Vibration-assisted multiphoton resonance and multi-ion excitation
We investigate the multiphoton resonance and multi-ion excitation in a single-mode cavity with identical vibrating ionqubits, which enables the tripartite interaction among the internal states of ions, the cavity mode and the ions' vibrational motion. Under particular resonant conditions, we de...
Saved in:
Published in | Physical review research Vol. 5; no. 2; p. 023005 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.04.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the multiphoton resonance and multi-ion excitation in a single-mode cavity with identical vibrating ionqubits, which enables the tripartite interaction among the internal states of ions, the cavity mode and the ions' vibrational motion. Under particular resonant conditions, we derive effective Hamiltonians for the three-photon and the three-excitation cases, respectively, and find that the magnitude of the effective coupling energy can be tuned through the vibration mode, allowing for manipulations of ion-photon coupling in experiments. Furthermore, we analyze the system dynamics of our proposed setups and demonstrate the Rabi oscillation behaviors in these systems with dissipation effects. We propose our system as a versatile platform for the exploration of entangled multiqubit physics. |
---|---|
AbstractList | We investigate the multiphoton resonance and multi-ion excitation in a single-mode cavity with identical vibrating ionqubits, which enables the tripartite interaction among the internal states of ions, the cavity mode and the ions' vibrational motion. Under particular resonant conditions, we derive effective Hamiltonians for the three-photon and the three-excitation cases, respectively, and find that the magnitude of the effective coupling energy can be tuned through the vibration mode, allowing for manipulations of ion-photon coupling in experiments. Furthermore, we analyze the system dynamics of our proposed setups and demonstrate the Rabi oscillation behaviors in these systems with dissipation effects. We propose our system as a versatile platform for the exploration of entangled multiqubit physics. |
ArticleNumber | 023005 |
Author | Wang, Liang-Liang Feng, Xun-Li Shao, Wenjun Li, Jian |
Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0002-5365-3991 surname: Shao fullname: Shao, Wenjun – sequence: 2 givenname: Xun-Li orcidid: 0000-0002-2822-2532 surname: Feng fullname: Feng, Xun-Li – sequence: 3 givenname: Jian surname: Li fullname: Li, Jian – sequence: 4 givenname: Liang-Liang orcidid: 0000-0002-2468-0464 surname: Wang fullname: Wang, Liang-Liang |
BookMark | eNqFkNtKAzEQhoNUsNa-w77A1pmcdnsjlOKhUFCKehuy2axNaTcliWLf3rUHkN54NcPM_N_M_Nek1_rWEpIhjBCB3b4sd3FhvxY2Wh3MciRGQBmAuCB9KjnLUUje-5NfkWGMKwCgApGXok8m764KOjnf5jpGF5Ots83nOrnt0iffZsFG3-rW2Ey3x07eDWf227i0192Qy0avox0e44C8Pdy_Tp_y-fPjbDqZ54YVIuWMlQUWyLQUVTEupGSiMpbygjNaMo2cCS65NBJEDVwilLRGQCvFGBrNCjYgswO39nqltsFtdNgpr53aF3z4UDokZ9ZWNSV08Epj2S2oa6FBoLQgsQLKRU071t2BZYKPMdhGnb5JQbu1QlC__qozf5VQB387QHkGOB30r_QHag2GzQ |
CitedBy_id | crossref_primary_10_1103_PhysRevA_107_063505 |
