, Liu (bib45) 2011; 49 Wu, Wang (bib19) 2011; 21 Han, Jang, Kim, Oh, Hyeon (bib14) 2005; 15 Geim, Novoselov (bib25) 2007; 6 Yoon, Manthiram (bib40) 2011; 21 Paek, Yoo, Honma (bib15) 2009; 9 Ji, Tan, Kuykendall, An, Fu, Battaglia, Zhang (bib36) 2011; 4 Malini, Uma, Sheela, Ganesan, Renganathan (bib1) 2009; 15 Chen, Chen, Wu, Pan, Wang (bib23) 2010; 12 Sun, Wang, Su, Xiao, Ahn, Wang (bib30) 2012; 50 Zhang, Feng, Zhai, Jiang, Li, Fan (bib18) 2009; 21 Zhang, Tan, Stormer, Kim (bib32) 2005; 438 Kim, Ahn, Kim, Kim, Kweon, Nam, Kim, Ahn, Hong (bib8) 2009; 5 Wang, Lee, Deivaraj (bib11) 2004; 151 Hassoun, Derrien, Panero, Scrosati (bib16) 2008; 20 Hummers (10.1016/j.jpowsour.2012.05.051_bib44) 1958; 80 Cheng (10.1016/j.jpowsour.2012.05.051_bib6) 2010; 3 Ji (10.1016/j.jpowsour.2012.05.051_bib36) 2011; 4 Wu (10.1016/j.jpowsour.2012.05.051_bib19) 2011; 21 Wang (10.1016/j.jpowsour.2012.05.051_bib45) 2011; 49 Cui (10.1016/j.jpowsour.2012.05.051_bib2) 2009; 9 Paek (10.1016/j.jpowsour.2012.05.051_bib15) 2009; 9 Li (10.1016/j.jpowsour.2012.05.051_bib37) 2010; 114 Wang (10.1016/j.jpowsour.2012.05.051_bib13) 2003; 5 Xu (10.1016/j.jpowsour.2012.05.051_bib33) 2010; 329 Lucas (10.1016/j.jpowsour.2012.05.051_bib3) 2009; 11 Elias (10.1016/j.jpowsour.2012.05.051_bib28) 2009; 323 Zhang (10.1016/j.jpowsour.2012.05.051_bib47) 2011; 21 Tao (10.1016/j.jpowsour.2012.05.051_bib7) 2009; 182 Han (10.1016/j.jpowsour.2012.05.051_bib14) 2005; 15 Alicea (10.1016/j.jpowsour.2012.05.051_bib27) 2006; 74 Wu (10.1016/j.jpowsour.2012.05.051_bib20) 2011; 115 Wang (10.1016/j.jpowsour.2012.05.051_bib35) 2009; 19 Derrien (10.1016/j.jpowsour.2012.05.051_bib17) 2007; 19 Sun (10.1016/j.jpowsour.2012.05.051_bib30) 2012; 50 Zhang (10.1016/j.jpowsour.2012.05.051_bib34) 2010; 20 Liang (10.1016/j.jpowsour.2012.05.051_bib46) 2011; 184 Malini (10.1016/j.jpowsour.2012.05.051_bib1) 2009; 15 Geim (10.1016/j.jpowsour.2012.05.051_bib25) 2007; 6 Kim (10.1016/j.jpowsour.2012.05.051_bib8) 2009; 5 Basch (10.1016/j.jpowsour.2012.05.051_bib21) 2011; 196 Zhang (10.1016/j.jpowsour.2012.05.051_bib32) 2005; 438 Yoon (10.1016/j.jpowsour.2012.05.051_bib40) 2011; 21 Chen (10.1016/j.jpowsour.2012.05.051_bib23) 2010; 12 Chen (10.1016/j.jpowsour.2012.05.051_bib22) 2010; 20 Pirkle (10.1016/j.jpowsour.2012.05.051_bib26) 2011; 99 Guo (10.1016/j.jpowsour.2012.05.051_bib49) 2008; 177 Wang (10.1016/j.jpowsour.2012.05.051_bib12) 2005; 144 Wu (10.1016/j.jpowsour.2012.05.051_bib5) 2011; 13 Wang (10.1016/j.jpowsour.2012.05.051_bib11) 2004; 151 Harrison (10.1016/j.jpowsour.2012.05.051_bib39) 2011; 50 Huang (10.1016/j.jpowsour.2012.05.051_bib10) 2009; 188 Wang (10.1016/j.jpowsour.2012.05.051_bib29) 2011; 23 Zhu (10.1016/j.jpowsour.2012.05.051_bib42) 2011; 196 Abanin (10.1016/j.jpowsour.2012.05.051_bib31) 2011; 332 Hassoun (10.1016/j.jpowsour.2012.05.051_bib16) 2008; 20 Murugan (10.1016/j.jpowsour.2012.05.051_bib48) 2009; 21 Do (10.1016/j.jpowsour.2012.05.051_bib9) 2009; 189 Zhang (10.1016/j.jpowsour.2012.05.051_bib18) 2009; 21 Yang (10.1016/j.jpowsour.2012.05.051_bib24) 2010; 181 Kim (10.1016/j.jpowsour.2012.05.051_bib38) 2010; 3 Chen (10.1016/j.jpowsour.2012.05.051_bib43) 2010; 20 Wang (10.1016/j.jpowsour.2012.05.051_bib4) 2004; 151 Zhong (10.1016/j.jpowsour.2012.05.051_bib41) 2011; 115 |
References_xml | – volume: 189 start-page: 204 year: 2009 ident: bib9 publication-title: J. Power Sources – volume: 115 start-page: 6057 year: 2011 ident: bib20 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1845 year: 2005 ident: bib14 publication-title: Adv. Funct. Mater. – volume: 80 start-page: 1339 year: 1958 ident: bib44 publication-title: J. Am. Chem. Soc. – volume: 177 start-page: 205 year: 2008 ident: bib49 publication-title: J. Power Sources – volume: 9 start-page: 72 year: 2009 ident: bib15 publication-title: Nano Lett. – volume: 4 start-page: 3611 year: 2011 ident: bib36 publication-title: Eng. Environ. Sci. – volume: 11 start-page: 2157 year: 2009 ident: bib3 publication-title: Electrochem. Commun. – volume: 151 start-page: A563 year: 2004 ident: bib4 publication-title: J. Electrochem. Soc. – volume: 196 start-page: 3290 year: 2011 ident: bib21 publication-title: J. Power Sources – volume: 438 start-page: 201 year: 2005 ident: bib32 publication-title: Nature – volume: 19 start-page: 8378 year: 2009 ident: bib35 publication-title: J. Mater. Chem. – volume: 23 start-page: 755 year: 2011 ident: bib29 publication-title: Adv. Mater. – volume: 114 start-page: 21770 year: 2010 ident: bib37 publication-title: J. Phys. Chem. C – volume: 50 start-page: 3613 year: 2011 ident: bib39 publication-title: Inorg. Chem. – volume: 9 start-page: 491 year: 2009 ident: bib2 publication-title: Nano Lett. – volume: 21 start-page: 2299 year: 2009 ident: bib18 publication-title: Adv. Mater. – volume: 74 start-page: 075422 year: 2006 ident: bib27 publication-title: Phys. Rev. B – volume: 181 start-page: 678 year: 2010 ident: bib24 publication-title: Solid State Ionics – volume: 20 start-page: 3169 year: 2008 ident: bib16 publication-title: Adv. Mater. – volume: 151 start-page: A1804 year: 2004 ident: bib11 publication-title: J. Electrochem. Soc. – volume: 99 start-page: 122108 year: 2011 ident: bib26 publication-title: Appl. Phys. Lett. – volume: 196 start-page: 6473 year: 2011 ident: bib42 publication-title: J. Power Sources – volume: 184 start-page: 1400 year: 2011 ident: bib46 publication-title: J. Solid State Chem. – volume: 49 start-page: 133 year: 2011 ident: bib45 publication-title: Carbon – volume: 5 start-page: 292 year: 2003 ident: bib13 publication-title: Electrochem. Commun. – volume: 21 start-page: 4082 year: 2011 ident: bib40 publication-title: J. Mater. Chem. – volume: 3 start-page: 895 year: 2010 ident: bib6 publication-title: Nano Res. – volume: 323 start-page: 610 year: 2009 ident: bib28 publication-title: Science – volume: 50 start-page: 727 year: 2012 ident: bib30 publication-title: Carbon – volume: 182 start-page: 1055 year: 2009 ident: bib7 publication-title: J. Solid State Chem. – volume: 21 start-page: 1673 year: 2011 ident: bib47 publication-title: J. Mater. Chem. – volume: 332 start-page: 328 year: 2011 ident: bib31 publication-title: Science – volume: 144 start-page: 220 year: 2005 ident: bib12 publication-title: J. Power Sources – volume: 12 start-page: 1302 year: 2010 ident: bib23 publication-title: Electrochem. Commun. – volume: 6 start-page: 183 year: 2007 ident: bib25 publication-title: Nat. Mater. – volume: 21 start-page: 5004 year: 2009 ident: bib48 publication-title: Chem. Mater. – volume: 13 start-page: 433 year: 2011 ident: bib5 publication-title: Electrochem. Commun. – volume: 19 start-page: 2336 year: 2007 ident: bib17 publication-title: Adv. Mater. – volume: 3 start-page: 813 year: 2010 ident: bib38 publication-title: Nano Res. – volume: 115 start-page: 25115 year: 2011 ident: bib41 publication-title: J. Phys. Chem. C – volume: 5 start-page: 183 year: 2009 ident: bib8 publication-title: Electron. Mater. Lett. – volume: 188 start-page: 588 year: 2009 ident: bib10 publication-title: J. Power Sources – volume: 20 start-page: 9735 year: 2010 ident: bib43 publication-title: J. Mater. Chem. – volume: 21 start-page: 6636 year: 2011 ident: bib19 publication-title: J. Mater. Chem. – volume: 329 start-page: 1188 year: 2010 ident: bib33 publication-title: Science – volume: 20 start-page: 5538 year: 2010 ident: bib34 publication-title: J. Mater. Chem. – volume: 20 start-page: 7266 year: 2010 ident: bib22 publication-title: J. Mater. Chem. – volume: 15 start-page: 301 year: 2009 ident: bib1 publication-title: Ionics – volume: 189 start-page: 204 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib9 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.093 – volume: 188 start-page: 588 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.111 – volume: 115 start-page: 6057 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib20 publication-title: J. Phys. Chem. C doi: 10.1021/jp1114724 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.jpowsour.2012.05.051_bib44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 21 start-page: 6636 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib19 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04346j – volume: 144 start-page: 220 year: 2005 ident: 10.1016/j.jpowsour.2012.05.051_bib12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.12.016 – volume: 12 start-page: 1302 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib23 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.07.005 – volume: 13 start-page: 433 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib5 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.02.013 – volume: 151 start-page: A1804 year: 2004 ident: 10.1016/j.jpowsour.2012.05.051_bib11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1799491 – volume: 177 start-page: 205 year: 2008 ident: 10.1016/j.jpowsour.2012.05.051_bib49 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.003 – volume: 181 start-page: 678 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib24 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.03.032 – volume: 3 start-page: 895 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib6 publication-title: Nano Res. doi: 10.1007/s12274-010-0063-z – volume: 20 start-page: 9735 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib43 publication-title: J. Mater. Chem. doi: 10.1039/c0jm01573c – volume: 329 start-page: 1188 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib33 publication-title: Science doi: 10.1126/science.1192907 – volume: 4 start-page: 3611 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib36 publication-title: Eng. Environ. Sci. doi: 10.1039/c1ee01592c – volume: 19 start-page: 2336 year: 2007 ident: 10.1016/j.jpowsour.2012.05.051_bib17 publication-title: Adv. Mater. doi: 10.1002/adma.200700748 – volume: 20 start-page: 5538 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib34 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00638f – volume: 9 start-page: 491 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib2 publication-title: Nano Lett. doi: 10.1021/nl8036323 – volume: 23 start-page: 755 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib29 publication-title: Adv. Mater. doi: 10.1002/adma.201003178 – volume: 332 start-page: 328 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib31 publication-title: Science doi: 10.1126/science.1199595 – volume: 323 start-page: 610 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib28 publication-title: Science doi: 10.1126/science.1167130 – volume: 115 start-page: 25115 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib41 publication-title: J. Phys. Chem. C doi: 10.1021/jp2061128 – volume: 11 start-page: 2157 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib3 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.09.019 – volume: 5 start-page: 183 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib8 publication-title: Electron. Mater. Lett. doi: 10.3365/eml.2009.12.183 – volume: 114 start-page: 21770 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib37 publication-title: J. Phys. Chem. C doi: 10.1021/jp1050047 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.jpowsour.2012.05.051_bib25 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 99 start-page: 122108 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3643444 – volume: 20 start-page: 7266 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib22 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00829j – volume: 5 start-page: 292 year: 2003 ident: 10.1016/j.jpowsour.2012.05.051_bib13 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(03)00035-3 – volume: 3 start-page: 813 year: 2010 ident: 10.1016/j.jpowsour.2012.05.051_bib38 publication-title: Nano Res. doi: 10.1007/s12274-010-0050-4 – volume: 21 start-page: 1673 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib47 publication-title: J. Mater. Chem. doi: 10.1039/C0JM03410J – volume: 9 start-page: 72 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib15 publication-title: Nano Lett. doi: 10.1021/nl802484w – volume: 49 start-page: 133 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib45 publication-title: Carbon doi: 10.1016/j.carbon.2010.08.052 – volume: 182 start-page: 1055 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib7 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.01.030 – volume: 74 start-page: 075422 year: 2006 ident: 10.1016/j.jpowsour.2012.05.051_bib27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.075422 – volume: 21 start-page: 5004 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib48 publication-title: Chem. Mater. doi: 10.1021/cm902413c – volume: 196 start-page: 3290 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.043 – volume: 21 start-page: 4082 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib40 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04571c – volume: 20 start-page: 3169 year: 2008 ident: 10.1016/j.jpowsour.2012.05.051_bib16 publication-title: Adv. Mater. doi: 10.1002/adma.200702928 – volume: 15 start-page: 1845 year: 2005 ident: 10.1016/j.jpowsour.2012.05.051_bib14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500243 – volume: 184 start-page: 1400 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib46 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2011.03.052 – volume: 21 start-page: 2299 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib18 publication-title: Adv. Mater. doi: 10.1002/adma.200802290 – volume: 50 start-page: 727 year: 2012 ident: 10.1016/j.jpowsour.2012.05.051_bib30 publication-title: Carbon doi: 10.1016/j.carbon.2011.09.040 – volume: 438 start-page: 201 year: 2005 ident: 10.1016/j.jpowsour.2012.05.051_bib32 publication-title: Nature doi: 10.1038/nature04235 – volume: 50 start-page: 3613 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib39 publication-title: Inorg. Chem. doi: 10.1021/ic1025747 – volume: 15 start-page: 301 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib1 publication-title: Ionics doi: 10.1007/s11581-008-0236-x – volume: 19 start-page: 8378 year: 2009 ident: 10.1016/j.jpowsour.2012.05.051_bib35 publication-title: J. Mater. Chem. doi: 10.1039/b914650d – volume: 196 start-page: 6473 year: 2011 ident: 10.1016/j.jpowsour.2012.05.051_bib42 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.04.015 – volume: 151 start-page: A563 year: 2004 ident: 10.1016/j.jpowsour.2012.05.051_bib4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1647571 |
SSID | ssj0001170 |
Score | 2.374364 |
Snippet | Tin–graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio... Tin-graphene nanocomposites are prepared by a combination of microwave hydrothermal synthesis and a one-step hydrogen gas reduction. Altering the weight ratio... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22 |
SubjectTerms | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Graphene Graphene nanosheets Hydrogen reduction Lithium ion batteries Materials Microwave hydrothermal synthesis Nanocomposites Nanomaterials Nanostructure Scanning electron microscopy Synthesis Tin Tin nanoparticles |
Title | Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries |
URI | https://dx.doi.org/10.1016/j.jpowsour.2012.05.051 https://www.proquest.com/docview/1038609427 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSU0ifdtllU6NVZ27JexxAaNg3JpQ3kJiRbIl4S28S7CbmU_of-w_6SzmjtPCghh4IPttFgoRnPQ5r5hpAviCpnGWo_wXxScMkSxdMySdOQKeW9KGId9-GRmB8X3074yQbZHWthMK1y0P1rnR619fBmNqzmrKvr2feUgbCBt51F4KAIKInodSDT2z9v0zyws0o8SYBoCUffqRJebC-69go3yTHFK48Injx7yEA972wPyxbW_S7-Ud3RHu29JC8GR5LurOf6imz45jV5dgde8A05O8Rsuyt76enpdXURa63Ogaa_buC2r3vaBop4xbS7LR-gy7r58-t3BLIGPUgb27SYd47JXb6nMIyC535ar84psJS6iM8J4fZbcrz39cfuPBm6KyQlk3yZMGUroVJtwWcTXuS-kAFim6CFk8GFMq9UHhgvMqdZlWqXhsprX6lQKC6k5uwd2Wzaxr8nNLcyK8o8lAqiE6ectVxqK50udAkqhE8IH5fUlAP0OHbAODNjjtnCjKwwyAqTcriyCZnd0HVr8I1HKfTIMXNPjAxYiEdpp_dYfPPJXIBPBFHIhHweeW7gJ8STFdv4dtUbRJkXECjn8sN_TOAjeYpPaBkz_olsLi9WfgtcnqWbRpmekic7-wfzo793DgVY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZhc2hLKX3S7SNVoVd3_dDzGELDpsnupQnkJmRbIl4S28S7DbnlP-Qf9pd0RmtvE0rJoeCDsT1YaORvZqyZbwj5gqxyNkP0E5mLGJdZpHhcRHHsE6WcEyzUcc_mYnrCvp_y0y2yN9TCYFplj_1rTA9o3V-Z9LM5aatq8iPOYLGBt50E4iAklNxGdio2Itu7B4fT-QaQsblK2EyAgAkF7hQKL74u2uYK_5NjllcaSDx58i8b9bS1HcycX7e8-Au9g0naf06e9b4k3V0P9wXZcvVL8uQOw-Arcj7DhLsr-9PRs-vyMpRbXYBMd13DaVd1tPEUKYtp-6eCgC6r-tfNbeCyBiikta0bTD3H_C7XUXiMgvN-Vq0uKGiV5oGiEyLu1-Rk_9vx3jTqGyxERSb5MsqULYWKtQW3TTiROiY9hDdei1z63BdpqVKfcZbkOitjnce-dNqVyjPFhdQ8e0NGdVO7t4SmViasSH2hIEDJVW4tl9rKXDNdAIrwMeHDlJqiZx_HJhjnZkgzW5hBFQZVYWIORzImk41cu-bfeFBCDxoz91aSASPxoOzOPRVvXpkKcIsgEBmTz4PODXyHuLlia9esOoNE8wJi5VS--48BfCKPpsezI3N0MD98Tx7jHTSUCf9ARsvLlfsIHtAy3-lX-G9VRwgJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+hydrothermal+synthesis+of+high+performance+tin%E2%80%94graphene+nanocomposites+for+lithium+ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=SHUANGQIANG+CHEN&rft.au=YONG+WANG&rft.au=AHN%2C+Hyojun&rft.au=GUOXIU+WANG&rft.date=2012-10-15&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=216&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.05.051&rft.externalDBID=n%2Fa&rft.externalDocID=26293772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |