Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing
In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC)...
Saved in:
Published in | Additive manufacturing Vol. 81; no. C; p. 104013 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC) engineering solutions which sought to achieve this were deterministic and rule-based, thus resulting in limited success in the stochastic environment experienced in the highly dynamic AM process. On the other hand, emerging machine learning (ML) based strategies are better suited to providing the robustness, scope, flexibility, and scalability required for process control in an uncertain environment. Offline ML models that help optimise AM process parameters before a build begins and online ML models that efficiently processed in-situ sensory data to detect and diagnose flaws in real-time (or near-real-time) have been developed. However, ML models that enable a process to take evasive or corrective actions in relation to flaws via on the fly decision-making are only emerging. These models must possess prognostic capabilities to provide context-sensitive recommendations for in-situ process control based on real-time diagnostics. In this article, we pinpoint the shortcomings in traditional CLC strategies, and provide a framework for defect and anomaly control through ML-assisted CLC in AM. We discuss flaws in terms of their causes, in-situ detectability, and controllability, and examine their management under three scenarios: avoidance, mitigation, and repair. Then, we summarise the research into ML models developed for offline optimisation and in-situ diagnosis before initiating a detailed conversation on the implementation of ML-assisted in-situ process control. We found that researchers favoured reinforcement learning approaches or inverse ML models for making rapid, situation-aware control decisions. We also observed that, to-date, the defects addressed were those that may be quantified relatively easily autonomously, and that mitigation (rather than avoidance or repair) was the aim of ML-assisted in-situ control strategies. Additionally, we highlight the various technologies that must seamlessly combine to advance the field of autonomous in-situ control so that it becomes a reality in industrial settings. Finally, we raise awareness of seldom discussed, yet highly pertinent, topics relevant to adaptive control. Our work closes a significant gap in the current AM literature by broaching wide-ranging discussions on matters relevant to in-situ adaptive control in AM.
•We review conventional and modern machine learning (ML)-assisted works employing closed loop control (CLC) strategies in metal additive manufacturing (AM).•We discuss various AM defects and their causes, their observability, and controllability in terms of avoidance, mitigation, or repair.•We show that traditional CLC control solutions lack the flexibility and scalability to adequately support AM processes.•We propose an ML-assisted CLC solution framework supported by ML algorithms which solve quickly and support a broader spectrum of situations.•We focus our discussion on ML-assisted adaptive in-situ control – the topic which has received the least attention in the literature so far. |
---|---|
AbstractList | In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect- and anomaly-free if sufficient care is taken to deposit each layer under optimal process conditions. Conventional closed-loop control (CLC) engineering solutions which sought to achieve this were deterministic and rule-based, thus resulting in limited success in the stochastic environment experienced in the highly dynamic AM process. On the other hand, emerging machine learning (ML) based strategies are better suited to providing the robustness, scope, flexibility, and scalability required for process control in an uncertain environment. Offline ML models that help optimise AM process parameters before a build begins and online ML models that efficiently processed in-situ sensory data to detect and diagnose flaws in real-time (or near-real-time) have been developed. However, ML models that enable a process to take evasive or corrective actions in relation to flaws via on the fly decision-making are only emerging. These models must possess prognostic capabilities to provide context-sensitive recommendations for in-situ process control based on real-time diagnostics. In this article, we pinpoint the shortcomings in traditional CLC strategies, and provide a framework for defect and anomaly control through ML-assisted CLC in AM. We discuss flaws in terms of their causes, in-situ detectability, and controllability, and examine their management under three scenarios: avoidance, mitigation, and repair. Then, we summarise the research into ML models developed for offline optimisation and in-situ diagnosis before initiating a detailed conversation on the implementation of ML-assisted in-situ process control. We found that researchers favoured reinforcement learning approaches or inverse ML models for making rapid, situation-aware control decisions. We also observed that, to-date, the defects addressed were those that may be quantified relatively easily autonomously, and that mitigation (rather than avoidance or repair) was the aim of ML-assisted in-situ control strategies. Additionally, we highlight the various technologies that must seamlessly combine to advance the field of autonomous in-situ control so that it becomes a reality in industrial settings. Finally, we raise awareness of seldom discussed, yet highly pertinent, topics relevant to adaptive control. Our work closes a significant gap in the current AM literature by broaching wide-ranging discussions on matters relevant to in-situ adaptive control in AM.
•We review conventional and modern machine learning (ML)-assisted works employing closed loop control (CLC) strategies in metal additive manufacturing (AM).•We discuss various AM defects and their causes, their observability, and controllability in terms of avoidance, mitigation, or repair.•We show that traditional CLC control solutions lack the flexibility and scalability to adequately support AM processes.•We propose an ML-assisted CLC solution framework supported by ML algorithms which solve quickly and support a broader spectrum of situations.•We focus our discussion on ML-assisted adaptive in-situ control – the topic which has received the least attention in the literature so far. |
ArticleNumber | 104013 |
Author | Barnard, A.S. Matthews, M.J. Jared, B.H. Gunasegaram, D.R. Bartsch, K. Murphy, A.B. Andreaco, A.M. |
Author_xml | – sequence: 1 givenname: D.R. surname: Gunasegaram fullname: Gunasegaram, D.R. email: dayalan.gunasegaram@csiro.au organization: CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3169, Australia – sequence: 2 givenname: A.S. surname: Barnard fullname: Barnard, A.S. organization: School of Computing, Australian National University, Acton, ACT 2601, Australia – sequence: 3 givenname: M.J. surname: Matthews fullname: Matthews, M.J. organization: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA – sequence: 4 givenname: B.H. surname: Jared fullname: Jared, B.H. organization: Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 402 Dougherty Engineering Building, Knoxville, TN 37996, USA – sequence: 5 givenname: A.M. surname: Andreaco fullname: Andreaco, A.M. organization: GE Additive, 8556 Trade Center Drive, West Chester, OH 45011, USA – sequence: 6 givenname: K. surname: Bartsch fullname: Bartsch, K. organization: Fraunhofer Research Institution of Additive Manufacturing Technologies IAPT, Am Schleusengraben 14, 21029 Hamburg, Germany – sequence: 7 givenname: A.B. surname: Murphy fullname: Murphy, A.B. organization: CSIRO Manufacturing, P.O. Box 218, Lindfield, NSW 2070, Australia |
BackLink | https://www.osti.gov/biblio/2305413$$D View this record in Osti.gov |
BookMark | eNp9kDtPBCEUhYnRxNf-AhtiPysM82AKC2N8JRobrclduOyymQEDrImNv13GtbYgl5BzPs49p-TQB4-EXHC25Ix3V9slGDPBsmZ1U14axsUBOalr3lS95Ozw7y471hyTRUpbxhhvRT_I-oR8v4DeOI90RIje-XUFKbmU0VDnq-TyjoKBj-w-kaYcIePaYaI2RJo3SHXwOYaRBksNWtQ5UfCmnDDBOAudpxNmGAvFuF_KBH5nQeddLL-dkyMLY8LF3zwj7_d3b7eP1fPrw9PtzXOlRd_mSnS8Znpg1jZS9rYsiq2RHa5Wba_5IMUg2m61kgwHKaG1TVczaJnuTddoDYM4I5d7bkjZqaRdRr0p4X2JrGrB2oaLIhJ7kY4hpYhWfUQ3QfxSnKm5arVVv1WruWq1r7q4rvcuLPk_HcYZj16jcXGmm-D-9f8AFqmLPQ |
CitedBy_id | crossref_primary_10_1007_s40964_024_00612_1 crossref_primary_10_3390_s24082453 crossref_primary_10_1007_s00170_024_13893_1 |
Cites_doi | 10.1016/j.ascom.2021.100489 10.1016/j.jmsy.2020.05.010 10.1016/j.rcim.2022.102445 10.1016/j.matdes.2018.05.050 10.1016/j.procir.2021.01.064 10.1007/s00170-011-3395-2 10.1049/iet-ipr.2018.6545 10.1016/j.compind.2023.103877 10.1186/s40192-016-0052-5 10.1016/j.procs.2020.09.314 10.1016/j.eng.2022.09.015 10.1109/ACCESS.2020.2981816 10.1007/s00170-022-10618-0 10.1016/j.jmapro.2022.04.033 10.1016/j.jmatprotec.2016.02.021 10.1016/j.matdes.2021.109506 10.1126/science.add4667 10.1016/j.icte.2020.06.003 10.1007/s11665-018-3690-2 10.1016/j.jmsy.2022.12.005 10.1007/s11837-020-04028-4 10.1016/j.msea.2018.01.103 10.1016/j.procir.2015.01.009 10.1007/s10845-020-01725-4 10.1007/978-3-031-04721-3 10.1007/s00170-017-1172-6 10.1016/j.promfg.2015.09.047 10.1016/j.neunet.2021.10.008 10.1016/j.phpro.2010.08.078 10.1557/jmr.2018.82 10.1109/EEBDA53927.2022.9744760 10.1080/24725854.2019.1659525 10.1016/j.jmatprotec.2022.117531 10.1016/j.dsm.2023.06.001 10.1016/j.msea.2016.09.086 10.1016/j.jprocont.2021.11.016 10.1038/s41529-020-00126-5 10.1016/j.procir.2022.08.074 10.1080/17452759.2023.2196266 10.2351/7.0000773 10.1080/09506608.2020.1868889 10.1007/s00521-023-08537-6 10.1016/j.matdes.2022.111115 10.1109/ACCESS.2021.3067302 10.1002/adem.201400349 10.1016/j.matdes.2022.111063 10.1016/S0005-1098(02)00032-8 10.1038/s41598-019-41415-7 10.1016/j.actamat.2016.06.009 10.1016/j.apenergy.2021.118346 10.1007/s10994-021-05961-4 10.1016/j.compchemeng.2022.107760 10.1016/j.mfglet.2019.09.005 10.1007/s11837-018-3024-8 10.1016/j.procir.2018.08.053 10.1186/s43088-022-00260-w 10.1007/s11837-020-04155-y 10.1017/pds.2023.276 10.1007/s10845-024-02490-4 10.1007/s40195-018-0752-2 10.1038/s41467-022-31985-y 10.1016/j.cossms.2021.100974 10.1109/LRA.2018.2839973 10.1016/j.jmapro.2021.11.037 10.1016/j.msea.2020.140483 10.1016/j.sysconle.2019.03.007 10.1109/ICRA40945.2020.9197222 10.1007/s11837-021-04888-4 10.1016/j.jmatprotec.2021.117476 10.1016/j.matdes.2021.109937 10.23919/ECC.2019.8795639 10.1016/j.cirpj.2017.05.002 10.1109/COASE.2019.8843070 10.1016/j.mechatronics.2015.09.004 10.1016/j.jmapro.2019.04.018 10.1016/j.measurement.2022.112244 10.1016/j.neunet.2021.03.037 10.1016/j.promfg.2020.05.112 10.1038/s42254-021-00314-5 10.1016/j.ijfatigue.2018.07.013 10.1088/1361-6501/aa5c4f 10.1016/j.prostr.2021.10.057 10.3390/ma16031050 10.1016/j.matt.2020.08.023 10.1038/s41598-021-03622-z 10.1016/j.jmapro.2022.12.048 10.1016/j.arcontrol.2022.07.004 10.1038/s41598-022-12381-4 10.1016/j.jmatprotec.2022.117550 10.1007/s10845-022-01920-5 10.1002/elsc.201700022 10.1109/TMECH.2021.3110818 10.1007/s11740-021-01030-w 10.1016/j.cossms.2018.01.002 10.1016/j.matdes.2022.110508 10.1038/s41591-019-0715-9 10.1109/JPROC.2021.3054628 10.23919/DATE51398.2021.9474175 10.1063/5.0143913 10.1002/9781118402832.ch5 10.1016/j.jfranklin.2018.12.015 10.1007/s00170-022-10032-6 10.1007/s40964-019-00083-9 10.1016/j.compind.2021.103596 10.1109/LRA.2018.2851792 10.1016/j.pmatsci.2023.101153 10.1007/s40195-021-01297-z 10.1016/j.jmsy.2023.07.018 10.1109/ICRA48891.2023.10161334 10.1016/j.matdes.2016.01.099 10.1109/icSmartGrid58556.2023.10171065 10.1016/j.isatra.2021.03.001 10.3390/met11071012 10.1016/j.compositesb.2021.109150 10.1016/j.matdes.2009.01.013 10.1115/1.4031156 10.1016/j.jnca.2022.103419 10.1016/j.matdes.2018.07.002 10.1038/s41467-019-10009-2 10.1002/aisy.201900130 10.1115/1.4062678 10.1016/j.jmapro.2023.08.022 10.1007/s00170-020-05998-0 10.1115/DETC2021-71865 10.1016/j.cub.2019.02.034 10.1016/j.cirp.2023.03.014 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION OTOTI |
DOI | 10.1016/j.addma.2024.104013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 2305413 10_1016_j_addma_2024_104013 S2214860424000599 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 6I. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FYGXN GBLVA KOM O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AAXKI AAYXX ABXDB AFJKZ AKRWK CITATION EJD M41 OTOTI |
ID | FETCH-LOGICAL-c375t-36120c90ff4887f024e5d86ebb57c19839356bb80e988a5f4620a50c7d64cca93 |
IEDL.DBID | AIKHN |
ISSN | 2214-8604 |
IngestDate | Mon Feb 19 05:00:58 EST 2024 Wed Nov 13 12:52:18 EST 2024 Sat Feb 17 16:11:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Process monitoring Powder bed fusion Diagnostics Industry 4.0 Autonomous manufacturing Zero defects manufacturing Artificial intelligence Prognostics Closed-loop control Directed energy deposition |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-36120c90ff4887f024e5d86ebb57c19839356bb80e988a5f4620a50c7d64cca93 |
Notes | AC52–07NA27344 USDOE National Nuclear Security Administration (NNSA) |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214860424000599 |
ParticipantIDs | osti_scitechconnect_2305413 crossref_primary_10_1016_j_addma_2024_104013 elsevier_sciencedirect_doi_10_1016_j_addma_2024_104013 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-05 |