Cites_doi | 10.1038/nphys2252 10.1103/RevModPhys.75.281 10.1103/PhysRevLett.82.3795 10.1103/PhysRevLett.118.133603 10.1103/PhysRevLett.74.4091 10.1038/35102129 10.1073/pnas.94.10.4853 10.1103/PhysRevA.87.013829 10.1038/nphys1302 10.1103/PhysRevA.95.032124 10.1038/416238a 10.1103/PhysRevA.56.2352 10.1103/PhysRevB.86.100506 10.1088/1612-202X/aa621e 10.1002/anie.200805257 10.1002/andp.202100039 10.1007/s11128-015-0947-7 10.1038/s41467-017-01061-x 10.1103/PhysRevX.8.011031 10.1103/PhysRevA.51.3112 10.1088/1367-2630/11/9/093022 10.1146/annurev.bioeng.2.1.399 10.1088/0034-4885/69/5/R02 10.1103/RevModPhys.86.1391 10.1103/PhysRevLett.82.1971 10.1038/ncomms7981 10.1103/RevModPhys.71.S253 10.1103/PhysRevA.61.012302 10.1016/j.optcom.2007.11.002 10.1103/PhysRev.175.1555 10.1364/AOP.2.000451 10.1103/PhysRevA.64.024305 10.1088/1612-2011/11/2/025204 10.1103/PhysRevLett.103.103001 10.1103/PhysRevLett.62.1603 10.1103/PhysRevA.84.043832 10.1103/PhysRevX.5.031031 10.1103/RevModPhys.91.025005 10.1103/PhysRevA.95.032341 10.1103/PhysRevLett.81.1525 10.1103/PhysRevLett.86.1994 10.1103/PhysRevA.92.063830 10.1103/PhysRevLett.7.229 10.1103/PhysRevLett.121.130501 10.1038/35089130 10.1038/s42254-018-0006-2 10.1017/CBO9780511813993 10.1103/PhysRevLett.117.043601 10.1103/PhysRevLett.114.240501 10.1103/PhysRevA.95.063849 10.1103/PhysRevA.98.053834 10.1088/1464-4266/4/5/309 10.1103/PhysRevA.50.R3589 10.1103/RevModPhys.62.531 10.1002/andp.19314010303 10.1103/PhysRevA.96.063820 10.1103/PhysRevA.69.023805 10.1016/j.optcom.2018.04.044 10.1038/s41598-017-04225-3 10.1103/PhysRevA.70.053620 10.1103/PhysRevA.92.023842 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.5.023005 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_f805bcba18e24dd5a0516e061b0245d2 10_1103_PhysRevResearch_5_023005 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c375t-33871713a65b7976635bce24743283a14354646c605d0461082d101e6590fa373 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:16:54 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Tue Jul 01 02:05:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-33871713a65b7976635bce24743283a14354646c605d0461082d101e6590fa373 |
ORCID | 0000-0002-5365-3991 0000-0002-2822-2532 0000-0002-2468-0464 |
OpenAccessLink | https://doaj.org/article/f805bcba18e24dd5a0516e061b0245d2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f805bcba18e24dd5a0516e061b0245d2 crossref_citationtrail_10_1103_PhysRevResearch_5_023005 crossref_primary_10_1103_PhysRevResearch_5_023005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2023 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.5.023005Cc29R1 PhysRevResearch.5.023005Cc27R1 PhysRevResearch.5.023005Cc25R1 PhysRevResearch.5.023005Cc46R1 PhysRevResearch.5.023005Cc48R1 PhysRevResearch.5.023005Cc30R1 PhysRevResearch.5.023005Cc51R1 PhysRevResearch.5.023005Cc8R1 PhysRevResearch.5.023005Cc32R1 PhysRevResearch.5.023005Cc53R1 PhysRevResearch.5.023005Cc34R1 PhysRevResearch.5.023005Cc55R1 PhysRevResearch.5.023005Cc4R1 PhysRevResearch.5.023005Cc11R1 PhysRevResearch.5.023005Cc6R1 PhysRevResearch.5.023005Cc2R1 PhysRevResearch.5.023005Cc19R1 PhysRevResearch.5.023005Cc17R1 M. O. Scully (PhysRevResearch.5.023005Cc1R1) 1997 PhysRevResearch.5.023005Cc15R1 PhysRevResearch.5.023005Cc13R1 PhysRevResearch.5.023005Cc57R1 PhysRevResearch.5.023005Cc38R1 PhysRevResearch.5.023005Cc60R1 PhysRevResearch.5.023005Cc41R1 PhysRevResearch.5.023005Cc62R1 PhysRevResearch.5.023005Cc43R1 PhysRevResearch.5.023005Cc64R1 PhysRevResearch.5.023005Cc22R1 PhysRevResearch.5.023005Cc20R1 PhysRevResearch.5.023005Cc28R1 PhysRevResearch.5.023005Cc26R1 PhysRevResearch.5.023005Cc24R1 PhysRevResearch.5.023005Cc47R1 PhysRevResearch.5.023005Cc49R1 PhysRevResearch.5.023005Cc50R1 PhysRevResearch.5.023005Cc52R1 PhysRevResearch.5.023005Cc31R1 PhysRevResearch.5.023005Cc54R1 PhysRevResearch.5.023005Cc9R1 PhysRevResearch.5.023005Cc33R1 PhysRevResearch.5.023005Cc56R1 PhysRevResearch.5.023005Cc12R1 PhysRevResearch.5.023005Cc5R1 PhysRevResearch.5.023005Cc10R1 PhysRevResearch.5.023005Cc7R1 L. D. Landau (PhysRevResearch.5.023005Cc36R1) 1981 PhysRevResearch.5.023005Cc3R1 PhysRevResearch.5.023005Cc18R1 PhysRevResearch.5.023005Cc16R1 PhysRevResearch.5.023005Cc14R1 PhysRevResearch.5.023005Cc35R1 PhysRevResearch.5.023005Cc58R1 PhysRevResearch.5.023005Cc37R1 PhysRevResearch.5.023005Cc39R1 PhysRevResearch.5.023005Cc61R1 PhysRevResearch.5.023005Cc63R1 PhysRevResearch.5.023005Cc42R1 PhysRevResearch.5.023005Cc65R1 PhysRevResearch.5.023005Cc44R1 PhysRevResearch.5.023005Cc23R1 PhysRevResearch.5.023005Cc21R1 |
References_xml | – ident: PhysRevResearch.5.023005Cc13R1 doi: 10.1038/nphys2252 – ident: PhysRevResearch.5.023005Cc26R1 doi: 10.1103/RevModPhys.75.281 – ident: PhysRevResearch.5.023005Cc53R1 doi: 10.1103/PhysRevLett.82.3795 – ident: PhysRevResearch.5.023005Cc64R1 doi: 10.1103/PhysRevLett.118.133603 – ident: PhysRevResearch.5.023005Cc7R1 doi: 10.1103/PhysRevLett.74.4091 – ident: PhysRevResearch.5.023005Cc51R1 doi: 10.1038/35102129 – ident: PhysRevResearch.5.023005Cc25R1 doi: 10.1073/pnas.94.10.4853 – ident: PhysRevResearch.5.023005Cc48R1 doi: 10.1103/PhysRevA.87.013829 – ident: PhysRevResearch.5.023005Cc58R1 doi: 10.1038/nphys1302 – ident: PhysRevResearch.5.023005Cc41R1 doi: 10.1103/PhysRevA.95.032124 – ident: PhysRevResearch.5.023005Cc12R1 doi: 10.1038/416238a – ident: PhysRevResearch.5.023005Cc28R1 doi: 10.1103/PhysRevA.56.2352 – ident: PhysRevResearch.5.023005Cc56R1 doi: 10.1103/PhysRevB.86.100506 – ident: PhysRevResearch.5.023005Cc27R1 doi: 10.1088/1612-202X/aa621e – ident: PhysRevResearch.5.023005Cc19R1 doi: 10.1002/anie.200805257 – ident: PhysRevResearch.5.023005Cc55R1 doi: 10.1002/andp.202100039 – ident: PhysRevResearch.5.023005Cc11R1 doi: 10.1007/s11128-015-0947-7 – ident: PhysRevResearch.5.023005Cc39R1 doi: 10.1038/s41467-017-01061-x – ident: PhysRevResearch.5.023005Cc44R1 doi: 10.1103/PhysRevX.8.011031 – ident: PhysRevResearch.5.023005Cc50R1 doi: 10.1103/PhysRevA.51.3112 – ident: PhysRevResearch.5.023005Cc62R1 doi: 10.1088/1367-2630/11/9/093022 – ident: PhysRevResearch.5.023005Cc21R1 doi: 10.1146/annurev.bioeng.2.1.399 – ident: PhysRevResearch.5.023005Cc30R1 doi: 10.1088/0034-4885/69/5/R02 – ident: PhysRevResearch.5.023005Cc63R1 doi: 10.1103/RevModPhys.86.1391 – ident: PhysRevResearch.5.023005Cc8R1 doi: 10.1103/PhysRevLett.82.1971 – ident: PhysRevResearch.5.023005Cc54R1 doi: 10.1038/ncomms7981 – ident: PhysRevResearch.5.023005Cc23R1 doi: 10.1103/RevModPhys.71.S253 – ident: PhysRevResearch.5.023005Cc60R1 doi: 10.1103/PhysRevA.61.012302 – ident: PhysRevResearch.5.023005Cc10R1 doi: 10.1016/j.optcom.2007.11.002 – ident: PhysRevResearch.5.023005Cc16R1 doi: 10.1103/PhysRev.175.1555 – ident: PhysRevResearch.5.023005Cc18R1 doi: 10.1364/AOP.2.000451 – ident: PhysRevResearch.5.023005Cc33R1 doi: 10.1103/PhysRevA.64.024305 – ident: PhysRevResearch.5.023005Cc34R1 doi: 10.1088/1612-2011/11/2/025204 – ident: PhysRevResearch.5.023005Cc52R1 doi: 10.1103/PhysRevLett.103.103001 – ident: PhysRevResearch.5.023005Cc17R1 doi: 10.1103/PhysRevLett.62.1603 – ident: PhysRevResearch.5.023005Cc42R1 doi: 10.1103/PhysRevA.84.043832 – ident: PhysRevResearch.5.023005Cc65R1 doi: 10.1103/PhysRevX.5.031031 – ident: PhysRevResearch.5.023005Cc37R1 doi: 10.1103/RevModPhys.91.025005 – ident: PhysRevResearch.5.023005Cc49R1 doi: 10.1103/PhysRevA.95.032341 – ident: PhysRevResearch.5.023005Cc35R1 doi: 10.1103/PhysRevLett.81.1525 – ident: PhysRevResearch.5.023005Cc47R1 doi: 10.1103/PhysRevLett.86.1994 – ident: PhysRevResearch.5.023005Cc3R1 doi: 10.1103/PhysRevA.92.063830 – ident: PhysRevResearch.5.023005Cc15R1 doi: 10.1103/PhysRevLett.7.229 – ident: PhysRevResearch.5.023005Cc14R1 doi: 10.1103/PhysRevLett.121.130501 – ident: PhysRevResearch.5.023005Cc20R1 doi: 10.1038/35089130 – ident: PhysRevResearch.5.023005Cc38R1 doi: 10.1038/s42254-018-0006-2 – volume-title: Quantum Optics year: 1997 ident: PhysRevResearch.5.023005Cc1R1 doi: 10.1017/CBO9780511813993 – ident: PhysRevResearch.5.023005Cc4R1 doi: 10.1103/PhysRevLett.117.043601 – ident: PhysRevResearch.5.023005Cc57R1 doi: 10.1103/PhysRevLett.114.240501 – ident: PhysRevResearch.5.023005Cc6R1 doi: 10.1103/PhysRevA.95.063849 – ident: PhysRevResearch.5.023005Cc43R1 doi: 10.1103/PhysRevA.98.053834 – ident: PhysRevResearch.5.023005Cc9R1 doi: 10.1088/1464-4266/4/5/309 – ident: PhysRevResearch.5.023005Cc32R1 doi: 10.1103/PhysRevA.50.R3589 – ident: PhysRevResearch.5.023005Cc24R1 doi: 10.1103/RevModPhys.62.531 – ident: PhysRevResearch.5.023005Cc2R1 doi: 10.1002/andp.19314010303 – ident: PhysRevResearch.5.023005Cc5R1 doi: 10.1103/PhysRevA.96.063820 – ident: PhysRevResearch.5.023005Cc29R1 doi: 10.1103/PhysRevA.69.023805 – ident: PhysRevResearch.5.023005Cc31R1 doi: 10.1016/j.optcom.2018.04.044 – ident: PhysRevResearch.5.023005Cc46R1 doi: 10.1038/s41598-017-04225-3 – ident: PhysRevResearch.5.023005Cc61R1 doi: 10.1103/PhysRevA.70.053620 – ident: PhysRevResearch.5.023005Cc22R1 doi: 10.1103/PhysRevA.92.023842 – volume-title: Quantum Mechanics: Non-Relativistic Theory year: 1981 ident: PhysRevResearch.5.023005Cc36R1 |
SSID | ssj0002511485 |
Score | 2.2229578 |
Snippet | We investigate the multiphoton resonance and multi-ion excitation in a single-mode cavity with identical vibrating ionqubits, which enables the tripartite... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 023005 |
Title | Vibration-assisted multiphoton resonance and multi-ion excitation |
URI | https://doaj.org/article/f805bcba18e24dd5a0516e061b0245d2 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kILgRn1hfZOF22rTzzLJKSxHqQqx0F-YVXEgqGsWV3-69k6QEN7pwk0UyMxnOTHLPYS7nEnLFJJAgiBMUhJemXApLM28Y9bqw1kjYQ_G4YHEn50t-uxKrTqkvzAmr7YFr4IaFToV11ox0GHPvhYFdJAOMbvHQ0Me_L8S8jpjCfzASZ65Fm7qTsiEmVN6HjzafbSAGyL6xal0nHnVs-2N8me2R3YYYJpN6QvtkK5QHZDsmaLq3QzJ5RF2LKFKgu7g2PqmTAZ_WQN8SUM1r9M4IiSmbJxQaJ-HTNS7cR2Q5mz7czGlT_oA6pkRFQTyC1hoxAwAqYA1ADawDECDmAycwSHS45NKBIPHRNl2PPXxgQYosLQxT7Jj0ynUZTkiivLOZV0oZnfHCMovnnzJodLeHF7g-US0IeTsrLFHxnEeNkLL8B3y5yGv4-mS06flS-2P8oc814rxpjw7X8Qase96se_7bup_-xyBnZAfLx9eZOOekV72-hwsgGZW9jPsJrouv6TfMutBd |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration-assisted+multiphoton+resonance+and+multi-ion+excitation&rft.jtitle=Physical+review+research&rft.au=Shao%2C+Wenjun&rft.au=Feng%2C+Xun-Li&rft.au=Li%2C+Jian&rft.au=Wang%2C+Liang-Liang&rft.date=2023-04-01&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevResearch.5.023005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_5_023005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |