The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages

Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe 2 O...

Full description

Saved in:
Bibliographic Details
Published inNeurochemical research Vol. 45; no. 1; pp. 159 - 170
Main Authors Jiráková, Klára, Moskvin, Maksym, Machová Urdzíková, Lucia, Rössner, Pavel, Elzeinová, Fatima, Chudíčková, Milada, Jirák, Daniel, Ziolkowska, Natalia, Horák, Daniel, Kubinová, Šárka, Jendelová, Pavla
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe 2 O 3 –SiO 2 ) with or without modification by an ascorbic acid (γ-Fe 2 O 3 –SiO 2 -ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
AbstractList Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3–SiO2) with or without modification by an ascorbic acid (γ-Fe2O3–SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe O -SiO ) with or without modification by an ascorbic acid (γ-Fe O -SiO -ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe 2 O 3 –SiO 2 ) with or without modification by an ascorbic acid (γ-Fe 2 O 3 –SiO 2 -ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Author Elzeinová, Fatima
Chudíčková, Milada
Rössner, Pavel
Jendelová, Pavla
Moskvin, Maksym
Horák, Daniel
Kubinová, Šárka
Jiráková, Klára
Jirák, Daniel
Machová Urdzíková, Lucia
Ziolkowska, Natalia
Author_xml – sequence: 1
  givenname: Klára
  surname: Jiráková
  fullname: Jiráková, Klára
  organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 2
  givenname: Maksym
  surname: Moskvin
  fullname: Moskvin, Maksym
  organization: Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences
– sequence: 3
  givenname: Lucia
  surname: Machová Urdzíková
  fullname: Machová Urdzíková, Lucia
  organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 4
  givenname: Pavel
  surname: Rössner
  fullname: Rössner, Pavel
  organization: Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 5
  givenname: Fatima
  surname: Elzeinová
  fullname: Elzeinová, Fatima
  organization: Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 6
  givenname: Milada
  surname: Chudíčková
  fullname: Chudíčková, Milada
  organization: Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 7
  givenname: Daniel
  surname: Jirák
  fullname: Jirák, Daniel
  organization: MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine
– sequence: 8
  givenname: Natalia
  surname: Ziolkowska
  fullname: Ziolkowska, Natalia
  organization: MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine
– sequence: 9
  givenname: Daniel
  surname: Horák
  fullname: Horák, Daniel
  organization: Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences
– sequence: 10
  givenname: Šárka
  surname: Kubinová
  fullname: Kubinová, Šárka
  organization: Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences
– sequence: 11
  givenname: Pavla
  orcidid: 0000-0002-4644-9212
  surname: Jendelová
  fullname: Jendelová, Pavla
  email: Pavla.jendelova@iem.cas.cz
  organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Department of Neuroscience, Second Faculty of Medicine, Charles University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30945145$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9vHCEQxZHlKD7b-QIuIqQ0aTaZgWU5ysjKP8lSGqdxg4Bl77D2YANcrHz7cDlbkVy4GqT5vZnHvHNyGlP0hFwhfEAA-bEgwtB3gKoDJhV06oSsUEjeDQr4KVkBb22OCs7IeSn3AE3G8DU546B6gb1YkbvbrafRb0wNvz310-RdpWmiO7OJvgZHo4lpMbk9Z1_oQ6hbaopL2baecWGkKdLF51CbNzM3nctp2ZqNL5fk1WTm4t881gvy88vn2-tv3c2Pr9-vP910jktRO86lEs1MP7neMWiepbDKDjBaBIMoUIwScVij48z23MIgmDN2GiXrnVX8grw_zl1y-rX3pepdKM7Ps4k-7YtmDDi2JWvR0HfP0Pu0z7G5O1BsGMTAZKPePlJ7u_OjXnLYmfxHP12tAesj0P5aSvaTdqG2C6ZYswmzRtCHgPQxIN0C0v8C0gez7Jn0afqLIn4UlQbHjc__bb-g-gt-YqDB
CitedBy_id crossref_primary_10_1021_acsami_2c10272
crossref_primary_10_1515_gps_2022_0050
crossref_primary_10_1007_s11064_019_02924_z
crossref_primary_10_3390_nano10050837
Cites_doi 10.1371/journal.pone.0127174
10.1016/j.taap.2015.12.022
10.1002/mrm.10585
10.1095/biolreprod.116.141671
10.1088/0957-4484/19/40/405102
10.1016/j.chemosphere.2017.12.182
10.1016/j.nano.2010.05.002
10.1002/jat.2957
10.1038/nrd4002
10.1016/j.jelechem.2007.11.037
10.1002/jnr.20041
10.1126/science.1114397
10.3390/ijms18020336
10.1016/j.intimp.2011.12.005
10.1016/j.biomaterials.2007.01.043
10.1023/A:1007934229968
10.1002/adma.201704307
10.1002/biof.5520340208
10.1186/1748-717X-8-253
10.3109/17435390.2015.1107144
10.1016/j.toxlet.2012.01.008
10.1002/jbm.a.32972
10.2147/IJN.S76114
10.1097/00004647-200208000-00001
10.4110/in.2012.12.6.296
10.1016/j.biomaterials.2010.03.023
10.2147/IJN.S158393
10.3402/nano.v1i0.5358
10.1631/jzus.B0920205
10.1161/ATVBAHA.112.300177
10.1080/07315724.2003.10719272
10.1016/0021-9150(94)90192-9
10.1016/j.brainres.2014.12.045
10.1016/S0962-8924(99)01540-8
10.1089/neu.2006.23.1379
10.1016/j.expneurol.2004.02.007
10.1186/scrt219
10.1016/j.nantod.2015.06.006
10.1007/s13205-018-1286-z
10.1016/j.redox.2013.07.006
10.1088/1361-6560/aa5f48
10.1007/s12011-016-0789-x
10.1016/j.jmmm.2009.02.082
10.4149/gpb_2013039
10.2217/rme.15.36
10.1016/j.tiv.2011.06.012
10.1002/em.21909
10.1016/j.jphotobiol.2016.06.046
10.1073/pnas.242435499
10.1016/j.tiv.2009.09.007
10.1016/j.tiv.2010.03.002
10.1371/journal.pone.0092634
10.1074/jbc.273.10.5858
10.2217/nnm.13.146
10.3390/ijms19010205
10.1016/j.biomaterials.2012.03.006
10.2147/IJN.S103140
10.33549/physiolres.933426
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Neurochemical Research is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Neurochemical Research is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QR
7TK
7U7
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s11064-019-02790-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1573-6903
EndPage 170
ExternalDocumentID 30945145
10_1007_s11064_019_02790_9
Genre Journal Article
GrantInformation_xml – fundername: Grantová Agentura České Republiky
  grantid: 17-04918S; 16-14631S
  funderid: http://dx.doi.org/10.13039/501100001824
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: LTAUSA17120; CZ.02.1.01/0.0. /0.0/15_003/0000419
  funderid: http://dx.doi.org/10.13039/501100001823
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: CZ.02.1.01/0.0. /0.0/15_003/0000419
– fundername: Grantová Agentura České Republiky
  grantid: 16-14631S
– fundername: Grantová Agentura České Republiky
  grantid: 17-04918S
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: LTAUSA17120
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
XJT
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QR
7TK
7U7
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-337955144fc4c2003675b9b60db10a11515d711681c32b43b0652cabfd724cb93
IEDL.DBID 7X7
ISSN 0364-3190
1573-6903
IngestDate Fri Jul 11 09:21:33 EDT 2025
Sat Aug 16 10:21:15 EDT 2025
Thu Apr 03 07:02:30 EDT 2025
Tue Jul 01 03:43:12 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Fri Feb 21 02:32:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoparticles
Oxidative stress
Cytotoxicity
Macrophages
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-337955144fc4c2003675b9b60db10a11515d711681c32b43b0652cabfd724cb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4644-9212
PMID 30945145
PQID 2202665627
PQPubID 37979
PageCount 12
ParticipantIDs proquest_miscellaneous_2203137985
proquest_journals_2202665627
pubmed_primary_30945145
crossref_citationtrail_10_1007_s11064_019_02790_9
crossref_primary_10_1007_s11064_019_02790_9
springer_journals_10_1007_s11064_019_02790_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-1-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Neurochemical research
PublicationTitleAbbrev Neurochem Res
PublicationTitleAlternate Neurochem Res
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Torres-Lugo, Rinaldi (CR7) 2013; 8
Ferchichi, Trabelsi, Azzouz, Hanini, Rejeb, Tebourbi, Sakly, Abdelmelek (CR20) 2016; 11
Hoehn, Kustermann, Blunk, Wiedermann, Trapp, Wecker, Focking, Arnold, Hescheler, Fleischmann, Schwindt, Buhrle (CR10) 2002; 99
Jendelova, Herynek, Urdzikova, Glogarova, Kroupova, Andersson, Bryja, Burian, Hajek, Sykova (CR12) 2004; 76
Bancos, Stevens, Tyner (CR31) 2015; 10
Avalos, Haza, Mateo, Morales (CR18) 2014; 34
Nel, Xia, Madler, Li (CR45) 2006; 311
Lucarelli, Gatti, Savarino, Quattroni, Martinelli, Monari, Boraschi (CR61) 2004; 15
Miao, Leng, Zhang (CR30) 2017; 18
Dobrovolskaia, Shurin, Shvedova (CR38) 2016; 299
Farcal, Torres Andon, Di Cristo, Rotoli, Bussolati, Bergamaschi, Mech, Hartmann, Rasmussen, Riego-Sintes, Ponti, Kinsner-Ovaskainen, Rossi, Oomen, Bos, Chen, Bai, Chen, Rocks, Fulton, Ross, Hutchison, Tran, Mues, Ossig, Schnekenburger, Campagnolo, Vecchione, Pietroiusti, Fadeel (CR42) 2015; 10
Amemori, Romanyuk, Jendelova, Herynek, Turnovcova, Prochazka, Kapcalova, Cocks, Price, Sykova (CR14) 2013; 4
Gorman, Deh, Schwiedrzik, White, Groman, Fisher, Gillen, Spincemaille, Rasmussen, Prince, Voss, Freiwald, Wang (CR28) 2018; 68
Lunov, Syrovets, Buchele, Jiang, Rocker, Tron, Nienhaus, Walther, Mailander, Landfester, Simmet (CR22) 2010; 31
Bull, Madani, Sheth, Seifalian, Green, Seifalian (CR8) 2014; 9
Bulte, Duncan, Frank (CR9) 2002; 22
Singh, Jenkins, Asadi, Doak (CR1) 2010; 1
Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (CR2) 2018; 30
Amatore, Arbault, MeloFerreira, Tapsota, Verchier (CR52) 2008; 615
Liu, Hong, Lu, Wang, Liu, Yang (CR46) 2017; 175
Rogakou, Pilch, Orr, Ivanova, Bonner (CR55) 1998; 273
Akhtar, Kumar, Murthy, Ashquin, Khan, Patil, Ahmad (CR47) 2010; 24
Sun, Li, Liu, Jin, Zhang, Du, Guo, Huang, Sun (CR24) 2011; 25
Moskvin, Horak (CR34) 2016; 65
Kusaka, Nakayama, Nakamura, Ishimiya, Furusawa, Ogasawara (CR63) 2014; 9
Pisanic, Blackwell, Shubayev, Finones, Jin (CR19) 2007; 28
Toyokuni (CR54) 1998; 11
Ho, Karimi Galougahi, Liu, Bhindi, Figtree (CR21) 2013; 1
Novotna, Turnovcova, Veverka, Rossner, Bagryantseva, Herynek, Zvatora, Vosmanska, Klementova, Sykova, Jendelova (CR17) 2016; 10
Gustafson, Holt-Casper, Grainger, Ghandehari (CR39) 2015; 10
McBain, Griesenbach, Xenariou, Keramane, Batich, Alton, Dobson (CR5) 2008; 19
Connell, Patrick, Yu, Lythgoe, Kalber (CR4) 2015; 10
Libalova, Costa, Olsson, Farcal, Ortelli, Blosi, Topinka, Costa, Fadeel (CR43) 2018; 196
Kim, Jang, Kim, Choi, Lee, Choi (CR50) 2012; 12
Selvaratnam, Robaire (CR58) 2016; 95
Zhao, Takabayashi, Ibuki (CR48) 2016; 162
Jendelova, Herynek, DeCroos, Glogarova, Andersson, Hajek, Sykova (CR11) 2003; 50
Horák, Babič, Jendelová, Herynek, Trchová, Likavčanová, Kapcalová, Hájek, Syková (CR41) 2009; 321
Pham, Colvin, Pham, Kim, Fuller, Moon, Barbey, Yuen, Rickman, Bryce, Bickley, Tanudji, Jones, Howell, Hawkett (CR40) 2018; 19
Fuhrman, Oiknine, Aviram (CR60) 1994; 111
Yan, Ding, Tian, Ge, Jin, Jia, Ding, Pan, Xue (CR3) 2009; 10
Valdiglesias, Kilic, Costa, Fernandez-Bertolez, Pasaro, Teixeira, Laffon (CR44) 2015; 56
Padayatty, Katz, Wang, Eck, Kwon, Lee, Chen, Corpe, Dutta, Dutta, Levine (CR33) 2003; 22
Vallabani, Singh (CR37) 2018; 8
Buyukhatipoglu, Clyne (CR25) 2011; 96
Lim, Jang, Kim, Kang, Lee, Choi (CR29) 2012; 33
Urdzikova, Jendelova, Glogarova, Burian, Hajek, Sykova (CR15) 2006; 23
McBain, Yiu, Dobson (CR6) 2008; 3
Gensel, Zhang (CR62) 2015; 1619
Durdik, Vrbovska, Olas, Babincova (CR51) 2013; 32
Branchetti, Sainger, Poggio, Grau, Patterson-Fortin, Bavaria, Chorny, Lai, Gorman, Levy, Ferrari (CR56) 2013; 33
Guo, Xia, Niu, Jiang, Duan, Yu, Zhou, Li, Sun (CR53) 2015; 10
Skotland, Iversen, Sandvig (CR26) 2010; 6
Kostecka, Holy, Farghali, Zidek, Kmonickova (CR35) 2012; 12
Huang, Aronstam, Chen, Huang (CR49) 2010; 24
Gu, Feng, Cao, Tang, Ge, Luo, Xue, Wu, Yang, Zhang, Cao (CR57) 2013; 8
Niki (CR59) 2008; 34
Gorrini, Harris, Mak (CR36) 2013; 12
Lee, Bulte, Schweinhardt, Douglas, Trifunovski, Hofstetter, Olson, Spenger (CR13) 2004; 187
Morrissette, Gold, Aderem (CR27) 1999; 9
Kusaczuk, Kretowski, Naumowicz, Stypulkowska, Cechowska-Pasko (CR23) 2018; 13
Keselman, Yu, Zhou, Goodwill, Chandrasekharan, Ferguson, Khandhar, Kemp, Krishnan, Zheng, Conolly (CR32) 2017; 62
Novotna, Jendelova, Kapcalova, Rossner, Turnovcova, Bagryantseva, Babic, Horak, Sykova (CR16) 2012; 210
M Kusaczuk (2790_CR23) 2018; 13
E Niki (2790_CR59) 2008; 34
O Lunov (2790_CR22) 2010; 31
JC Gensel (2790_CR62) 2015; 1619
E Ho (2790_CR21) 2013; 1
SJ Padayatty (2790_CR33) 2003; 22
T Amemori (2790_CR14) 2013; 4
J Bourquin (2790_CR2) 2018; 30
M Torres-Lugo (2790_CR7) 2013; 8
S Ferchichi (2790_CR20) 2016; 11
IH Lee (2790_CR13) 2004; 187
CC Huang (2790_CR49) 2010; 24
V Valdiglesias (2790_CR44) 2015; 56
Y Liu (2790_CR46) 2017; 175
N Morrissette (2790_CR27) 1999; 9
JW Bulte (2790_CR9) 2002; 22
X Miao (2790_CR30) 2017; 18
EP Rogakou (2790_CR55) 1998; 273
T Kusaka (2790_CR63) 2014; 9
JJ Connell (2790_CR4) 2015; 10
BTT Pham (2790_CR40) 2018; 19
H Libalova (2790_CR43) 2018; 196
H Yan (2790_CR3) 2009; 10
T Skotland (2790_CR26) 2010; 6
L Farcal (2790_CR42) 2015; 10
JS Selvaratnam (2790_CR58) 2016; 95
MA Dobrovolskaia (2790_CR38) 2016; 299
AW Gorman (2790_CR28) 2018; 68
HH Gustafson (2790_CR39) 2015; 10
A Avalos (2790_CR18) 2014; 34
S Durdik (2790_CR51) 2013; 32
C Amatore (2790_CR52) 2008; 615
K Buyukhatipoglu (2790_CR25) 2011; 96
NVS Vallabani (2790_CR37) 2018; 8
S Kim (2790_CR50) 2012; 12
L Urdzikova (2790_CR15) 2006; 23
B Novotna (2790_CR17) 2016; 10
TR Pisanic 2nd (2790_CR19) 2007; 28
L Sun (2790_CR24) 2011; 25
E Bull (2790_CR8) 2014; 9
MJ Akhtar (2790_CR47) 2010; 24
N Singh (2790_CR1) 2010; 1
A Nel (2790_CR45) 2006; 311
M Hoehn (2790_CR10) 2002; 99
DH Lim (2790_CR29) 2012; 33
SC McBain (2790_CR6) 2008; 3
B Novotna (2790_CR16) 2012; 210
D Horák (2790_CR41) 2009; 321
B Fuhrman (2790_CR60) 1994; 111
X Zhao (2790_CR48) 2016; 162
Q Gu (2790_CR57) 2013; 8
M Lucarelli (2790_CR61) 2004; 15
P Jendelova (2790_CR12) 2004; 76
E Branchetti (2790_CR56) 2013; 33
P Keselman (2790_CR32) 2017; 62
C Gorrini (2790_CR36) 2013; 12
S Toyokuni (2790_CR54) 1998; 11
P Jendelova (2790_CR11) 2003; 50
SC McBain (2790_CR5) 2008; 19
C Guo (2790_CR53) 2015; 10
M Moskvin (2790_CR34) 2016; 65
P Kostecka (2790_CR35) 2012; 12
S Bancos (2790_CR31) 2015; 10
References_xml – volume: 10
  start-page: e0127174
  year: 2015
  ident: CR42
  article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127174
– volume: 65
  start-page: S243
  year: 2016
  end-page: S251
  ident: CR34
  article-title: Carbohydrate-modified magnetic nanoparticles for radical scavenging
  publication-title: Physiol Res
– volume: 299
  start-page: 78
  year: 2016
  end-page: 89
  ident: CR38
  article-title: Current understanding of interactions between nanoparticles and the immune system
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2015.12.022
– volume: 50
  start-page: 767
  year: 2003
  end-page: 776
  ident: CR11
  article-title: Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10585
– volume: 95
  start-page: 60
  year: 2016
  ident: CR58
  article-title: Effects of aging and oxidative stress on spermatozoa of superoxide-dismutase 1- and catalase-null mice
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.116.141671
– volume: 19
  start-page: 405102
  year: 2008
  ident: CR5
  article-title: Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/40/405102
– volume: 196
  start-page: 482
  year: 2018
  end-page: 493
  ident: CR43
  article-title: Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: interplay of particles, surface coating and particle dissolution
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.182
– volume: 6
  start-page: 730
  year: 2010
  end-page: 737
  ident: CR26
  article-title: New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging
  publication-title: Nanomed Nanotechnol Biol Med
  doi: 10.1016/j.nano.2010.05.002
– volume: 9
  start-page: 1641
  year: 2014
  end-page: 1653
  ident: CR8
  article-title: Stem cell tracking using iron oxide nanoparticles
  publication-title: Int J Nanomed
– volume: 34
  start-page: 413
  year: 2014
  end-page: 423
  ident: CR18
  article-title: Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.2957
– volume: 12
  start-page: 931
  year: 2013
  end-page: 947
  ident: CR36
  article-title: Modulation of oxidative stress as an anticancer strategy
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4002
– volume: 615
  start-page: 34
  year: 2008
  end-page: 44
  ident: CR52
  article-title: Vitamin C stimulates or attenuates reaction oxygen and nitrogen species (ROS, RNS) production depending on cell state: quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2007.11.037
– volume: 76
  start-page: 232
  year: 2004
  end-page: 243
  ident: CR12
  article-title: Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.20041
– volume: 311
  start-page: 622
  year: 2006
  end-page: 627
  ident: CR45
  article-title: Toxic potential of materials at the nanolevel
  publication-title: Science
  doi: 10.1126/science.1114397
– volume: 18
  start-page: 336
  year: 2017
  ident: CR30
  article-title: The current state of nanoparticle-induced macrophage polarization and reprogramming research
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18020336
– volume: 12
  start-page: 342
  year: 2012
  end-page: 349
  ident: CR35
  article-title: Differential effects of acyclic nucleoside phosphonates on nitric oxide and cytokines in rat hepatocytes and macrophages
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2011.12.005
– volume: 28
  start-page: 2572
  year: 2007
  end-page: 2581
  ident: CR19
  article-title: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.01.043
– volume: 11
  start-page: 147
  year: 1998
  end-page: 154
  ident: CR54
  article-title: Oxidative stress and cancer: the role of redox regulation
  publication-title: Biotherapy
  doi: 10.1023/A:1007934229968
– volume: 30
  start-page: e1704307
  year: 2018
  ident: CR2
  article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials
  publication-title: Adv Mater
  doi: 10.1002/adma.201704307
– volume: 34
  start-page: 171
  year: 2008
  end-page: 180
  ident: CR59
  article-title: Lipid peroxidation products as oxidative stress biomarkers
  publication-title: BioFactors
  doi: 10.1002/biof.5520340208
– volume: 8
  start-page: 253
  year: 2013
  ident: CR57
  article-title: HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-8-253
– volume: 10
  start-page: 662
  year: 2016
  end-page: 670
  ident: CR17
  article-title: The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2015.1107144
– volume: 210
  start-page: 53
  year: 2012
  end-page: 63
  ident: CR16
  article-title: Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2012.01.008
– volume: 96
  start-page: 186
  year: 2011
  end-page: 195
  ident: CR25
  article-title: Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.32972
– volume: 10
  start-page: 1463
  year: 2015
  end-page: 1477
  ident: CR53
  article-title: Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S76114
– volume: 22
  start-page: 899
  year: 2002
  end-page: 907
  ident: CR9
  article-title: In vivo magnetic resonance tracking of magnetically labeled cells after transplantation
  publication-title: J Cerebr Blood Flow Metab
  doi: 10.1097/00004647-200208000-00001
– volume: 12
  start-page: 296
  year: 2012
  end-page: 300
  ident: CR50
  article-title: The effects of silica nanoparticles in macrophage cells
  publication-title: Immune Netw
  doi: 10.4110/in.2012.12.6.296
– volume: 31
  start-page: 5063
  year: 2010
  end-page: 5071
  ident: CR22
  article-title: The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.023
– volume: 13
  start-page: 2279
  year: 2018
  end-page: 2294
  ident: CR23
  article-title: Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in glioblastoma cells
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S158393
– volume: 1
  start-page: 5358
  year: 2010
  ident: CR1
  article-title: Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)
  publication-title: Nano Rev
  doi: 10.3402/nano.v1i0.5358
– volume: 10
  start-page: 928
  year: 2009
  end-page: 932
  ident: CR3
  article-title: Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.B0920205
– volume: 33
  start-page: e66
  year: 2013
  end-page: e74
  ident: CR56
  article-title: Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.112.300177
– volume: 22
  start-page: 18
  year: 2003
  end-page: 35
  ident: CR33
  article-title: Vitamin C as an antioxidant: evaluation of its role in disease prevention
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2003.10719272
– volume: 111
  start-page: 65
  year: 1994
  end-page: 78
  ident: CR60
  article-title: Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(94)90192-9
– volume: 1619
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR62
  article-title: Macrophage activation and its role in repair and pathology after spinal cord injury
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2014.12.045
– volume: 9
  start-page: 199
  year: 1999
  end-page: 201
  ident: CR27
  article-title: The macrophage—a cell for all seasons
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(99)01540-8
– volume: 23
  start-page: 1379
  year: 2006
  end-page: 1391
  ident: CR15
  article-title: Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.23.1379
– volume: 10
  start-page: 183
  year: 2015
  end-page: 206
  ident: CR31
  article-title: Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
  publication-title: Int J Nanomed
– volume: 187
  start-page: 509
  year: 2004
  end-page: 516
  ident: CR13
  article-title: In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2004.02.007
– volume: 4
  start-page: 68
  year: 2013
  ident: CR14
  article-title: Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat
  publication-title: Stem Cell Res Ther
  doi: 10.1186/scrt219
– volume: 10
  start-page: 487
  year: 2015
  end-page: 510
  ident: CR39
  article-title: Nanoparticle uptake: the phagocyte problem
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.06.006
– volume: 8
  start-page: 279
  year: 2018
  ident: CR37
  article-title: Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1286-z
– volume: 1
  start-page: 483
  year: 2013
  end-page: 491
  ident: CR21
  article-title: Biological markers of oxidative stress: applications to cardiovascular research and practice
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2013.07.006
– volume: 3
  start-page: 169
  year: 2008
  end-page: 180
  ident: CR6
  article-title: Magnetic nanoparticles for gene and drug delivery
  publication-title: Int J Nanomed
– volume: 62
  start-page: 3440
  year: 2017
  end-page: 3453
  ident: CR32
  article-title: Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa5f48
– volume: 175
  start-page: 428
  year: 2017
  end-page: 439
  ident: CR46
  article-title: -Ascorbic acid protected against extrinsic and intrinsic apoptosis induced by cobalt nanoparticles through ROS attenuation
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-016-0789-x
– volume: 321
  start-page: 1539
  year: 2009
  end-page: 1547
  ident: CR41
  article-title: Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2009.02.082
– volume: 32
  start-page: 173
  year: 2013
  end-page: 177
  ident: CR51
  article-title: Influence of naturally occurring antioxidants on magnetic nanoparticles: risks, benefits, and possible therapeutic applications
  publication-title: Gen Physiol Biophys
  doi: 10.4149/gpb_2013039
– volume: 10
  start-page: 757
  year: 2015
  end-page: 772
  ident: CR4
  article-title: Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles
  publication-title: Regen Med
  doi: 10.2217/rme.15.36
– volume: 25
  start-page: 1619
  year: 2011
  end-page: 1629
  ident: CR24
  article-title: Cytotoxicity and mitochondrial damage caused by silica nanoparticles
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2011.06.012
– volume: 56
  start-page: 125
  year: 2015
  end-page: 148
  ident: CR44
  article-title: Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.21909
– volume: 162
  start-page: 213
  year: 2016
  end-page: 222
  ident: CR48
  article-title: Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX
  publication-title: J Photochem Photobiol B
  doi: 10.1016/j.jphotobiol.2016.06.046
– volume: 99
  start-page: 16267
  year: 2002
  end-page: 16272
  ident: CR10
  article-title: Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.242435499
– volume: 24
  start-page: 45
  year: 2010
  end-page: 55
  ident: CR49
  article-title: Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2009.09.007
– volume: 24
  start-page: 1139
  year: 2010
  end-page: 1147
  ident: CR47
  article-title: The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2010.03.002
– volume: 9
  start-page: e92634
  year: 2014
  ident: CR63
  article-title: Effect of silica particle size on macrophage inflammatory responses
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0092634
– volume: 273
  start-page: 5858
  year: 1998
  end-page: 5868
  ident: CR55
  article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.10.5858
– volume: 8
  start-page: 1689
  year: 2013
  end-page: 1707
  ident: CR7
  article-title: Thermal potentiation of chemotherapy by magnetic nanoparticles
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.146
– volume: 19
  start-page: 205
  year: 2018
  ident: CR40
  article-title: Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19010205
– volume: 33
  start-page: 4690
  year: 2012
  end-page: 4699
  ident: CR29
  article-title: The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.006
– volume: 68
  start-page: 139
  year: 2018
  end-page: 147
  ident: CR28
  article-title: Brain iron distribution after multiple doses of ultra-small superparamagnetic iron oxide particles in rats
  publication-title: Comp Med
– volume: 15
  start-page: 339
  year: 2004
  end-page: 346
  ident: CR61
  article-title: Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles
  publication-title: Eur Cytokine Netw
– volume: 11
  start-page: 2711
  year: 2016
  end-page: 2719
  ident: CR20
  article-title: Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S103140
– volume: 96
  start-page: 186
  year: 2011
  ident: 2790_CR25
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.32972
– volume: 33
  start-page: 4690
  year: 2012
  ident: 2790_CR29
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.006
– volume: 18
  start-page: 336
  year: 2017
  ident: 2790_CR30
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18020336
– volume: 30
  start-page: e1704307
  year: 2018
  ident: 2790_CR2
  publication-title: Adv Mater
  doi: 10.1002/adma.201704307
– volume: 1619
  start-page: 1
  year: 2015
  ident: 2790_CR62
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2014.12.045
– volume: 11
  start-page: 147
  year: 1998
  ident: 2790_CR54
  publication-title: Biotherapy
  doi: 10.1023/A:1007934229968
– volume: 11
  start-page: 2711
  year: 2016
  ident: 2790_CR20
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S103140
– volume: 175
  start-page: 428
  year: 2017
  ident: 2790_CR46
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-016-0789-x
– volume: 76
  start-page: 232
  year: 2004
  ident: 2790_CR12
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.20041
– volume: 68
  start-page: 139
  year: 2018
  ident: 2790_CR28
  publication-title: Comp Med
– volume: 22
  start-page: 18
  year: 2003
  ident: 2790_CR33
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.2003.10719272
– volume: 187
  start-page: 509
  year: 2004
  ident: 2790_CR13
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2004.02.007
– volume: 34
  start-page: 171
  year: 2008
  ident: 2790_CR59
  publication-title: BioFactors
  doi: 10.1002/biof.5520340208
– volume: 12
  start-page: 342
  year: 2012
  ident: 2790_CR35
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2011.12.005
– volume: 10
  start-page: e0127174
  year: 2015
  ident: 2790_CR42
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127174
– volume: 13
  start-page: 2279
  year: 2018
  ident: 2790_CR23
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S158393
– volume: 9
  start-page: e92634
  year: 2014
  ident: 2790_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0092634
– volume: 25
  start-page: 1619
  year: 2011
  ident: 2790_CR24
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2011.06.012
– volume: 62
  start-page: 3440
  year: 2017
  ident: 2790_CR32
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa5f48
– volume: 95
  start-page: 60
  year: 2016
  ident: 2790_CR58
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.116.141671
– volume: 28
  start-page: 2572
  year: 2007
  ident: 2790_CR19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.01.043
– volume: 321
  start-page: 1539
  year: 2009
  ident: 2790_CR41
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2009.02.082
– volume: 24
  start-page: 45
  year: 2010
  ident: 2790_CR49
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2009.09.007
– volume: 9
  start-page: 199
  year: 1999
  ident: 2790_CR27
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(99)01540-8
– volume: 12
  start-page: 296
  year: 2012
  ident: 2790_CR50
  publication-title: Immune Netw
  doi: 10.4110/in.2012.12.6.296
– volume: 10
  start-page: 183
  year: 2015
  ident: 2790_CR31
  publication-title: Int J Nanomed
– volume: 10
  start-page: 928
  year: 2009
  ident: 2790_CR3
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.B0920205
– volume: 19
  start-page: 405102
  year: 2008
  ident: 2790_CR5
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/40/405102
– volume: 8
  start-page: 279
  year: 2018
  ident: 2790_CR37
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1286-z
– volume: 19
  start-page: 205
  year: 2018
  ident: 2790_CR40
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19010205
– volume: 65
  start-page: S243
  year: 2016
  ident: 2790_CR34
  publication-title: Physiol Res
  doi: 10.33549/physiolres.933426
– volume: 15
  start-page: 339
  year: 2004
  ident: 2790_CR61
  publication-title: Eur Cytokine Netw
– volume: 22
  start-page: 899
  year: 2002
  ident: 2790_CR9
  publication-title: J Cerebr Blood Flow Metab
  doi: 10.1097/00004647-200208000-00001
– volume: 162
  start-page: 213
  year: 2016
  ident: 2790_CR48
  publication-title: J Photochem Photobiol B
  doi: 10.1016/j.jphotobiol.2016.06.046
– volume: 23
  start-page: 1379
  year: 2006
  ident: 2790_CR15
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.23.1379
– volume: 1
  start-page: 483
  year: 2013
  ident: 2790_CR21
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2013.07.006
– volume: 10
  start-page: 487
  year: 2015
  ident: 2790_CR39
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.06.006
– volume: 50
  start-page: 767
  year: 2003
  ident: 2790_CR11
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10585
– volume: 24
  start-page: 1139
  year: 2010
  ident: 2790_CR47
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2010.03.002
– volume: 12
  start-page: 931
  year: 2013
  ident: 2790_CR36
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4002
– volume: 273
  start-page: 5858
  year: 1998
  ident: 2790_CR55
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.10.5858
– volume: 34
  start-page: 413
  year: 2014
  ident: 2790_CR18
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.2957
– volume: 3
  start-page: 169
  year: 2008
  ident: 2790_CR6
  publication-title: Int J Nanomed
– volume: 6
  start-page: 730
  year: 2010
  ident: 2790_CR26
  publication-title: Nanomed Nanotechnol Biol Med
  doi: 10.1016/j.nano.2010.05.002
– volume: 4
  start-page: 68
  year: 2013
  ident: 2790_CR14
  publication-title: Stem Cell Res Ther
  doi: 10.1186/scrt219
– volume: 196
  start-page: 482
  year: 2018
  ident: 2790_CR43
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.182
– volume: 10
  start-page: 662
  year: 2016
  ident: 2790_CR17
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2015.1107144
– volume: 10
  start-page: 757
  year: 2015
  ident: 2790_CR4
  publication-title: Regen Med
  doi: 10.2217/rme.15.36
– volume: 32
  start-page: 173
  year: 2013
  ident: 2790_CR51
  publication-title: Gen Physiol Biophys
  doi: 10.4149/gpb_2013039
– volume: 299
  start-page: 78
  year: 2016
  ident: 2790_CR38
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2015.12.022
– volume: 8
  start-page: 1689
  year: 2013
  ident: 2790_CR7
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.146
– volume: 210
  start-page: 53
  year: 2012
  ident: 2790_CR16
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2012.01.008
– volume: 311
  start-page: 622
  year: 2006
  ident: 2790_CR45
  publication-title: Science
  doi: 10.1126/science.1114397
– volume: 8
  start-page: 253
  year: 2013
  ident: 2790_CR57
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-8-253
– volume: 615
  start-page: 34
  year: 2008
  ident: 2790_CR52
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2007.11.037
– volume: 111
  start-page: 65
  year: 1994
  ident: 2790_CR60
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(94)90192-9
– volume: 1
  start-page: 5358
  year: 2010
  ident: 2790_CR1
  publication-title: Nano Rev
  doi: 10.3402/nano.v1i0.5358
– volume: 9
  start-page: 1641
  year: 2014
  ident: 2790_CR8
  publication-title: Int J Nanomed
– volume: 56
  start-page: 125
  year: 2015
  ident: 2790_CR44
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.21909
– volume: 10
  start-page: 1463
  year: 2015
  ident: 2790_CR53
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S76114
– volume: 99
  start-page: 16267
  year: 2002
  ident: 2790_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.242435499
– volume: 31
  start-page: 5063
  year: 2010
  ident: 2790_CR22
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.023
– volume: 33
  start-page: e66
  year: 2013
  ident: 2790_CR56
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.112.300177
SSID ssj0010021
Score 2.3049445
Snippet Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms Acids
Ascorbic acid
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biomolecules
Cell Biology
Cell viability
Coating effects
Contrast agents
Cultivation
Cytotoxicity
Deoxyribonucleic acid
DNA
Exposure
Gene expression
Iron oxides
Lipid peroxidation
Lipids
Macrophages
Nanoparticles
Neurochemistry
Neurology
Neurosciences
Original Paper
Oxidative stress
Peritoneum
Peroxidation
Silica
Silicon dioxide
Toxicity
Transmission electron microscopy
Vitamin C
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L15EnR_VKRHEixaaj7bLcYhjCHpyMLyUJG2n4DJx28H_3vfSdkOmguekSfm9Nu_93lcIubRxYoVJZWhAF4VSiijsWl6GWMMZdSXTtkCH_sNjMhjK-1E8qovCZk22exOS9Cf1qtgN2AtmTCiMO6ooVJtkKwbujolcQ95bxg5QbVURSgknjIrqUpmf1_iujtZszLX4qFc7_V2yU9uLtFcJeI9sFG6ftHsOuPLkk15Rn8HpXeNt8gwyp64Y-17etMrUoNOSTvTYYa0iddoBR65T4Si6YKmeAf00MKbta06njmLnY2zQDZtONN7v9QInzuyADPt3T7eDsL47IbQijeehEKlCY0iWVlpMQANiYJRJotywSDM0Y_KUsaTLrOBGCgOmCLfalHnKpTVKHJKWg82OCY0LVuRAo60SRsqo1JFNAMdSacVtGbOAsAbCzNaNxfF-i7ds1RIZYc8A9szDnqmAXC-fea_aavw5u9NIJqt_sVnGQfQJWKM8DcjFchh-Dox4aFdMF36OYIBENw7IUSXR5XYCiC0ABCM3jYhXi__-Lif_m35KtjkydO-06ZDW_GNRnIEZMzfn_qv9AqaD5Ro
  priority: 102
  providerName: Springer Nature
Title The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages
URI https://link.springer.com/article/10.1007/s11064-019-02790-9
https://www.ncbi.nlm.nih.gov/pubmed/30945145
https://www.proquest.com/docview/2202665627
https://www.proquest.com/docview/2203137985
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9sIFFcoj0FauhLiAxfqxu_EJJVVC1YqoqogUuKxs725BIk5L0gP_nhmvkwhV9OSDvWtrxo_55gnw1ueFV67U3OFbxLVWGe972XKK4cz6WljfkEL_y6Q4m-rzWT5LCrdlcqtc34nxoq4XnnTkHyWi9AKFD1l-urnlVDWKrKuphMYj2KPUZbSry9kGcFF2UdHZKjXeNSZLQTNd6BxiIfK_MGTFNBk3_z5M96TNe5bS-ACN9-FJkhzZoGP1U9hpwjM4GAREzfM_7B2LvpxRSX4A35H7LDTXMas363w22KJlc3sdKGqRBRsQLSenOEbKWGaXCEQd9ln_s2aLwCgHMqXqxknnlip9_cC7Z_kcpuPR19MznqoocK_KfMWVKg2JRbr12pMrGkIEZ1yR1U5kVpBAU5dCFH3hlXRaORRKpLeurUupvTPqBewGnOwVsLwRTY2A2hvltM5am_kC6dgaa6Rvc9EDsSZh5VOKcap08avaJkcmsldI9iqSvTI9eL_55qZLsPHg6MM1Z6p02JbVdmv04GTTjceEbB82NIu7OEYJpEQ_78HLjqOb6RRCXCQQ9nxYs3j78_-v5fXDa3kDjyVh86iuOYTd1e-75ggFmJU7jrv0GPYG4-FwQu3nbxcjbIejyeUV9k7l4C_rk-22
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QEuCCiPpS0YCbiAhV9J1geEKqDa0seplVZcgu0kLRLrbdmtqv6p_kZmnGRXqKK3np3E0Xg8M988Ad6ELA_aF4Z71EXcGC34MKiGUw2nGBrpQk0O_YPDfHRsvo-z8Qpc97UwlFbZy8QkqKtpIB_5R4UoPUfjQxWfz845TY2i6Go_QqNli7366hIh2-zT7lc837dK7Xw7-jLi3VQBHnSRzbnWhSUzwTTBBErNQpPZW5-LykvhJCn4qpAyH8qglTfao5JWwfmmKpQJnpovochfQ8UrCOwV4wXAo26mso2NGpRtVnRFOm2pHmIvyvewFDW1gtt_FeEN6_ZGZDYpvJ2H8KCzVNl2y1qPYKWOj2F9OyJKn1yxdyzljian_Dr8QG5jsT5JXcRZmyPCpg2buJNIVZIsuojovEvCY-T8ZW6GwNfjmgu_KjaNjHouU2tw3HTiaLLYKcq62RM4vhP6PoXViJs9B5bVsq4QwAervTGicSLkSMfGOqtCk8kByJ6EZehamtNkjd_lshkzkb1EspeJ7KUdwPvFO2dtQ49bn97sT6bsLvesXLLiAF4vlvFaUqzFxXp6kZ7REikxzAbwrD3RxXYaITUSCFc-9Ee8_Pj__-XF7f_yCu6Njg72y_3dw70NuK_IL5BcRZuwOv9zUW-h8TT3LxPHMvh511fkLx8WIqs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5khZBLiDGPTYy2EHNJmkw_Zmb7IGLUxUeySIgguYzdPTObQLZXsyviX_PXWTWPXYLozXPPTA_V1VX11RPgg48Tr1yquUNdxLVWEe95WXKq4Yx6WlhfkEP_-yDZP9GHp_HpAty0tTCUVtnKxEpQ52NPPvIvElF6gsYHQvWySYs43u1vnV9wmiBFkdZ2nEbNIkfF9RXCt8nmwS6e9YaU_b2fO_u8mTDAvUrjKVcqNWQy6NJrT2laaD4745IodyKygpR9ngqR9IRX0mnlUGFLb12Zp1J7R42YUPwvpoSKOrD4dW9w_GMWwyD1WUdKNUo6EzUlO3XhHiIxyv4wFEM1ETf_q8U7tu6dOG2l_vrP4Vljt7LtmtGWYKEIL2B5OyBmH12zj6zKJK1c9MvwC3mPhWJY9RRndcYIG5dsZIeBaiZZsAGxepOSx8gVzOwEYbDDNev_5GwcGHVgpkbhuOnI0pyx3yj5Ji_h5FEo_Ao6ATd7AywuRJEjnPdGOa2j0kY-QTqWxhrpy1h0QbQkzHzT4JzmbPzN5q2ZiewZkj2ryJ6ZLnyavXNet_d48OmV9mSy5qpPsjljdmF9toyXlCIvNhTjy-oZJZASvbgLr-sTnW2nEGAjgXDlc3vE84_f_y9vH_6XNXiC1yP7djA4egdPJTkJKr_RCnSm_y6L92hJTd1qw7IMzh77ltwCEcMoRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+negative+effect+of+magnetic+nanoparticles+with+ascorbic+acid+on+peritoneal+macrophages&rft.jtitle=Neurochemical+research&rft.au=Jir%C3%A1kov%C3%A1%2C+Kl%C3%A1ra&rft.au=Moskvin%2C+Maksym&rft.au=Machov%C3%A1+Urdz%C3%ADkov%C3%A1%2C+Lucia&rft.au=R%C3%B6ssner%2C+Pavel&rft.date=2020-01-01&rft.issn=1573-6903&rft.eissn=1573-6903&rft.volume=45&rft.issue=1&rft.spage=159&rft_id=info:doi/10.1007%2Fs11064-019-02790-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-3190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-3190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-3190&client=summon