PublicationDateYYYYMMDD | 2024-02-05 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Additive manufacturing |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Montazeri (bib50) 2020; 52 2021. Knaak (bib41) 2021; 9 Pandiyan (bib204) 2022; 303 〉 Petrich (bib25) 2021; 48 Peralta, E.M, Megahed, Gong, Roybal, Craig (bib56) 2016; 5 Vignon, Rabault, Vinuesa (bib191) 2023; 35 Zhang (bib31) 2018; 156 Gunasegaram (bib146) 2021; 4 Subramanian, Rule, Nazik (bib75) 2021 Wang, Yang, Moghaddam (bib52) 2022; 73 Mehr, Ellis, Noone (bib168) 2019 Jawed, Grabocka, Schmidt-Thieme (bib165) 2020 Scime, Beuth (bib85) 2018; 19 Hashemi (bib140) 2022; 67 Land (bib79) 2015; 1 Pires, Desmaison, Megahed (bib34) 2018; 70 Yao, Imani, Yang (bib114) 2018; 3 Wang (bib109) 2023; 66 . Muhammad, A., et al. Zhu, Fuh, Lin (bib19) 2022; 27 Renken (bib121) 2017; 19 McCann (bib12) 2021; 45 Anon. Aconity3D. [cited 2021 September]; Available from Brown (bib83) 2016; 678 Williams (bib29) 2023 Reiff (bib110) 2021; 96 Anderson, White, Dehoff (bib71) 2018; 22 Ogoke, Farimani (bib170) 2021; 46 Samadiani, N., et al. Raffestin (bib161) 2023; 206 Smoqi (bib119) 2022; 215 Mukherjee (bib132) 2023; 138 Mahmoud (bib49) 2021; 11 Perišić (bib152) 2021 Garzón (bib188) 2023 Yang (bib4) 2021; 46 Cai (bib111) 2023; 70 Qin (bib46) 2022; 52 DePond (bib78) 2018; 154 Abdalla (bib197) 2023; 35 Segovia Ramírez, García Márquez, Papaelias (bib162) 2023; 66 Roehling (bib97) 2019; 28 Sutton, Barto (bib193) 2018 Mazumder (bib8) 2015; 36 Matthews (bib100) 2015; 17 Lim (bib141) 2021; 11 Kim (bib219) 2023; 23 Feng (bib139) 2022; 110 Jin (bib39) 2020; 3 Mireles (bib93) 2015; 3 Wasmer (bib171) 2019; 28 Herzog (bib26) 2023 2023 [cited 2023 May]; Available from Farshidianfar (bib92) 2021; 803 Everton (bib27) 2016; 95 Song (bib115) 2012; 58 Bevans (bib159) 2023; 18 Martin (bib67) 2019; 10 Kaneko (bib175) 2023 Gu, Shen (bib65) 2009; 30 Kriegeskorte, Golan (bib202) 2019; 29 Chen (bib157) 2023; 3 Shkoruta (bib134) 2019 Liu (bib207) 2019; 13 Roach (bib147) 2023; 74 Gulisano (bib153) 2022 Wang (bib42) 2020; 36 Rae, J.B. and A.K. Binder. Gaikwad (bib210) 2020; 36 Cheng, Y., et al. Gordon (bib137) 2020; 36 Bellini (bib3) 2021; 33 Caltanissetta (bib180) 2018; 24 Becker (bib123) 2021; 15 Ferreira (bib148) 2019 Craeghs (bib133) 2010; 5 Dutta, Babu, Jared (bib57) 2019 Zhao (bib145) 2023; 23 Coulson, Lygeros, Dörfler (bib217) 2019 Snow, Reutzel, Petrich (bib21) 2022; 302 Singh (bib208) 2023; 6 Schmelzle (bib74) 2015; 137 Cao, Ayalew (bib126) 2019; 356 Chen (bib116) 2023 Cannizzaro (bib149) 2021 Meng (bib45) 2020; 72 Tang, Pistorius, Beuth (bib63) 2017; 14 Yang (bib62) 2018; 33 Anon. A.M. Machine and Process Control Methods for Additive Manufacturing. 2018 [cited 2021 September]; Available from: 〈https://www.nist.gov/programs-projects/am-machine-and-process-control-methods-additive-manufacturing〉. Anon. A.I. Anomaly Detector. 2023 [cited 2023 September]; Available from: 〈https://azure.microsoft.com/en-us/products/ai-services/ai-anomaly-detector〉. Song (bib155) 2020; 8 Xames, Torsha, Sarwar (bib48) 2022 Dharmawan (bib16) 2020 Akhavan, Manoochehri (bib160) 2022 Zhou (bib96) 2023; 66 Xia (bib173) 2020; 110 Renken (bib124) 2019; 4 Anon. What Is Anomaly Detection? 2023 [cited 2023 September]; Available from Zhang, Yan (bib47) 2022 Zhang (bib94) 2022; 35 Battaglia (bib199) 2023; 1 Sharma (bib142) 2023; 80 Melia (bib77) 2020; 4 Cheon (bib214) 2015; 3 [cited 2022 March]; Available from Mitchell (bib66) 2020; 31 Felix (bib150) 2022; 12 Kurzynowski (bib138) 2018; 718 Roach (bib80) 2020; 32 Ye (bib54) 2023; 124 (bib112) 2012 Zhang (bib181) 2018; 156 Ulbricht (bib95) 2021; 11 Gunasegaram (bib32) 2021; 46 Jawed, Grabocka, Schmidt-Thieme (bib164) 2020 Leberruyer (bib186) 2023; 147 Tun (bib184) 2018 Liao (bib113) 2023; 72 Prime, DeWald (bib84) 2013 Challapalli, Patel, Li (bib201) 2021; 208 Anon. Khosravanian, Aadnøy (bib10) 2022 Humfeld (bib200) 2021; 223 Jin, Zhang, Gu (bib35) 2019; 22 2023 [cited 2023 September]; Available from Xi (bib22) 2022; 8 Co-Reyes, J.D. and Y. Miao. Huang, Barnard (bib213) 2022; 3 Zhang, Wang (bib218) 2021; 141 Brennan, Keist, Palmer (bib1) 2020 Kozjek (bib167) 2022; 79 Brion, Pattinson (bib209) 2022; 13 du Plessis, Macdonald (bib5) 2020; 34 Hasanabadi (bib88) 2023; 4 Grasso, Colosimo (bib2) 2017; 28 Raj (bib13) 2023; 89 Druzgalski (bib89) 2020; 34 Tipaldi, Iervolino, Massenio (bib196) 2022; 54 Smoqi (bib129) 2022 Vandone, Baraldo, Valente (bib36) 2018; 3 Clausen (bib82) 2020; 36 Yuan (bib177) 2018; 3 Ren (bib151) 2023; 379 Suryawanshi (bib69) 2016; 115 Anon. Why choose model-based reinforcement learning. 2023 [cited 2023 September]; Available from Fang (bib24) 2022 Jin, Zhang, Gu (bib11) 2020; 2 Gibson (bib131) 2020; 32 Bernauer, Zapata, Zaeh (bib136) 2022; 34 Scime, Beuth (bib178) 2019; 25 Adnan (bib220) 2020; 10 Freier, Wiechert, von Lieres (bib190) 2017; 17 Lupi, Pacini, Lanzetta (bib44) 2023; 103 Dulac-Arnold (bib198) 2021; 110 Wildgoose, Thole (bib76) 2023; 145 Cataldo (bib105) 2021; 109 Anon. 5001.002.002.004 Defect Detection and Mitigation via Selective Laser Ablation & Melting (SLAM). 2022 [cited 2023 September]; Available from Anon. Addiguru. 2022 [cited 2022 March]; Available from Wang, Li, Xuan (bib20) 2022; 122 Jared B, Madison, Ostien, Rodelas, Salzbrenner, Swiler, Underwood, DeJong (bib61) 2017 Liu (bib222) 2022; 62 Wang (bib43) 2020; 31 Riener (bib68) 2021; 39 Hagedorn, Pastors (bib104) 2018; 2 Karniadakis (bib206) 2021; 3 Formentin (bib118) 2019; 127 Anon. CELOS: Consistent software solution from CAM programming up to machine control. 2023 [cited 2023 September]; Available from Vlasea (bib30) 2015 Ye (bib179) 2020; 48 Anon., STANDARDIZATION ROADMAP FOR ADDITIVE MANUFACTURING v3.0. July 2023, America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC): Youngstown OH, USA. Lyu, Shen, Zhang (bib195) 2022 Jared B, Madison, Ostien, Rodelas, Salzbrenner, Swiler, Underwood, Saiz (bib70) 2017 Mostafaei (bib51) 2022; 26 2019. Solid Freeform Fabrication Symposium 2019, Austin, TX, US. Garmendia (bib122) 2019; 42 2021 [cited 2023 September]; Available from Kruth (bib17) 2007 Renken (bib135) 2018; 74 Hollon (bib156) 2020; 26 Dastgerdi, Lange, Mercorelli (bib189) 2023 Anon. Minimizing real-time prediction serving latency in machine learning. 2023 [cited 2023 September]; Available from Suzuki (bib143) 2022; 59 Malekipour, El-Mounayri (bib14) 2018; 95 Lin (bib15) 2022; 120 Anon. LENS MR-7 Systems. [cited 2023 May]; Available from Motaman (bib33) 2020; 72 [cited 2023 August]; Available from Maass (bib99) 2021 Peng (bib6) 2021; 5 Abuabiah (bib127) 2023; 16 Carroll (bib59) 2021; 73 AbouelNour, Gupta (bib91) 2022; 222 Mani (bib18) 2015 Raju (bib163) 2023 Feng (bib128) 2022; 222 Xia (bib130) 2022; 33 Chepiga (bib144) 2023; 16 La Plante (bib154) 2021; 36 Günther (bib174) 2016; 34 Kulkarni, A., et al. Wang (bib72) 2019; 32 Xiong, Yin, Zhang (bib120) 2016; 233 Du, Mukherjee, DebRoy (bib37) 2021; 24 2023 14 Aug 2023 [cited 2023 September]; Available from Hooper (bib58) 2018; 22 Mu (bib125) 2022; 33 Tamir (bib23) 2022 Campi, Lecchini, Savaresi (bib117) 2002; 38 Lapointe (bib90) 2022; 53 2020 [cited 2023 September]; Available from Powell (bib9) 2022; 136 Wang, Fuh (bib7) 2023; 7 Pegues (bib81) 2018; 116 Farzad, Gulliver (bib183) 2020; 6 Anon. 5001.002.001.003 Strategies for Real-Time Defect Mitigation for Additive Manufacturing (AM) Processes. 2022 [cited 2023 May]; Available from Verma (bib166) 2022; 145 2023. Liu (bib53) 2022 Dogru (bib215) 2022; 161 Liu (bib55) 2020; 176 Pagano (bib187) 2023; 6 Schimbäck (bib60) 2021; 201 Perani (bib158) 2023; 79 Quang (bib176) 2022; 111 Nassar (bib64) 2019; 9 Hamoud, Sobhi (bib40) 2022; 11 Arroyo (bib216) 2022; 309 Soni, Kumar (bib38) 2022; 205 Tang, Rahmani Dehaghani, Wang (bib203) 2023; 61 Montazeri (10.1016/j.addma.2024.104013_bib50) 2020; 52 Vlasea (10.1016/j.addma.2024.104013_bib30) 2015 Hamoud (10.1016/j.addma.2024.104013_bib40) 2022; 11 Dutta (10.1016/j.addma.2024.104013_bib57) 2019 Perišić (10.1016/j.addma.2024.104013_bib152) 2021 Kim (10.1016/j.addma.2024.104013_bib219) 2023; 23 Mu (10.1016/j.addma.2024.104013_bib125) 2022; 33 Brennan (10.1016/j.addma.2024.104013_bib1) 2020 Tang (10.1016/j.addma.2024.104013_bib63) 2017; 14 Kruth (10.1016/j.addma.2024.104013_bib17) 2007 10.1016/j.addma.2024.104013_bib169 Xia (10.1016/j.addma.2024.104013_bib130) 2022; 33 Dulac-Arnold (10.1016/j.addma.2024.104013_bib198) 2021; 110 Mahmoud (10.1016/j.addma.2024.104013_bib49) 2021; 11 Petrich (10.1016/j.addma.2024.104013_bib25) 2021; 48 Craeghs (10.1016/j.addma.2024.104013_bib133) 2010; 5 Mazumder (10.1016/j.addma.2024.104013_bib8) 2015; 36 Roach (10.1016/j.addma.2024.104013_bib147) 2023; 74 Yang (10.1016/j.addma.2024.104013_bib62) 2018; 33 Renken (10.1016/j.addma.2024.104013_bib124) 2019; 4 Dharmawan (10.1016/j.addma.2024.104013_bib16) 2020 Garmendia (10.1016/j.addma.2024.104013_bib122) 2019; 42 Jin (10.1016/j.addma.2024.104013_bib39) 2020; 3 Bevans (10.1016/j.addma.2024.104013_bib159) 2023; 18 10.1016/j.addma.2024.104013_bib172 Wang (10.1016/j.addma.2024.104013_bib72) 2019; 32 Cataldo (10.1016/j.addma.2024.104013_bib105) 2021; 109 Cheon (10.1016/j.addma.2024.104013_bib214) 2015; 3 Land (10.1016/j.addma.2024.104013_bib79) 2015; 1 Jin (10.1016/j.addma.2024.104013_bib35) 2019; 22 Formentin (10.1016/j.addma.2024.104013_bib118) 2019; 127 Maass (10.1016/j.addma.2024.104013_bib99) 2021 Suzuki (10.1016/j.addma.2024.104013_bib143) 2022; 59 Gunasegaram (10.1016/j.addma.2024.104013_bib146) 2021; 4 Freier (10.1016/j.addma.2024.104013_bib190) 2017; 17 Lyu (10.1016/j.addma.2024.104013_bib195) 2022 10.1016/j.addma.2024.104013_bib73 Günther (10.1016/j.addma.2024.104013_bib174) 2016; 34 Soni (10.1016/j.addma.2024.104013_bib38) 2022; 205 Williams (10.1016/j.addma.2024.104013_bib29) 2023 Ye (10.1016/j.addma.2024.104013_bib179) 2020; 48 Gaikwad (10.1016/j.addma.2024.104013_bib210) 2020; 36 Wang (10.1016/j.addma.2024.104013_bib20) 2022; 122 Clausen (10.1016/j.addma.2024.104013_bib82) 2020; 36 Mehr (10.1016/j.addma.2024.104013_bib168) 2019 Cai (10.1016/j.addma.2024.104013_bib111) 2023; 70 Liu (10.1016/j.addma.2024.104013_bib222) 2022; 62 Abuabiah (10.1016/j.addma.2024.104013_bib127) 2023; 16 Smoqi (10.1016/j.addma.2024.104013_bib129) 2022 Xia (10.1016/j.addma.2024.104013_bib173) 2020; 110 Raj (10.1016/j.addma.2024.104013_bib13) 2023; 89 Chen (10.1016/j.addma.2024.104013_bib116) 2023 Adnan (10.1016/j.addma.2024.104013_bib220) 2020; 10 Humfeld (10.1016/j.addma.2024.104013_bib200) 2021; 223 Song (10.1016/j.addma.2024.104013_bib155) 2020; 8 Leberruyer (10.1016/j.addma.2024.104013_bib186) 2023; 147 Yuan (10.1016/j.addma.2024.104013_bib177) 2018; 3 10.1016/j.addma.2024.104013_bib98 Nassar (10.1016/j.addma.2024.104013_bib64) 2019; 9 Ren (10.1016/j.addma.2024.104013_bib151) 2023; 379 Carroll (10.1016/j.addma.2024.104013_bib59) 2021; 73 Becker (10.1016/j.addma.2024.104013_bib123) 2021; 15 Anderson (10.1016/j.addma.2024.104013_bib71) 2018; 22 Kurzynowski (10.1016/j.addma.2024.104013_bib138) 2018; 718 Tamir (10.1016/j.addma.2024.104013_bib23) 2022 Zhang (10.1016/j.addma.2024.104013_bib31) 2018; 156 Kaneko (10.1016/j.addma.2024.104013_bib175) 2023 Arroyo (10.1016/j.addma.2024.104013_bib216) 2022; 309 Subramanian (10.1016/j.addma.2024.104013_bib75) 2021 Vandone (10.1016/j.addma.2024.104013_bib36) 2018; 3 Hashemi (10.1016/j.addma.2024.104013_bib140) 2022; 67 Pagano (10.1016/j.addma.2024.104013_bib187) 2023; 6 Xi (10.1016/j.addma.2024.104013_bib22) 2022; 8 Knaak (10.1016/j.addma.2024.104013_bib41) 2021; 9 Mitchell (10.1016/j.addma.2024.104013_bib66) 2020; 31 10.1016/j.addma.2024.104013_bib87 Farshidianfar (10.1016/j.addma.2024.104013_bib92) 2021; 803 10.1016/j.addma.2024.104013_bib86 Huang (10.1016/j.addma.2024.104013_bib213) 2022; 3 Mireles (10.1016/j.addma.2024.104013_bib93) 2015; 3 10.1016/j.addma.2024.104013_bib212 Song (10.1016/j.addma.2024.104013_bib115) 2012; 58 Brion (10.1016/j.addma.2024.104013_bib209) 2022; 13 10.1016/j.addma.2024.104013_bib211 Gunasegaram (10.1016/j.addma.2024.104013_bib32) 2021; 46 DePond (10.1016/j.addma.2024.104013_bib78) 2018; 154 Melia (10.1016/j.addma.2024.104013_bib77) 2020; 4 Peralta (10.1016/j.addma.2024.104013_bib56) 2016; 5 Renken (10.1016/j.addma.2024.104013_bib121) 2017; 19 Cao (10.1016/j.addma.2024.104013_bib126) 2019; 356 Khosravanian (10.1016/j.addma.2024.104013_bib10) 2022 Hollon (10.1016/j.addma.2024.104013_bib156) 2020; 26 Chepiga (10.1016/j.addma.2024.104013_bib144) 2023; 16 Zhang (10.1016/j.addma.2024.104013_bib181) 2018; 156 AbouelNour (10.1016/j.addma.2024.104013_bib91) 2022; 222 Du (10.1016/j.addma.2024.104013_bib37) 2021; 24 Ferreira (10.1016/j.addma.2024.104013_bib148) 2019 10.1016/j.addma.2024.104013_bib103 10.1016/j.addma.2024.104013_bib224 10.1016/j.addma.2024.104013_bib102 10.1016/j.addma.2024.104013_bib223 10.1016/j.addma.2024.104013_bib101 10.1016/j.addma.2024.104013_bib221 Bellini (10.1016/j.addma.2024.104013_bib3) 2021; 33 Hagedorn (10.1016/j.addma.2024.104013_bib104) 2018; 2 10.1016/j.addma.2024.104013_bib108 10.1016/j.addma.2024.104013_bib107 Gordon (10.1016/j.addma.2024.104013_bib137) 2020; 36 10.1016/j.addma.2024.104013_bib106 Farzad (10.1016/j.addma.2024.104013_bib183) 2020; 6 Malekipour (10.1016/j.addma.2024.104013_bib14) 2018; 95 Wang (10.1016/j.addma.2024.104013_bib43) 2020; 31 Sutton (10.1016/j.addma.2024.104013_bib193) 2018 Roehling (10.1016/j.addma.2024.104013_bib97) 2019; 28 Gulisano (10.1016/j.addma.2024.104013_bib153) 2022 Qin (10.1016/j.addma.2024.104013_bib46) 2022; 52 Jawed (10.1016/j.addma.2024.104013_bib164) 2020 Grasso (10.1016/j.addma.2024.104013_bib2) 2017; 28 Liu (10.1016/j.addma.2024.104013_bib207) 2019; 13 Tun (10.1016/j.addma.2024.104013_bib184) 2018 Zhang (10.1016/j.addma.2024.104013_bib47) 2022 Scime (10.1016/j.addma.2024.104013_bib85) 2018; 19 Mukherjee (10.1016/j.addma.2024.104013_bib132) 2023; 138 du Plessis (10.1016/j.addma.2024.104013_bib5) 2020; 34 Akhavan (10.1016/j.addma.2024.104013_bib160) 2022 Zhang (10.1016/j.addma.2024.104013_bib218) 2021; 141 Wang (10.1016/j.addma.2024.104013_bib42) 2020; 36 McCann (10.1016/j.addma.2024.104013_bib12) 2021; 45 Tipaldi (10.1016/j.addma.2024.104013_bib196) 2022; 54 Campi (10.1016/j.addma.2024.104013_bib117) 2002; 38 Feng (10.1016/j.addma.2024.104013_bib128) 2022; 222 Coulson (10.1016/j.addma.2024.104013_bib217) 2019 Liu (10.1016/j.addma.2024.104013_bib53) 2022 Battaglia (10.1016/j.addma.2024.104013_bib199) 2023; 1 Shkoruta (10.1016/j.addma.2024.104013_bib134) 2019 10.1016/j.addma.2024.104013_bib205 Bernauer (10.1016/j.addma.2024.104013_bib136) 2022; 34 Reiff (10.1016/j.addma.2024.104013_bib110) 2021; 96 Abdalla (10.1016/j.addma.2024.104013_bib197) 2023; 35 Renken (10.1016/j.addma.2024.104013_bib135) 2018; 74 Brown (10.1016/j.addma.2024.104013_bib83) 2016; 678 Dogru (10.1016/j.addma.2024.104013_bib215) 2022; 161 Yang (10.1016/j.addma.2024.104013_bib4) 2021; 46 Scime (10.1016/j.addma.2024.104013_bib178) 2019; 25 Verma (10.1016/j.addma.2024.104013_bib166) 2022; 145 Raffestin (10.1016/j.addma.2024.104013_bib161) 2023; 206 Caltanissetta (10.1016/j.addma.2024.104013_bib180) 2018; 24 Pandiyan (10.1016/j.addma.2024.104013_bib204) 2022; 303 Chen (10.1016/j.addma.2024.104013_bib157) 2023; 3 Wildgoose (10.1016/j.addma.2024.104013_bib76) 2023; 145 Liao (10.1016/j.addma.2024.104013_bib113) 2023; 72 Segovia Ramírez (10.1016/j.addma.2024.104013_bib162) 2023; 66 Kozjek (10.1016/j.addma.2024.104013_bib167) 2022; 79 Motaman (10.1016/j.addma.2024.104013_bib33) 2020; 72 Raju (10.1016/j.addma.2024.104013_bib163) 2023 Vignon (10.1016/j.addma.2024.104013_bib191) 2023; 35 Xiong (10.1016/j.addma.2024.104013_bib120) 2016; 233 Jawed (10.1016/j.addma.2024.104013_bib165) 2020 Challapalli (10.1016/j.addma.2024.104013_bib201) 2021; 208 Jared B (10.1016/j.addma.2024.104013_bib61) 2017 Cannizzaro (10.1016/j.addma.2024.104013_bib149) 2021 Matthews (10.1016/j.addma.2024.104013_bib100) 2015; 17 Ogoke (10.1016/j.addma.2024.104013_bib170) 2021; 46 Smoqi (10.1016/j.addma.2024.104013_bib119) 2022; 215 Lapointe (10.1016/j.addma.2024.104013_bib90) 2022; 53 Feng (10.1016/j.addma.2024.104013_bib139) 2022; 110 Powell (10.1016/j.addma.2024.104013_bib9) 2022; 136 (10.1016/j.addma.2024.104013_bib112) 2012 Mani (10.1016/j.addma.2024.104013_bib18) 2015 Dastgerdi (10.1016/j.addma.2024.104013_bib189) 2023 Mostafaei (10.1016/j.addma.2024.104013_bib51) 2022; 26 Schmelzle (10.1016/j.addma.2024.104013_bib74) 2015; 137 Zhou (10.1016/j.addma.2024.104013_bib96) 2023; 66 Roach (10.1016/j.addma.2024.104013_bib80) 2020; 32 Pires (10.1016/j.addma.2024.104013_bib34) 2018; 70 Gibson (10.1016/j.addma.2024.104013_bib131) 2020; 32 Prime (10.1016/j.addma.2024.104013_bib84) 2013 Xames (10.1016/j.addma.2024.104013_bib48) 2022 Singh (10.1016/j.addma.2024.104013_bib208) 2023; 6 Zhao (10.1016/j.addma.2024.104013_bib145) 2023; 23 Liu (10.1016/j.addma.2024.104013_bib55) 2020; 176 Quang (10.1016/j.addma.2024.104013_bib176) 2022; 111 Karniadakis (10.1016/j.addma.2024.104013_bib206) 2021; 3 Jin (10.1016/j.addma.2024.104013_bib11) 2020; 2 Martin (10.1016/j.addma.2024.104013_bib67) 2019; 10 Felix (10.1016/j.addma.2024.104013_bib150) 2022; 12 Tang (10.1016/j.addma.2024.104013_bib203) 2023; 61 Riener (10.1016/j.addma.2024.104013_bib68) 2021; 39 Jared B (10.1016/j.addma.2024.104013_bib70) 2017 Druzgalski (10.1016/j.addma.2024.104013_bib89) 2020; 34 Zhu (10.1016/j.addma.2024.104013_bib19) 2022; 27 Fang (10.1016/j.addma.2024.104013_bib24) 2022 Herzog (10.1016/j.addma.2024.104013_bib26) 2023 Wasmer (10.1016/j.addma.2024.104013_bib171) 2019; 28 Lupi (10.1016/j.addma.2024.104013_bib44) 2023; 103 Kriegeskorte (10.1016/j.addma.2024.104013_bib202) 2019; 29 Wang (10.1016/j.addma.2024.104013_bib109) 2023; 66 Gu (10.1016/j.addma.2024.104013_bib65) 2009; 30 10.1016/j.addma.2024.104013_bib182 Zhang (10.1016/j.addma.2024.104013_bib94) 2022; 35 Yao (10.1016/j.addma.2024.104013_bib114) 2018; 3 Snow (10.1016/j.addma.2024.104013_bib21) 2022; 302 10.1016/j.addma.2024.104013_bib28 Everton (10.1016/j.addma.2024.10 |
References_xml | – volume: 110 start-page: 2419 year: 2021 end-page: 2468 ident: bib198 article-title: Challenges of real-world reinforcement learning: definitions, benchmarks and analysis publication-title: Mach. Learn. contributor: fullname: Dulac-Arnold – year: 2019 ident: bib217 article-title: Data-Enabled Predictive Control: In the Shallows of the DeePC publication-title: 2019 18th Eur. Control Conf. (ECC) contributor: fullname: Dörfler – volume: 309 year: 2022 ident: bib216 article-title: Reinforced model predictive control (RL-MPC) for building energy management publication-title: Appl. Energy contributor: fullname: Arroyo – year: 2019 ident: bib148 article-title: Interpretable machine learning for additive manufacturing contributor: fullname: Ferreira – volume: 176 start-page: 2586 year: 2020 end-page: 2595 ident: bib55 article-title: Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing publication-title: Procedia Comput. Sci. contributor: fullname: Liu – volume: 201 year: 2021 ident: bib60 article-title: Laser powder bed fusion of an engineering intermetallic TiAl alloy publication-title: Mater. Des. contributor: fullname: Schimbäck – volume: 11 year: 2021 ident: bib95 article-title: Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study publication-title: Metals contributor: fullname: Ulbricht – volume: 12 year: 2022 ident: bib150 article-title: In situ process quality monitoring and defect detection for direct metal laser melting publication-title: Sci. Rep. contributor: fullname: Felix – volume: 141 start-page: 1 year: 2021 end-page: 10 ident: bib218 article-title: Deep ANC: A deep learning approach to active noise control publication-title: Neural Netw. contributor: fullname: Wang – volume: 136 year: 2022 ident: bib9 article-title: Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions publication-title: Comput. Ind. contributor: fullname: Powell – year: 2018 ident: bib184 article-title: Semi-Supervised Outlier Detection Algorithms contributor: fullname: Tun – volume: 111 start-page: 479 year: 2022 end-page: 483 ident: bib176 article-title: Smart closed-loop control of laser welding using reinforcement learning publication-title: Procedia CIRP contributor: fullname: Quang – volume: 34 start-page: 1 year: 2016 end-page: 11 ident: bib174 article-title: Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning publication-title: Mechatronics contributor: fullname: Günther – year: 2020 ident: bib16 article-title: A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing publication-title: 2020 IEEE Int. Conf. Robot. Autom. (ICRA) contributor: fullname: Dharmawan – start-page: 521 year: 2007 end-page: 527 ident: bib17 article-title: Feedback Control of Selective Laser Melting publication-title: in contributor: fullname: Kruth – volume: 74 year: 2023 ident: bib147 article-title: Invertible neural networks for real-time control of extrusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Roach – volume: 33 start-page: 498 year: 2021 end-page: 508 ident: bib3 article-title: Additive manufacturing processes for metals and effects of defects on mechanical strength: a review publication-title: Procedia Struct. Integr. contributor: fullname: Bellini – volume: 222 year: 2022 ident: bib128 article-title: Predicting laser powder bed fusion defects through in-process monitoring data and machine learning publication-title: Mater. Des. contributor: fullname: Feng – volume: 110 start-page: 24 year: 2022 end-page: 34 ident: bib139 article-title: Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach publication-title: J. Process Control contributor: fullname: Feng – volume: 9 year: 2019 ident: bib64 article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing publication-title: Sci. Rep. contributor: fullname: Nassar – volume: 95 start-page: 431 year: 2016 end-page: 445 ident: bib27 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. contributor: fullname: Everton – volume: 22 start-page: 8 year: 2018 end-page: 15 ident: bib71 article-title: Feedstock powder processing research needs for additive manufacturing development publication-title: Curr. Opin. Solid State Mater. Sci. contributor: fullname: Dehoff – volume: 3 year: 2022 ident: bib213 article-title: Federated data processing and learning for collaboration in the physical sciences publication-title: Mach. Learn.: Sci. Technol. contributor: fullname: Barnard – volume: 3 year: 2018 ident: bib177 article-title: Machine-Learning-Based Monitoring of Laser Powder Bed Fusion publication-title: Adv. Mater. Technol. contributor: fullname: Yuan – volume: 96 start-page: 127 year: 2021 end-page: 132 ident: bib110 article-title: Learning Feedforward Control for Laser Powder Bed Fusion publication-title: Procedia CIRP contributor: fullname: Reiff – volume: 156 start-page: 458 year: 2018 end-page: 469 ident: bib31 article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring publication-title: Mater. Des. contributor: fullname: Zhang – year: 2022 ident: bib160 article-title: Sensory Data Fusion Using Machine Learning Methods for In-Situ Defect Registration in Additive Manufacturing: A Review publication-title: 2022 IEEE Int. IOT, Electron. Mechatron. Conf., IEMTRONICS 2022 contributor: fullname: Manoochehri – volume: 32 start-page: 127 year: 2019 end-page: 135 ident: bib72 article-title: Cracking Behavior in Additively Manufactured Pure Tungsten publication-title: Acta Metall. Sin. (Engl. Lett. ) contributor: fullname: Wang – volume: 13 year: 2022 ident: bib209 article-title: Generalisable 3D printing error detection and correction via multi-head neural networks publication-title: Nat. Commun. contributor: fullname: Pattinson – volume: 6 start-page: 229 year: 2020 end-page: 237 ident: bib183 article-title: Unsupervised log message anomaly detection publication-title: ICT Express contributor: fullname: Gulliver – volume: 137 year: 2015 ident: bib74 article-title: Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing publication-title: J. Mech. Des. contributor: fullname: Schmelzle – volume: 17 start-page: 247 year: 2015 end-page: 252 ident: bib100 article-title: Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams publication-title: Adv. Eng. Mater. contributor: fullname: Matthews – volume: 206 year: 2023 ident: bib161 article-title: Ultrasonic diagnostic for in situ control in metal additive manufacturing publication-title: Measurement contributor: fullname: Raffestin – year: 2022 ident: bib23 article-title: Machine-learning-based monitoring and optimization of processing parameters in 3D printing publication-title: Int. J. Comput. Integr. Manuf. contributor: fullname: Tamir – volume: 5 year: 2021 ident: bib6 article-title: A review of post-processing technologies in additive manufacturing publication-title: J. Manuf. Mater. Process. contributor: fullname: Peng – volume: 4 year: 2023 ident: bib88 article-title: In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion publication-title: Addit. Manuf. Lett. contributor: fullname: Hasanabadi – volume: 34 year: 2020 ident: bib5 article-title: Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure publication-title: Addit. Manuf. contributor: fullname: Macdonald – volume: 15 start-page: 489 year: 2021 end-page: 507 ident: bib123 article-title: Influence of a closed-loop controlled laser metal wire deposition process of S Al 5356 on the quality of manufactured parts before and after subsequent machining publication-title: Prod. Eng. contributor: fullname: Becker – volume: 24 start-page: 183 year: 2018 end-page: 199 ident: bib180 article-title: Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Caltanissetta – volume: 19 start-page: 57 year: 2017 end-page: 61 ident: bib121 article-title: Development of an adaptive, self-learning control concept for an additive manufacturing process publication-title: CIRP J. Manuf. Sci. Technol. contributor: fullname: Renken – volume: 79 year: 2023 ident: bib158 article-title: Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks publication-title: Robot. Comput. -Integr. Manuf. contributor: fullname: Perani – volume: 4 year: 2021 ident: bib146 article-title: The case for digital twins in metal additive manufacturing publication-title: J. Phys.: Mater. contributor: fullname: Gunasegaram – year: 2021 ident: bib149 article-title: Image analytics and machine learning for in-situ defects detection in Additive Manufacturing contributor: fullname: Cannizzaro – volume: 3 start-page: 5 year: 2015 ident: bib214 article-title: On Replacing PID Controller with Deep Learning Controller for DC Motor System publication-title: Jounal Autom. Control Eng. contributor: fullname: Cheon – volume: 79 start-page: 81 year: 2022 end-page: 90 ident: bib167 article-title: Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements publication-title: J. Manuf. Process. contributor: fullname: Kozjek – volume: 31 year: 2020 ident: bib43 article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 29 start-page: R231 year: 2019 end-page: R236 ident: bib202 article-title: Neural network models and deep learning publication-title: Curr. Biol. contributor: fullname: Golan – start-page: 50 year: 2015 ident: bib18 article-title: Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes contributor: fullname: Mani – volume: 27 start-page: 2495 year: 2022 end-page: 2510 ident: bib19 article-title: Metal-Based Additive Manufacturing Condition Monitoring: A Review on Machine Learning Based Approaches publication-title: IEEE/ASME Trans. Mechatron. contributor: fullname: Lin – volume: 39 year: 2021 ident: bib68 article-title: Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF) publication-title: Addit. Manuf. contributor: fullname: Riener – volume: 208 year: 2021 ident: bib201 article-title: Inverse machine learning framework for optimizing lightweight metamaterials publication-title: Mater. Des. contributor: fullname: Li – volume: 3 start-page: 2755 year: 2023 end-page: 2764 ident: bib157 article-title: MULTISENSOR FUSION-BASED DIGITAL TWIN IN ADDITIVE MANUFACTURING FOR IN-SITU QUALITY MONITORING AND DEFECT CORRECTION publication-title: Proc. Des. Soc. contributor: fullname: Chen – volume: 145 year: 2023 ident: bib76 article-title: Influences of Laser Incidence Angle and Wall Thickness on Additive Components publication-title: J. Turbomach. contributor: fullname: Thole – volume: 161 year: 2022 ident: bib215 article-title: Reinforcement learning approach to autonomous PID tuning publication-title: Comput. Chem. Eng. contributor: fullname: Dogru – volume: 23 start-page: 181 year: 2023 end-page: 195 ident: bib145 article-title: Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model publication-title: Engineering contributor: fullname: Zhao – volume: 23 year: 2023 ident: bib219 article-title: A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions publication-title: Sens. (Basel) contributor: fullname: Kim – volume: 74 start-page: 659 year: 2018 end-page: 663 ident: bib135 article-title: Model assisted closed-loop control strategy for selective laser melting publication-title: Procedia CIRP contributor: fullname: Renken – volume: 70 start-page: 1677 year: 2018 end-page: 1685 ident: bib34 article-title: ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing publication-title: JOM contributor: fullname: Megahed – volume: 36 year: 2020 ident: bib42 article-title: Machine learning in additive manufacturing: State-of-the-art and perspectives publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 34 year: 2020 ident: bib89 article-title: Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Druzgalski – volume: 3 year: 2015 ident: bib93 article-title: Analysis and correction of defects within parts fabricated using powder bed fusion technology publication-title: Surf. Topogr.: Metrol. Prop. contributor: fullname: Mireles – volume: 156 start-page: 458 year: 2018 end-page: 469 ident: bib181 article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring publication-title: Mater. Des. contributor: fullname: Zhang – volume: 34 year: 2022 ident: bib136 article-title: Toward defect-free components in laser metal deposition with coaxial wire feeding through closed-loop control of the melt pool temperature publication-title: J. Laser Appl. contributor: fullname: Zaeh – year: 2022 ident: bib195 article-title: The Advance of Reinforcement Learning and Deep Reinforcement Learning publication-title: 2022 IEEE Int. Conf. Electr. Eng., Big Data Algorithms (EEBDA) contributor: fullname: Zhang – volume: 33 start-page: 1165 year: 2022 end-page: 1180 ident: bib125 article-title: Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures publication-title: J. Intell. Manuf. contributor: fullname: Mu – volume: 48 year: 2021 ident: bib25 article-title: Multi-modal sensor fusion with machine learning for data-driven process monitoring for additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Petrich – volume: 28 start-page: 228 year: 2019 end-page: 235 ident: bib97 article-title: Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Roehling – volume: 116 start-page: 543 year: 2018 end-page: 552 ident: bib81 article-title: Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V publication-title: Int. J. Fatigue contributor: fullname: Pegues – volume: 4 start-page: 11 year: 2020 ident: bib77 article-title: How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel publication-title: npj Mater. Degrad. contributor: fullname: Melia – volume: 46 year: 2021 ident: bib170 article-title: Thermal control of laser powder bed fusion using deep reinforcement learning publication-title: Addit. Manuf. contributor: fullname: Farimani – volume: 67 start-page: 1 year: 2022 end-page: 46 ident: bib140 article-title: Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review publication-title: Int. Mater. Rev. contributor: fullname: Hashemi – volume: 73 start-page: 961 year: 2022 end-page: 984 ident: bib52 article-title: Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges publication-title: J. Manuf. Process. contributor: fullname: Moghaddam – volume: 72 start-page: 2363 year: 2020 end-page: 2377 ident: bib45 article-title: Machine Learning in Additive Manufacturing: A Review publication-title: JOM contributor: fullname: Meng – volume: 28 year: 2017 ident: bib2 article-title: Process defects andin situmonitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. contributor: fullname: Colosimo – volume: 4 start-page: 411 year: 2019 end-page: 421 ident: bib124 article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting publication-title: Prog. Addit. Manuf. contributor: fullname: Renken – volume: 138 year: 2023 ident: bib132 article-title: Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components publication-title: Prog. Mater. Sci. contributor: fullname: Mukherjee – volume: 803 year: 2021 ident: bib92 article-title: Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition publication-title: Mater. Sci. Eng.: A contributor: fullname: Farshidianfar – year: 2022 ident: bib129 article-title: Monitoring and Prediction of Porosity in Laser Powder Bed Fusion using Physics-informed Meltpool Signatures and Machine Learning publication-title: J. Mater. Process. Technol. contributor: fullname: Smoqi – volume: 66 start-page: 260 year: 2023 end-page: 286 ident: bib162 article-title: Review on additive manufacturing and non-destructive testing publication-title: J. Manuf. Syst. contributor: fullname: Papaelias – volume: 54 start-page: 1 year: 2022 end-page: 23 ident: bib196 article-title: Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges publication-title: Annu. Rev. Control contributor: fullname: Massenio – year: 2017 ident: bib70 article-title: The challenges and consequences of material uncertainties in metal laser powder bed fusion publication-title: 32nd ASPE Annual Meeting 2017 contributor: fullname: Saiz – year: 2021 ident: bib99 article-title: In-Process Control for L-PBF. contributor: fullname: Maass – volume: 35 year: 2023 ident: bib191 article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions publication-title: Phys. Fluids contributor: fullname: Vinuesa – year: 2023 ident: bib189 article-title: Faulty Process Detection Using Machine Learning Techniques publication-title: Congress on Smart Computing Technologies contributor: fullname: Mercorelli – volume: 302 year: 2022 ident: bib21 article-title: Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning publication-title: J. Mater. Process. Technol. contributor: fullname: Petrich – volume: 10 year: 2020 ident: bib220 article-title: A new architectural approach to monitoring and controlling AM processes publication-title: Appl. Sci. (Switz. ) contributor: fullname: Adnan – volume: 16 year: 2023 ident: bib144 article-title: Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm publication-title: Materials contributor: fullname: Chepiga – volume: 22 start-page: 548 year: 2018 end-page: 559 ident: bib58 article-title: Melt pool temperature and cooling rates in laser powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Hooper – volume: 26 year: 2022 ident: bib51 article-title: Defects and anomalies in powder bed fusion metal additive manufacturing publication-title: Curr. Opin. Solid State Mater. Sci. contributor: fullname: Mostafaei – volume: 30 start-page: 2903 year: 2009 end-page: 2910 ident: bib65 article-title: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods publication-title: Mater. Des. contributor: fullname: Shen – volume: 356 start-page: 2505 year: 2019 end-page: 2529 ident: bib126 article-title: Robust multivariable predictive control for laser-aided powder deposition processes publication-title: J. Frankl. Inst. contributor: fullname: Ayalew – volume: 58 start-page: 247 year: 2012 end-page: 256 ident: bib115 article-title: Control of melt pool temperature and deposition height during direct metal deposition process publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Song – volume: 26 start-page: 52 year: 2020 end-page: 58 ident: bib156 article-title: Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks publication-title: Nat. Med. contributor: fullname: Hollon – volume: 222 year: 2022 ident: bib91 article-title: In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review publication-title: Mater. Des. contributor: fullname: Gupta – volume: 17 start-page: 916 year: 2017 end-page: 922 ident: bib190 article-title: Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics publication-title: Eng. Life Sci. contributor: fullname: von Lieres – volume: 70 start-page: 309 year: 2023 end-page: 326 ident: bib111 article-title: A review of in-situ monitoring and process control system in metal-based laser additive manufacturing publication-title: J. Manuf. Syst. contributor: fullname: Cai – volume: 36 start-page: 187 year: 2015 end-page: 192 ident: bib8 article-title: Design for metallic additive manufacturing machine with capability for “certify as you build publication-title: Procedia CIRP contributor: fullname: Mazumder – volume: 72 start-page: 1092 year: 2020 end-page: 1104 ident: bib33 article-title: Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach publication-title: JOM contributor: fullname: Motaman – volume: 36 year: 2020 ident: bib82 article-title: Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing publication-title: Addit. Manuf. contributor: fullname: Clausen – year: 2022 ident: bib53 article-title: A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Liu – volume: 14 start-page: 39 year: 2017 end-page: 48 ident: bib63 article-title: Prediction of lack-of-fusion porosity for powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Beuth – volume: 13 start-page: 2662 year: 2019 end-page: 2672 ident: bib207 article-title: Survey on GAN-based face hallucination with its model development publication-title: IET Image Process. contributor: fullname: Liu – volume: 59 year: 2022 ident: bib143 article-title: Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide publication-title: Addit. Manuf. contributor: fullname: Suzuki – volume: 38 start-page: 1337 year: 2002 end-page: 1346 ident: bib117 article-title: Virtual reference feedback tuning: a direct method for the design of feedback controllers publication-title: Automatica contributor: fullname: Savaresi – volume: 205 year: 2022 ident: bib38 article-title: Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy publication-title: J. Netw. Comput. Appl. contributor: fullname: Kumar – volume: 223 year: 2021 ident: bib200 article-title: A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control publication-title: Compos. Part B: Eng. contributor: fullname: Humfeld – year: 2012 ident: bib112 publication-title: Introduction to PID Controllers: Theory, Tuning and Application to Frontiers Areas – year: 2020 ident: bib165 article-title: Self-supervised Learning for Semi-supervised Time Series Classification publication-title: Advances in Knowledge Discovery and Data Mining contributor: fullname: Schmidt-Thieme – volume: 110 start-page: 2131 year: 2020 end-page: 2142 ident: bib173 article-title: Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Xia – volume: 154 start-page: 347 year: 2018 end-page: 359 ident: bib78 article-title: In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry publication-title: Mater. Des. contributor: fullname: DePond – volume: 379 start-page: 89 year: 2023 end-page: 94 ident: bib151 article-title: Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion publication-title: Science contributor: fullname: Ren – volume: 6 year: 2023 ident: bib187 article-title: A predictive maintenance model using Long Short-Term Memory Neural Networks and Bayesian inference publication-title: Decis. Anal. J. contributor: fullname: Pagano – volume: 35 start-page: 439 year: 2022 end-page: 452 ident: bib94 article-title: In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti–6.5Al–3.5Mo–l.5Zr–0.3Si Titanium Alloy publication-title: Acta Metall. Sin. (Engl. Lett. ) contributor: fullname: Zhang – volume: 103 start-page: 413 year: 2023 end-page: 429 ident: bib44 article-title: Laser powder bed additive manufacturing: A review on the four drivers for an online control publication-title: J. Manuf. Process. contributor: fullname: Lanzetta – volume: 8 year: 2022 ident: bib22 article-title: Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng. contributor: fullname: Xi – start-page: 1 year: 2022 end-page: 27 ident: bib24 article-title: Process Monitoring, Diagnosis and Control of Additive Manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. contributor: fullname: Fang – volume: 2 start-page: 4 year: 2018 ident: bib104 article-title: Process Monitoring of Laser Beam Melting Towards in-situ process control for powder bed laser melting publication-title: Laser Tech. J. contributor: fullname: Pastors – volume: 33 start-page: 1467 year: 2022 end-page: 1482 ident: bib130 article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning publication-title: J. Intell. Manuf. contributor: fullname: Xia – volume: 8 start-page: 56837 year: 2020 end-page: 56846 ident: bib155 article-title: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy for the FAST Telescope as a Giant CPS publication-title: IEEE Access contributor: fullname: Song – volume: 145 start-page: 90 year: 2022 end-page: 106 ident: bib166 article-title: Interpolation consistency training for semi-supervised learning publication-title: Neural Netw. contributor: fullname: Verma – volume: 718 start-page: 64 year: 2018 end-page: 73 ident: bib138 article-title: Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting publication-title: Mater. Sci. Eng.: A contributor: fullname: Kurzynowski – volume: 1 year: 2023 ident: bib199 article-title: Deep ensemble inverse model for image-based estimation of solar cell parameters publication-title: APL Mach. Learn. contributor: fullname: Battaglia – volume: 11 year: 2021 ident: bib49 article-title: Applications of machine learning in process monitoring and controls of l‐pbf additive manufacturing: A review publication-title: Appl. Sci. (Switz. ) contributor: fullname: Mahmoud – volume: 52 year: 2022 ident: bib46 article-title: Research and application of machine learning for additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Qin – volume: 48 start-page: 770 year: 2020 end-page: 775 ident: bib179 article-title: A Deep Learning Approach for the Identification of Small Process Shifts in Additive Manufacturing using 3D Point Clouds publication-title: Procedia Manuf. contributor: fullname: Ye – volume: 1 start-page: 393 year: 2015 end-page: 403 ident: bib79 article-title: In-Situ Metrology System for Laser Powder Bed Fusion Additive Process publication-title: Procedia Manuf. contributor: fullname: Land – volume: 3 start-page: 3279 year: 2018 end-page: 3284 ident: bib36 article-title: Multisensor Data Fusion for Additive Manufacturing Process Control publication-title: IEEE Robot. Autom. Lett. contributor: fullname: Valente – volume: 28 start-page: 666 year: 2019 end-page: 672 ident: bib171 article-title: In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach publication-title: J. Mater. Eng. Perform. contributor: fullname: Wasmer – volume: 45 year: 2021 ident: bib12 article-title: In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review publication-title: Addit. Manuf. contributor: fullname: McCann – volume: 52 start-page: 500 year: 2020 end-page: 515 ident: bib50 article-title: In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy publication-title: IISE Trans. contributor: fullname: Montazeri – volume: 5 start-page: 1 year: 2016 ident: bib56 article-title: Towards rapid qualification of powder-bed laser additively manufactured parts publication-title: Integr. Mater. Manuf. Innov. contributor: fullname: Craig – volume: 53 year: 2022 ident: bib90 article-title: Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries publication-title: Addit. Manuf. contributor: fullname: Lapointe – volume: 115 start-page: 285 year: 2016 end-page: 294 ident: bib69 article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting publication-title: Acta Mater. contributor: fullname: Suryawanshi – volume: 120 start-page: 147 year: 2022 end-page: 166 ident: bib15 article-title: Metal-based additive manufacturing condition monitoring methods: From measurement to control publication-title: ISA Trans. contributor: fullname: Lin – start-page: 43 year: 2019 ident: bib168 publication-title: Real-time adaptive control of additive manufacturing processes using machine learning contributor: fullname: Noone – volume: 11 year: 2022 ident: bib40 article-title: A new algorithm for optimal process parameters based on minimum building time in additive manufacturing publication-title: Beni-Suef Univ. J. Basic Appl. Sci. contributor: fullname: Sobhi – volume: 35 start-page: 16633 year: 2023 end-page: 16647 ident: bib197 article-title: Actor-critic reinforcement learning leads decision-making in energy systems optimization—steam injection optimization publication-title: Neural Comput. Appl. contributor: fullname: Abdalla – volume: 2 year: 2020 ident: bib11 article-title: Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence publication-title: Adv. Intell. Syst. contributor: fullname: Gu – volume: 61 year: 2023 ident: bib203 article-title: Review of transfer learning in modeling additive manufacturing processes publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 46 year: 2021 ident: bib4 article-title: A computationally efficient thermo-mechanical model for wire arc additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Yang – year: 2019 ident: bib134 article-title: Iterative learning control for power profile shaping in selective laser melting publication-title: 2019 IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE) contributor: fullname: Shkoruta – year: 2022 ident: bib47 article-title: Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges publication-title: J. Intell. Manuf. contributor: fullname: Yan – start-page: 43 year: 2022 end-page: 49 ident: bib153 article-title: Towards data-driven additive manufacturing processes publication-title: Proceedings of the 23rd International Middleware Conference Industrial Track contributor: fullname: Gulisano – volume: 89 start-page: 24 year: 2023 end-page: 38 ident: bib13 article-title: Modeling spatial variations in co-axial melt pool monitoring signals in laser powder bed fusion publication-title: J. Manuf. Process. contributor: fullname: Raj – year: 2023 ident: bib29 article-title: Strategic Guide: Additive Manufacturing In-Situ Monitoring Technology Readiness contributor: fullname: Williams – volume: 33 start-page: 1701 year: 2018 end-page: 1712 ident: bib62 article-title: Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part publication-title: J. Mater. Res. contributor: fullname: Yang – volume: 127 start-page: 25 year: 2019 end-page: 34 ident: bib118 article-title: Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design publication-title: Syst. Control Lett. contributor: fullname: Formentin – volume: 9 start-page: 55214 year: 2021 end-page: 55231 ident: bib41 article-title: Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning publication-title: IEEE Access contributor: fullname: Knaak – year: 2017 ident: bib61 article-title: Defect Characterization for Material Assurance in Metal Additive Manufacturing contributor: fullname: DeJong – start-page: 109 year: 2013 end-page: 138 ident: bib84 article-title: The Contour Method contributor: fullname: DeWald – volume: 36 year: 2020 ident: bib137 article-title: Defect structure process maps for laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Gordon – volume: 36 year: 2021 ident: bib154 article-title: A Real Time Processing system for big data in astronomy: Applications to HERA publication-title: Astron. Comput. contributor: fullname: La Plante – volume: 73 start-page: 3356 year: 2021 end-page: 3370 ident: bib59 article-title: High-Throughput Statistical Interrogation of Mechanical Properties with Build Plate Location and Powder Reuse in AlSi10Mg publication-title: JOM contributor: fullname: Carroll – volume: 3 start-page: 1541 year: 2020 end-page: 1556 ident: bib39 article-title: Machine Learning for Advanced Additive Manufacturing publication-title: Matter contributor: fullname: Jin – year: 2020 ident: bib164 article-title: Self-supervised Learning for Semi-supervised Time Series Classification publication-title: in contributor: fullname: Schmidt-Thieme – volume: 147 year: 2023 ident: bib186 article-title: Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application publication-title: Comput. Ind. contributor: fullname: Leberruyer – volume: 122 start-page: 2277 year: 2022 end-page: 2292 ident: bib20 article-title: Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Xuan – volume: 124 start-page: 1401 year: 2023 end-page: 1427 ident: bib54 article-title: A review of the parameter-signature-quality correlations through in situ sensing in laser metal additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Ye – volume: 19 start-page: 114 year: 2018 end-page: 126 ident: bib85 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. contributor: fullname: Beuth – volume: 66 year: 2023 ident: bib109 article-title: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 109 start-page: 326 year: 2021 end-page: 346 ident: bib105 article-title: Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions publication-title: Proc. IEEE contributor: fullname: Cataldo – volume: 215 year: 2022 ident: bib119 article-title: Closed-loop control of meltpool temperature in directed energy deposition publication-title: Mater. Des. contributor: fullname: Smoqi – start-page: 1 year: 2022 end-page: 30 ident: bib10 article-title: Chapter One - Introduction to digital twin, automation and real-time centers publication-title: in contributor: fullname: Aadnøy – volume: 24 year: 2021 ident: bib37 article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects publication-title: Appl. Mater. Today contributor: fullname: DebRoy – volume: 72 start-page: 157 year: 2023 end-page: 160 ident: bib113 article-title: Simulation-guided feedforward-feedback control of melt pool temperature in directed energy deposition publication-title: CIRP Ann. contributor: fullname: Liao – year: 2023 ident: bib175 article-title: Reinforcement Learning for Laser Welding Speed Control Minimizing Bead Width Error publication-title: 2023 IEEE Int. Conf. Robot. Autom. (ICRA) contributor: fullname: Kaneko – volume: 31 year: 2020 ident: bib66 article-title: Linking pyrometry to porosity in additively manufactured metals publication-title: Addit. Manuf. contributor: fullname: Mitchell – volume: 10 year: 2019 ident: bib67 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. contributor: fullname: Martin – volume: 32 year: 2020 ident: bib131 article-title: Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V publication-title: Addit. Manuf. contributor: fullname: Gibson – volume: 3 start-page: 2792 year: 2018 end-page: 2798 ident: bib114 article-title: Markov Decision Process for Image-Guided Additive Manufacturing publication-title: IEEE Robot. Autom. Lett. contributor: fullname: Yang – volume: 80 start-page: 248 year: 2023 end-page: 253 ident: bib142 article-title: Forecasting of process parameters using machine learning techniques for wire arc additive manufacturing process publication-title: Mater. Today.: Proc. contributor: fullname: Sharma – volume: 5 start-page: 505 year: 2010 end-page: 514 ident: bib133 article-title: Feedback control of Layerwise Laser Melting using optical sensors publication-title: Phys. Procedia contributor: fullname: Craeghs – year: 2022 ident: bib48 article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Sarwar – year: 2018 ident: bib193 publication-title: Reinforcement Learning - An Introduction contributor: fullname: Barto – volume: 46 year: 2021 ident: bib32 article-title: Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Gunasegaram – year: 2021 ident: bib152 article-title: . in publication-title: 2021 International Solid Freeform Fabrication Symposium contributor: fullname: Perišić – year: 2023 ident: bib26 article-title: Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Herzog – volume: 18 year: 2023 ident: bib159 article-title: Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing publication-title: Virtual Phys. Prototyp. contributor: fullname: Bevans – start-page: 1 year: 2019 end-page: 10 ident: bib57 article-title: Chapter 1 - Metal additive manufacturing publication-title: in contributor: fullname: Jared – volume: 62 start-page: 857 year: 2022 end-page: 874 ident: bib222 article-title: Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems publication-title: J. Manuf. Syst. contributor: fullname: Liu – volume: 22 start-page: 11 year: 2019 end-page: 15 ident: bib35 article-title: Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning publication-title: Manuf. Lett. contributor: fullname: Gu – year: 2023 ident: bib188 article-title: Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems publication-title: 2023 11th Int. Conf. Smart Grid (icSmartGrid) contributor: fullname: Garzón – volume: 7 year: 2023 ident: bib7 article-title: Metal additive manufacturing and its post-processing techniques publication-title: J. Manuf. Mater. Process. contributor: fullname: Fuh – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: bib206 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. contributor: fullname: Karniadakis – volume: 233 start-page: 100 year: 2016 end-page: 106 ident: bib120 article-title: Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing publication-title: J. Mater. Process. Technol. contributor: fullname: Zhang – volume: 6 start-page: 144 year: 2023 end-page: 157 ident: bib208 article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning publication-title: Data Sci. Manag. contributor: fullname: Singh – year: 2021 ident: bib75 article-title: Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation publication-title: Vol. 7: Ind. Cogener. ; Manuf. Mater. Metall. contributor: fullname: Nazik – start-page: 0 year: 2020 ident: bib1 article-title: Defects in Metal Additive Manufacturing Processes publication-title: Additive manufacturing processes contributor: fullname: Palmer – start-page: 3 year: 2023 end-page: 30 ident: bib116 article-title: In-Process Sensing, Monitoring and Adaptive Control for Intelligent Laser-Aided Additive Manufacturing publication-title: Trans. Intell. Weld. Manuf. contributor: fullname: Chen – volume: 32 year: 2020 ident: bib80 article-title: Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel publication-title: Addit. Manuf. contributor: fullname: Roach – volume: 25 start-page: 151 year: 2019 end-page: 165 ident: bib178 article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. contributor: fullname: Beuth – year: 2015 ident: bib30 article-title: Development of powder bed fusion additive manufacturing test bed for enhanced real time process control contributor: fullname: Vlasea – volume: 95 start-page: 527 year: 2018 end-page: 550 ident: bib14 article-title: Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: El-Mounayri – year: 2023 ident: bib163 article-title: The Influence of Machine Learning in Additive Manufacturing contributor: fullname: Raju – volume: 42 start-page: 20 year: 2019 end-page: 27 ident: bib122 article-title: Structured light-based height control for laser metal deposition publication-title: J. Manuf. Process. contributor: fullname: Garmendia – volume: 303 year: 2022 ident: bib204 article-title: Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process publication-title: J. Mater. Process. Technol. contributor: fullname: Pandiyan – volume: 36 year: 2020 ident: bib210 article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study publication-title: Addit. Manuf. contributor: fullname: Gaikwad – volume: 66 year: 2023 ident: bib96 article-title: In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy publication-title: Addit. Manuf. contributor: fullname: Zhou – volume: 678 start-page: 291 year: 2016 end-page: 298 ident: bib83 article-title: Neutron diffraction measurements of residual stress in additively manufactured stainless steel publication-title: Mater. Sci. Eng.: A contributor: fullname: Brown – volume: 11 year: 2021 ident: bib141 article-title: Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods publication-title: Sci. Rep. contributor: fullname: Lim – volume: 16 year: 2023 ident: bib127 article-title: Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review publication-title: Mater. (Basel) contributor: fullname: Abuabiah – volume: 36 year: 2021 ident: 10.1016/j.addma.2024.104013_bib154 article-title: A Real Time Processing system for big data in astronomy: Applications to HERA publication-title: Astron. Comput. doi: 10.1016/j.ascom.2021.100489 contributor: fullname: La Plante – volume: 62 start-page: 857 year: 2022 ident: 10.1016/j.addma.2024.104013_bib222 article-title: Digital Twin-enabled Collaborative Data Management for Metal Additive Manufacturing Systems publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.05.010 contributor: fullname: Liu – volume: 79 year: 2023 ident: 10.1016/j.addma.2024.104013_bib158 article-title: Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks publication-title: Robot. Comput. -Integr. Manuf. doi: 10.1016/j.rcim.2022.102445 contributor: fullname: Perani – volume: 14 start-page: 39 year: 2017 ident: 10.1016/j.addma.2024.104013_bib63 article-title: Prediction of lack-of-fusion porosity for powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Tang – volume: 39 year: 2021 ident: 10.1016/j.addma.2024.104013_bib68 article-title: Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF) publication-title: Addit. Manuf. contributor: fullname: Riener – volume: 154 start-page: 347 year: 2018 ident: 10.1016/j.addma.2024.104013_bib78 article-title: In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.050 contributor: fullname: DePond – volume: 96 start-page: 127 year: 2021 ident: 10.1016/j.addma.2024.104013_bib110 article-title: Learning Feedforward Control for Laser Powder Bed Fusion publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.01.064 contributor: fullname: Reiff – volume: 58 start-page: 247 issue: 1 year: 2012 ident: 10.1016/j.addma.2024.104013_bib115 article-title: Control of melt pool temperature and deposition height during direct metal deposition process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3395-2 contributor: fullname: Song – volume: 13 start-page: 2662 year: 2019 ident: 10.1016/j.addma.2024.104013_bib207 article-title: Survey on GAN-based face hallucination with its model development publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.6545 contributor: fullname: Liu – volume: 11 issue: 24 year: 2021 ident: 10.1016/j.addma.2024.104013_bib49 article-title: Applications of machine learning in process monitoring and controls of l‐pbf additive manufacturing: A review publication-title: Appl. Sci. (Switz. ) contributor: fullname: Mahmoud – volume: 22 start-page: 548 year: 2018 ident: 10.1016/j.addma.2024.104013_bib58 article-title: Melt pool temperature and cooling rates in laser powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Hooper – volume: 147 year: 2023 ident: 10.1016/j.addma.2024.104013_bib186 article-title: Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application publication-title: Comput. Ind. doi: 10.1016/j.compind.2023.103877 contributor: fullname: Leberruyer – year: 2020 ident: 10.1016/j.addma.2024.104013_bib164 article-title: Self-supervised Learning for Semi-supervised Time Series Classification contributor: fullname: Jawed – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.addma.2024.104013_bib56 article-title: Towards rapid qualification of powder-bed laser additively manufactured parts publication-title: Integr. Mater. Manuf. Innov. doi: 10.1186/s40192-016-0052-5 contributor: fullname: Peralta – year: 2017 ident: 10.1016/j.addma.2024.104013_bib61 contributor: fullname: Jared B – volume: 176 start-page: 2586 year: 2020 ident: 10.1016/j.addma.2024.104013_bib55 article-title: Machine Learning-enabled feedback loops for metal powder bed fusion additive manufacturing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.09.314 contributor: fullname: Liu – ident: 10.1016/j.addma.2024.104013_bib87 – volume: 4 issue: 4 year: 2021 ident: 10.1016/j.addma.2024.104013_bib146 article-title: The case for digital twins in metal additive manufacturing publication-title: J. Phys.: Mater. contributor: fullname: Gunasegaram – volume: 45 year: 2021 ident: 10.1016/j.addma.2024.104013_bib12 article-title: In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review publication-title: Addit. Manuf. contributor: fullname: McCann – volume: 19 start-page: 114 year: 2018 ident: 10.1016/j.addma.2024.104013_bib85 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. contributor: fullname: Scime – volume: 2 start-page: 4 year: 2018 ident: 10.1016/j.addma.2024.104013_bib104 article-title: Process Monitoring of Laser Beam Melting Towards in-situ process control for powder bed laser melting publication-title: Laser Tech. J. contributor: fullname: Hagedorn – start-page: 0 year: 2020 ident: 10.1016/j.addma.2024.104013_bib1 article-title: Defects in Metal Additive Manufacturing Processes contributor: fullname: Brennan – year: 2022 ident: 10.1016/j.addma.2024.104013_bib23 article-title: Machine-learning-based monitoring and optimization of processing parameters in 3D printing publication-title: Int. J. Comput. Integr. Manuf. contributor: fullname: Tamir – volume: 10 issue: 18 year: 2020 ident: 10.1016/j.addma.2024.104013_bib220 article-title: A new architectural approach to monitoring and controlling AM processes publication-title: Appl. Sci. (Switz. ) contributor: fullname: Adnan – volume: 23 start-page: 181 year: 2023 ident: 10.1016/j.addma.2024.104013_bib145 article-title: Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model publication-title: Engineering doi: 10.1016/j.eng.2022.09.015 contributor: fullname: Zhao – volume: 8 start-page: 56837 year: 2020 ident: 10.1016/j.addma.2024.104013_bib155 article-title: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy for the FAST Telescope as a Giant CPS publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981816 contributor: fullname: Song – year: 2021 ident: 10.1016/j.addma.2024.104013_bib152 article-title: A Data Integration Framework for Additive Manufacturing Big Data Management. in contributor: fullname: Perišić – start-page: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib10 article-title: Chapter One - Introduction to digital twin, automation and real-time centers contributor: fullname: Khosravanian – volume: 31 year: 2020 ident: 10.1016/j.addma.2024.104013_bib66 article-title: Linking pyrometry to porosity in additively manufactured metals publication-title: Addit. Manuf. contributor: fullname: Mitchell – volume: 66 year: 2023 ident: 10.1016/j.addma.2024.104013_bib109 article-title: Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 36 year: 2020 ident: 10.1016/j.addma.2024.104013_bib210 article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study publication-title: Addit. Manuf. contributor: fullname: Gaikwad – volume: 124 start-page: 1401 issue: 5 year: 2023 ident: 10.1016/j.addma.2024.104013_bib54 article-title: A review of the parameter-signature-quality correlations through in situ sensing in laser metal additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10618-0 contributor: fullname: Ye – ident: 10.1016/j.addma.2024.104013_bib98 – volume: 79 start-page: 81 year: 2022 ident: 10.1016/j.addma.2024.104013_bib167 article-title: Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.04.033 contributor: fullname: Kozjek – volume: 233 start-page: 100 year: 2016 ident: 10.1016/j.addma.2024.104013_bib120 article-title: Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.02.021 contributor: fullname: Xiong – year: 2012 ident: 10.1016/j.addma.2024.104013_bib112 – volume: 201 year: 2021 ident: 10.1016/j.addma.2024.104013_bib60 article-title: Laser powder bed fusion of an engineering intermetallic TiAl alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109506 contributor: fullname: Schimbäck – volume: 379 start-page: 89 issue: 6627 year: 2023 ident: 10.1016/j.addma.2024.104013_bib151 article-title: Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion publication-title: Science doi: 10.1126/science.add4667 contributor: fullname: Ren – volume: 6 start-page: 229 issue: 3 year: 2020 ident: 10.1016/j.addma.2024.104013_bib183 article-title: Unsupervised log message anomaly detection publication-title: ICT Express doi: 10.1016/j.icte.2020.06.003 contributor: fullname: Farzad – volume: 28 start-page: 666 issue: 2 year: 2019 ident: 10.1016/j.addma.2024.104013_bib171 article-title: In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-018-3690-2 contributor: fullname: Wasmer – volume: 3 start-page: 5 issue: 6 year: 2015 ident: 10.1016/j.addma.2024.104013_bib214 article-title: On Replacing PID Controller with Deep Learning Controller for DC Motor System publication-title: Jounal Autom. Control Eng. contributor: fullname: Cheon – volume: 80 start-page: 248 year: 2023 ident: 10.1016/j.addma.2024.104013_bib142 article-title: Forecasting of process parameters using machine learning techniques for wire arc additive manufacturing process publication-title: Mater. Today.: Proc. contributor: fullname: Sharma – volume: 66 start-page: 260 year: 2023 ident: 10.1016/j.addma.2024.104013_bib162 article-title: Review on additive manufacturing and non-destructive testing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.12.005 contributor: fullname: Segovia Ramírez – volume: 72 start-page: 1092 issue: 3 year: 2020 ident: 10.1016/j.addma.2024.104013_bib33 article-title: Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach publication-title: JOM doi: 10.1007/s11837-020-04028-4 contributor: fullname: Motaman – volume: 718 start-page: 64 year: 2018 ident: 10.1016/j.addma.2024.104013_bib138 article-title: Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2018.01.103 contributor: fullname: Kurzynowski – ident: 10.1016/j.addma.2024.104013_bib106 – volume: 36 start-page: 187 year: 2015 ident: 10.1016/j.addma.2024.104013_bib8 article-title: Design for metallic additive manufacturing machine with capability for “certify as you build publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.01.009 contributor: fullname: Mazumder – volume: 32 year: 2020 ident: 10.1016/j.addma.2024.104013_bib80 article-title: Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel publication-title: Addit. Manuf. contributor: fullname: Roach – ident: 10.1016/j.addma.2024.104013_bib182 – volume: 33 start-page: 1467 issue: 5 year: 2022 ident: 10.1016/j.addma.2024.104013_bib130 article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01725-4 contributor: fullname: Xia – volume: 46 year: 2021 ident: 10.1016/j.addma.2024.104013_bib4 article-title: A computationally efficient thermo-mechanical model for wire arc additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Yang – ident: 10.1016/j.addma.2024.104013_bib86 – volume: 24 year: 2021 ident: 10.1016/j.addma.2024.104013_bib37 article-title: Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects publication-title: Appl. Mater. Today contributor: fullname: Du – volume: 66 year: 2023 ident: 10.1016/j.addma.2024.104013_bib96 article-title: In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy publication-title: Addit. Manuf. doi: 10.1007/978-3-031-04721-3 contributor: fullname: Zhou – volume: 95 start-page: 527 issue: 1 year: 2018 ident: 10.1016/j.addma.2024.104013_bib14 article-title: Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1172-6 contributor: fullname: Malekipour – volume: 1 start-page: 393 year: 2015 ident: 10.1016/j.addma.2024.104013_bib79 article-title: In-Situ Metrology System for Laser Powder Bed Fusion Additive Process publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2015.09.047 contributor: fullname: Land – ident: 10.1016/j.addma.2024.104013_bib185 – start-page: 521 year: 2007 ident: 10.1016/j.addma.2024.104013_bib17 article-title: Feedback Control of Selective Laser Melting contributor: fullname: Kruth – volume: 145 start-page: 90 year: 2022 ident: 10.1016/j.addma.2024.104013_bib166 article-title: Interpolation consistency training for semi-supervised learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.10.008 contributor: fullname: Verma – volume: 5 start-page: 505 year: 2010 ident: 10.1016/j.addma.2024.104013_bib133 article-title: Feedback control of Layerwise Laser Melting using optical sensors publication-title: Phys. Procedia doi: 10.1016/j.phpro.2010.08.078 contributor: fullname: Craeghs – volume: 33 start-page: 1701 issue: 12 year: 2018 ident: 10.1016/j.addma.2024.104013_bib62 article-title: Effect of thermal annealing on microstructure evolution and mechanical behavior of an additive manufactured AlSi10Mg part publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.82 contributor: fullname: Yang – volume: 3 issue: 4 year: 2022 ident: 10.1016/j.addma.2024.104013_bib213 article-title: Federated data processing and learning for collaboration in the physical sciences publication-title: Mach. Learn.: Sci. Technol. contributor: fullname: Huang – year: 2015 ident: 10.1016/j.addma.2024.104013_bib30 contributor: fullname: Vlasea – year: 2022 ident: 10.1016/j.addma.2024.104013_bib195 article-title: The Advance of Reinforcement Learning and Deep Reinforcement Learning publication-title: 2022 IEEE Int. Conf. Electr. Eng., Big Data Algorithms (EEBDA) doi: 10.1109/EEBDA53927.2022.9744760 contributor: fullname: Lyu – ident: 10.1016/j.addma.2024.104013_bib101 – volume: 52 start-page: 500 issue: 5 year: 2020 ident: 10.1016/j.addma.2024.104013_bib50 article-title: In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy publication-title: IISE Trans. doi: 10.1080/24725854.2019.1659525 contributor: fullname: Montazeri – ident: 10.1016/j.addma.2024.104013_bib224 – volume: 303 year: 2022 ident: 10.1016/j.addma.2024.104013_bib204 article-title: Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2022.117531 contributor: fullname: Pandiyan – volume: 34 year: 2020 ident: 10.1016/j.addma.2024.104013_bib5 article-title: Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure publication-title: Addit. Manuf. contributor: fullname: du Plessis – year: 2021 ident: 10.1016/j.addma.2024.104013_bib75 article-title: Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation publication-title: Vol. 7: Ind. Cogener. ; Manuf. Mater. Metall. contributor: fullname: Subramanian – volume: 36 year: 2020 ident: 10.1016/j.addma.2024.104013_bib82 article-title: Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing publication-title: Addit. Manuf. contributor: fullname: Clausen – volume: 6 start-page: 144 issue: 3 year: 2023 ident: 10.1016/j.addma.2024.104013_bib208 article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2023.06.001 contributor: fullname: Singh – volume: 4 year: 2023 ident: 10.1016/j.addma.2024.104013_bib88 article-title: In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion publication-title: Addit. Manuf. Lett. contributor: fullname: Hasanabadi – ident: 10.1016/j.addma.2024.104013_bib28 – volume: 678 start-page: 291 year: 2016 ident: 10.1016/j.addma.2024.104013_bib83 article-title: Neutron diffraction measurements of residual stress in additively manufactured stainless steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2016.09.086 contributor: fullname: Brown – volume: 110 start-page: 24 year: 2022 ident: 10.1016/j.addma.2024.104013_bib139 article-title: Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.11.016 contributor: fullname: Feng – start-page: 3 year: 2023 ident: 10.1016/j.addma.2024.104013_bib116 article-title: In-Process Sensing, Monitoring and Adaptive Control for Intelligent Laser-Aided Additive Manufacturing publication-title: Trans. Intell. Weld. Manuf. contributor: fullname: Chen – volume: 4 start-page: 11 issue: 1 year: 2020 ident: 10.1016/j.addma.2024.104013_bib77 article-title: How build angle and post-processing impact roughness and corrosion of additively manufactured 316L stainless steel publication-title: npj Mater. Degrad. doi: 10.1038/s41529-020-00126-5 contributor: fullname: Melia – volume: 111 start-page: 479 year: 2022 ident: 10.1016/j.addma.2024.104013_bib176 article-title: Smart closed-loop control of laser welding using reinforcement learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.08.074 contributor: fullname: Quang – volume: 8 issue: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib22 article-title: Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng. contributor: fullname: Xi – volume: 18 issue: 1 year: 2023 ident: 10.1016/j.addma.2024.104013_bib159 article-title: Heterogeneous sensor data fusion for multiscale, shape agnostic flaw detection in laser powder bed fusion additive manufacturing publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2023.2196266 contributor: fullname: Bevans – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.addma.2024.104013_bib136 article-title: Toward defect-free components in laser metal deposition with coaxial wire feeding through closed-loop control of the melt pool temperature publication-title: J. Laser Appl. doi: 10.2351/7.0000773 contributor: fullname: Bernauer – volume: 67 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib140 article-title: Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2020.1868889 contributor: fullname: Hashemi – volume: 35 start-page: 16633 issue: 22 year: 2023 ident: 10.1016/j.addma.2024.104013_bib197 article-title: Actor-critic reinforcement learning leads decision-making in energy systems optimization—steam injection optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08537-6 contributor: fullname: Abdalla – year: 2023 ident: 10.1016/j.addma.2024.104013_bib189 article-title: Faulty Process Detection Using Machine Learning Techniques contributor: fullname: Dastgerdi – start-page: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib24 article-title: Process Monitoring, Diagnosis and Control of Additive Manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. contributor: fullname: Fang – volume: 222 year: 2022 ident: 10.1016/j.addma.2024.104013_bib128 article-title: Predicting laser powder bed fusion defects through in-process monitoring data and machine learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111115 contributor: fullname: Feng – ident: 10.1016/j.addma.2024.104013_bib212 – volume: 9 start-page: 55214 year: 2021 ident: 10.1016/j.addma.2024.104013_bib41 article-title: Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067302 contributor: fullname: Knaak – volume: 17 start-page: 247 issue: 3 year: 2015 ident: 10.1016/j.addma.2024.104013_bib100 article-title: Micro-Shaping, Polishing, and Damage Repair of Fused Silica Surfaces Using Focused Infrared Laser Beams publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201400349 contributor: fullname: Matthews – volume: 222 year: 2022 ident: 10.1016/j.addma.2024.104013_bib91 article-title: In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111063 contributor: fullname: AbouelNour – year: 2022 ident: 10.1016/j.addma.2024.104013_bib53 article-title: A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Liu – volume: 38 start-page: 1337 issue: 8 year: 2002 ident: 10.1016/j.addma.2024.104013_bib117 article-title: Virtual reference feedback tuning: a direct method for the design of feedback controllers publication-title: Automatica doi: 10.1016/S0005-1098(02)00032-8 contributor: fullname: Campi – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.addma.2024.104013_bib64 article-title: Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing publication-title: Sci. Rep. doi: 10.1038/s41598-019-41415-7 contributor: fullname: Nassar – ident: 10.1016/j.addma.2024.104013_bib107 – volume: 25 start-page: 151 year: 2019 ident: 10.1016/j.addma.2024.104013_bib178 article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. contributor: fullname: Scime – volume: 115 start-page: 285 year: 2016 ident: 10.1016/j.addma.2024.104013_bib69 article-title: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.009 contributor: fullname: Suryawanshi – volume: 6 year: 2023 ident: 10.1016/j.addma.2024.104013_bib187 article-title: A predictive maintenance model using Long Short-Term Memory Neural Networks and Bayesian inference publication-title: Decis. Anal. J. contributor: fullname: Pagano – volume: 309 year: 2022 ident: 10.1016/j.addma.2024.104013_bib216 article-title: Reinforced model predictive control (RL-MPC) for building energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118346 contributor: fullname: Arroyo – start-page: 43 year: 2022 ident: 10.1016/j.addma.2024.104013_bib153 article-title: Towards data-driven additive manufacturing processes contributor: fullname: Gulisano – volume: 110 start-page: 2419 issue: 9 year: 2021 ident: 10.1016/j.addma.2024.104013_bib198 article-title: Challenges of real-world reinforcement learning: definitions, benchmarks and analysis publication-title: Mach. Learn. doi: 10.1007/s10994-021-05961-4 contributor: fullname: Dulac-Arnold – volume: 161 year: 2022 ident: 10.1016/j.addma.2024.104013_bib215 article-title: Reinforcement learning approach to autonomous PID tuning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107760 contributor: fullname: Dogru – volume: 1 issue: 3 year: 2023 ident: 10.1016/j.addma.2024.104013_bib199 article-title: Deep ensemble inverse model for image-based estimation of solar cell parameters publication-title: APL Mach. Learn. contributor: fullname: Battaglia – ident: 10.1016/j.addma.2024.104013_bib192 – volume: 52 year: 2022 ident: 10.1016/j.addma.2024.104013_bib46 article-title: Research and application of machine learning for additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Qin – year: 2022 ident: 10.1016/j.addma.2024.104013_bib160 article-title: Sensory Data Fusion Using Machine Learning Methods for In-Situ Defect Registration in Additive Manufacturing: A Review publication-title: 2022 IEEE Int. IOT, Electron. Mechatron. Conf., IEMTRONICS 2022 contributor: fullname: Akhavan – volume: 22 start-page: 11 year: 2019 ident: 10.1016/j.addma.2024.104013_bib35 article-title: Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2019.09.005 contributor: fullname: Jin – ident: 10.1016/j.addma.2024.104013_bib169 – volume: 70 start-page: 1677 issue: 9 year: 2018 ident: 10.1016/j.addma.2024.104013_bib34 article-title: ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing publication-title: JOM doi: 10.1007/s11837-018-3024-8 contributor: fullname: Pires – volume: 74 start-page: 659 year: 2018 ident: 10.1016/j.addma.2024.104013_bib135 article-title: Model assisted closed-loop control strategy for selective laser melting publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.053 contributor: fullname: Renken – volume: 31 year: 2020 ident: 10.1016/j.addma.2024.104013_bib43 article-title: Model-based feedforward control of laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Wang – year: 2018 ident: 10.1016/j.addma.2024.104013_bib184 contributor: fullname: Tun – year: 2020 ident: 10.1016/j.addma.2024.104013_bib165 article-title: Self-supervised Learning for Semi-supervised Time Series Classification contributor: fullname: Jawed – volume: 11 issue: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib40 article-title: A new algorithm for optimal process parameters based on minimum building time in additive manufacturing publication-title: Beni-Suef Univ. J. Basic Appl. Sci. doi: 10.1186/s43088-022-00260-w contributor: fullname: Hamoud – ident: 10.1016/j.addma.2024.104013_bib102 – volume: 72 start-page: 2363 issue: 6 year: 2020 ident: 10.1016/j.addma.2024.104013_bib45 article-title: Machine Learning in Additive Manufacturing: A Review publication-title: JOM doi: 10.1007/s11837-020-04155-y contributor: fullname: Meng – volume: 3 start-page: 2755 year: 2023 ident: 10.1016/j.addma.2024.104013_bib157 article-title: MULTISENSOR FUSION-BASED DIGITAL TWIN IN ADDITIVE MANUFACTURING FOR IN-SITU QUALITY MONITORING AND DEFECT CORRECTION publication-title: Proc. Des. Soc. doi: 10.1017/pds.2023.276 contributor: fullname: Chen – ident: 10.1016/j.addma.2024.104013_bib205 doi: 10.1007/s10845-024-02490-4 – volume: 32 start-page: 127 issue: 1 year: 2019 ident: 10.1016/j.addma.2024.104013_bib72 article-title: Cracking Behavior in Additively Manufactured Pure Tungsten publication-title: Acta Metall. Sin. (Engl. Lett. ) doi: 10.1007/s40195-018-0752-2 contributor: fullname: Wang – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib209 article-title: Generalisable 3D printing error detection and correction via multi-head neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-022-31985-y contributor: fullname: Brion – volume: 26 issue: 2 year: 2022 ident: 10.1016/j.addma.2024.104013_bib51 article-title: Defects and anomalies in powder bed fusion metal additive manufacturing publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2021.100974 contributor: fullname: Mostafaei – volume: 3 start-page: 2792 issue: 4 year: 2018 ident: 10.1016/j.addma.2024.104013_bib114 article-title: Markov Decision Process for Image-Guided Additive Manufacturing publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2839973 contributor: fullname: Yao – ident: 10.1016/j.addma.2024.104013_bib223 – volume: 32 year: 2020 ident: 10.1016/j.addma.2024.104013_bib131 article-title: Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V publication-title: Addit. Manuf. contributor: fullname: Gibson – ident: 10.1016/j.addma.2024.104013_bib73 – volume: 46 year: 2021 ident: 10.1016/j.addma.2024.104013_bib170 article-title: Thermal control of laser powder bed fusion using deep reinforcement learning publication-title: Addit. Manuf. contributor: fullname: Ogoke – volume: 73 start-page: 961 year: 2022 ident: 10.1016/j.addma.2024.104013_bib52 article-title: Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.11.037 contributor: fullname: Wang – volume: 803 year: 2021 ident: 10.1016/j.addma.2024.104013_bib92 article-title: Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2020.140483 contributor: fullname: Farshidianfar – volume: 127 start-page: 25 year: 2019 ident: 10.1016/j.addma.2024.104013_bib118 article-title: Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2019.03.007 contributor: fullname: Formentin – year: 2022 ident: 10.1016/j.addma.2024.104013_bib48 article-title: A systematic literature review on recent trends of machine learning applications in additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Xames – year: 2020 ident: 10.1016/j.addma.2024.104013_bib16 article-title: A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing publication-title: 2020 IEEE Int. Conf. Robot. Autom. (ICRA) doi: 10.1109/ICRA40945.2020.9197222 contributor: fullname: Dharmawan – volume: 73 start-page: 3356 issue: 11 year: 2021 ident: 10.1016/j.addma.2024.104013_bib59 article-title: High-Throughput Statistical Interrogation of Mechanical Properties with Build Plate Location and Powder Reuse in AlSi10Mg publication-title: JOM doi: 10.1007/s11837-021-04888-4 contributor: fullname: Carroll – volume: 302 year: 2022 ident: 10.1016/j.addma.2024.104013_bib21 article-title: Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117476 contributor: fullname: Snow – year: 2023 ident: 10.1016/j.addma.2024.104013_bib29 contributor: fullname: Williams – year: 2019 ident: 10.1016/j.addma.2024.104013_bib148 contributor: fullname: Ferreira – volume: 208 year: 2021 ident: 10.1016/j.addma.2024.104013_bib201 article-title: Inverse machine learning framework for optimizing lightweight metamaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109937 contributor: fullname: Challapalli – year: 2019 ident: 10.1016/j.addma.2024.104013_bib217 article-title: Data-Enabled Predictive Control: In the Shallows of the DeePC publication-title: 2019 18th Eur. Control Conf. (ECC) doi: 10.23919/ECC.2019.8795639 contributor: fullname: Coulson – volume: 19 start-page: 57 year: 2017 ident: 10.1016/j.addma.2024.104013_bib121 article-title: Development of an adaptive, self-learning control concept for an additive manufacturing process publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2017.05.002 contributor: fullname: Renken – year: 2019 ident: 10.1016/j.addma.2024.104013_bib134 article-title: Iterative learning control for power profile shaping in selective laser melting publication-title: 2019 IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE) doi: 10.1109/COASE.2019.8843070 contributor: fullname: Shkoruta – year: 2022 ident: 10.1016/j.addma.2024.104013_bib47 article-title: Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges publication-title: J. Intell. Manuf. contributor: fullname: Zhang – volume: 34 start-page: 1 year: 2016 ident: 10.1016/j.addma.2024.104013_bib174 article-title: Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.09.004 contributor: fullname: Günther – volume: 42 start-page: 20 year: 2019 ident: 10.1016/j.addma.2024.104013_bib122 article-title: Structured light-based height control for laser metal deposition publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.04.018 contributor: fullname: Garmendia – volume: 206 year: 2023 ident: 10.1016/j.addma.2024.104013_bib161 article-title: Ultrasonic diagnostic for in situ control in metal additive manufacturing publication-title: Measurement doi: 10.1016/j.measurement.2022.112244 contributor: fullname: Raffestin – volume: 141 start-page: 1 year: 2021 ident: 10.1016/j.addma.2024.104013_bib218 article-title: Deep ANC: A deep learning approach to active noise control publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.03.037 contributor: fullname: Zhang – volume: 48 start-page: 770 year: 2020 ident: 10.1016/j.addma.2024.104013_bib179 article-title: A Deep Learning Approach for the Identification of Small Process Shifts in Additive Manufacturing using 3D Point Clouds publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.05.112 contributor: fullname: Ye – volume: 34 year: 2020 ident: 10.1016/j.addma.2024.104013_bib89 article-title: Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Druzgalski – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.addma.2024.104013_bib206 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 contributor: fullname: Karniadakis – volume: 48 year: 2021 ident: 10.1016/j.addma.2024.104013_bib25 article-title: Multi-modal sensor fusion with machine learning for data-driven process monitoring for additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Petrich – ident: 10.1016/j.addma.2024.104013_bib108 – volume: 116 start-page: 543 year: 2018 ident: 10.1016/j.addma.2024.104013_bib81 article-title: Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.07.013 contributor: fullname: Pegues – volume: 28 issue: 4 year: 2017 ident: 10.1016/j.addma.2024.104013_bib2 article-title: Process defects andin situmonitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa5c4f contributor: fullname: Grasso – volume: 28 start-page: 228 year: 2019 ident: 10.1016/j.addma.2024.104013_bib97 article-title: Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Roehling – volume: 5 year: 2021 ident: 10.1016/j.addma.2024.104013_bib6 article-title: A review of post-processing technologies in additive manufacturing publication-title: J. Manuf. Mater. Process. contributor: fullname: Peng – volume: 33 start-page: 498 year: 2021 ident: 10.1016/j.addma.2024.104013_bib3 article-title: Additive manufacturing processes for metals and effects of defects on mechanical strength: a review publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2021.10.057 contributor: fullname: Bellini – volume: 16 year: 2023 ident: 10.1016/j.addma.2024.104013_bib144 article-title: Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm publication-title: Materials doi: 10.3390/ma16031050 contributor: fullname: Chepiga – volume: 3 start-page: 1541 issue: 5 year: 2020 ident: 10.1016/j.addma.2024.104013_bib39 article-title: Machine Learning for Advanced Additive Manufacturing publication-title: Matter doi: 10.1016/j.matt.2020.08.023 contributor: fullname: Jin – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.addma.2024.104013_bib141 article-title: Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods publication-title: Sci. Rep. doi: 10.1038/s41598-021-03622-z contributor: fullname: Lim – ident: 10.1016/j.addma.2024.104013_bib103 – volume: 89 start-page: 24 year: 2023 ident: 10.1016/j.addma.2024.104013_bib13 article-title: Modeling spatial variations in co-axial melt pool monitoring signals in laser powder bed fusion publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.12.048 contributor: fullname: Raj – volume: 24 start-page: 183 year: 2018 ident: 10.1016/j.addma.2024.104013_bib180 article-title: Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion publication-title: Addit. Manuf. contributor: fullname: Caltanissetta – volume: 54 start-page: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib196 article-title: Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2022.07.004 contributor: fullname: Tipaldi – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.addma.2024.104013_bib150 article-title: In situ process quality monitoring and defect detection for direct metal laser melting publication-title: Sci. Rep. doi: 10.1038/s41598-022-12381-4 contributor: fullname: Felix – year: 2022 ident: 10.1016/j.addma.2024.104013_bib129 article-title: Monitoring and Prediction of Porosity in Laser Powder Bed Fusion using Physics-informed Meltpool Signatures and Machine Learning publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2022.117550 contributor: fullname: Smoqi – volume: 36 year: 2020 ident: 10.1016/j.addma.2024.104013_bib137 article-title: Defect structure process maps for laser powder bed fusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Gordon – year: 2021 ident: 10.1016/j.addma.2024.104013_bib99 contributor: fullname: Maass – volume: 46 year: 2021 ident: 10.1016/j.addma.2024.104013_bib32 article-title: Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Gunasegaram – ident: 10.1016/j.addma.2024.104013_bib211 – volume: 33 start-page: 1165 issue: 4 year: 2022 ident: 10.1016/j.addma.2024.104013_bib125 article-title: Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01920-5 contributor: fullname: Mu – year: 2018 ident: 10.1016/j.addma.2024.104013_bib193 contributor: fullname: Sutton – volume: 17 start-page: 916 issue: 8 year: 2017 ident: 10.1016/j.addma.2024.104013_bib190 article-title: Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics publication-title: Eng. Life Sci. doi: 10.1002/elsc.201700022 contributor: fullname: Freier – volume: 27 start-page: 2495 issue: 5 year: 2022 ident: 10.1016/j.addma.2024.104013_bib19 article-title: Metal-Based Additive Manufacturing Condition Monitoring: A Review on Machine Learning Based Approaches publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3110818 contributor: fullname: Zhu – volume: 23 issue: 15 year: 2023 ident: 10.1016/j.addma.2024.104013_bib219 article-title: A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions publication-title: Sens. (Basel) contributor: fullname: Kim – volume: 15 start-page: 489 issue: 3 year: 2021 ident: 10.1016/j.addma.2024.104013_bib123 article-title: Influence of a closed-loop controlled laser metal wire deposition process of S Al 5356 on the quality of manufactured parts before and after subsequent machining publication-title: Prod. Eng. doi: 10.1007/s11740-021-01030-w contributor: fullname: Becker – start-page: 1 year: 2019 ident: 10.1016/j.addma.2024.104013_bib57 article-title: Chapter 1 - Metal additive manufacturing contributor: fullname: Dutta – volume: 3 issue: 3 year: 2015 ident: 10.1016/j.addma.2024.104013_bib93 article-title: Analysis and correction of defects within parts fabricated using powder bed fusion technology publication-title: Surf. Topogr.: Metrol. Prop. contributor: fullname: Mireles – volume: 22 start-page: 8 issue: 1 year: 2018 ident: 10.1016/j.addma.2024.104013_bib71 article-title: Feedstock powder processing research needs for additive manufacturing development publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2018.01.002 contributor: fullname: Anderson – volume: 215 year: 2022 ident: 10.1016/j.addma.2024.104013_bib119 article-title: Closed-loop control of meltpool temperature in directed energy deposition publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.110508 contributor: fullname: Smoqi – volume: 26 start-page: 52 issue: 1 year: 2020 ident: 10.1016/j.addma.2024.104013_bib156 article-title: Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks publication-title: Nat. Med. doi: 10.1038/s41591-019-0715-9 contributor: fullname: Hollon – volume: 109 start-page: 326 issue: 4 year: 2021 ident: 10.1016/j.addma.2024.104013_bib105 article-title: Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3054628 contributor: fullname: Cataldo – year: 2021 ident: 10.1016/j.addma.2024.104013_bib149 article-title: Image analytics and machine learning for in-situ defects detection in Additive Manufacturing publication-title: 2021 Des., Autom. Test. Eur. Conf. Exhib. (DATE) doi: 10.23919/DATE51398.2021.9474175 contributor: fullname: Cannizzaro – volume: 7 year: 2023 ident: 10.1016/j.addma.2024.104013_bib7 article-title: Metal additive manufacturing and its post-processing techniques publication-title: J. Manuf. Mater. Process. contributor: fullname: Wang – start-page: 43 year: 2019 ident: 10.1016/j.addma.2024.104013_bib168 contributor: fullname: Mehr – volume: 35 issue: 3 year: 2023 ident: 10.1016/j.addma.2024.104013_bib191 article-title: Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions publication-title: Phys. Fluids doi: 10.1063/5.0143913 contributor: fullname: Vignon – start-page: 109 year: 2013 ident: 10.1016/j.addma.2024.104013_bib84 article-title: The Contour Method publication-title: Pract. Residual Stress Meas. Methods doi: 10.1002/9781118402832.ch5 contributor: fullname: Prime – volume: 356 start-page: 2505 issue: 5 year: 2019 ident: 10.1016/j.addma.2024.104013_bib126 article-title: Robust multivariable predictive control for laser-aided powder deposition processes publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.12.015 contributor: fullname: Cao – volume: 122 start-page: 2277 issue: 5-6 year: 2022 ident: 10.1016/j.addma.2024.104013_bib20 article-title: Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10032-6 contributor: fullname: Wang – volume: 4 start-page: 411 issue: 4 year: 2019 ident: 10.1016/j.addma.2024.104013_bib124 article-title: In-process closed-loop control for stabilising the melt pool temperature in selective laser melting publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00083-9 contributor: fullname: Renken – volume: 53 year: 2022 ident: 10.1016/j.addma.2024.104013_bib90 article-title: Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries publication-title: Addit. Manuf. contributor: fullname: Lapointe – volume: 136 year: 2022 ident: 10.1016/j.addma.2024.104013_bib9 article-title: Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103596 contributor: fullname: Powell – volume: 3 start-page: 3279 issue: 4 year: 2018 ident: 10.1016/j.addma.2024.104013_bib36 article-title: Multisensor Data Fusion for Additive Manufacturing Process Control publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2851792 contributor: fullname: Vandone – volume: 138 year: 2023 ident: 10.1016/j.addma.2024.104013_bib132 article-title: Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101153 contributor: fullname: Mukherjee – volume: 35 start-page: 439 issue: 3 year: 2022 ident: 10.1016/j.addma.2024.104013_bib94 article-title: In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti–6.5Al–3.5Mo–l.5Zr–0.3Si Titanium Alloy publication-title: Acta Metall. Sin. (Engl. Lett. ) doi: 10.1007/s40195-021-01297-z contributor: fullname: Zhang – volume: 70 start-page: 309 year: 2023 ident: 10.1016/j.addma.2024.104013_bib111 article-title: A review of in-situ monitoring and process control system in metal-based laser additive manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2023.07.018 contributor: fullname: Cai – ident: 10.1016/j.addma.2024.104013_bib194 – year: 2023 ident: 10.1016/j.addma.2024.104013_bib175 article-title: Reinforcement Learning for Laser Welding Speed Control Minimizing Bead Width Error publication-title: 2023 IEEE Int. Conf. Robot. Autom. (ICRA) doi: 10.1109/ICRA48891.2023.10161334 contributor: fullname: Kaneko – volume: 61 year: 2023 ident: 10.1016/j.addma.2024.104013_bib203 article-title: Review of transfer learning in modeling additive manufacturing processes publication-title: Addit. Manuf. contributor: fullname: Tang – volume: 95 start-page: 431 year: 2016 ident: 10.1016/j.addma.2024.104013_bib27 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.099 contributor: fullname: Everton – year: 2023 ident: 10.1016/j.addma.2024.104013_bib188 article-title: Smart equipment failure detection with machine learning applied to thermography inspection data in modern power systems publication-title: 2023 11th Int. Conf. Smart Grid (icSmartGrid) doi: 10.1109/icSmartGrid58556.2023.10171065 contributor: fullname: Garzón – volume: 120 start-page: 147 year: 2022 ident: 10.1016/j.addma.2024.104013_bib15 article-title: Metal-based additive manufacturing condition monitoring methods: From measurement to control publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.03.001 contributor: fullname: Lin – volume: 36 year: 2020 ident: 10.1016/j.addma.2024.104013_bib42 article-title: Machine learning in additive manufacturing: State-of-the-art and perspectives publication-title: Addit. Manuf. contributor: fullname: Wang – volume: 3 issue: 12 year: 2018 ident: 10.1016/j.addma.2024.104013_bib177 article-title: Machine-Learning-Based Monitoring of Laser Powder Bed Fusion publication-title: Adv. Mater. Technol. contributor: fullname: Yuan – year: 2023 ident: 10.1016/j.addma.2024.104013_bib26 article-title: Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing publication-title: J. Intell. Manuf. contributor: fullname: Herzog – volume: 11 year: 2021 ident: 10.1016/j.addma.2024.104013_bib95 article-title: Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study publication-title: Metals doi: 10.3390/met11071012 contributor: fullname: Ulbricht – volume: 223 year: 2021 ident: 10.1016/j.addma.2024.104013_bib200 article-title: A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2021.109150 contributor: fullname: Humfeld – start-page: 50 year: 2015 ident: 10.1016/j.addma.2024.104013_bib18 contributor: fullname: Mani – ident: 10.1016/j.addma.2024.104013_bib221 – volume: 30 start-page: 2903 issue: 8 year: 2009 ident: 10.1016/j.addma.2024.104013_bib65 article-title: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.01.013 contributor: fullname: Gu – volume: 137 issue: 11 year: 2015 ident: 10.1016/j.addma.2024.104013_bib74 article-title: Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing publication-title: J. Mech. Des. doi: 10.1115/1.4031156 contributor: fullname: Schmelzle – volume: 205 year: 2022 ident: 10.1016/j.addma.2024.104013_bib38 article-title: Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103419 contributor: fullname: Soni – volume: 156 start-page: 458 year: 2018 ident: 10.1016/j.addma.2024.104013_bib31 article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.07.002 contributor: fullname: Zhang – year: 2017 ident: 10.1016/j.addma.2024.104013_bib70 article-title: The challenges and consequences of material uncertainties in metal laser powder bed fusion contributor: fullname: Jared B – volume: 59 year: 2022 ident: 10.1016/j.addma.2024.104013_bib143 article-title: Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide publication-title: Addit. Manuf. contributor: fullname: Suzuki – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.addma.2024.104013_bib67 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10009-2 contributor: fullname: Martin – volume: 74 year: 2023 ident: 10.1016/j.addma.2024.104013_bib147 article-title: Invertible neural networks for real-time control of extrusion additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Roach – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.addma.2024.104013_bib11 article-title: Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900130 contributor: fullname: Jin – volume: 156 start-page: 458 year: 2018 ident: 10.1016/j.addma.2024.104013_bib181 article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.07.002 contributor: fullname: Zhang – volume: 16 issue: 5 year: 2023 ident: 10.1016/j.addma.2024.104013_bib127 article-title: Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review publication-title: Mater. (Basel) contributor: fullname: Abuabiah – volume: 145 issue: 10 year: 2023 ident: 10.1016/j.addma.2024.104013_bib76 article-title: Influences of Laser Incidence Angle and Wall Thickness on Additive Components publication-title: J. Turbomach. doi: 10.1115/1.4062678 contributor: fullname: Wildgoose – volume: 103 start-page: 413 year: 2023 ident: 10.1016/j.addma.2024.104013_bib44 article-title: Laser powder bed additive manufacturing: A review on the four drivers for an online control publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2023.08.022 contributor: fullname: Lupi – volume: 110 start-page: 2131 issue: 7 year: 2020 ident: 10.1016/j.addma.2024.104013_bib173 article-title: Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05998-0 contributor: fullname: Xia – ident: 10.1016/j.addma.2024.104013_bib172 doi: 10.1115/DETC2021-71865 – volume: 29 start-page: R231 issue: 7 year: 2019 ident: 10.1016/j.addma.2024.104013_bib202 article-title: Neural network models and deep learning publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.02.034 contributor: fullname: Kriegeskorte – volume: 72 start-page: 157 issue: 1 year: 2023 ident: 10.1016/j.addma.2024.104013_bib113 article-title: Simulation-guided feedforward-feedback control of melt pool temperature in directed energy deposition publication-title: CIRP Ann. doi: 10.1016/j.cirp.2023.03.014 contributor: fullname: Liao – year: 2023 ident: 10.1016/j.addma.2024.104013_bib163 article-title: The Influence of Machine Learning in Additive Manufacturing publication-title: Lect. Notes Mech. Eng. contributor: fullname: Raju |
SSID | ssj0001537982 |
Score | 2.3804893 |
SecondaryResourceType | review_article |
Snippet | In metal additive manufacturing (AM), the material microstructure and part geometry are formed incrementally. Consequently, the resulting part could be defect-... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 104013 |
SubjectTerms | Artificial intelligence Autonomous manufacturing Closed-loop control Diagnostics Directed energy deposition Industry 4.0 Powder bed fusion Process monitoring Prognostics Zero defects manufacturing |
Title | Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing |
URI | https://dx.doi.org/10.1016/j.addma.2024.104013 https://www.osti.gov/biblio/2305413 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPMVbHhgxdRI7jxEhUAHBAkhskR3bKEhNK5qu_Hbu3ETAAANDhkS5KLmzz1-S774DOE0dpn1tJfeRS6gkR3BtheZSGoy3N9YGLb37h3T0LG9f1MsSXPa1MESr7HL_IqeHbN0dGXbeHE7revgYxxF1UJLEgiSVkWVYweUozgewcnFzN3r4-tSikqwIbaPIhJNNrz8UmF44xYMEUSzpj6eIkt_WqMEEp9235ed6A9Y73MguFre2CUuu2YK1b2qC2_BxH4iRjnWdIF45AmOKomV1w2d1O2fa6inlNzZre4kIhqiVIQpkHWmdTTyzLpA8mG4sbpMxYnU8sW7Y2CFWZ8RBClcZ62ZOlRGh1HEHnq-vni5HvGuvwKskUy1PENyIqhDe4yTOPD6-UzZPnTEqq6Iip6Ld1JhcuCLPtfIyjYVWospsKjHuRbILg2bSuD1gOpfGJLpymP-kR4RktNdOFC7yaWZNvA9nvUPL6UJFo-zpZW9l8H9J_i8X_t-HtHd6-WMwlJjn_zY8pBCREUngVsQVQit8zVK4WB_897KHsEp7gaytjmDQvs_dMWKR1pzA8vlHdNKNuE-J9N78 |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MCIVSex8xirClQe7UKR2CI7tlGQmlY0Xfnt3LmJgAEGhixJLkru7POX5LvvCLmKLaR9ZQRzgY2wJIczZbhiQmiIt9PGeC290TgePov7F_myRgZtLQzSKpvcv8rpPls3e3qNN3vzsuw9hWGAHZQEsiBRZWSdbAAayGB2bvTvHobjr08tMkoy3zYKTRjatPpDnukFU9xLEIUC_3jyIPptjerMYNp9W35ud8lOgxtpf3Vre2TNVvtk-5ua4AH5GHlipKVNJ4hXBsAYo2hoWbFFWS-pMmqO-Y0u6lYiggJqpYACaUNapzNHjfUkD6oqA9tsClgdTiwrOrWA1SlykPxVpqpaYmWEL3U8JM-3N5PBkDXtFVgRJbJmEYAbXmTcOZjEiYPHt9KksdVaJkWQpVi0G2udcpulqZJOxCFXkheJiQXEPYuOSKeaVfaYUJUKrSNVWMh_wgFC0sopyzMbuDgxOuyS69ah-XylopG39LK33Ps_R__nK_93Sdw6Pf8xGHLI838bnmKI0AglcAvkCoEVvGZJWKxP_nvZS7I5nIwe88e78cMp2cIjnrgtz0infl_ac8Altb5oxt0n8Srg8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-assisted+in-situ+adaptive+strategies+for+the+control+of+defects+and+anomalies+in+metal+additive+manufacturing&rft.jtitle=Additive+manufacturing&rft.au=Gunasegaram%2C+D.+R.&rft.au=Barnard%2C+A.+S.&rft.au=Matthews%2C+M.+J.&rft.au=Jared%2C+B.+H.&rft.date=2024-02-05&rft.pub=Elsevier&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=81&rft.issue=C&rft_id=info:doi/10.1016%2Fj.addma.2024.104013&rft.externalDocID=2305413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |