Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing

In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC)...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 81; no. C; p. 104013
Main Authors Gunasegaram, D.R., Barnard, A.S., Matthews, M.J., Jared, B.H., Andreaco, A.M., Bartsch, K., Murphy, A.B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.02.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC) engineering solutions which sought to achieve this were deterministic and rule-based, thus resulting in limited success in the stochastic environment experienced in the highly dynamic AM process. On the other hand, emerging machine learning (ML) based strategies are better suited to providing the robustness, scope, flexibility, and scalability required for process control in an uncertain environment. Offline ML models that help optimise AM process parameters before a build begins and online ML models that efficiently processed in-situ sensory data to detect and diagnose flaws in real-time (or near-real-time) have been developed. However, ML models that enable a process to take evasive or corrective actions in relation to flaws via on the fly decision-making are only emerging. These models must possess prognostic capabilities to provide context-sensitive recommendations for in-situ process control based on real-time diagnostics. In this article, we pinpoint the shortcomings in traditional CLC strategies, and provide a framework for defect and anomaly control through ML-assisted CLC in AM. We discuss flaws in terms of their causes, in-situ detectability, and controllability, and examine their management under three scenarios: avoidance, mitigation, and repair. Then, we summarise the research into ML models developed for offline optimisation and in-situ diagnosis before initiating a detailed conversation on the implementation of ML-assisted in-situ process control. We found that researchers favoured reinforcement learning approaches or inverse ML models for making rapid, situation-aware control decisions. We also observed that, to-date, the defects addressed were those that may be quantified relatively easily autonomously, and that mitigation (rather than avoidance or repair) was the aim of ML-assisted in-situ control strategies. Additionally, we highlight the various technologies that must seamlessly combine to advance the field of autonomous in-situ control so that it becomes a reality in industrial settings. Finally, we raise awareness of seldom discussed, yet highly pertinent, topics relevant to adaptive control. Our work closes a significant gap in the current AM literature by broaching wide-ranging discussions on matters relevant to in-situ adaptive control in AM. •We review conventional and modern machine learning (ML)-assisted works employing closed loop control (CLC) strategies in metal additive manufacturing (AM).•We discuss various AM defects and their causes, their observability, and controllability in terms of avoidance, mitigation, or repair.•We show that traditional CLC control solutions lack the flexibility and scalability to adequately support AM processes.•We propose an ML-assisted CLC solution framework supported by ML algorithms which solve quickly and support a broader spectrum of situations.•We focus our discussion on ML-assisted adaptive in-situ control – the topic which has received the least attention in the literature so far.
AbstractList In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC) engineering solutions which sought to achieve this were deterministic and rule-based, thus resulting in limited success in the stochastic environment experienced in the highly dynamic AM process. On the other hand, emerging machine learning (ML) based strategies are better suited to providing the robustness, scope, flexibility, and scalability required for process control in an uncertain environment. Offline ML models that help optimise AM process parameters before a build begins and online ML models that efficiently processed in-situ sensory data to detect and diagnose flaws in real-time (or near-real-time) have been developed. However, ML models that enable a process to take evasive or corrective actions in relation to flaws via on the fly decision-making are only emerging. These models must possess prognostic capabilities to provide context-sensitive recommendations for in-situ process control based on real-time diagnostics. In this article, we pinpoint the shortcomings in traditional CLC strategies, and provide a framework for defect and anomaly control through ML-assisted CLC in AM. We discuss flaws in terms of their causes, in-situ detectability, and controllability, and examine their management under three scenarios: avoidance, mitigation, and repair. Then, we summarise the research into ML models developed for offline optimisation and in-situ diagnosis before initiating a detailed conversation on the implementation of ML-assisted in-situ process control. We found that researchers favoured reinforcement learning approaches or inverse ML models for making rapid, situation-aware control decisions. We also observed that, to-date, the defects addressed were those that may be quantified relatively easily autonomously, and that mitigation (rather than avoidance or repair) was the aim of ML-assisted in-situ control strategies. Additionally, we highlight the various technologies that must seamlessly combine to advance the field of autonomous in-situ control so that it becomes a reality in industrial settings. Finally, we raise awareness of seldom discussed, yet highly pertinent, topics relevant to adaptive control. Our work closes a significant gap in the current AM literature by broaching wide-ranging discussions on matters relevant to in-situ adaptive control in AM. •We review conventional and modern machine learning (ML)-assisted works employing closed loop control (CLC) strategies in metal additive manufacturing (AM).•We discuss various AM defects and their causes, their observability, and controllability in terms of avoidance, mitigation, or repair.•We show that traditional CLC control solutions lack the flexibility and scalability to adequately support AM processes.•We propose an ML-assisted CLC solution framework supported by ML algorithms which solve quickly and support a broader spectrum of situations.•We focus our discussion on ML-assisted adaptive in-situ control – the topic which has received the least attention in the literature so far.
ArticleNumber 104013
Author Barnard, A.S.
Matthews, M.J.
Jared, B.H.
Gunasegaram, D.R.
Bartsch, K.
Murphy, A.B.
Andreaco, A.M.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Gunasegaram
  fullname: Gunasegaram, D.R.
  email: dayalan.gunasegaram@csiro.au
  organization: CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3169, Australia
– sequence: 2
  givenname: A.S.
  surname: Barnard
  fullname: Barnard, A.S.
  organization: School of Computing, Australian National University, Acton, ACT 2601, Australia
– sequence: 3
  givenname: M.J.
  surname: Matthews
  fullname: Matthews, M.J.
  organization: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
– sequence: 4
  givenname: B.H.
  surname: Jared
  fullname: Jared, B.H.
  organization: Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 402 Dougherty Engineering Building, Knoxville, TN 37996, USA
– sequence: 5
  givenname: A.M.
  surname: Andreaco
  fullname: Andreaco, A.M.
  organization: GE Additive, 8556 Trade Center Drive, West Chester, OH 45011, USA
– sequence: 6
  givenname: K.
  surname: Bartsch
  fullname: Bartsch, K.
  organization: Fraunhofer Research Institution of Additive Manufacturing Technologies IAPT, Am Schleusengraben 14, 21029 Hamburg, Germany
– sequence: 7
  givenname: A.B.
  surname: Murphy
  fullname: Murphy, A.B.
  organization: CSIRO Manufacturing, P.O. Box 218, Lindfield, NSW 2070, Australia
BackLink https://www.osti.gov/biblio/2305413$$D View this record in Osti.gov
BookMark eNp9kDtPBCEUhYnRxNf-AhtiPysM82AKC2N8JRobrclduOyymQEDrImNv13GtbYgl5BzPs49p-TQB4-EXHC25Ix3V9slGDPBsmZ1U14axsUBOalr3lS95Ozw7y471hyTRUpbxhhvRT_I-oR8v4DeOI90RIje-XUFKbmU0VDnq-TyjoKBj-w-kaYcIePaYaI2RJo3SHXwOYaRBksNWtQ5UfCmnDDBOAudpxNmGAvFuF_KBH5nQeddLL-dkyMLY8LF3zwj7_d3b7eP1fPrw9PtzXOlRd_mSnS8Znpg1jZS9rYsiq2RHa5Wba_5IMUg2m61kgwHKaG1TVczaJnuTddoDYM4I5d7bkjZqaRdRr0p4X2JrGrB2oaLIhJ7kY4hpYhWfUQ3QfxSnKm5arVVv1WruWq1r7q4rvcuLPk_HcYZj16jcXGmm-D-9f8AFqmLPQ
CitedBy_id crossref_primary_10_1007_s40964_024_00612_1
crossref_primary_10_3390_s24082453
crossref_primary_10_1007_s00170_024_13893_1
Cites_doi 10.1016/j.ascom.2021.100489
10.1016/j.jmsy.2020.05.010
10.1016/j.rcim.2022.102445
10.1016/j.matdes.2018.05.050
10.1016/j.procir.2021.01.064
10.1007/s00170-011-3395-2
10.1049/iet-ipr.2018.6545
10.1016/j.compind.2023.103877
10.1186/s40192-016-0052-5
10.1016/j.procs.2020.09.314
10.1016/j.eng.2022.09.015
10.1109/ACCESS.2020.2981816
10.1007/s00170-022-10618-0
10.1016/j.jmapro.2022.04.033
10.1016/j.jmatprotec.2016.02.021
10.1016/j.matdes.2021.109506
10.1126/science.add4667
10.1016/j.icte.2020.06.003
10.1007/s11665-018-3690-2
10.1016/j.jmsy.2022.12.005
10.1007/s11837-020-04028-4
10.1016/j.msea.2018.01.103
10.1016/j.procir.2015.01.009
10.1007/s10845-020-01725-4
10.1007/978-3-031-04721-3
10.1007/s00170-017-1172-6
10.1016/j.promfg.2015.09.047
10.1016/j.neunet.2021.10.008
10.1016/j.phpro.2010.08.078
10.1557/jmr.2018.82
10.1109/EEBDA53927.2022.9744760
10.1080/24725854.2019.1659525
10.1016/j.jmatprotec.2022.117531
10.1016/j.dsm.2023.06.001
10.1016/j.msea.2016.09.086
10.1016/j.jprocont.2021.11.016
10.1038/s41529-020-00126-5
10.1016/j.procir.2022.08.074
10.1080/17452759.2023.2196266
10.2351/7.0000773
10.1080/09506608.2020.1868889
10.1007/s00521-023-08537-6
10.1016/j.matdes.2022.111115
10.1109/ACCESS.2021.3067302
10.1002/adem.201400349
10.1016/j.matdes.2022.111063
10.1016/S0005-1098(02)00032-8
10.1038/s41598-019-41415-7
10.1016/j.actamat.2016.06.009
10.1016/j.apenergy.2021.118346
10.1007/s10994-021-05961-4
10.1016/j.compchemeng.2022.107760
10.1016/j.mfglet.2019.09.005
10.1007/s11837-018-3024-8
10.1016/j.procir.2018.08.053
10.1186/s43088-022-00260-w
10.1007/s11837-020-04155-y
10.1017/pds.2023.276
10.1007/s10845-024-02490-4
10.1007/s40195-018-0752-2
10.1038/s41467-022-31985-y
10.1016/j.cossms.2021.100974
10.1109/LRA.2018.2839973
10.1016/j.jmapro.2021.11.037
10.1016/j.msea.2020.140483
10.1016/j.sysconle.2019.03.007
10.1109/ICRA40945.2020.9197222
10.1007/s11837-021-04888-4
10.1016/j.jmatprotec.2021.117476
10.1016/j.matdes.2021.109937
10.23919/ECC.2019.8795639
10.1016/j.cirpj.2017.05.002
10.1109/COASE.2019.8843070
10.1016/j.mechatronics.2015.09.004
10.1016/j.jmapro.2019.04.018
10.1016/j.measurement.2022.112244
10.1016/j.neunet.2021.03.037
10.1016/j.promfg.2020.05.112
10.1038/s42254-021-00314-5
10.1016/j.ijfatigue.2018.07.013
10.1088/1361-6501/aa5c4f
10.1016/j.prostr.2021.10.057
10.3390/ma16031050
10.1016/j.matt.2020.08.023
10.1038/s41598-021-03622-z
10.1016/j.jmapro.2022.12.048
10.1016/j.arcontrol.2022.07.004
10.1038/s41598-022-12381-4
10.1016/j.jmatprotec.2022.117550
10.1007/s10845-022-01920-5
10.1002/elsc.201700022
10.1109/TMECH.2021.3110818
10.1007/s11740-021-01030-w
10.1016/j.cossms.2018.01.002
10.1016/j.matdes.2022.110508
10.1038/s41591-019-0715-9
10.1109/JPROC.2021.3054628
10.23919/DATE51398.2021.9474175
10.1063/5.0143913
10.1002/9781118402832.ch5
10.1016/j.jfranklin.2018.12.015
10.1007/s00170-022-10032-6
10.1007/s40964-019-00083-9
10.1016/j.compind.2021.103596
10.1109/LRA.2018.2851792
10.1016/j.pmatsci.2023.101153
10.1007/s40195-021-01297-z
10.1016/j.jmsy.2023.07.018
10.1109/ICRA48891.2023.10161334
10.1016/j.matdes.2016.01.099
10.1109/icSmartGrid58556.2023.10171065
10.1016/j.isatra.2021.03.001
10.3390/met11071012
10.1016/j.compositesb.2021.109150
10.1016/j.matdes.2009.01.013
10.1115/1.4031156
10.1016/j.jnca.2022.103419
10.1016/j.matdes.2018.07.002
10.1038/s41467-019-10009-2
10.1002/aisy.201900130
10.1115/1.4062678
10.1016/j.jmapro.2023.08.022
10.1007/s00170-020-05998-0
10.1115/DETC2021-71865
10.1016/j.cub.2019.02.034
10.1016/j.cirp.2023.03.014
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
OTOTI
DOI 10.1016/j.addma.2024.104013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 2305413
10_1016_j_addma_2024_104013
S2214860424000599
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FYGXN
GBLVA
KOM
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AAXKI
AAYXX
ABXDB
AFJKZ
AKRWK
CITATION
EJD
M41
OTOTI
ID FETCH-LOGICAL-c375t-36120c90ff4887f024e5d86ebb57c19839356bb80e988a5f4620a50c7d64cca93
IEDL.DBID AIKHN
ISSN 2214-8604
IngestDate Mon Feb 19 05:00:58 EST 2024
Wed Nov 13 12:52:18 EST 2024
Sat Feb 17 16:11:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Process monitoring
Powder bed fusion
Diagnostics
Industry 4.0
Autonomous manufacturing
Zero defects manufacturing
Artificial intelligence
Prognostics
Closed-loop control
Directed energy deposition
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-36120c90ff4887f024e5d86ebb57c19839356bb80e988a5f4620a50c7d64cca93
Notes AC52–07NA27344
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214860424000599
ParticipantIDs osti_scitechconnect_2305413
crossref_primary_10_1016_j_addma_2024_104013
elsevier_sciencedirect_doi_10_1016_j_addma_2024_104013
PublicationCentury 2000
PublicationDate 2024-02-05
PublicationDateYYYYMMDD 2024-02-05
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Additive manufacturing
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Montazeri (bib50) 2020; 52
2021.
Knaak (bib41) 2021; 9
Pandiyan (bib204) 2022; 303

Petrich (bib25) 2021; 48
Peralta, E.M, Megahed, Gong, Roybal, Craig (bib56) 2016; 5
Vignon, Rabault, Vinuesa (bib191) 2023; 35
Zhang (bib31) 2018; 156
Gunasegaram (bib146) 2021; 4
Subramanian, Rule, Nazik (bib75) 2021
Wang, Yang, Moghaddam (bib52) 2022; 73
Mehr, Ellis, Noone (bib168) 2019
Jawed, Grabocka, Schmidt-Thieme (bib165) 2020
Scime, Beuth (bib85) 2018; 19
Hashemi (bib140) 2022; 67
Land (bib79) 2015; 1
Pires, Desmaison, Megahed (bib34) 2018; 70
Yao, Imani, Yang (bib114) 2018; 3
Wang (bib109) 2023; 66
.
Muhammad, A., et al.
Zhu, Fuh, Lin (bib19) 2022; 27
Renken (bib121) 2017; 19
McCann (bib12) 2021; 45
Anon. Aconity3D. [cited 2021 September]; Available from
Brown (bib83) 2016; 678
Williams (bib29) 2023
Reiff (bib110) 2021; 96
Anderson, White, Dehoff (bib71) 2018; 22
Ogoke, Farimani (bib170) 2021; 46
Samadiani, N., et al.
Raffestin (bib161) 2023; 206
Smoqi (bib119) 2022; 215
Mukherjee (bib132) 2023; 138
Mahmoud (bib49) 2021; 11
Perišić (bib152) 2021
Garzón (bib188) 2023
Yang (bib4) 2021; 46
Cai (bib111) 2023; 70
Qin (bib46) 2022; 52
DePond (bib78) 2018; 154
Abdalla (bib197) 2023; 35
Segovia Ramírez, García Márquez, Papaelias (bib162) 2023; 66
Roehling (bib97) 2019; 28
Sutton, Barto (bib193) 2018
Mazumder (bib8) 2015; 36
Matthews (bib100) 2015; 17
Lim (bib141) 2021; 11
Kim (bib219) 2023; 23
Feng (bib139) 2022; 110
Jin (bib39) 2020; 3
Mireles (bib93) 2015; 3
Wasmer (bib171) 2019; 28
Herzog (bib26) 2023
2023 [cited 2023 May]; Available from
Farshidianfar (bib92) 2021; 803
Everton (bib27) 2016; 95
Song (bib115) 2012; 58
Bevans (bib159) 2023; 18
Martin (bib67) 2019; 10
Kaneko (bib175) 2023
Gu, Shen (bib65) 2009; 30
Kriegeskorte, Golan (bib202) 2019; 29
Chen (bib157) 2023; 3
Shkoruta (bib134) 2019
Liu (bib207) 2019; 13
Roach (bib147) 2023; 74
Gulisano (bib153) 2022
Wang (bib42) 2020; 36
Rae, J.B. and A.K. Binder.
Gaikwad (bib210) 2020; 36
Cheng, Y., et al.
Gordon (bib137) 2020; 36
Bellini (bib3) 2021; 33
Caltanissetta (bib180) 2018; 24
Becker (bib123) 2021; 15
Ferreira (bib148) 2019
Craeghs (bib133) 2010; 5
Dutta, Babu, Jared (bib57) 2019
Zhao (bib145) 2023; 23
Coulson, Lygeros, Dörfler (bib217) 2019
Snow, Reutzel, Petrich (bib21) 2022; 302
Singh (bib208) 2023; 6
Schmelzle (bib74) 2015; 137
Cao, Ayalew (bib126) 2019; 356
Chen (bib116) 2023
Cannizzaro (bib149) 2021
Meng (bib45) 2020; 72
Tang, Pistorius, Beuth (bib63) 2017; 14
Yang (bib62) 2018; 33
Anon. A.M. Machine and Process Control Methods for Additive Manufacturing. 2018 [cited 2021 September]; Available from: 〈https://www.nist.gov/programs-projects/am-machine-and-process-control-methods-additive-manufacturing〉.
Anon. A.I. Anomaly Detector. 2023 [cited 2023 September]; Available from: 〈https://azure.microsoft.com/en-us/products/ai-services/ai-anomaly-detector〉.
Song (bib155) 2020; 8
Xames, Torsha, Sarwar (bib48) 2022
Dharmawan (bib16) 2020
Akhavan, Manoochehri (bib160) 2022
Zhou (bib96) 2023; 66
Xia (bib173) 2020; 110
Renken (bib124) 2019; 4
Anon. What Is Anomaly Detection? 2023 [cited 2023 September]; Available from
Zhang, Yan (bib47) 2022
Zhang (bib94) 2022; 35
Battaglia (bib199) 2023; 1
Sharma (bib142) 2023; 80
Melia (bib77) 2020; 4
Cheon (bib214) 2015; 3
[cited 2022 March]; Available from
Mitchell (bib66) 2020; 31
Felix (bib150) 2022; 12
Kurzynowski (bib138) 2018; 718
Roach (bib80) 2020; 32
Ye (bib54) 2023; 124
(bib112) 2012
Zhang (bib181) 2018; 156
Ulbricht (bib95) 2021; 11
Gunasegaram (bib32) 2021; 46
Jawed, Grabocka, Schmidt-Thieme (bib164) 2020
Leberruyer (bib186) 2023; 147
Tun (bib184) 2018
Liao (bib113) 2023; 72
Prime, DeWald (bib84) 2013
Challapalli, Patel, Li (bib201) 2021; 208
Anon.
Khosravanian, Aadnøy (bib10) 2022
Humfeld (bib200) 2021; 223
Jin, Zhang, Gu (bib35) 2019; 22
2023 [cited 2023 September]; Available from
Xi (bib22) 2022; 8
Co-Reyes, J.D. and Y. Miao.
Huang, Barnard (bib213) 2022; 3
Zhang, Wang (bib218) 2021; 141
Brennan, Keist, Palmer (bib1) 2020
Kozjek (bib167) 2022; 79
Brion, Pattinson (bib209) 2022; 13
du Plessis, Macdonald (bib5) 2020; 34
Hasanabadi (bib88) 2023; 4
Grasso, Colosimo (bib2) 2017; 28
Raj (bib13) 2023; 89
Druzgalski (bib89) 2020; 34
Tipaldi, Iervolino, Massenio (bib196) 2022; 54
Smoqi (bib129) 2022
Vandone, Baraldo, Valente (bib36) 2018; 3
Clausen (bib82) 2020; 36
Yuan (bib177) 2018; 3
Ren (bib151) 2023; 379
Suryawanshi (bib69) 2016; 115
Anon. Why choose model-based reinforcement learning. 2023 [cited 2023 September]; Available from
Fang (bib24) 2022
Jin, Zhang, Gu (bib11) 2020; 2
Gibson (bib131) 2020; 32
Bernauer, Zapata, Zaeh (bib136) 2022; 34
Scime, Beuth (bib178) 2019; 25
Adnan (bib220) 2020; 10
Freier, Wiechert, von Lieres (bib190) 2017; 17
Lupi, Pacini, Lanzetta (bib44) 2023; 103
Dulac-Arnold (bib198) 2021; 110
Wildgoose, Thole (bib76) 2023; 145
Cataldo (bib105) 2021; 109
Anon. 5001.002.002.004 Defect Detection and Mitigation via Selective Laser Ablation & Melting (SLAM). 2022 [cited 2023 September]; Available from
Anon. Addiguru. 2022 [cited 2022 March]; Available from
Wang, Li, Xuan (bib20) 2022; 122
Jared B, Madison, Ostien, Rodelas, Salzbrenner, Swiler, Underwood, DeJong (bib61) 2017
Liu (bib222) 2022; 62
Wang (bib43) 2020; 31
Riener (bib68) 2021; 39
Hagedorn, Pastors (bib104) 2018; 2
Karniadakis (bib206) 2021; 3
Formentin (bib118) 2019; 127
Anon. CELOS: Consistent software solution from CAM programming up to machine control. 2023 [cited 2023 September]; Available from
Vlasea (bib30) 2015
Ye (bib179) 2020; 48
Anon., STANDARDIZATION ROADMAP FOR ADDITIVE MANUFACTURING v3.0. July 2023, America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC): Youngstown OH, USA.
Lyu, Shen, Zhang (bib195) 2022
Jared B, Madison, Ostien, Rodelas, Salzbrenner, Swiler, Underwood, Saiz (bib70) 2017
Mostafaei (bib51) 2022; 26
2019. Solid Freeform Fabrication Symposium 2019, Austin, TX, US.
Garmendia (bib122) 2019; 42
2021 [cited 2023 September]; Available from
Kruth (bib17) 2007
Renken (bib135) 2018; 74
Hollon (bib156) 2020; 26
Dastgerdi, Lange, Mercorelli (bib189) 2023
Anon. Minimizing real-time prediction serving latency in machine learning. 2023 [cited 2023 September]; Available from
Suzuki (bib143) 2022; 59
Malekipour, El-Mounayri (bib14) 2018; 95
Lin (bib15) 2022; 120
Anon. LENS MR-7 Systems. [cited 2023 May]; Available from
Motaman (bib33) 2020; 72
[cited 2023 August]; Available from
Maass (bib99) 2021
Peng (bib6) 2021; 5
Abuabiah (bib127) 2023; 16
Carroll (bib59) 2021; 73
AbouelNour, Gupta (bib91) 2022; 222
Mani (bib18) 2015
Raju (bib163) 2023
Feng (bib128) 2022; 222
Xia (bib130) 2022; 33
Chepiga (bib144) 2023; 16
La Plante (bib154) 2021; 36
Günther (bib174) 2016; 34
Kulkarni, A., et al.
Wang (bib72) 2019; 32
Xiong, Yin, Zhang (bib120) 2016; 233
Du, Mukherjee, DebRoy (bib37) 2021; 24
2023 14 Aug 2023 [cited 2023 September]; Available from
Hooper (bib58) 2018; 22
Mu (bib125) 2022; 33
Tamir (bib23) 2022
Campi, Lecchini, Savaresi (bib117) 2002; 38
Lapointe (bib90) 2022; 53
2020 [cited 2023 September]; Available from
Powell (bib9) 2022; 136
Wang, Fuh (bib7) 2023; 7
Pegues (bib81) 2018; 116
Farzad, Gulliver (bib183) 2020; 6
Anon. 5001.002.001.003 Strategies for Real-Time Defect Mitigation for Additive Manufacturing (AM) Processes. 2022 [cited 2023 May]; Available from
Verma (bib166) 2022; 145
2023.
Liu (bib53) 2022
Dogru (bib215) 2022; 161
Liu (bib55) 2020; 176
Pagano (bib187) 2023; 6
Schimbäck (bib60) 2021; 201
Perani (bib158) 2023; 79
Quang (bib176) 2022; 111
Nassar (bib64) 2019; 9
Hamoud, Sobhi (bib40) 2022; 11
Arroyo (bib216) 2022; 309
Soni, Kumar (bib38) 2022; 205
Tang, Rahmani Dehaghani, Wang (bib203) 2023; 61
Montazeri (10.1016/j.addma.2024.104013_bib50) 2020; 52
Vlasea (10.1016/j.addma.2024.104013_bib30) 2015
Hamoud (10.1016/j.addma.2024.104013_bib40) 2022; 11
Dutta (10.1016/j.addma.2024.104013_bib57) 2019
Perišić (10.1016/j.addma.2024.104013_bib152) 2021
Kim (10.1016/j.addma.2024.104013_bib219) 2023; 23
Mu (10.1016/j.addma.2024.104013_bib125) 2022; 33
Brennan (10.1016/j.addma.2024.104013_bib1) 2020
Tang (10.1016/j.addma.2024.104013_bib63) 2017; 14
Kruth (10.1016/j.addma.2024.104013_bib17) 2007
10.1016/j.addma.2024.104013_bib169
Xia (10.1016/j.addma.2024.104013_bib130) 2022; 33
Dulac-Arnold (10.1016/j.addma.2024.104013_bib198) 2021; 110
Mahmoud (10.1016/j.addma.2024.104013_bib49) 2021; 11
Petrich (10.1016/j.addma.2024.104013_bib25) 2021; 48
Craeghs (10.1016/j.addma.2024.104013_bib133) 2010; 5
Mazumder (10.1016/j.addma.2024.104013_bib8) 2015; 36
Roach (10.1016/j.addma.2024.104013_bib147) 2023; 74
Yang (10.1016/j.addma.2024.104013_bib62) 2018; 33
Renken (10.1016/j.addma.2024.104013_bib124) 2019; 4
Dharmawan (10.1016/j.addma.2024.104013_bib16) 2020
Garmendia (10.1016/j.addma.2024.104013_bib122) 2019; 42
Jin (10.1016/j.addma.2024.104013_bib39) 2020; 3
Bevans (10.1016/j.addma.2024.104013_bib159) 2023; 18
10.1016/j.addma.2024.104013_bib172
Wang (10.1016/j.addma.2024.104013_bib72) 2019; 32
Cataldo (10.1016/j.addma.2024.104013_bib105) 2021; 109
Cheon (10.1016/j.addma.2024.104013_bib214) 2015; 3
Land (10.1016/j.addma.2024.104013_bib79) 2015; 1
Jin (10.1016/j.addma.2024.104013_bib35) 2019; 22
Formentin (10.1016/j.addma.2024.104013_bib118) 2019; 127
Maass (10.1016/j.addma.2024.104013_bib99) 2021
Suzuki (10.1016/j.addma.2024.104013_bib143) 2022; 59
Gunasegaram (10.1016/j.addma.2024.104013_bib146) 2021; 4
Freier (10.1016/j.addma.2024.104013_bib190) 2017; 17
Lyu (10.1016/j.addma.2024.104013_bib195) 2022
10.1016/j.addma.2024.104013_bib73
Günther (10.1016/j.addma.2024.104013_bib174) 2016; 34
Soni (10.1016/j.addma.2024.104013_bib38) 2022; 205
Williams (10.1016/j.addma.2024.104013_bib29) 2023
Ye (10.1016/j.addma.2024.104013_bib179) 2020; 48
Gaikwad (10.1016/j.addma.2024.104013_bib210) 2020; 36
Wang (10.1016/j.addma.2024.104013_bib20) 2022; 122
Clausen (10.1016/j.addma.2024.104013_bib82) 2020; 36
Mehr (10.1016/j.addma.2024.104013_bib168) 2019
Cai (10.1016/j.addma.2024.104013_bib111) 2023; 70
Liu (10.1016/j.addma.2024.104013_bib222) 2022; 62
Abuabiah (10.1016/j.addma.2024.104013_bib127) 2023; 16
Smoqi (10.1016/j.addma.2024.104013_bib129) 2022
Xia (10.1016/j.addma.2024.104013_bib173) 2020; 110
Raj (10.1016/j.addma.2024.104013_bib13) 2023; 89
Chen (10.1016/j.addma.2024.104013_bib116) 2023
Adnan (10.1016/j.addma.2024.104013_bib220) 2020; 10
Humfeld (10.1016/j.addma.2024.104013_bib200) 2021; 223
Song (10.1016/j.addma.2024.104013_bib155) 2020; 8
Leberruyer (10.1016/j.addma.2024.104013_bib186) 2023; 147
Yuan (10.1016/j.addma.2024.104013_bib177) 2018; 3
10.1016/j.addma.2024.104013_bib98
Nassar (10.1016/j.addma.2024.104013_bib64) 2019; 9
Ren (10.1016/j.addma.2024.104013_bib151) 2023; 379
Carroll (10.1016/j.addma.2024.104013_bib59) 2021; 73
Becker (10.1016/j.addma.2024.104013_bib123) 2021; 15
Anderson (10.1016/j.addma.2024.104013_bib71) 2018; 22
Kurzynowski (10.1016/j.addma.2024.104013_bib138) 2018; 718
Tamir (10.1016/j.addma.2024.104013_bib23) 2022
Zhang (10.1016/j.addma.2024.104013_bib31) 2018; 156
Kaneko (10.1016/j.addma.2024.104013_bib175) 2023
Arroyo (10.1016/j.addma.2024.104013_bib216) 2022; 309
Subramanian (10.1016/j.addma.2024.104013_bib75) 2021
Vandone (10.1016/j.addma.2024.104013_bib36) 2018; 3
Hashemi (10.1016/j.addma.2024.104013_bib140) 2022; 67
Pagano (10.1016/j.addma.2024.104013_bib187) 2023; 6
Xi (10.1016/j.addma.2024.104013_bib22) 2022; 8
Knaak (10.1016/j.addma.2024.104013_bib41) 2021; 9
Mitchell (10.1016/j.addma.2024.104013_bib66) 2020; 31
10.1016/j.addma.2024.104013_bib87
Farshidianfar (10.1016/j.addma.2024.104013_bib92) 2021; 803
10.1016/j.addma.2024.104013_bib86
Huang (10.1016/j.addma.2024.104013_bib213) 2022; 3
Mireles (10.1016/j.addma.2024.104013_bib93) 2015; 3
10.1016/j.addma.2024.104013_bib212
Song (10.1016/j.addma.2024.104013_bib115) 2012; 58
Brion (10.1016/j.addma.2024.104013_bib209) 2022; 13
10.1016/j.addma.2024.104013_bib211
Gunasegaram (10.1016/j.addma.2024.104013_bib32) 2021; 46
DePond (10.1016/j.addma.2024.104013_bib78) 2018; 154
Melia (10.1016/j.addma.2024.104013_bib77) 2020; 4
Peralta (10.1016/j.addma.2024.104013_bib56) 2016; 5
Renken (10.1016/j.addma.2024.104013_bib121) 2017; 19
Cao (10.1016/j.addma.2024.104013_bib126) 2019; 356
Khosravanian (10.1016/j.addma.2024.104013_bib10) 2022
Hollon (10.1016/j.addma.2024.104013_bib156) 2020; 26
Chepiga (10.1016/j.addma.2024.104013_bib144) 2023; 16
Zhang (10.1016/j.addma.2024.104013_bib181) 2018; 156
AbouelNour (10.1016/j.addma.2024.104013_bib91) 2022; 222
Du (10.1016/j.addma.2024.104013_bib37) 2021; 24
Ferreira (10.1016/j.addma.2024.104013_bib148) 2019
10.1016/j.addma.2024.104013_bib103
10.1016/j.addma.2024.104013_bib224
10.1016/j.addma.2024.104013_bib102
10.1016/j.addma.2024.104013_bib223
10.1016/j.addma.2024.104013_bib101
10.1016/j.addma.2024.104013_bib221
Bellini (10.1016/j.addma.2024.104013_bib3) 2021; 33
Hagedorn (10.1016/j.addma.2024.104013_bib104) 2018; 2
10.1016/j.addma.2024.104013_bib108
10.1016/j.addma.2024.104013_bib107
Gordon (10.1016/j.addma.2024.104013_bib137) 2020; 36
10.1016/j.addma.2024.104013_bib106
Farzad (10.1016/j.addma.2024.104013_bib183) 2020; 6
Malekipour (10.1016/j.addma.2024.104013_bib14) 2018; 95
Wang (10.1016/j.addma.2024.104013_bib43) 2020; 31
Sutton (10.1016/j.addma.2024.104013_bib193) 2018
Roehling (10.1016/j.addma.2024.104013_bib97) 2019; 28
Gulisano (10.1016/j.addma.2024.104013_bib153) 2022
Qin (10.1016/j.addma.2024.104013_bib46) 2022; 52
Jawed (10.1016/j.addma.2024.104013_bib164) 2020
Grasso (10.1016/j.addma.2024.104013_bib2) 2017; 28
Liu (10.1016/j.addma.2024.104013_bib207) 2019; 13
Tun (10.1016/j.addma.2024.104013_bib184) 2018
Zhang (10.1016/j.addma.2024.104013_bib47) 2022
Scime (10.1016/j.addma.2024.104013_bib85) 2018; 19
Mukherjee (10.1016/j.addma.2024.104013_bib132) 2023; 138
du Plessis (10.1016/j.addma.2024.104013_bib5) 2020; 34
Akhavan (10.1016/j.addma.2024.104013_bib160) 2022
Zhang (10.1016/j.addma.2024.104013_bib218) 2021; 141
Wang (10.1016/j.addma.2024.104013_bib42) 2020; 36
McCann (10.1016/j.addma.2024.104013_bib12) 2021; 45
Tipaldi (10.1016/j.addma.2024.104013_bib196) 2022; 54
Campi (10.1016/j.addma.2024.104013_bib117) 2002; 38
Feng (10.1016/j.addma.2024.104013_bib128) 2022; 222
Coulson (10.1016/j.addma.2024.104013_bib217) 2019
Liu (10.1016/j.addma.2024.104013_bib53) 2022
Battaglia (10.1016/j.addma.2024.104013_bib199) 2023; 1
Shkoruta (10.1016/j.addma.2024.104013_bib134) 2019
10.1016/j.addma.2024.104013_bib205
Bernauer (10.1016/j.addma.2024.104013_bib136) 2022; 34
Reiff (10.1016/j.addma.2024.104013_bib110) 2021; 96
Abdalla (10.1016/j.addma.2024.104013_bib197) 2023; 35
Renken (10.1016/j.addma.2024.104013_bib135) 2018; 74
Brown (10.1016/j.addma.2024.104013_bib83) 2016; 678
Dogru (10.1016/j.addma.2024.104013_bib215) 2022; 161
Yang (10.1016/j.addma.2024.104013_bib4) 2021; 46
Scime (10.1016/j.addma.2024.104013_bib178) 2019; 25
Verma (10.1016/j.addma.2024.104013_bib166) 2022; 145
Raffestin (10.1016/j.addma.2024.104013_bib161) 2023; 206
Caltanissetta (10.1016/j.addma.2024.104013_bib180) 2018; 24
Pandiyan (10.1016/j.addma.2024.104013_bib204) 2022; 303
Chen (10.1016/j.addma.2024.104013_bib157) 2023; 3
Wildgoose (10.1016/j.addma.2024.104013_bib76) 2023; 145
Liao (10.1016/j.addma.2024.104013_bib113) 2023; 72
Segovia Ramírez (10.1016/j.addma.2024.104013_bib162) 2023; 66
Kozjek (10.1016/j.addma.2024.104013_bib167) 2022; 79
Motaman (10.1016/j.addma.2024.104013_bib33) 2020; 72
Raju (10.1016/j.addma.2024.104013_bib163) 2023
Vignon (10.1016/j.addma.2024.104013_bib191) 2023; 35
Xiong (10.1016/j.addma.2024.104013_bib120) 2016; 233
Jawed (10.1016/j.addma.2024.104013_bib165) 2020
Challapalli (10.1016/j.addma.2024.104013_bib201) 2021; 208
Jared B (10.1016/j.addma.2024.104013_bib61) 2017
Cannizzaro (10.1016/j.addma.2024.104013_bib149) 2021
Matthews (10.1016/j.addma.2024.104013_bib100) 2015; 17
Ogoke (10.1016/j.addma.2024.104013_bib170) 2021; 46
Smoqi (10.1016/j.addma.2024.104013_bib119) 2022; 215
Lapointe (10.1016/j.addma.2024.104013_bib90) 2022; 53
Feng (10.1016/j.addma.2024.104013_bib139) 2022; 110
Powell (10.1016/j.addma.2024.104013_bib9) 2022; 136
(10.1016/j.addma.2024.104013_bib112) 2012
Mani (10.1016/j.addma.2024.104013_bib18) 2015
Dastgerdi (10.1016/j.addma.2024.104013_bib189) 2023
Mostafaei (10.1016/j.addma.2024.104013_bib51) 2022; 26
Schmelzle (10.1016/j.addma.2024.104013_bib74) 2015; 137
Zhou (10.1016/j.addma.2024.104013_bib96) 2023; 66
Roach (10.1016/j.addma.2024.104013_bib80) 2020; 32
Pires (10.1016/j.addma.2024.104013_bib34) 2018; 70
Gibson (10.1016/j.addma.2024.104013_bib131) 2020; 32
Prime (10.1016/j.addma.2024.104013_bib84) 2013
Xames (10.1016/j.addma.2024.104013_bib48) 2022
Singh (10.1016/j.addma.2024.104013_bib208) 2023; 6
Zhao (10.1016/j.addma.2024.104013_bib145) 2023; 23
Liu (10.1016/j.addma.2024.104013_bib55) 2020; 176
Quang (10.1016/j.addma.2024.104013_bib176) 2022; 111
Karniadakis (10.1016/j.addma.2024.104013_bib206) 2021; 3
Jin (10.1016/j.addma.2024.104013_bib11) 2020; 2
Martin (10.1016/j.addma.2024.104013_bib67) 2019; 10
Felix (10.1016/j.addma.2024.104013_bib150) 2022; 12
Tang (10.1016/j.addma.2024.104013_bib203) 2023; 61
Riener (10.1016/j.addma.2024.104013_bib68) 2021; 39
Jared B (10.1016/j.addma.2024.104013_bib70) 2017
Druzgalski (10.1016/j.addma.2024.104013_bib89) 2020; 34
Zhu (10.1016/j.addma.2024.104013_bib19) 2022; 27
Fang (10.1016/j.addma.2024.104013_bib24) 2022
Herzog (10.1016/j.addma.2024.104013_bib26) 2023
Wasmer (10.1016/j.addma.2024.104013_bib171) 2019; 28
Lupi (10.1016/j.addma.2024.104013_bib44) 2023; 103
Kriegeskorte (10.1016/j.addma.2024.104013_bib202) 2019; 29
Wang (10.1016/j.addma.2024.104013_bib109) 2023; 66
Gu (10.1016/j.addma.2024.104013_bib65) 2009; 30
10.1016/j.addma.2024.104013_bib182
Zhang (10.1016/j.addma.2024.104013_bib94) 2022; 35
Yao (10.1016/j.addma.2024.104013_bib114) 2018; 3
Snow (10.1016/j.addma.2024.104013_bib21) 2022; 302
10.1016/j.addma.2024.104013_bib28
Everton (10.1016/j.addma.2024.10
References_xml – volume: 110
  start-page: 2419
  year: 2021
  end-page: 2468
  ident: bib198
  article-title: Challenges of real-world reinforcement learning: definitions, benchmarks and analysis
  publication-title: Mach. Learn.
  contributor:
    fullname: Dulac-Arnold
– year: 2019
  ident: bib217
  article-title: Data-Enabled Predictive Control: In the Shallows of the DeePC
  publication-title: 2019 18th Eur. Control Conf. (ECC)
  contributor:
    fullname: Dörfler
– volume: 309
  year: 2022
  ident: bib216
  article-title: Reinforced model predictive control (RL-MPC) for building energy management
  publication-title: Appl. Energy
  contributor:
    fullname: Arroyo
– year: 2019
  ident: bib148
  article-title: Interpretable machine learning for additive manufacturing
  contributor:
    fullname: Ferreira
– volume: 176
  start-page: 2586
  year: 2020
  end-page: 2595
  ident: bib55
  article-title: Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing
  publication-title: Procedia Comput. Sci.
  contributor:
    fullname: Liu
– volume: 201
  year: 2021
  ident: bib60
  article-title: Laser powder bed fusion of an engineering intermetallic TiAl alloy
  publication-title: Mater. Des.
  contributor:
    fullname: Schimbäck
– volume: 11
  year: 2021
  ident: bib95
  article-title: Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study
  publication-title: Metals
  contributor:
    fullname: Ulbricht
– volume: 12
  year: 2022
  ident: bib150
  article-title: In situ process quality monitoring and defect detection for direct metal laser melting
  publication-title: Sci. Rep.
  contributor:
    fullname: Felix
– volume: 141
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib218
  article-title: Deep ANC: A deep learning approach to active noise control
  publication-title: Neural Netw.
  contributor:
    fullname: Wang
– volume: 136
  year: 2022
  ident: bib9
  article-title: Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions
  publication-title: Comput. Ind.
  contributor:
    fullname: Powell
– year: 2018
  ident: bib184
  article-title: Semi-Supervised Outlier Detection Algorithms
  contributor:
    fullname: Tun
– volume: 111
  start-page: 479
  year: 2022
  end-page: 483
  ident: bib176
  article-title: Smart closed-loop control of laser welding using reinforcement learning
  publication-title: Procedia CIRP
  contributor:
    fullname: Quang
– volume: 34
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib174
  article-title: Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning
  publication-title: Mechatronics
  contributor:
    fullname: Günther
– year: 2020
  ident: bib16
  article-title: A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing
  publication-title: 2020 IEEE Int. Conf. Robot. Autom. (ICRA)
  contributor:
    fullname: Dharmawan
– start-page: 521
  year: 2007
  end-page: 527
  ident: bib17
  article-title: Feedback Control of Selective Laser Melting
  publication-title: in
  contributor:
    fullname: Kruth
– volume: 74
  year: 2023
  ident: bib147
  article-title: Invertible neural networks for real-time control of extrusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roach
– volume: 33
  start-page: 498
  year: 2021
  end-page: 508
  ident: bib3
  article-title: Additive manufacturing processes for metals and effects of defects on mechanical strength: a review
  publication-title: Procedia Struct. Integr.
  contributor:
    fullname: Bellini
– volume: 222
  year: 2022
  ident: bib128
  article-title: Predicting laser powder bed fusion defects through in-process monitoring data and machine learning
  publication-title: Mater. Des.
  contributor:
    fullname: Feng
– volume: 110
  start-page: 24
  year: 2022
  end-page: 34
  ident: bib139
  article-title: Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach
  publication-title: J. Process Control
  contributor:
    fullname: Feng
– volume: 9
  year: 2019
  ident: bib64
  article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
  contributor:
    fullname: Nassar
– volume: 95
  start-page: 431
  year: 2016
  end-page: 445
  ident: bib27
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  contributor:
    fullname: Everton
– volume: 22
  start-page: 8
  year: 2018
  end-page: 15
  ident: bib71
  article-title: Feedstock powder processing research needs for additive manufacturing development
  publication-title: Curr. Opin. Solid State Mater. Sci.
  contributor:
    fullname: Dehoff
– volume: 3
  year: 2022
  ident: bib213
  article-title: Federated data processing and learning for collaboration in the physical sciences
  publication-title: Mach. Learn.: Sci. Technol.
  contributor:
    fullname: Barnard
– volume: 3
  year: 2018
  ident: bib177
  article-title: Machine-Learning-Based Monitoring of Laser Powder Bed Fusion
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Yuan
– volume: 96
  start-page: 127
  year: 2021
  end-page: 132
  ident: bib110
  article-title: Learning Feedforward Control for Laser Powder Bed Fusion
  publication-title: Procedia CIRP
  contributor:
    fullname: Reiff
– volume: 156
  start-page: 458
  year: 2018
  end-page: 469
  ident: bib31
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater. Des.
  contributor:
    fullname: Zhang
– year: 2022
  ident: bib160
  article-title: Sensory Data Fusion Using Machine Learning Methods for In-Situ Defect Registration in Additive Manufacturing: A Review
  publication-title: 2022 IEEE Int. IOT, Electron. Mechatron. Conf., IEMTRONICS 2022
  contributor:
    fullname: Manoochehri
– volume: 32
  start-page: 127
  year: 2019
  end-page: 135
  ident: bib72
  article-title: Cracking Behavior in Additively Manufactured Pure Tungsten
  publication-title: Acta Metall. Sin. (Engl. Lett. )
  contributor:
    fullname: Wang
– volume: 13
  year: 2022
  ident: bib209
  article-title: Generalisable 3D printing error detection and correction via multi-head neural networks
  publication-title: Nat. Commun.
  contributor:
    fullname: Pattinson
– volume: 6
  start-page: 229
  year: 2020
  end-page: 237
  ident: bib183
  article-title: Unsupervised log message anomaly detection
  publication-title: ICT Express
  contributor:
    fullname: Gulliver
– volume: 137
  year: 2015
  ident: bib74
  article-title: Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
  publication-title: J. Mech. Des.
  contributor:
    fullname: Schmelzle
– volume: 17
  start-page: 247
  year: 2015
  end-page: 252
  ident: bib100
  article-title: Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams
  publication-title: Adv. Eng. Mater.
  contributor:
    fullname: Matthews
– volume: 206
  year: 2023
  ident: bib161
  article-title: Ultrasonic diagnostic for in situ control in metal additive manufacturing
  publication-title: Measurement
  contributor:
    fullname: Raffestin
– year: 2022
  ident: bib23
  article-title: Machine-learning-based monitoring and optimization of processing parameters in 3D printing
  publication-title: Int. J. Comput. Integr. Manuf.
  contributor:
    fullname: Tamir
– volume: 5
  year: 2021
  ident: bib6
  article-title: A review of post-processing technologies in additive manufacturing
  publication-title: J. Manuf. Mater. Process.
  contributor:
    fullname: Peng
– volume: 4
  year: 2023
  ident: bib88
  article-title: In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion
  publication-title: Addit. Manuf. Lett.
  contributor:
    fullname: Hasanabadi
– volume: 34
  year: 2020
  ident: bib5
  article-title: Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure
  publication-title: Addit. Manuf.
  contributor:
    fullname: Macdonald
– volume: 15
  start-page: 489
  year: 2021
  end-page: 507
  ident: bib123
  article-title: Influence of a closed-loop controlled laser metal wire deposition process of S Al 5356 on the quality of manufactured parts before and after subsequent machining
  publication-title: Prod. Eng.
  contributor:
    fullname: Becker
– volume: 24
  start-page: 183
  year: 2018
  end-page: 199
  ident: bib180
  article-title: Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Caltanissetta
– volume: 19
  start-page: 57
  year: 2017
  end-page: 61
  ident: bib121
  article-title: Development of an adaptive, self-learning control concept for an additive manufacturing process
  publication-title: CIRP J. Manuf. Sci. Technol.
  contributor:
    fullname: Renken
– volume: 79
  year: 2023
  ident: bib158
  article-title: Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks
  publication-title: Robot. Comput. -Integr. Manuf.
  contributor:
    fullname: Perani
– volume: 4
  year: 2021
  ident: bib146
  article-title: The case for digital twins in metal additive manufacturing
  publication-title: J. Phys.: Mater.
  contributor:
    fullname: Gunasegaram
– year: 2021
  ident: bib149
  article-title: Image analytics and machine learning for in-situ defects detection in Additive Manufacturing
  contributor:
    fullname: Cannizzaro
– volume: 3
  start-page: 5
  year: 2015
  ident: bib214
  article-title: On Replacing PID Controller with Deep Learning Controller for DC Motor System
  publication-title: Jounal Autom. Control Eng.
  contributor:
    fullname: Cheon
– volume: 79
  start-page: 81
  year: 2022
  end-page: 90
  ident: bib167
  article-title: Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements
  publication-title: J. Manuf. Process.
  contributor:
    fullname: Kozjek
– volume: 31
  year: 2020
  ident: bib43
  article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 29
  start-page: R231
  year: 2019
  end-page: R236
  ident: bib202
  article-title: Neural network models and deep learning
  publication-title: Curr. Biol.
  contributor:
    fullname: Golan
– start-page: 50
  year: 2015
  ident: bib18
  article-title: Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes
  contributor:
    fullname: Mani
– volume: 27
  start-page: 2495
  year: 2022
  end-page: 2510
  ident: bib19
  article-title: Metal-Based Additive Manufacturing Condition Monitoring: A Review on Machine Learning Based Approaches
  publication-title: IEEE/ASME Trans. Mechatron.
  contributor:
    fullname: Lin
– volume: 39
  year: 2021
  ident: bib68
  article-title: Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF)
  publication-title: Addit. Manuf.
  contributor:
    fullname: Riener
– volume: 208
  year: 2021
  ident: bib201
  article-title: Inverse machine learning framework for optimizing lightweight metamaterials
  publication-title: Mater. Des.
  contributor:
    fullname: Li
– volume: 3
  start-page: 2755
  year: 2023
  end-page: 2764
  ident: bib157
  article-title: MULTISENSOR FUSION-BASED DIGITAL TWIN IN ADDITIVE MANUFACTURING FOR IN-SITU QUALITY MONITORING AND DEFECT CORRECTION
  publication-title: Proc. Des. Soc.
  contributor:
    fullname: Chen
– volume: 145
  year: 2023
  ident: bib76
  article-title: Influences of Laser Incidence Angle and Wall Thickness on Additive Components
  publication-title: J. Turbomach.
  contributor:
    fullname: Thole
– volume: 161
  year: 2022
  ident: bib215
  article-title: Reinforcement learning approach to autonomous PID tuning
  publication-title: Comput. Chem. Eng.
  contributor:
    fullname: Dogru
– volume: 23
  start-page: 181
  year: 2023
  end-page: 195
  ident: bib145
  article-title: Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model
  publication-title: Engineering
  contributor:
    fullname: Zhao
– volume: 23
  year: 2023
  ident: bib219
  article-title: A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions
  publication-title: Sens. (Basel)
  contributor:
    fullname: Kim
– volume: 74
  start-page: 659
  year: 2018
  end-page: 663
  ident: bib135
  article-title: Model assisted closed-loop control strategy for selective laser melting
  publication-title: Procedia CIRP
  contributor:
    fullname: Renken
– volume: 70
  start-page: 1677
  year: 2018
  end-page: 1685
  ident: bib34
  article-title: ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing
  publication-title: JOM
  contributor:
    fullname: Megahed
– volume: 36
  year: 2020
  ident: bib42
  article-title: Machine learning in additive manufacturing: State-of-the-art and perspectives
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 34
  year: 2020
  ident: bib89
  article-title: Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Druzgalski
– volume: 3
  year: 2015
  ident: bib93
  article-title: Analysis and correction of defects within parts fabricated using powder bed fusion technology
  publication-title: Surf. Topogr.: Metrol. Prop.
  contributor:
    fullname: Mireles
– volume: 156
  start-page: 458
  year: 2018
  end-page: 469
  ident: bib181
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater. Des.
  contributor:
    fullname: Zhang
– volume: 34
  year: 2022
  ident: bib136
  article-title: Toward defect-free components in laser metal deposition with coaxial wire feeding through closed-loop control of the melt pool temperature
  publication-title: J. Laser Appl.
  contributor:
    fullname: Zaeh
– year: 2022
  ident: bib195
  article-title: The Advance of Reinforcement Learning and Deep Reinforcement Learning
  publication-title: 2022 IEEE Int. Conf. Electr. Eng., Big Data Algorithms (EEBDA)
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 1165
  year: 2022
  end-page: 1180
  ident: bib125
  article-title: Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Mu
– volume: 48
  year: 2021
  ident: bib25
  article-title: Multi-modal sensor fusion with machine learning for data-driven process monitoring for additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Petrich
– volume: 28
  start-page: 228
  year: 2019
  end-page: 235
  ident: bib97
  article-title: Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roehling
– volume: 116
  start-page: 543
  year: 2018
  end-page: 552
  ident: bib81
  article-title: Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Pegues
– volume: 4
  start-page: 11
  year: 2020
  ident: bib77
  article-title: How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel
  publication-title: npj Mater. Degrad.
  contributor:
    fullname: Melia
– volume: 46
  year: 2021
  ident: bib170
  article-title: Thermal control of laser powder bed fusion using deep reinforcement learning
  publication-title: Addit. Manuf.
  contributor:
    fullname: Farimani
– volume: 67
  start-page: 1
  year: 2022
  end-page: 46
  ident: bib140
  article-title: Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review
  publication-title: Int. Mater. Rev.
  contributor:
    fullname: Hashemi
– volume: 73
  start-page: 961
  year: 2022
  end-page: 984
  ident: bib52
  article-title: Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges
  publication-title: J. Manuf. Process.
  contributor:
    fullname: Moghaddam
– volume: 72
  start-page: 2363
  year: 2020
  end-page: 2377
  ident: bib45
  article-title: Machine Learning in Additive Manufacturing: A Review
  publication-title: JOM
  contributor:
    fullname: Meng
– volume: 28
  year: 2017
  ident: bib2
  article-title: Process defects andin situmonitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Colosimo
– volume: 4
  start-page: 411
  year: 2019
  end-page: 421
  ident: bib124
  article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting
  publication-title: Prog. Addit. Manuf.
  contributor:
    fullname: Renken
– volume: 138
  year: 2023
  ident: bib132
  article-title: Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components
  publication-title: Prog. Mater. Sci.
  contributor:
    fullname: Mukherjee
– volume: 803
  year: 2021
  ident: bib92
  article-title: Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition
  publication-title: Mater. Sci. Eng.: A
  contributor:
    fullname: Farshidianfar
– year: 2022
  ident: bib129
  article-title: Monitoring and Prediction of Porosity in Laser Powder Bed Fusion using Physics-informed Meltpool Signatures and Machine Learning
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Smoqi
– volume: 66
  start-page: 260
  year: 2023
  end-page: 286
  ident: bib162
  article-title: Review on additive manufacturing and non-destructive testing
  publication-title: J. Manuf. Syst.
  contributor:
    fullname: Papaelias
– volume: 54
  start-page: 1
  year: 2022
  end-page: 23
  ident: bib196
  article-title: Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges
  publication-title: Annu. Rev. Control
  contributor:
    fullname: Massenio
– year: 2017
  ident: bib70
  article-title: The challenges and consequences of material uncertainties in metal laser powder bed fusion
  publication-title: 32nd ASPE Annual Meeting 2017
  contributor:
    fullname: Saiz
– year: 2021
  ident: bib99
  article-title: In-Process Control for L-PBF.
  contributor:
    fullname: Maass
– volume: 35
  year: 2023
  ident: bib191
  article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
  publication-title: Phys. Fluids
  contributor:
    fullname: Vinuesa
– year: 2023
  ident: bib189
  article-title: Faulty Process Detection Using Machine Learning Techniques
  publication-title: Congress on Smart Computing Technologies
  contributor:
    fullname: Mercorelli
– volume: 302
  year: 2022
  ident: bib21
  article-title: Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Petrich
– volume: 10
  year: 2020
  ident: bib220
  article-title: A new architectural approach to monitoring and controlling AM processes
  publication-title: Appl. Sci. (Switz. )
  contributor:
    fullname: Adnan
– volume: 16
  year: 2023
  ident: bib144
  article-title: Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm
  publication-title: Materials
  contributor:
    fullname: Chepiga
– volume: 22
  start-page: 548
  year: 2018
  end-page: 559
  ident: bib58
  article-title: Melt pool temperature and cooling rates in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Hooper
– volume: 26
  year: 2022
  ident: bib51
  article-title: Defects and anomalies in powder bed fusion metal additive manufacturing
  publication-title: Curr. Opin. Solid State Mater. Sci.
  contributor:
    fullname: Mostafaei
– volume: 30
  start-page: 2903
  year: 2009
  end-page: 2910
  ident: bib65
  article-title: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
  publication-title: Mater. Des.
  contributor:
    fullname: Shen
– volume: 356
  start-page: 2505
  year: 2019
  end-page: 2529
  ident: bib126
  article-title: Robust multivariable predictive control for laser-aided powder deposition processes
  publication-title: J. Frankl. Inst.
  contributor:
    fullname: Ayalew
– volume: 58
  start-page: 247
  year: 2012
  end-page: 256
  ident: bib115
  article-title: Control of melt pool temperature and deposition height during direct metal deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Song
– volume: 26
  start-page: 52
  year: 2020
  end-page: 58
  ident: bib156
  article-title: Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
  publication-title: Nat. Med.
  contributor:
    fullname: Hollon
– volume: 222
  year: 2022
  ident: bib91
  article-title: In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review
  publication-title: Mater. Des.
  contributor:
    fullname: Gupta
– volume: 17
  start-page: 916
  year: 2017
  end-page: 922
  ident: bib190
  article-title: Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics
  publication-title: Eng. Life Sci.
  contributor:
    fullname: von Lieres
– volume: 70
  start-page: 309
  year: 2023
  end-page: 326
  ident: bib111
  article-title: A review of in-situ monitoring and process control system in metal-based laser additive manufacturing
  publication-title: J. Manuf. Syst.
  contributor:
    fullname: Cai
– volume: 36
  start-page: 187
  year: 2015
  end-page: 192
  ident: bib8
  article-title: Design for metallic additive manufacturing machine with capability for “certify as you build
  publication-title: Procedia CIRP
  contributor:
    fullname: Mazumder
– volume: 72
  start-page: 1092
  year: 2020
  end-page: 1104
  ident: bib33
  article-title: Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach
  publication-title: JOM
  contributor:
    fullname: Motaman
– volume: 36
  year: 2020
  ident: bib82
  article-title: Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Clausen
– year: 2022
  ident: bib53
  article-title: A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Liu
– volume: 14
  start-page: 39
  year: 2017
  end-page: 48
  ident: bib63
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Beuth
– volume: 13
  start-page: 2662
  year: 2019
  end-page: 2672
  ident: bib207
  article-title: Survey on GAN-based face hallucination with its model development
  publication-title: IET Image Process.
  contributor:
    fullname: Liu
– volume: 59
  year: 2022
  ident: bib143
  article-title: Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide
  publication-title: Addit. Manuf.
  contributor:
    fullname: Suzuki
– volume: 38
  start-page: 1337
  year: 2002
  end-page: 1346
  ident: bib117
  article-title: Virtual reference feedback tuning: a direct method for the design of feedback controllers
  publication-title: Automatica
  contributor:
    fullname: Savaresi
– volume: 205
  year: 2022
  ident: bib38
  article-title: Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy
  publication-title: J. Netw. Comput. Appl.
  contributor:
    fullname: Kumar
– volume: 223
  year: 2021
  ident: bib200
  article-title: A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control
  publication-title: Compos. Part B: Eng.
  contributor:
    fullname: Humfeld
– year: 2012
  ident: bib112
  publication-title: Introduction to PID Controllers: Theory, Tuning and Application to Frontiers Areas
– year: 2020
  ident: bib165
  article-title: Self-supervised Learning for Semi-supervised Time Series Classification
  publication-title: Advances in Knowledge Discovery and Data Mining
  contributor:
    fullname: Schmidt-Thieme
– volume: 110
  start-page: 2131
  year: 2020
  end-page: 2142
  ident: bib173
  article-title: Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Xia
– volume: 154
  start-page: 347
  year: 2018
  end-page: 359
  ident: bib78
  article-title: In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry
  publication-title: Mater. Des.
  contributor:
    fullname: DePond
– volume: 379
  start-page: 89
  year: 2023
  end-page: 94
  ident: bib151
  article-title: Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion
  publication-title: Science
  contributor:
    fullname: Ren
– volume: 6
  year: 2023
  ident: bib187
  article-title: A predictive maintenance model using Long Short-Term Memory Neural Networks and Bayesian inference
  publication-title: Decis. Anal. J.
  contributor:
    fullname: Pagano
– volume: 35
  start-page: 439
  year: 2022
  end-page: 452
  ident: bib94
  article-title: In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti–6.5Al–3.5Mo–l.5Zr–0.3Si Titanium Alloy
  publication-title: Acta Metall. Sin. (Engl. Lett. )
  contributor:
    fullname: Zhang
– volume: 103
  start-page: 413
  year: 2023
  end-page: 429
  ident: bib44
  article-title: Laser powder bed additive manufacturing: A review on the four drivers for an online control
  publication-title: J. Manuf. Process.
  contributor:
    fullname: Lanzetta
– volume: 8
  year: 2022
  ident: bib22
  article-title: Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng.
  contributor:
    fullname: Xi
– start-page: 1
  year: 2022
  end-page: 27
  ident: bib24
  article-title: Process Monitoring, Diagnosis and Control of Additive Manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Fang
– volume: 2
  start-page: 4
  year: 2018
  ident: bib104
  article-title: Process Monitoring of Laser Beam Melting Towards in-situ process control for powder bed laser melting
  publication-title: Laser Tech. J.
  contributor:
    fullname: Pastors
– volume: 33
  start-page: 1467
  year: 2022
  end-page: 1482
  ident: bib130
  article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Xia
– volume: 8
  start-page: 56837
  year: 2020
  end-page: 56846
  ident: bib155
  article-title: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy for the FAST Telescope as a Giant CPS
  publication-title: IEEE Access
  contributor:
    fullname: Song
– volume: 145
  start-page: 90
  year: 2022
  end-page: 106
  ident: bib166
  article-title: Interpolation consistency training for semi-supervised learning
  publication-title: Neural Netw.
  contributor:
    fullname: Verma
– volume: 718
  start-page: 64
  year: 2018
  end-page: 73
  ident: bib138
  article-title: Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting
  publication-title: Mater. Sci. Eng.: A
  contributor:
    fullname: Kurzynowski
– volume: 1
  year: 2023
  ident: bib199
  article-title: Deep ensemble inverse model for image-based estimation of solar cell parameters
  publication-title: APL Mach. Learn.
  contributor:
    fullname: Battaglia
– volume: 11
  year: 2021
  ident: bib49
  article-title: Applications of machine learning in process monitoring and controls of l‐pbf additive manufacturing: A review
  publication-title: Appl. Sci. (Switz. )
  contributor:
    fullname: Mahmoud
– volume: 52
  year: 2022
  ident: bib46
  article-title: Research and application of machine learning for additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Qin
– volume: 48
  start-page: 770
  year: 2020
  end-page: 775
  ident: bib179
  article-title: A Deep Learning Approach for the Identification of Small Process Shifts in Additive Manufacturing using 3D Point Clouds
  publication-title: Procedia Manuf.
  contributor:
    fullname: Ye
– volume: 1
  start-page: 393
  year: 2015
  end-page: 403
  ident: bib79
  article-title: In-Situ Metrology System for Laser Powder Bed Fusion Additive Process
  publication-title: Procedia Manuf.
  contributor:
    fullname: Land
– volume: 3
  start-page: 3279
  year: 2018
  end-page: 3284
  ident: bib36
  article-title: Multisensor Data Fusion for Additive Manufacturing Process Control
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Valente
– volume: 28
  start-page: 666
  year: 2019
  end-page: 672
  ident: bib171
  article-title: In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach
  publication-title: J. Mater. Eng. Perform.
  contributor:
    fullname: Wasmer
– volume: 45
  year: 2021
  ident: bib12
  article-title: In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
  publication-title: Addit. Manuf.
  contributor:
    fullname: McCann
– volume: 52
  start-page: 500
  year: 2020
  end-page: 515
  ident: bib50
  article-title: In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy
  publication-title: IISE Trans.
  contributor:
    fullname: Montazeri
– volume: 5
  start-page: 1
  year: 2016
  ident: bib56
  article-title: Towards rapid qualification of powder-bed laser additively manufactured parts
  publication-title: Integr. Mater. Manuf. Innov.
  contributor:
    fullname: Craig
– volume: 53
  year: 2022
  ident: bib90
  article-title: Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries
  publication-title: Addit. Manuf.
  contributor:
    fullname: Lapointe
– volume: 115
  start-page: 285
  year: 2016
  end-page: 294
  ident: bib69
  article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting
  publication-title: Acta Mater.
  contributor:
    fullname: Suryawanshi
– volume: 120
  start-page: 147
  year: 2022
  end-page: 166
  ident: bib15
  article-title: Metal-based additive manufacturing condition monitoring methods: From measurement to control
  publication-title: ISA Trans.
  contributor:
    fullname: Lin
– start-page: 43
  year: 2019
  ident: bib168
  publication-title: Real-time adaptive control of additive manufacturing processes using machine learning
  contributor:
    fullname: Noone
– volume: 11
  year: 2022
  ident: bib40
  article-title: A new algorithm for optimal process parameters based on minimum building time in additive manufacturing
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
  contributor:
    fullname: Sobhi
– volume: 35
  start-page: 16633
  year: 2023
  end-page: 16647
  ident: bib197
  article-title: Actor-critic reinforcement learning leads decision-making in energy systems optimization—steam injection optimization
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Abdalla
– volume: 2
  year: 2020
  ident: bib11
  article-title: Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence
  publication-title: Adv. Intell. Syst.
  contributor:
    fullname: Gu
– volume: 61
  year: 2023
  ident: bib203
  article-title: Review of transfer learning in modeling additive manufacturing processes
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 46
  year: 2021
  ident: bib4
  article-title: A computationally efficient thermo-mechanical model for wire arc additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Yang
– year: 2019
  ident: bib134
  article-title: Iterative learning control for power profile shaping in selective laser melting
  publication-title: 2019 IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE)
  contributor:
    fullname: Shkoruta
– year: 2022
  ident: bib47
  article-title: Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Yan
– start-page: 43
  year: 2022
  end-page: 49
  ident: bib153
  article-title: Towards data-driven additive manufacturing processes
  publication-title: Proceedings of the 23rd International Middleware Conference Industrial Track
  contributor:
    fullname: Gulisano
– volume: 89
  start-page: 24
  year: 2023
  end-page: 38
  ident: bib13
  article-title: Modeling spatial variations in co-axial melt pool monitoring signals in laser powder bed fusion
  publication-title: J. Manuf. Process.
  contributor:
    fullname: Raj
– year: 2023
  ident: bib29
  article-title: Strategic Guide: Additive Manufacturing In-Situ Monitoring Technology Readiness
  contributor:
    fullname: Williams
– volume: 33
  start-page: 1701
  year: 2018
  end-page: 1712
  ident: bib62
  article-title: Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part
  publication-title: J. Mater. Res.
  contributor:
    fullname: Yang
– volume: 127
  start-page: 25
  year: 2019
  end-page: 34
  ident: bib118
  article-title: Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design
  publication-title: Syst. Control Lett.
  contributor:
    fullname: Formentin
– volume: 9
  start-page: 55214
  year: 2021
  end-page: 55231
  ident: bib41
  article-title: Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning
  publication-title: IEEE Access
  contributor:
    fullname: Knaak
– year: 2017
  ident: bib61
  article-title: Defect Characterization for Material Assurance in Metal Additive Manufacturing
  contributor:
    fullname: DeJong
– start-page: 109
  year: 2013
  end-page: 138
  ident: bib84
  article-title: The Contour Method
  contributor:
    fullname: DeWald
– volume: 36
  year: 2020
  ident: bib137
  article-title: Defect structure process maps for laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gordon
– volume: 36
  year: 2021
  ident: bib154
  article-title: A Real Time Processing system for big data in astronomy: Applications to HERA
  publication-title: Astron. Comput.
  contributor:
    fullname: La Plante
– volume: 73
  start-page: 3356
  year: 2021
  end-page: 3370
  ident: bib59
  article-title: High-Throughput Statistical Interrogation of Mechanical Properties with Build Plate Location and Powder Reuse in AlSi10Mg
  publication-title: JOM
  contributor:
    fullname: Carroll
– volume: 3
  start-page: 1541
  year: 2020
  end-page: 1556
  ident: bib39
  article-title: Machine Learning for Advanced Additive Manufacturing
  publication-title: Matter
  contributor:
    fullname: Jin
– year: 2020
  ident: bib164
  article-title: Self-supervised Learning for Semi-supervised Time Series Classification
  publication-title: in
  contributor:
    fullname: Schmidt-Thieme
– volume: 147
  year: 2023
  ident: bib186
  article-title: Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application
  publication-title: Comput. Ind.
  contributor:
    fullname: Leberruyer
– volume: 122
  start-page: 2277
  year: 2022
  end-page: 2292
  ident: bib20
  article-title: Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Xuan
– volume: 124
  start-page: 1401
  year: 2023
  end-page: 1427
  ident: bib54
  article-title: A review of the parameter-signature-quality correlations through in situ sensing in laser metal additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Ye
– volume: 19
  start-page: 114
  year: 2018
  end-page: 126
  ident: bib85
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
  contributor:
    fullname: Beuth
– volume: 66
  year: 2023
  ident: bib109
  article-title: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 109
  start-page: 326
  year: 2021
  end-page: 346
  ident: bib105
  article-title: Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions
  publication-title: Proc. IEEE
  contributor:
    fullname: Cataldo
– volume: 215
  year: 2022
  ident: bib119
  article-title: Closed-loop control of meltpool temperature in directed energy deposition
  publication-title: Mater. Des.
  contributor:
    fullname: Smoqi
– start-page: 1
  year: 2022
  end-page: 30
  ident: bib10
  article-title: Chapter One - Introduction to digital twin, automation and real-time centers
  publication-title: in
  contributor:
    fullname: Aadnøy
– volume: 24
  year: 2021
  ident: bib37
  article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects
  publication-title: Appl. Mater. Today
  contributor:
    fullname: DebRoy
– volume: 72
  start-page: 157
  year: 2023
  end-page: 160
  ident: bib113
  article-title: Simulation-guided feedforward-feedback control of melt pool temperature in directed energy deposition
  publication-title: CIRP Ann.
  contributor:
    fullname: Liao
– year: 2023
  ident: bib175
  article-title: Reinforcement Learning for Laser Welding Speed Control Minimizing Bead Width Error
  publication-title: 2023 IEEE Int. Conf. Robot. Autom. (ICRA)
  contributor:
    fullname: Kaneko
– volume: 31
  year: 2020
  ident: bib66
  article-title: Linking pyrometry to porosity in additively manufactured metals
  publication-title: Addit. Manuf.
  contributor:
    fullname: Mitchell
– volume: 10
  year: 2019
  ident: bib67
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
  contributor:
    fullname: Martin
– volume: 32
  year: 2020
  ident: bib131
  article-title: Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gibson
– volume: 3
  start-page: 2792
  year: 2018
  end-page: 2798
  ident: bib114
  article-title: Markov Decision Process for Image-Guided Additive Manufacturing
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Yang
– volume: 80
  start-page: 248
  year: 2023
  end-page: 253
  ident: bib142
  article-title: Forecasting of process parameters using machine learning techniques for wire arc additive manufacturing process
  publication-title: Mater. Today.: Proc.
  contributor:
    fullname: Sharma
– volume: 5
  start-page: 505
  year: 2010
  end-page: 514
  ident: bib133
  article-title: Feedback control of Layerwise Laser Melting using optical sensors
  publication-title: Phys. Procedia
  contributor:
    fullname: Craeghs
– year: 2022
  ident: bib48
  article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Sarwar
– year: 2018
  ident: bib193
  publication-title: Reinforcement Learning - An Introduction
  contributor:
    fullname: Barto
– volume: 46
  year: 2021
  ident: bib32
  article-title: Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gunasegaram
– year: 2021
  ident: bib152
  article-title: . in
  publication-title: 2021 International Solid Freeform Fabrication Symposium
  contributor:
    fullname: Perišić
– year: 2023
  ident: bib26
  article-title: Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Herzog
– volume: 18
  year: 2023
  ident: bib159
  article-title: Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing
  publication-title: Virtual Phys. Prototyp.
  contributor:
    fullname: Bevans
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib57
  article-title: Chapter 1 - Metal additive manufacturing
  publication-title: in
  contributor:
    fullname: Jared
– volume: 62
  start-page: 857
  year: 2022
  end-page: 874
  ident: bib222
  article-title: Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems
  publication-title: J. Manuf. Syst.
  contributor:
    fullname: Liu
– volume: 22
  start-page: 11
  year: 2019
  end-page: 15
  ident: bib35
  article-title: Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning
  publication-title: Manuf. Lett.
  contributor:
    fullname: Gu
– year: 2023
  ident: bib188
  article-title: Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems
  publication-title: 2023 11th Int. Conf. Smart Grid (icSmartGrid)
  contributor:
    fullname: Garzón
– volume: 7
  year: 2023
  ident: bib7
  article-title: Metal additive manufacturing and its post-processing techniques
  publication-title: J. Manuf. Mater. Process.
  contributor:
    fullname: Fuh
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib206
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  contributor:
    fullname: Karniadakis
– volume: 233
  start-page: 100
  year: 2016
  end-page: 106
  ident: bib120
  article-title: Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 144
  year: 2023
  end-page: 157
  ident: bib208
  article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning
  publication-title: Data Sci. Manag.
  contributor:
    fullname: Singh
– year: 2021
  ident: bib75
  article-title: Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation
  publication-title: Vol. 7: Ind. Cogener. ; Manuf. Mater. Metall.
  contributor:
    fullname: Nazik
– start-page: 0
  year: 2020
  ident: bib1
  article-title: Defects in Metal Additive Manufacturing Processes
  publication-title: Additive manufacturing processes
  contributor:
    fullname: Palmer
– start-page: 3
  year: 2023
  end-page: 30
  ident: bib116
  article-title: In-Process Sensing, Monitoring and Adaptive Control for Intelligent Laser-Aided Additive Manufacturing
  publication-title: Trans. Intell. Weld. Manuf.
  contributor:
    fullname: Chen
– volume: 32
  year: 2020
  ident: bib80
  article-title: Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roach
– volume: 25
  start-page: 151
  year: 2019
  end-page: 165
  ident: bib178
  article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
  contributor:
    fullname: Beuth
– year: 2015
  ident: bib30
  article-title: Development of powder bed fusion additive manufacturing test bed for enhanced real time process control
  contributor:
    fullname: Vlasea
– volume: 95
  start-page: 527
  year: 2018
  end-page: 550
  ident: bib14
  article-title: Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: El-Mounayri
– year: 2023
  ident: bib163
  article-title: The Influence of Machine Learning in Additive Manufacturing
  contributor:
    fullname: Raju
– volume: 42
  start-page: 20
  year: 2019
  end-page: 27
  ident: bib122
  article-title: Structured light-based height control for laser metal deposition
  publication-title: J. Manuf. Process.
  contributor:
    fullname: Garmendia
– volume: 303
  year: 2022
  ident: bib204
  article-title: Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Pandiyan
– volume: 36
  year: 2020
  ident: bib210
  article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gaikwad
– volume: 66
  year: 2023
  ident: bib96
  article-title: In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy
  publication-title: Addit. Manuf.
  contributor:
    fullname: Zhou
– volume: 678
  start-page: 291
  year: 2016
  end-page: 298
  ident: bib83
  article-title: Neutron diffraction measurements of residual stress in additively manufactured stainless steel
  publication-title: Mater. Sci. Eng.: A
  contributor:
    fullname: Brown
– volume: 11
  year: 2021
  ident: bib141
  article-title: Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods
  publication-title: Sci. Rep.
  contributor:
    fullname: Lim
– volume: 16
  year: 2023
  ident: bib127
  article-title: Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review
  publication-title: Mater. (Basel)
  contributor:
    fullname: Abuabiah
– volume: 36
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib154
  article-title: A Real Time Processing system for big data in astronomy: Applications to HERA
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2021.100489
  contributor:
    fullname: La Plante
– volume: 62
  start-page: 857
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib222
  article-title: Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.05.010
  contributor:
    fullname: Liu
– volume: 79
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib158
  article-title: Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks
  publication-title: Robot. Comput. -Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102445
  contributor:
    fullname: Perani
– volume: 14
  start-page: 39
  year: 2017
  ident: 10.1016/j.addma.2024.104013_bib63
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Tang
– volume: 39
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib68
  article-title: Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF)
  publication-title: Addit. Manuf.
  contributor:
    fullname: Riener
– volume: 154
  start-page: 347
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib78
  article-title: In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.05.050
  contributor:
    fullname: DePond
– volume: 96
  start-page: 127
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib110
  article-title: Learning Feedforward Control for Laser Powder Bed Fusion
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.01.064
  contributor:
    fullname: Reiff
– volume: 58
  start-page: 247
  issue: 1
  year: 2012
  ident: 10.1016/j.addma.2024.104013_bib115
  article-title: Control of melt pool temperature and deposition height during direct metal deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3395-2
  contributor:
    fullname: Song
– volume: 13
  start-page: 2662
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib207
  article-title: Survey on GAN-based face hallucination with its model development
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6545
  contributor:
    fullname: Liu
– volume: 11
  issue: 24
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib49
  article-title: Applications of machine learning in process monitoring and controls of l‐pbf additive manufacturing: A review
  publication-title: Appl. Sci. (Switz. )
  contributor:
    fullname: Mahmoud
– volume: 22
  start-page: 548
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib58
  article-title: Melt pool temperature and cooling rates in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Hooper
– volume: 147
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib186
  article-title: Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2023.103877
  contributor:
    fullname: Leberruyer
– year: 2020
  ident: 10.1016/j.addma.2024.104013_bib164
  article-title: Self-supervised Learning for Semi-supervised Time Series Classification
  contributor:
    fullname: Jawed
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib56
  article-title: Towards rapid qualification of powder-bed laser additively manufactured parts
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1186/s40192-016-0052-5
  contributor:
    fullname: Peralta
– year: 2017
  ident: 10.1016/j.addma.2024.104013_bib61
  contributor:
    fullname: Jared B
– volume: 176
  start-page: 2586
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib55
  article-title: Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.09.314
  contributor:
    fullname: Liu
– ident: 10.1016/j.addma.2024.104013_bib87
– volume: 4
  issue: 4
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib146
  article-title: The case for digital twins in metal additive manufacturing
  publication-title: J. Phys.: Mater.
  contributor:
    fullname: Gunasegaram
– volume: 45
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib12
  article-title: In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
  publication-title: Addit. Manuf.
  contributor:
    fullname: McCann
– volume: 19
  start-page: 114
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib85
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
  contributor:
    fullname: Scime
– volume: 2
  start-page: 4
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib104
  article-title: Process Monitoring of Laser Beam Melting Towards in-situ process control for powder bed laser melting
  publication-title: Laser Tech. J.
  contributor:
    fullname: Hagedorn
– start-page: 0
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib1
  article-title: Defects in Metal Additive Manufacturing Processes
  contributor:
    fullname: Brennan
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib23
  article-title: Machine-learning-based monitoring and optimization of processing parameters in 3D printing
  publication-title: Int. J. Comput. Integr. Manuf.
  contributor:
    fullname: Tamir
– volume: 10
  issue: 18
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib220
  article-title: A new architectural approach to monitoring and controlling AM processes
  publication-title: Appl. Sci. (Switz. )
  contributor:
    fullname: Adnan
– volume: 23
  start-page: 181
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib145
  article-title: Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model
  publication-title: Engineering
  doi: 10.1016/j.eng.2022.09.015
  contributor:
    fullname: Zhao
– volume: 8
  start-page: 56837
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib155
  article-title: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy for the FAST Telescope as a Giant CPS
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981816
  contributor:
    fullname: Song
– year: 2021
  ident: 10.1016/j.addma.2024.104013_bib152
  article-title: A Data Integration Framework for Additive Manufacturing Big Data Management. in
  contributor:
    fullname: Perišić
– start-page: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib10
  article-title: Chapter One - Introduction to digital twin, automation and real-time centers
  contributor:
    fullname: Khosravanian
– volume: 31
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib66
  article-title: Linking pyrometry to porosity in additively manufactured metals
  publication-title: Addit. Manuf.
  contributor:
    fullname: Mitchell
– volume: 66
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib109
  article-title: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib210
  article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gaikwad
– volume: 124
  start-page: 1401
  issue: 5
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib54
  article-title: A review of the parameter-signature-quality correlations through in situ sensing in laser metal additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10618-0
  contributor:
    fullname: Ye
– ident: 10.1016/j.addma.2024.104013_bib98
– volume: 79
  start-page: 81
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib167
  article-title: Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.04.033
  contributor:
    fullname: Kozjek
– volume: 233
  start-page: 100
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib120
  article-title: Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.02.021
  contributor:
    fullname: Xiong
– year: 2012
  ident: 10.1016/j.addma.2024.104013_bib112
– volume: 201
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib60
  article-title: Laser powder bed fusion of an engineering intermetallic TiAl alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109506
  contributor:
    fullname: Schimbäck
– volume: 379
  start-page: 89
  issue: 6627
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib151
  article-title: Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion
  publication-title: Science
  doi: 10.1126/science.add4667
  contributor:
    fullname: Ren
– volume: 6
  start-page: 229
  issue: 3
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib183
  article-title: Unsupervised log message anomaly detection
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.06.003
  contributor:
    fullname: Farzad
– volume: 28
  start-page: 666
  issue: 2
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib171
  article-title: In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-018-3690-2
  contributor:
    fullname: Wasmer
– volume: 3
  start-page: 5
  issue: 6
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib214
  article-title: On Replacing PID Controller with Deep Learning Controller for DC Motor System
  publication-title: Jounal Autom. Control Eng.
  contributor:
    fullname: Cheon
– volume: 80
  start-page: 248
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib142
  article-title: Forecasting of process parameters using machine learning techniques for wire arc additive manufacturing process
  publication-title: Mater. Today.: Proc.
  contributor:
    fullname: Sharma
– volume: 66
  start-page: 260
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib162
  article-title: Review on additive manufacturing and non-destructive testing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.12.005
  contributor:
    fullname: Segovia Ramírez
– volume: 72
  start-page: 1092
  issue: 3
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib33
  article-title: Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach
  publication-title: JOM
  doi: 10.1007/s11837-020-04028-4
  contributor:
    fullname: Motaman
– volume: 718
  start-page: 64
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib138
  article-title: Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2018.01.103
  contributor:
    fullname: Kurzynowski
– ident: 10.1016/j.addma.2024.104013_bib106
– volume: 36
  start-page: 187
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib8
  article-title: Design for metallic additive manufacturing machine with capability for “certify as you build
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.01.009
  contributor:
    fullname: Mazumder
– volume: 32
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib80
  article-title: Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roach
– ident: 10.1016/j.addma.2024.104013_bib182
– volume: 33
  start-page: 1467
  issue: 5
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib130
  article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01725-4
  contributor:
    fullname: Xia
– volume: 46
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib4
  article-title: A computationally efficient thermo-mechanical model for wire arc additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Yang
– ident: 10.1016/j.addma.2024.104013_bib86
– volume: 24
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib37
  article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Du
– volume: 66
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib96
  article-title: In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy
  publication-title: Addit. Manuf.
  doi: 10.1007/978-3-031-04721-3
  contributor:
    fullname: Zhou
– volume: 95
  start-page: 527
  issue: 1
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib14
  article-title: Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1172-6
  contributor:
    fullname: Malekipour
– volume: 1
  start-page: 393
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib79
  article-title: In-Situ Metrology System for Laser Powder Bed Fusion Additive Process
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2015.09.047
  contributor:
    fullname: Land
– ident: 10.1016/j.addma.2024.104013_bib185
– start-page: 521
  year: 2007
  ident: 10.1016/j.addma.2024.104013_bib17
  article-title: Feedback Control of Selective Laser Melting
  contributor:
    fullname: Kruth
– volume: 145
  start-page: 90
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib166
  article-title: Interpolation consistency training for semi-supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.10.008
  contributor:
    fullname: Verma
– volume: 5
  start-page: 505
  year: 2010
  ident: 10.1016/j.addma.2024.104013_bib133
  article-title: Feedback control of Layerwise Laser Melting using optical sensors
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.08.078
  contributor:
    fullname: Craeghs
– volume: 33
  start-page: 1701
  issue: 12
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib62
  article-title: Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.82
  contributor:
    fullname: Yang
– volume: 3
  issue: 4
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib213
  article-title: Federated data processing and learning for collaboration in the physical sciences
  publication-title: Mach. Learn.: Sci. Technol.
  contributor:
    fullname: Huang
– year: 2015
  ident: 10.1016/j.addma.2024.104013_bib30
  contributor:
    fullname: Vlasea
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib195
  article-title: The Advance of Reinforcement Learning and Deep Reinforcement Learning
  publication-title: 2022 IEEE Int. Conf. Electr. Eng., Big Data Algorithms (EEBDA)
  doi: 10.1109/EEBDA53927.2022.9744760
  contributor:
    fullname: Lyu
– ident: 10.1016/j.addma.2024.104013_bib101
– volume: 52
  start-page: 500
  issue: 5
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib50
  article-title: In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2019.1659525
  contributor:
    fullname: Montazeri
– ident: 10.1016/j.addma.2024.104013_bib224
– volume: 303
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib204
  article-title: Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2022.117531
  contributor:
    fullname: Pandiyan
– volume: 34
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib5
  article-title: Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure
  publication-title: Addit. Manuf.
  contributor:
    fullname: du Plessis
– year: 2021
  ident: 10.1016/j.addma.2024.104013_bib75
  article-title: Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation
  publication-title: Vol. 7: Ind. Cogener. ; Manuf. Mater. Metall.
  contributor:
    fullname: Subramanian
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib82
  article-title: Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Clausen
– volume: 6
  start-page: 144
  issue: 3
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib208
  article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2023.06.001
  contributor:
    fullname: Singh
– volume: 4
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib88
  article-title: In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion
  publication-title: Addit. Manuf. Lett.
  contributor:
    fullname: Hasanabadi
– ident: 10.1016/j.addma.2024.104013_bib28
– volume: 678
  start-page: 291
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib83
  article-title: Neutron diffraction measurements of residual stress in additively manufactured stainless steel
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2016.09.086
  contributor:
    fullname: Brown
– volume: 110
  start-page: 24
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib139
  article-title: Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.11.016
  contributor:
    fullname: Feng
– start-page: 3
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib116
  article-title: In-Process Sensing, Monitoring and Adaptive Control for Intelligent Laser-Aided Additive Manufacturing
  publication-title: Trans. Intell. Weld. Manuf.
  contributor:
    fullname: Chen
– volume: 4
  start-page: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib77
  article-title: How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-020-00126-5
  contributor:
    fullname: Melia
– volume: 111
  start-page: 479
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib176
  article-title: Smart closed-loop control of laser welding using reinforcement learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.08.074
  contributor:
    fullname: Quang
– volume: 8
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib22
  article-title: Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng.
  contributor:
    fullname: Xi
– volume: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib159
  article-title: Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2023.2196266
  contributor:
    fullname: Bevans
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib136
  article-title: Toward defect-free components in laser metal deposition with coaxial wire feeding through closed-loop control of the melt pool temperature
  publication-title: J. Laser Appl.
  doi: 10.2351/7.0000773
  contributor:
    fullname: Bernauer
– volume: 67
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib140
  article-title: Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2020.1868889
  contributor:
    fullname: Hashemi
– volume: 35
  start-page: 16633
  issue: 22
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib197
  article-title: Actor-critic reinforcement learning leads decision-making in energy systems optimization—steam injection optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08537-6
  contributor:
    fullname: Abdalla
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib189
  article-title: Faulty Process Detection Using Machine Learning Techniques
  contributor:
    fullname: Dastgerdi
– start-page: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib24
  article-title: Process Monitoring, Diagnosis and Control of Additive Manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Fang
– volume: 222
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib128
  article-title: Predicting laser powder bed fusion defects through in-process monitoring data and machine learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111115
  contributor:
    fullname: Feng
– ident: 10.1016/j.addma.2024.104013_bib212
– volume: 9
  start-page: 55214
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib41
  article-title: Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067302
  contributor:
    fullname: Knaak
– volume: 17
  start-page: 247
  issue: 3
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib100
  article-title: Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201400349
  contributor:
    fullname: Matthews
– volume: 222
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib91
  article-title: In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111063
  contributor:
    fullname: AbouelNour
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib53
  article-title: A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Liu
– volume: 38
  start-page: 1337
  issue: 8
  year: 2002
  ident: 10.1016/j.addma.2024.104013_bib117
  article-title: Virtual reference feedback tuning: a direct method for the design of feedback controllers
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00032-8
  contributor:
    fullname: Campi
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib64
  article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41415-7
  contributor:
    fullname: Nassar
– ident: 10.1016/j.addma.2024.104013_bib107
– volume: 25
  start-page: 151
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib178
  article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
  contributor:
    fullname: Scime
– volume: 115
  start-page: 285
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib69
  article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.009
  contributor:
    fullname: Suryawanshi
– volume: 6
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib187
  article-title: A predictive maintenance model using Long Short-Term Memory Neural Networks and Bayesian inference
  publication-title: Decis. Anal. J.
  contributor:
    fullname: Pagano
– volume: 309
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib216
  article-title: Reinforced model predictive control (RL-MPC) for building energy management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118346
  contributor:
    fullname: Arroyo
– start-page: 43
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib153
  article-title: Towards data-driven additive manufacturing processes
  contributor:
    fullname: Gulisano
– volume: 110
  start-page: 2419
  issue: 9
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib198
  article-title: Challenges of real-world reinforcement learning: definitions, benchmarks and analysis
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05961-4
  contributor:
    fullname: Dulac-Arnold
– volume: 161
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib215
  article-title: Reinforcement learning approach to autonomous PID tuning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107760
  contributor:
    fullname: Dogru
– volume: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib199
  article-title: Deep ensemble inverse model for image-based estimation of solar cell parameters
  publication-title: APL Mach. Learn.
  contributor:
    fullname: Battaglia
– ident: 10.1016/j.addma.2024.104013_bib192
– volume: 52
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib46
  article-title: Research and application of machine learning for additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Qin
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib160
  article-title: Sensory Data Fusion Using Machine Learning Methods for In-Situ Defect Registration in Additive Manufacturing: A Review
  publication-title: 2022 IEEE Int. IOT, Electron. Mechatron. Conf., IEMTRONICS 2022
  contributor:
    fullname: Akhavan
– volume: 22
  start-page: 11
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib35
  article-title: Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2019.09.005
  contributor:
    fullname: Jin
– ident: 10.1016/j.addma.2024.104013_bib169
– volume: 70
  start-page: 1677
  issue: 9
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib34
  article-title: ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing
  publication-title: JOM
  doi: 10.1007/s11837-018-3024-8
  contributor:
    fullname: Pires
– volume: 74
  start-page: 659
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib135
  article-title: Model assisted closed-loop control strategy for selective laser melting
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.053
  contributor:
    fullname: Renken
– volume: 31
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib43
  article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– year: 2018
  ident: 10.1016/j.addma.2024.104013_bib184
  contributor:
    fullname: Tun
– year: 2020
  ident: 10.1016/j.addma.2024.104013_bib165
  article-title: Self-supervised Learning for Semi-supervised Time Series Classification
  contributor:
    fullname: Jawed
– volume: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib40
  article-title: A new algorithm for optimal process parameters based on minimum building time in additive manufacturing
  publication-title: Beni-Suef Univ. J. Basic Appl. Sci.
  doi: 10.1186/s43088-022-00260-w
  contributor:
    fullname: Hamoud
– ident: 10.1016/j.addma.2024.104013_bib102
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib45
  article-title: Machine Learning in Additive Manufacturing: A Review
  publication-title: JOM
  doi: 10.1007/s11837-020-04155-y
  contributor:
    fullname: Meng
– volume: 3
  start-page: 2755
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib157
  article-title: MULTISENSOR FUSION-BASED DIGITAL TWIN IN ADDITIVE MANUFACTURING FOR IN-SITU QUALITY MONITORING AND DEFECT CORRECTION
  publication-title: Proc. Des. Soc.
  doi: 10.1017/pds.2023.276
  contributor:
    fullname: Chen
– ident: 10.1016/j.addma.2024.104013_bib205
  doi: 10.1007/s10845-024-02490-4
– volume: 32
  start-page: 127
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib72
  article-title: Cracking Behavior in Additively Manufactured Pure Tungsten
  publication-title: Acta Metall. Sin. (Engl. Lett. )
  doi: 10.1007/s40195-018-0752-2
  contributor:
    fullname: Wang
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib209
  article-title: Generalisable 3D printing error detection and correction via multi-head neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31985-y
  contributor:
    fullname: Brion
– volume: 26
  issue: 2
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib51
  article-title: Defects and anomalies in powder bed fusion metal additive manufacturing
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2021.100974
  contributor:
    fullname: Mostafaei
– volume: 3
  start-page: 2792
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib114
  article-title: Markov Decision Process for Image-Guided Additive Manufacturing
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2839973
  contributor:
    fullname: Yao
– ident: 10.1016/j.addma.2024.104013_bib223
– volume: 32
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib131
  article-title: Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gibson
– ident: 10.1016/j.addma.2024.104013_bib73
– volume: 46
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib170
  article-title: Thermal control of laser powder bed fusion using deep reinforcement learning
  publication-title: Addit. Manuf.
  contributor:
    fullname: Ogoke
– volume: 73
  start-page: 961
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib52
  article-title: Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.11.037
  contributor:
    fullname: Wang
– volume: 803
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib92
  article-title: Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2020.140483
  contributor:
    fullname: Farshidianfar
– volume: 127
  start-page: 25
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib118
  article-title: Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2019.03.007
  contributor:
    fullname: Formentin
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib48
  article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Xames
– year: 2020
  ident: 10.1016/j.addma.2024.104013_bib16
  article-title: A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing
  publication-title: 2020 IEEE Int. Conf. Robot. Autom. (ICRA)
  doi: 10.1109/ICRA40945.2020.9197222
  contributor:
    fullname: Dharmawan
– volume: 73
  start-page: 3356
  issue: 11
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib59
  article-title: High-Throughput Statistical Interrogation of Mechanical Properties with Build Plate Location and Powder Reuse in AlSi10Mg
  publication-title: JOM
  doi: 10.1007/s11837-021-04888-4
  contributor:
    fullname: Carroll
– volume: 302
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib21
  article-title: Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117476
  contributor:
    fullname: Snow
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib29
  contributor:
    fullname: Williams
– year: 2019
  ident: 10.1016/j.addma.2024.104013_bib148
  contributor:
    fullname: Ferreira
– volume: 208
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib201
  article-title: Inverse machine learning framework for optimizing lightweight metamaterials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109937
  contributor:
    fullname: Challapalli
– year: 2019
  ident: 10.1016/j.addma.2024.104013_bib217
  article-title: Data-Enabled Predictive Control: In the Shallows of the DeePC
  publication-title: 2019 18th Eur. Control Conf. (ECC)
  doi: 10.23919/ECC.2019.8795639
  contributor:
    fullname: Coulson
– volume: 19
  start-page: 57
  year: 2017
  ident: 10.1016/j.addma.2024.104013_bib121
  article-title: Development of an adaptive, self-learning control concept for an additive manufacturing process
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2017.05.002
  contributor:
    fullname: Renken
– year: 2019
  ident: 10.1016/j.addma.2024.104013_bib134
  article-title: Iterative learning control for power profile shaping in selective laser melting
  publication-title: 2019 IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE)
  doi: 10.1109/COASE.2019.8843070
  contributor:
    fullname: Shkoruta
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib47
  article-title: Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Zhang
– volume: 34
  start-page: 1
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib174
  article-title: Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.09.004
  contributor:
    fullname: Günther
– volume: 42
  start-page: 20
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib122
  article-title: Structured light-based height control for laser metal deposition
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.04.018
  contributor:
    fullname: Garmendia
– volume: 206
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib161
  article-title: Ultrasonic diagnostic for in situ control in metal additive manufacturing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112244
  contributor:
    fullname: Raffestin
– volume: 141
  start-page: 1
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib218
  article-title: Deep ANC: A deep learning approach to active noise control
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.03.037
  contributor:
    fullname: Zhang
– volume: 48
  start-page: 770
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib179
  article-title: A Deep Learning Approach for the Identification of Small Process Shifts in Additive Manufacturing using 3D Point Clouds
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.05.112
  contributor:
    fullname: Ye
– volume: 34
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib89
  article-title: Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Druzgalski
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib206
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
  contributor:
    fullname: Karniadakis
– volume: 48
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib25
  article-title: Multi-modal sensor fusion with machine learning for data-driven process monitoring for additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Petrich
– ident: 10.1016/j.addma.2024.104013_bib108
– volume: 116
  start-page: 543
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib81
  article-title: Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.07.013
  contributor:
    fullname: Pegues
– volume: 28
  issue: 4
  year: 2017
  ident: 10.1016/j.addma.2024.104013_bib2
  article-title: Process defects andin situmonitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa5c4f
  contributor:
    fullname: Grasso
– volume: 28
  start-page: 228
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib97
  article-title: Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roehling
– volume: 5
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib6
  article-title: A review of post-processing technologies in additive manufacturing
  publication-title: J. Manuf. Mater. Process.
  contributor:
    fullname: Peng
– volume: 33
  start-page: 498
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib3
  article-title: Additive manufacturing processes for metals and effects of defects on mechanical strength: a review
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2021.10.057
  contributor:
    fullname: Bellini
– volume: 16
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib144
  article-title: Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm
  publication-title: Materials
  doi: 10.3390/ma16031050
  contributor:
    fullname: Chepiga
– volume: 3
  start-page: 1541
  issue: 5
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib39
  article-title: Machine Learning for Advanced Additive Manufacturing
  publication-title: Matter
  doi: 10.1016/j.matt.2020.08.023
  contributor:
    fullname: Jin
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib141
  article-title: Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03622-z
  contributor:
    fullname: Lim
– ident: 10.1016/j.addma.2024.104013_bib103
– volume: 89
  start-page: 24
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib13
  article-title: Modeling spatial variations in co-axial melt pool monitoring signals in laser powder bed fusion
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.12.048
  contributor:
    fullname: Raj
– volume: 24
  start-page: 183
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib180
  article-title: Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion
  publication-title: Addit. Manuf.
  contributor:
    fullname: Caltanissetta
– volume: 54
  start-page: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib196
  article-title: Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2022.07.004
  contributor:
    fullname: Tipaldi
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib150
  article-title: In situ process quality monitoring and defect detection for direct metal laser melting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12381-4
  contributor:
    fullname: Felix
– year: 2022
  ident: 10.1016/j.addma.2024.104013_bib129
  article-title: Monitoring and Prediction of Porosity in Laser Powder Bed Fusion using Physics-informed Meltpool Signatures and Machine Learning
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2022.117550
  contributor:
    fullname: Smoqi
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib137
  article-title: Defect structure process maps for laser powder bed fusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gordon
– year: 2021
  ident: 10.1016/j.addma.2024.104013_bib99
  contributor:
    fullname: Maass
– volume: 46
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib32
  article-title: Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Gunasegaram
– ident: 10.1016/j.addma.2024.104013_bib211
– volume: 33
  start-page: 1165
  issue: 4
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib125
  article-title: Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01920-5
  contributor:
    fullname: Mu
– year: 2018
  ident: 10.1016/j.addma.2024.104013_bib193
  contributor:
    fullname: Sutton
– volume: 17
  start-page: 916
  issue: 8
  year: 2017
  ident: 10.1016/j.addma.2024.104013_bib190
  article-title: Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201700022
  contributor:
    fullname: Freier
– volume: 27
  start-page: 2495
  issue: 5
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib19
  article-title: Metal-Based Additive Manufacturing Condition Monitoring: A Review on Machine Learning Based Approaches
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3110818
  contributor:
    fullname: Zhu
– volume: 23
  issue: 15
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib219
  article-title: A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions
  publication-title: Sens. (Basel)
  contributor:
    fullname: Kim
– volume: 15
  start-page: 489
  issue: 3
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib123
  article-title: Influence of a closed-loop controlled laser metal wire deposition process of S Al 5356 on the quality of manufactured parts before and after subsequent machining
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-021-01030-w
  contributor:
    fullname: Becker
– start-page: 1
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib57
  article-title: Chapter 1 - Metal additive manufacturing
  contributor:
    fullname: Dutta
– volume: 3
  issue: 3
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib93
  article-title: Analysis and correction of defects within parts fabricated using powder bed fusion technology
  publication-title: Surf. Topogr.: Metrol. Prop.
  contributor:
    fullname: Mireles
– volume: 22
  start-page: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib71
  article-title: Feedstock powder processing research needs for additive manufacturing development
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2018.01.002
  contributor:
    fullname: Anderson
– volume: 215
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib119
  article-title: Closed-loop control of meltpool temperature in directed energy deposition
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110508
  contributor:
    fullname: Smoqi
– volume: 26
  start-page: 52
  issue: 1
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib156
  article-title: Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0715-9
  contributor:
    fullname: Hollon
– volume: 109
  start-page: 326
  issue: 4
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib105
  article-title: Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3054628
  contributor:
    fullname: Cataldo
– year: 2021
  ident: 10.1016/j.addma.2024.104013_bib149
  article-title: Image analytics and machine learning for in-situ defects detection in Additive Manufacturing
  publication-title: 2021 Des., Autom. Test. Eur. Conf. Exhib. (DATE)
  doi: 10.23919/DATE51398.2021.9474175
  contributor:
    fullname: Cannizzaro
– volume: 7
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib7
  article-title: Metal additive manufacturing and its post-processing techniques
  publication-title: J. Manuf. Mater. Process.
  contributor:
    fullname: Wang
– start-page: 43
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib168
  contributor:
    fullname: Mehr
– volume: 35
  issue: 3
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib191
  article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0143913
  contributor:
    fullname: Vignon
– start-page: 109
  year: 2013
  ident: 10.1016/j.addma.2024.104013_bib84
  article-title: The Contour Method
  publication-title: Pract. Residual Stress Meas. Methods
  doi: 10.1002/9781118402832.ch5
  contributor:
    fullname: Prime
– volume: 356
  start-page: 2505
  issue: 5
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib126
  article-title: Robust multivariable predictive control for laser-aided powder deposition processes
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.12.015
  contributor:
    fullname: Cao
– volume: 122
  start-page: 2277
  issue: 5-6
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib20
  article-title: Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10032-6
  contributor:
    fullname: Wang
– volume: 4
  start-page: 411
  issue: 4
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib124
  article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00083-9
  contributor:
    fullname: Renken
– volume: 53
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib90
  article-title: Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries
  publication-title: Addit. Manuf.
  contributor:
    fullname: Lapointe
– volume: 136
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib9
  article-title: Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103596
  contributor:
    fullname: Powell
– volume: 3
  start-page: 3279
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib36
  article-title: Multisensor Data Fusion for Additive Manufacturing Process Control
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2851792
  contributor:
    fullname: Vandone
– volume: 138
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib132
  article-title: Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101153
  contributor:
    fullname: Mukherjee
– volume: 35
  start-page: 439
  issue: 3
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib94
  article-title: In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti–6.5Al–3.5Mo–l.5Zr–0.3Si Titanium Alloy
  publication-title: Acta Metall. Sin. (Engl. Lett. )
  doi: 10.1007/s40195-021-01297-z
  contributor:
    fullname: Zhang
– volume: 70
  start-page: 309
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib111
  article-title: A review of in-situ monitoring and process control system in metal-based laser additive manufacturing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.07.018
  contributor:
    fullname: Cai
– ident: 10.1016/j.addma.2024.104013_bib194
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib175
  article-title: Reinforcement Learning for Laser Welding Speed Control Minimizing Bead Width Error
  publication-title: 2023 IEEE Int. Conf. Robot. Autom. (ICRA)
  doi: 10.1109/ICRA48891.2023.10161334
  contributor:
    fullname: Kaneko
– volume: 61
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib203
  article-title: Review of transfer learning in modeling additive manufacturing processes
  publication-title: Addit. Manuf.
  contributor:
    fullname: Tang
– volume: 95
  start-page: 431
  year: 2016
  ident: 10.1016/j.addma.2024.104013_bib27
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.099
  contributor:
    fullname: Everton
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib188
  article-title: Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems
  publication-title: 2023 11th Int. Conf. Smart Grid (icSmartGrid)
  doi: 10.1109/icSmartGrid58556.2023.10171065
  contributor:
    fullname: Garzón
– volume: 120
  start-page: 147
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib15
  article-title: Metal-based additive manufacturing condition monitoring methods: From measurement to control
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.03.001
  contributor:
    fullname: Lin
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib42
  article-title: Machine learning in additive manufacturing: State-of-the-art and perspectives
  publication-title: Addit. Manuf.
  contributor:
    fullname: Wang
– volume: 3
  issue: 12
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib177
  article-title: Machine-Learning-Based Monitoring of Laser Powder Bed Fusion
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Yuan
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib26
  article-title: Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing
  publication-title: J. Intell. Manuf.
  contributor:
    fullname: Herzog
– volume: 11
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib95
  article-title: Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study
  publication-title: Metals
  doi: 10.3390/met11071012
  contributor:
    fullname: Ulbricht
– volume: 223
  year: 2021
  ident: 10.1016/j.addma.2024.104013_bib200
  article-title: A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control
  publication-title: Compos. Part B: Eng.
  doi: 10.1016/j.compositesb.2021.109150
  contributor:
    fullname: Humfeld
– start-page: 50
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib18
  contributor:
    fullname: Mani
– ident: 10.1016/j.addma.2024.104013_bib221
– volume: 30
  start-page: 2903
  issue: 8
  year: 2009
  ident: 10.1016/j.addma.2024.104013_bib65
  article-title: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.01.013
  contributor:
    fullname: Gu
– volume: 137
  issue: 11
  year: 2015
  ident: 10.1016/j.addma.2024.104013_bib74
  article-title: Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4031156
  contributor:
    fullname: Schmelzle
– volume: 205
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib38
  article-title: Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103419
  contributor:
    fullname: Soni
– volume: 156
  start-page: 458
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib31
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.07.002
  contributor:
    fullname: Zhang
– year: 2017
  ident: 10.1016/j.addma.2024.104013_bib70
  article-title: The challenges and consequences of material uncertainties in metal laser powder bed fusion
  contributor:
    fullname: Jared B
– volume: 59
  year: 2022
  ident: 10.1016/j.addma.2024.104013_bib143
  article-title: Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide
  publication-title: Addit. Manuf.
  contributor:
    fullname: Suzuki
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib67
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10009-2
  contributor:
    fullname: Martin
– volume: 74
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib147
  article-title: Invertible neural networks for real-time control of extrusion additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Roach
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib11
  article-title: Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900130
  contributor:
    fullname: Jin
– volume: 156
  start-page: 458
  year: 2018
  ident: 10.1016/j.addma.2024.104013_bib181
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.07.002
  contributor:
    fullname: Zhang
– volume: 16
  issue: 5
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib127
  article-title: Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review
  publication-title: Mater. (Basel)
  contributor:
    fullname: Abuabiah
– volume: 145
  issue: 10
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib76
  article-title: Influences of Laser Incidence Angle and Wall Thickness on Additive Components
  publication-title: J. Turbomach.
  doi: 10.1115/1.4062678
  contributor:
    fullname: Wildgoose
– volume: 103
  start-page: 413
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib44
  article-title: Laser powder bed additive manufacturing: A review on the four drivers for an online control
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2023.08.022
  contributor:
    fullname: Lupi
– volume: 110
  start-page: 2131
  issue: 7
  year: 2020
  ident: 10.1016/j.addma.2024.104013_bib173
  article-title: Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05998-0
  contributor:
    fullname: Xia
– ident: 10.1016/j.addma.2024.104013_bib172
  doi: 10.1115/DETC2021-71865
– volume: 29
  start-page: R231
  issue: 7
  year: 2019
  ident: 10.1016/j.addma.2024.104013_bib202
  article-title: Neural network models and deep learning
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.02.034
  contributor:
    fullname: Kriegeskorte
– volume: 72
  start-page: 157
  issue: 1
  year: 2023
  ident: 10.1016/j.addma.2024.104013_bib113
  article-title: Simulation-guided feedforward-feedback control of melt pool temperature in directed energy deposition
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2023.03.014
  contributor:
    fullname: Liao
– year: 2023
  ident: 10.1016/j.addma.2024.104013_bib163
  article-title: The Influence of Machine Learning in Additive Manufacturing
  publication-title: Lect. Notes Mech. Eng.
  contributor:
    fullname: Raju
SSID ssj0001537982
Score 2.3804893
SecondaryResourceType review_article
Snippet In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect-...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 104013
SubjectTerms Artificial intelligence
Autonomous manufacturing
Closed-loop control
Diagnostics
Directed energy deposition
Industry 4.0
Powder bed fusion
Process monitoring
Prognostics
Zero defects manufacturing
Title Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing
URI https://dx.doi.org/10.1016/j.addma.2024.104013
https://www.osti.gov/biblio/2305413
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPMVbHhgxdRI7jxEhUAHBAkhskR3bKEhNK5qu_Hbu3ETAAANDhkS5KLmzz1-S774DOE0dpn1tJfeRS6gkR3BtheZSGoy3N9YGLb37h3T0LG9f1MsSXPa1MESr7HL_IqeHbN0dGXbeHE7revgYxxF1UJLEgiSVkWVYweUozgewcnFzN3r4-tSikqwIbaPIhJNNrz8UmF44xYMEUSzpj6eIkt_WqMEEp9235ed6A9Y73MguFre2CUuu2YK1b2qC2_BxH4iRjnWdIF45AmOKomV1w2d1O2fa6inlNzZre4kIhqiVIQpkHWmdTTyzLpA8mG4sbpMxYnU8sW7Y2CFWZ8RBClcZ62ZOlRGh1HEHnq-vni5HvGuvwKskUy1PENyIqhDe4yTOPD6-UzZPnTEqq6Iip6Ld1JhcuCLPtfIyjYVWospsKjHuRbILg2bSuD1gOpfGJLpymP-kR4RktNdOFC7yaWZNvA9nvUPL6UJFo-zpZW9l8H9J_i8X_t-HtHd6-WMwlJjn_zY8pBCREUngVsQVQit8zVK4WB_897KHsEp7gaytjmDQvs_dMWKR1pzA8vlHdNKNuE-J9N78
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MCIVSex8xirClQe7UKR2CI7tlGQmlY0Xfnt3LmJgAEGhixJLkru7POX5LvvCLmKLaR9ZQRzgY2wJIczZbhiQmiIt9PGeC290TgePov7F_myRgZtLQzSKpvcv8rpPls3e3qNN3vzsuw9hWGAHZQEsiBRZWSdbAAayGB2bvTvHobjr08tMkoy3zYKTRjatPpDnukFU9xLEIUC_3jyIPptjerMYNp9W35ud8lOgxtpf3Vre2TNVvtk-5ua4AH5GHlipKVNJ4hXBsAYo2hoWbFFWS-pMmqO-Y0u6lYiggJqpYACaUNapzNHjfUkD6oqA9tsClgdTiwrOrWA1SlykPxVpqpaYmWEL3U8JM-3N5PBkDXtFVgRJbJmEYAbXmTcOZjEiYPHt9KksdVaJkWQpVi0G2udcpulqZJOxCFXkheJiQXEPYuOSKeaVfaYUJUKrSNVWMh_wgFC0sopyzMbuDgxOuyS69ah-XylopG39LK33Ps_R__nK_93Sdw6Pf8xGHLI838bnmKI0AglcAvkCoEVvGZJWKxP_nvZS7I5nIwe88e78cMp2cIjnrgtz0infl_ac8Altb5oxt0n8Srg8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-assisted+in-situ+adaptive+strategies+for+the+control+of+defects+and+anomalies+in+metal+additive+manufacturing&rft.jtitle=Additive+manufacturing&rft.au=Gunasegaram%2C+D.+R.&rft.au=Barnard%2C+A.+S.&rft.au=Matthews%2C+M.+J.&rft.au=Jared%2C+B.+H.&rft.date=2024-02-05&rft.pub=Elsevier&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=81&rft.issue=C&rft_id=info:doi/10.1016%2Fj.addma.2024.104013&rft.externalDocID=2305413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon