The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe 2 O...
Saved in:
Published in | Neurochemical research Vol. 45; no. 1; pp. 159 - 170 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe
2
O
3
–SiO
2
) with or without modification by an ascorbic acid (γ-Fe
2
O
3
–SiO
2
-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected. |
---|---|
AbstractList | Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3–SiO2) with or without modification by an ascorbic acid (γ-Fe2O3–SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected. Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe O -SiO ) with or without modification by an ascorbic acid (γ-Fe O -SiO -ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected. Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected. Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe 2 O 3 –SiO 2 ) with or without modification by an ascorbic acid (γ-Fe 2 O 3 –SiO 2 -ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected. |
Author | Elzeinová, Fatima Chudíčková, Milada Rössner, Pavel Jendelová, Pavla Moskvin, Maksym Horák, Daniel Kubinová, Šárka Jiráková, Klára Jirák, Daniel Machová Urdzíková, Lucia Ziolkowska, Natalia |
Author_xml | – sequence: 1 givenname: Klára surname: Jiráková fullname: Jiráková, Klára organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 2 givenname: Maksym surname: Moskvin fullname: Moskvin, Maksym organization: Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences – sequence: 3 givenname: Lucia surname: Machová Urdzíková fullname: Machová Urdzíková, Lucia organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 4 givenname: Pavel surname: Rössner fullname: Rössner, Pavel organization: Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 5 givenname: Fatima surname: Elzeinová fullname: Elzeinová, Fatima organization: Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 6 givenname: Milada surname: Chudíčková fullname: Chudíčková, Milada organization: Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 7 givenname: Daniel surname: Jirák fullname: Jirák, Daniel organization: MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine – sequence: 8 givenname: Natalia surname: Ziolkowska fullname: Ziolkowska, Natalia organization: MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine – sequence: 9 givenname: Daniel surname: Horák fullname: Horák, Daniel organization: Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences – sequence: 10 givenname: Šárka surname: Kubinová fullname: Kubinová, Šárka organization: Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences – sequence: 11 givenname: Pavla orcidid: 0000-0002-4644-9212 surname: Jendelová fullname: Jendelová, Pavla email: Pavla.jendelova@iem.cas.cz organization: Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Department of Neuroscience, Second Faculty of Medicine, Charles University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30945145$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT9vHCEQxZHlKD7b-QIuIqQ0aTaZgWU5ysjKP8lSGqdxg4Bl77D2YANcrHz7cDlbkVy4GqT5vZnHvHNyGlP0hFwhfEAA-bEgwtB3gKoDJhV06oSsUEjeDQr4KVkBb22OCs7IeSn3AE3G8DU546B6gb1YkbvbrafRb0wNvz310-RdpWmiO7OJvgZHo4lpMbk9Z1_oQ6hbaopL2baecWGkKdLF51CbNzM3nctp2ZqNL5fk1WTm4t881gvy88vn2-tv3c2Pr9-vP910jktRO86lEs1MP7neMWiepbDKDjBaBIMoUIwScVij48z23MIgmDN2GiXrnVX8grw_zl1y-rX3pepdKM7Ps4k-7YtmDDi2JWvR0HfP0Pu0z7G5O1BsGMTAZKPePlJ7u_OjXnLYmfxHP12tAesj0P5aSvaTdqG2C6ZYswmzRtCHgPQxIN0C0v8C0gez7Jn0afqLIn4UlQbHjc__bb-g-gt-YqDB |
CitedBy_id | crossref_primary_10_1021_acsami_2c10272 crossref_primary_10_1515_gps_2022_0050 crossref_primary_10_1007_s11064_019_02924_z crossref_primary_10_3390_nano10050837 |
Cites_doi | 10.1371/journal.pone.0127174 10.1016/j.taap.2015.12.022 10.1002/mrm.10585 10.1095/biolreprod.116.141671 10.1088/0957-4484/19/40/405102 10.1016/j.chemosphere.2017.12.182 10.1016/j.nano.2010.05.002 10.1002/jat.2957 10.1038/nrd4002 10.1016/j.jelechem.2007.11.037 10.1002/jnr.20041 10.1126/science.1114397 10.3390/ijms18020336 10.1016/j.intimp.2011.12.005 10.1016/j.biomaterials.2007.01.043 10.1023/A:1007934229968 10.1002/adma.201704307 10.1002/biof.5520340208 10.1186/1748-717X-8-253 10.3109/17435390.2015.1107144 10.1016/j.toxlet.2012.01.008 10.1002/jbm.a.32972 10.2147/IJN.S76114 10.1097/00004647-200208000-00001 10.4110/in.2012.12.6.296 10.1016/j.biomaterials.2010.03.023 10.2147/IJN.S158393 10.3402/nano.v1i0.5358 10.1631/jzus.B0920205 10.1161/ATVBAHA.112.300177 10.1080/07315724.2003.10719272 10.1016/0021-9150(94)90192-9 10.1016/j.brainres.2014.12.045 10.1016/S0962-8924(99)01540-8 10.1089/neu.2006.23.1379 10.1016/j.expneurol.2004.02.007 10.1186/scrt219 10.1016/j.nantod.2015.06.006 10.1007/s13205-018-1286-z 10.1016/j.redox.2013.07.006 10.1088/1361-6560/aa5f48 10.1007/s12011-016-0789-x 10.1016/j.jmmm.2009.02.082 10.4149/gpb_2013039 10.2217/rme.15.36 10.1016/j.tiv.2011.06.012 10.1002/em.21909 10.1016/j.jphotobiol.2016.06.046 10.1073/pnas.242435499 10.1016/j.tiv.2009.09.007 10.1016/j.tiv.2010.03.002 10.1371/journal.pone.0092634 10.1074/jbc.273.10.5858 10.2217/nnm.13.146 10.3390/ijms19010205 10.1016/j.biomaterials.2012.03.006 10.2147/IJN.S103140 10.33549/physiolres.933426 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Neurochemical Research is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Neurochemical Research is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QR 7TK 7U7 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s11064-019-02790-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1573-6903 |
EndPage | 170 |
ExternalDocumentID | 30945145 10_1007_s11064_019_02790_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Grantová Agentura České Republiky grantid: 17-04918S; 16-14631S funderid: http://dx.doi.org/10.13039/501100001824 – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: LTAUSA17120; CZ.02.1.01/0.0. /0.0/15_003/0000419 funderid: http://dx.doi.org/10.13039/501100001823 – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: CZ.02.1.01/0.0. /0.0/15_003/0000419 – fundername: Grantová Agentura České Republiky grantid: 16-14631S – fundername: Grantová Agentura České Republiky grantid: 17-04918S – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: LTAUSA17120 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .55 .86 .GJ .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M XJT YLTOR Z45 Z7U Z82 Z83 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QR 7TK 7U7 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-337955144fc4c2003675b9b60db10a11515d711681c32b43b0652cabfd724cb93 |
IEDL.DBID | 7X7 |
ISSN | 0364-3190 1573-6903 |
IngestDate | Fri Jul 11 09:21:33 EDT 2025 Sat Aug 16 10:21:15 EDT 2025 Thu Apr 03 07:02:30 EDT 2025 Tue Jul 01 03:43:12 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Fri Feb 21 02:32:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoparticles Oxidative stress Cytotoxicity Macrophages |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-337955144fc4c2003675b9b60db10a11515d711681c32b43b0652cabfd724cb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4644-9212 |
PMID | 30945145 |
PQID | 2202665627 |
PQPubID | 37979 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2203137985 proquest_journals_2202665627 pubmed_primary_30945145 crossref_citationtrail_10_1007_s11064_019_02790_9 crossref_primary_10_1007_s11064_019_02790_9 springer_journals_10_1007_s11064_019_02790_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-1-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Neurochemical research |
PublicationTitleAbbrev | Neurochem Res |
PublicationTitleAlternate | Neurochem Res |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Torres-Lugo, Rinaldi (CR7) 2013; 8 Ferchichi, Trabelsi, Azzouz, Hanini, Rejeb, Tebourbi, Sakly, Abdelmelek (CR20) 2016; 11 Hoehn, Kustermann, Blunk, Wiedermann, Trapp, Wecker, Focking, Arnold, Hescheler, Fleischmann, Schwindt, Buhrle (CR10) 2002; 99 Jendelova, Herynek, Urdzikova, Glogarova, Kroupova, Andersson, Bryja, Burian, Hajek, Sykova (CR12) 2004; 76 Bancos, Stevens, Tyner (CR31) 2015; 10 Avalos, Haza, Mateo, Morales (CR18) 2014; 34 Nel, Xia, Madler, Li (CR45) 2006; 311 Lucarelli, Gatti, Savarino, Quattroni, Martinelli, Monari, Boraschi (CR61) 2004; 15 Miao, Leng, Zhang (CR30) 2017; 18 Dobrovolskaia, Shurin, Shvedova (CR38) 2016; 299 Farcal, Torres Andon, Di Cristo, Rotoli, Bussolati, Bergamaschi, Mech, Hartmann, Rasmussen, Riego-Sintes, Ponti, Kinsner-Ovaskainen, Rossi, Oomen, Bos, Chen, Bai, Chen, Rocks, Fulton, Ross, Hutchison, Tran, Mues, Ossig, Schnekenburger, Campagnolo, Vecchione, Pietroiusti, Fadeel (CR42) 2015; 10 Amemori, Romanyuk, Jendelova, Herynek, Turnovcova, Prochazka, Kapcalova, Cocks, Price, Sykova (CR14) 2013; 4 Gorman, Deh, Schwiedrzik, White, Groman, Fisher, Gillen, Spincemaille, Rasmussen, Prince, Voss, Freiwald, Wang (CR28) 2018; 68 Lunov, Syrovets, Buchele, Jiang, Rocker, Tron, Nienhaus, Walther, Mailander, Landfester, Simmet (CR22) 2010; 31 Bull, Madani, Sheth, Seifalian, Green, Seifalian (CR8) 2014; 9 Bulte, Duncan, Frank (CR9) 2002; 22 Singh, Jenkins, Asadi, Doak (CR1) 2010; 1 Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (CR2) 2018; 30 Amatore, Arbault, MeloFerreira, Tapsota, Verchier (CR52) 2008; 615 Liu, Hong, Lu, Wang, Liu, Yang (CR46) 2017; 175 Rogakou, Pilch, Orr, Ivanova, Bonner (CR55) 1998; 273 Akhtar, Kumar, Murthy, Ashquin, Khan, Patil, Ahmad (CR47) 2010; 24 Sun, Li, Liu, Jin, Zhang, Du, Guo, Huang, Sun (CR24) 2011; 25 Moskvin, Horak (CR34) 2016; 65 Kusaka, Nakayama, Nakamura, Ishimiya, Furusawa, Ogasawara (CR63) 2014; 9 Pisanic, Blackwell, Shubayev, Finones, Jin (CR19) 2007; 28 Toyokuni (CR54) 1998; 11 Ho, Karimi Galougahi, Liu, Bhindi, Figtree (CR21) 2013; 1 Novotna, Turnovcova, Veverka, Rossner, Bagryantseva, Herynek, Zvatora, Vosmanska, Klementova, Sykova, Jendelova (CR17) 2016; 10 Gustafson, Holt-Casper, Grainger, Ghandehari (CR39) 2015; 10 McBain, Griesenbach, Xenariou, Keramane, Batich, Alton, Dobson (CR5) 2008; 19 Connell, Patrick, Yu, Lythgoe, Kalber (CR4) 2015; 10 Libalova, Costa, Olsson, Farcal, Ortelli, Blosi, Topinka, Costa, Fadeel (CR43) 2018; 196 Kim, Jang, Kim, Choi, Lee, Choi (CR50) 2012; 12 Selvaratnam, Robaire (CR58) 2016; 95 Zhao, Takabayashi, Ibuki (CR48) 2016; 162 Jendelova, Herynek, DeCroos, Glogarova, Andersson, Hajek, Sykova (CR11) 2003; 50 Horák, Babič, Jendelová, Herynek, Trchová, Likavčanová, Kapcalová, Hájek, Syková (CR41) 2009; 321 Pham, Colvin, Pham, Kim, Fuller, Moon, Barbey, Yuen, Rickman, Bryce, Bickley, Tanudji, Jones, Howell, Hawkett (CR40) 2018; 19 Fuhrman, Oiknine, Aviram (CR60) 1994; 111 Yan, Ding, Tian, Ge, Jin, Jia, Ding, Pan, Xue (CR3) 2009; 10 Valdiglesias, Kilic, Costa, Fernandez-Bertolez, Pasaro, Teixeira, Laffon (CR44) 2015; 56 Padayatty, Katz, Wang, Eck, Kwon, Lee, Chen, Corpe, Dutta, Dutta, Levine (CR33) 2003; 22 Vallabani, Singh (CR37) 2018; 8 Buyukhatipoglu, Clyne (CR25) 2011; 96 Lim, Jang, Kim, Kang, Lee, Choi (CR29) 2012; 33 Urdzikova, Jendelova, Glogarova, Burian, Hajek, Sykova (CR15) 2006; 23 McBain, Yiu, Dobson (CR6) 2008; 3 Gensel, Zhang (CR62) 2015; 1619 Durdik, Vrbovska, Olas, Babincova (CR51) 2013; 32 Branchetti, Sainger, Poggio, Grau, Patterson-Fortin, Bavaria, Chorny, Lai, Gorman, Levy, Ferrari (CR56) 2013; 33 Guo, Xia, Niu, Jiang, Duan, Yu, Zhou, Li, Sun (CR53) 2015; 10 Skotland, Iversen, Sandvig (CR26) 2010; 6 Kostecka, Holy, Farghali, Zidek, Kmonickova (CR35) 2012; 12 Huang, Aronstam, Chen, Huang (CR49) 2010; 24 Gu, Feng, Cao, Tang, Ge, Luo, Xue, Wu, Yang, Zhang, Cao (CR57) 2013; 8 Niki (CR59) 2008; 34 Gorrini, Harris, Mak (CR36) 2013; 12 Lee, Bulte, Schweinhardt, Douglas, Trifunovski, Hofstetter, Olson, Spenger (CR13) 2004; 187 Morrissette, Gold, Aderem (CR27) 1999; 9 Kusaczuk, Kretowski, Naumowicz, Stypulkowska, Cechowska-Pasko (CR23) 2018; 13 Keselman, Yu, Zhou, Goodwill, Chandrasekharan, Ferguson, Khandhar, Kemp, Krishnan, Zheng, Conolly (CR32) 2017; 62 Novotna, Jendelova, Kapcalova, Rossner, Turnovcova, Bagryantseva, Babic, Horak, Sykova (CR16) 2012; 210 M Kusaczuk (2790_CR23) 2018; 13 E Niki (2790_CR59) 2008; 34 O Lunov (2790_CR22) 2010; 31 JC Gensel (2790_CR62) 2015; 1619 E Ho (2790_CR21) 2013; 1 SJ Padayatty (2790_CR33) 2003; 22 T Amemori (2790_CR14) 2013; 4 J Bourquin (2790_CR2) 2018; 30 M Torres-Lugo (2790_CR7) 2013; 8 S Ferchichi (2790_CR20) 2016; 11 IH Lee (2790_CR13) 2004; 187 CC Huang (2790_CR49) 2010; 24 V Valdiglesias (2790_CR44) 2015; 56 Y Liu (2790_CR46) 2017; 175 N Morrissette (2790_CR27) 1999; 9 JW Bulte (2790_CR9) 2002; 22 X Miao (2790_CR30) 2017; 18 EP Rogakou (2790_CR55) 1998; 273 T Kusaka (2790_CR63) 2014; 9 JJ Connell (2790_CR4) 2015; 10 BTT Pham (2790_CR40) 2018; 19 H Libalova (2790_CR43) 2018; 196 H Yan (2790_CR3) 2009; 10 T Skotland (2790_CR26) 2010; 6 L Farcal (2790_CR42) 2015; 10 JS Selvaratnam (2790_CR58) 2016; 95 MA Dobrovolskaia (2790_CR38) 2016; 299 AW Gorman (2790_CR28) 2018; 68 HH Gustafson (2790_CR39) 2015; 10 A Avalos (2790_CR18) 2014; 34 S Durdik (2790_CR51) 2013; 32 C Amatore (2790_CR52) 2008; 615 K Buyukhatipoglu (2790_CR25) 2011; 96 NVS Vallabani (2790_CR37) 2018; 8 S Kim (2790_CR50) 2012; 12 L Urdzikova (2790_CR15) 2006; 23 B Novotna (2790_CR17) 2016; 10 TR Pisanic 2nd (2790_CR19) 2007; 28 L Sun (2790_CR24) 2011; 25 E Bull (2790_CR8) 2014; 9 MJ Akhtar (2790_CR47) 2010; 24 N Singh (2790_CR1) 2010; 1 A Nel (2790_CR45) 2006; 311 M Hoehn (2790_CR10) 2002; 99 DH Lim (2790_CR29) 2012; 33 SC McBain (2790_CR6) 2008; 3 B Novotna (2790_CR16) 2012; 210 D Horák (2790_CR41) 2009; 321 B Fuhrman (2790_CR60) 1994; 111 X Zhao (2790_CR48) 2016; 162 Q Gu (2790_CR57) 2013; 8 M Lucarelli (2790_CR61) 2004; 15 P Jendelova (2790_CR12) 2004; 76 E Branchetti (2790_CR56) 2013; 33 P Keselman (2790_CR32) 2017; 62 C Gorrini (2790_CR36) 2013; 12 S Toyokuni (2790_CR54) 1998; 11 P Jendelova (2790_CR11) 2003; 50 SC McBain (2790_CR5) 2008; 19 C Guo (2790_CR53) 2015; 10 M Moskvin (2790_CR34) 2016; 65 P Kostecka (2790_CR35) 2012; 12 S Bancos (2790_CR31) 2015; 10 |
References_xml | – volume: 10 start-page: e0127174 year: 2015 ident: CR42 article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy publication-title: PLoS ONE doi: 10.1371/journal.pone.0127174 – volume: 65 start-page: S243 year: 2016 end-page: S251 ident: CR34 article-title: Carbohydrate-modified magnetic nanoparticles for radical scavenging publication-title: Physiol Res – volume: 299 start-page: 78 year: 2016 end-page: 89 ident: CR38 article-title: Current understanding of interactions between nanoparticles and the immune system publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2015.12.022 – volume: 50 start-page: 767 year: 2003 end-page: 776 ident: CR11 article-title: Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles publication-title: Magn Reson Med doi: 10.1002/mrm.10585 – volume: 95 start-page: 60 year: 2016 ident: CR58 article-title: Effects of aging and oxidative stress on spermatozoa of superoxide-dismutase 1- and catalase-null mice publication-title: Biol Reprod doi: 10.1095/biolreprod.116.141671 – volume: 19 start-page: 405102 year: 2008 ident: CR5 article-title: Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays publication-title: Nanotechnology doi: 10.1088/0957-4484/19/40/405102 – volume: 196 start-page: 482 year: 2018 end-page: 493 ident: CR43 article-title: Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: interplay of particles, surface coating and particle dissolution publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.182 – volume: 6 start-page: 730 year: 2010 end-page: 737 ident: CR26 article-title: New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging publication-title: Nanomed Nanotechnol Biol Med doi: 10.1016/j.nano.2010.05.002 – volume: 9 start-page: 1641 year: 2014 end-page: 1653 ident: CR8 article-title: Stem cell tracking using iron oxide nanoparticles publication-title: Int J Nanomed – volume: 34 start-page: 413 year: 2014 end-page: 423 ident: CR18 article-title: Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells publication-title: J Appl Toxicol doi: 10.1002/jat.2957 – volume: 12 start-page: 931 year: 2013 end-page: 947 ident: CR36 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4002 – volume: 615 start-page: 34 year: 2008 end-page: 44 ident: CR52 article-title: Vitamin C stimulates or attenuates reaction oxygen and nitrogen species (ROS, RNS) production depending on cell state: quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2007.11.037 – volume: 76 start-page: 232 year: 2004 end-page: 243 ident: CR12 article-title: Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord publication-title: J Neurosci Res doi: 10.1002/jnr.20041 – volume: 311 start-page: 622 year: 2006 end-page: 627 ident: CR45 article-title: Toxic potential of materials at the nanolevel publication-title: Science doi: 10.1126/science.1114397 – volume: 18 start-page: 336 year: 2017 ident: CR30 article-title: The current state of nanoparticle-induced macrophage polarization and reprogramming research publication-title: Int J Mol Sci doi: 10.3390/ijms18020336 – volume: 12 start-page: 342 year: 2012 end-page: 349 ident: CR35 article-title: Differential effects of acyclic nucleoside phosphonates on nitric oxide and cytokines in rat hepatocytes and macrophages publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2011.12.005 – volume: 28 start-page: 2572 year: 2007 end-page: 2581 ident: CR19 article-title: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.043 – volume: 11 start-page: 147 year: 1998 end-page: 154 ident: CR54 article-title: Oxidative stress and cancer: the role of redox regulation publication-title: Biotherapy doi: 10.1023/A:1007934229968 – volume: 30 start-page: e1704307 year: 2018 ident: CR2 article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials publication-title: Adv Mater doi: 10.1002/adma.201704307 – volume: 34 start-page: 171 year: 2008 end-page: 180 ident: CR59 article-title: Lipid peroxidation products as oxidative stress biomarkers publication-title: BioFactors doi: 10.1002/biof.5520340208 – volume: 8 start-page: 253 year: 2013 ident: CR57 article-title: HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation publication-title: Radiat Oncol doi: 10.1186/1748-717X-8-253 – volume: 10 start-page: 662 year: 2016 end-page: 670 ident: CR17 article-title: The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells publication-title: Nanotoxicology doi: 10.3109/17435390.2015.1107144 – volume: 210 start-page: 53 year: 2012 end-page: 63 ident: CR16 article-title: Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2012.01.008 – volume: 96 start-page: 186 year: 2011 end-page: 195 ident: CR25 article-title: Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.32972 – volume: 10 start-page: 1463 year: 2015 end-page: 1477 ident: CR53 article-title: Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling publication-title: Int J Nanomed doi: 10.2147/IJN.S76114 – volume: 22 start-page: 899 year: 2002 end-page: 907 ident: CR9 article-title: In vivo magnetic resonance tracking of magnetically labeled cells after transplantation publication-title: J Cerebr Blood Flow Metab doi: 10.1097/00004647-200208000-00001 – volume: 12 start-page: 296 year: 2012 end-page: 300 ident: CR50 article-title: The effects of silica nanoparticles in macrophage cells publication-title: Immune Netw doi: 10.4110/in.2012.12.6.296 – volume: 31 start-page: 5063 year: 2010 end-page: 5071 ident: CR22 article-title: The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.023 – volume: 13 start-page: 2279 year: 2018 end-page: 2294 ident: CR23 article-title: Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in glioblastoma cells publication-title: Int J Nanomed doi: 10.2147/IJN.S158393 – volume: 1 start-page: 5358 year: 2010 ident: CR1 article-title: Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) publication-title: Nano Rev doi: 10.3402/nano.v1i0.5358 – volume: 10 start-page: 928 year: 2009 end-page: 932 ident: CR3 article-title: Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B0920205 – volume: 33 start-page: e66 year: 2013 end-page: e74 ident: CR56 article-title: Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.112.300177 – volume: 22 start-page: 18 year: 2003 end-page: 35 ident: CR33 article-title: Vitamin C as an antioxidant: evaluation of its role in disease prevention publication-title: J Am Coll Nutr doi: 10.1080/07315724.2003.10719272 – volume: 111 start-page: 65 year: 1994 end-page: 78 ident: CR60 article-title: Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties publication-title: Atherosclerosis doi: 10.1016/0021-9150(94)90192-9 – volume: 1619 start-page: 1 year: 2015 end-page: 11 ident: CR62 article-title: Macrophage activation and its role in repair and pathology after spinal cord injury publication-title: Brain Res doi: 10.1016/j.brainres.2014.12.045 – volume: 9 start-page: 199 year: 1999 end-page: 201 ident: CR27 article-title: The macrophage—a cell for all seasons publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(99)01540-8 – volume: 23 start-page: 1379 year: 2006 end-page: 1391 ident: CR15 article-title: Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats publication-title: J Neurotrauma doi: 10.1089/neu.2006.23.1379 – volume: 10 start-page: 183 year: 2015 end-page: 206 ident: CR31 article-title: Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro publication-title: Int J Nanomed – volume: 187 start-page: 509 year: 2004 end-page: 516 ident: CR13 article-title: In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord publication-title: Exp Neurol doi: 10.1016/j.expneurol.2004.02.007 – volume: 4 start-page: 68 year: 2013 ident: CR14 article-title: Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat publication-title: Stem Cell Res Ther doi: 10.1186/scrt219 – volume: 10 start-page: 487 year: 2015 end-page: 510 ident: CR39 article-title: Nanoparticle uptake: the phagocyte problem publication-title: Nano Today doi: 10.1016/j.nantod.2015.06.006 – volume: 8 start-page: 279 year: 2018 ident: CR37 article-title: Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics publication-title: 3 Biotech doi: 10.1007/s13205-018-1286-z – volume: 1 start-page: 483 year: 2013 end-page: 491 ident: CR21 article-title: Biological markers of oxidative stress: applications to cardiovascular research and practice publication-title: Redox Biol doi: 10.1016/j.redox.2013.07.006 – volume: 3 start-page: 169 year: 2008 end-page: 180 ident: CR6 article-title: Magnetic nanoparticles for gene and drug delivery publication-title: Int J Nanomed – volume: 62 start-page: 3440 year: 2017 end-page: 3453 ident: CR32 article-title: Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa5f48 – volume: 175 start-page: 428 year: 2017 end-page: 439 ident: CR46 article-title: -Ascorbic acid protected against extrinsic and intrinsic apoptosis induced by cobalt nanoparticles through ROS attenuation publication-title: Biol Trace Elem Res doi: 10.1007/s12011-016-0789-x – volume: 321 start-page: 1539 year: 2009 end-page: 1547 ident: CR41 article-title: Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2009.02.082 – volume: 32 start-page: 173 year: 2013 end-page: 177 ident: CR51 article-title: Influence of naturally occurring antioxidants on magnetic nanoparticles: risks, benefits, and possible therapeutic applications publication-title: Gen Physiol Biophys doi: 10.4149/gpb_2013039 – volume: 10 start-page: 757 year: 2015 end-page: 772 ident: CR4 article-title: Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles publication-title: Regen Med doi: 10.2217/rme.15.36 – volume: 25 start-page: 1619 year: 2011 end-page: 1629 ident: CR24 article-title: Cytotoxicity and mitochondrial damage caused by silica nanoparticles publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2011.06.012 – volume: 56 start-page: 125 year: 2015 end-page: 148 ident: CR44 article-title: Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity publication-title: Environ Mol Mutagen doi: 10.1002/em.21909 – volume: 162 start-page: 213 year: 2016 end-page: 222 ident: CR48 article-title: Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX publication-title: J Photochem Photobiol B doi: 10.1016/j.jphotobiol.2016.06.046 – volume: 99 start-page: 16267 year: 2002 end-page: 16272 ident: CR10 article-title: Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.242435499 – volume: 24 start-page: 45 year: 2010 end-page: 55 ident: CR49 article-title: Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2009.09.007 – volume: 24 start-page: 1139 year: 2010 end-page: 1147 ident: CR47 article-title: The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2010.03.002 – volume: 9 start-page: e92634 year: 2014 ident: CR63 article-title: Effect of silica particle size on macrophage inflammatory responses publication-title: PLoS ONE doi: 10.1371/journal.pone.0092634 – volume: 273 start-page: 5858 year: 1998 end-page: 5868 ident: CR55 article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 publication-title: J Biol Chem doi: 10.1074/jbc.273.10.5858 – volume: 8 start-page: 1689 year: 2013 end-page: 1707 ident: CR7 article-title: Thermal potentiation of chemotherapy by magnetic nanoparticles publication-title: Nanomedicine doi: 10.2217/nnm.13.146 – volume: 19 start-page: 205 year: 2018 ident: CR40 article-title: Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration publication-title: Int J Mol Sci doi: 10.3390/ijms19010205 – volume: 33 start-page: 4690 year: 2012 end-page: 4699 ident: CR29 article-title: The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.006 – volume: 68 start-page: 139 year: 2018 end-page: 147 ident: CR28 article-title: Brain iron distribution after multiple doses of ultra-small superparamagnetic iron oxide particles in rats publication-title: Comp Med – volume: 15 start-page: 339 year: 2004 end-page: 346 ident: CR61 article-title: Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles publication-title: Eur Cytokine Netw – volume: 11 start-page: 2711 year: 2016 end-page: 2719 ident: CR20 article-title: Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields publication-title: Int J Nanomed doi: 10.2147/IJN.S103140 – volume: 96 start-page: 186 year: 2011 ident: 2790_CR25 publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.32972 – volume: 33 start-page: 4690 year: 2012 ident: 2790_CR29 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.006 – volume: 18 start-page: 336 year: 2017 ident: 2790_CR30 publication-title: Int J Mol Sci doi: 10.3390/ijms18020336 – volume: 30 start-page: e1704307 year: 2018 ident: 2790_CR2 publication-title: Adv Mater doi: 10.1002/adma.201704307 – volume: 1619 start-page: 1 year: 2015 ident: 2790_CR62 publication-title: Brain Res doi: 10.1016/j.brainres.2014.12.045 – volume: 11 start-page: 147 year: 1998 ident: 2790_CR54 publication-title: Biotherapy doi: 10.1023/A:1007934229968 – volume: 11 start-page: 2711 year: 2016 ident: 2790_CR20 publication-title: Int J Nanomed doi: 10.2147/IJN.S103140 – volume: 175 start-page: 428 year: 2017 ident: 2790_CR46 publication-title: Biol Trace Elem Res doi: 10.1007/s12011-016-0789-x – volume: 76 start-page: 232 year: 2004 ident: 2790_CR12 publication-title: J Neurosci Res doi: 10.1002/jnr.20041 – volume: 68 start-page: 139 year: 2018 ident: 2790_CR28 publication-title: Comp Med – volume: 22 start-page: 18 year: 2003 ident: 2790_CR33 publication-title: J Am Coll Nutr doi: 10.1080/07315724.2003.10719272 – volume: 187 start-page: 509 year: 2004 ident: 2790_CR13 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2004.02.007 – volume: 34 start-page: 171 year: 2008 ident: 2790_CR59 publication-title: BioFactors doi: 10.1002/biof.5520340208 – volume: 12 start-page: 342 year: 2012 ident: 2790_CR35 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2011.12.005 – volume: 10 start-page: e0127174 year: 2015 ident: 2790_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0127174 – volume: 13 start-page: 2279 year: 2018 ident: 2790_CR23 publication-title: Int J Nanomed doi: 10.2147/IJN.S158393 – volume: 9 start-page: e92634 year: 2014 ident: 2790_CR63 publication-title: PLoS ONE doi: 10.1371/journal.pone.0092634 – volume: 25 start-page: 1619 year: 2011 ident: 2790_CR24 publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2011.06.012 – volume: 62 start-page: 3440 year: 2017 ident: 2790_CR32 publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa5f48 – volume: 95 start-page: 60 year: 2016 ident: 2790_CR58 publication-title: Biol Reprod doi: 10.1095/biolreprod.116.141671 – volume: 28 start-page: 2572 year: 2007 ident: 2790_CR19 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.043 – volume: 321 start-page: 1539 year: 2009 ident: 2790_CR41 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2009.02.082 – volume: 24 start-page: 45 year: 2010 ident: 2790_CR49 publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2009.09.007 – volume: 9 start-page: 199 year: 1999 ident: 2790_CR27 publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(99)01540-8 – volume: 12 start-page: 296 year: 2012 ident: 2790_CR50 publication-title: Immune Netw doi: 10.4110/in.2012.12.6.296 – volume: 10 start-page: 183 year: 2015 ident: 2790_CR31 publication-title: Int J Nanomed – volume: 10 start-page: 928 year: 2009 ident: 2790_CR3 publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B0920205 – volume: 19 start-page: 405102 year: 2008 ident: 2790_CR5 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/40/405102 – volume: 8 start-page: 279 year: 2018 ident: 2790_CR37 publication-title: 3 Biotech doi: 10.1007/s13205-018-1286-z – volume: 19 start-page: 205 year: 2018 ident: 2790_CR40 publication-title: Int J Mol Sci doi: 10.3390/ijms19010205 – volume: 65 start-page: S243 year: 2016 ident: 2790_CR34 publication-title: Physiol Res doi: 10.33549/physiolres.933426 – volume: 15 start-page: 339 year: 2004 ident: 2790_CR61 publication-title: Eur Cytokine Netw – volume: 22 start-page: 899 year: 2002 ident: 2790_CR9 publication-title: J Cerebr Blood Flow Metab doi: 10.1097/00004647-200208000-00001 – volume: 162 start-page: 213 year: 2016 ident: 2790_CR48 publication-title: J Photochem Photobiol B doi: 10.1016/j.jphotobiol.2016.06.046 – volume: 23 start-page: 1379 year: 2006 ident: 2790_CR15 publication-title: J Neurotrauma doi: 10.1089/neu.2006.23.1379 – volume: 1 start-page: 483 year: 2013 ident: 2790_CR21 publication-title: Redox Biol doi: 10.1016/j.redox.2013.07.006 – volume: 10 start-page: 487 year: 2015 ident: 2790_CR39 publication-title: Nano Today doi: 10.1016/j.nantod.2015.06.006 – volume: 50 start-page: 767 year: 2003 ident: 2790_CR11 publication-title: Magn Reson Med doi: 10.1002/mrm.10585 – volume: 24 start-page: 1139 year: 2010 ident: 2790_CR47 publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2010.03.002 – volume: 12 start-page: 931 year: 2013 ident: 2790_CR36 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4002 – volume: 273 start-page: 5858 year: 1998 ident: 2790_CR55 publication-title: J Biol Chem doi: 10.1074/jbc.273.10.5858 – volume: 34 start-page: 413 year: 2014 ident: 2790_CR18 publication-title: J Appl Toxicol doi: 10.1002/jat.2957 – volume: 3 start-page: 169 year: 2008 ident: 2790_CR6 publication-title: Int J Nanomed – volume: 6 start-page: 730 year: 2010 ident: 2790_CR26 publication-title: Nanomed Nanotechnol Biol Med doi: 10.1016/j.nano.2010.05.002 – volume: 4 start-page: 68 year: 2013 ident: 2790_CR14 publication-title: Stem Cell Res Ther doi: 10.1186/scrt219 – volume: 196 start-page: 482 year: 2018 ident: 2790_CR43 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.182 – volume: 10 start-page: 662 year: 2016 ident: 2790_CR17 publication-title: Nanotoxicology doi: 10.3109/17435390.2015.1107144 – volume: 10 start-page: 757 year: 2015 ident: 2790_CR4 publication-title: Regen Med doi: 10.2217/rme.15.36 – volume: 32 start-page: 173 year: 2013 ident: 2790_CR51 publication-title: Gen Physiol Biophys doi: 10.4149/gpb_2013039 – volume: 299 start-page: 78 year: 2016 ident: 2790_CR38 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2015.12.022 – volume: 8 start-page: 1689 year: 2013 ident: 2790_CR7 publication-title: Nanomedicine doi: 10.2217/nnm.13.146 – volume: 210 start-page: 53 year: 2012 ident: 2790_CR16 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2012.01.008 – volume: 311 start-page: 622 year: 2006 ident: 2790_CR45 publication-title: Science doi: 10.1126/science.1114397 – volume: 8 start-page: 253 year: 2013 ident: 2790_CR57 publication-title: Radiat Oncol doi: 10.1186/1748-717X-8-253 – volume: 615 start-page: 34 year: 2008 ident: 2790_CR52 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2007.11.037 – volume: 111 start-page: 65 year: 1994 ident: 2790_CR60 publication-title: Atherosclerosis doi: 10.1016/0021-9150(94)90192-9 – volume: 1 start-page: 5358 year: 2010 ident: 2790_CR1 publication-title: Nano Rev doi: 10.3402/nano.v1i0.5358 – volume: 9 start-page: 1641 year: 2014 ident: 2790_CR8 publication-title: Int J Nanomed – volume: 56 start-page: 125 year: 2015 ident: 2790_CR44 publication-title: Environ Mol Mutagen doi: 10.1002/em.21909 – volume: 10 start-page: 1463 year: 2015 ident: 2790_CR53 publication-title: Int J Nanomed doi: 10.2147/IJN.S76114 – volume: 99 start-page: 16267 year: 2002 ident: 2790_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.242435499 – volume: 31 start-page: 5063 year: 2010 ident: 2790_CR22 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.023 – volume: 33 start-page: e66 year: 2013 ident: 2790_CR56 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.112.300177 |
SSID | ssj0010021 |
Score | 2.3049445 |
Snippet | Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Acids Ascorbic acid Biochemistry Biomedical and Life Sciences Biomedicine Biomolecules Cell Biology Cell viability Coating effects Contrast agents Cultivation Cytotoxicity Deoxyribonucleic acid DNA Exposure Gene expression Iron oxides Lipid peroxidation Lipids Macrophages Nanoparticles Neurochemistry Neurology Neurosciences Original Paper Oxidative stress Peritoneum Peroxidation Silica Silicon dioxide Toxicity Transmission electron microscopy Vitamin C |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L15EnR_VKRHEixaaj7bLcYhjCHpyMLyUJG2n4DJx28H_3vfSdkOmguekSfm9Nu_93lcIubRxYoVJZWhAF4VSiijsWl6GWMMZdSXTtkCH_sNjMhjK-1E8qovCZk22exOS9Cf1qtgN2AtmTCiMO6ooVJtkKwbujolcQ95bxg5QbVURSgknjIrqUpmf1_iujtZszLX4qFc7_V2yU9uLtFcJeI9sFG6ftHsOuPLkk15Rn8HpXeNt8gwyp64Y-17etMrUoNOSTvTYYa0iddoBR65T4Si6YKmeAf00MKbta06njmLnY2zQDZtONN7v9QInzuyADPt3T7eDsL47IbQijeehEKlCY0iWVlpMQANiYJRJotywSDM0Y_KUsaTLrOBGCgOmCLfalHnKpTVKHJKWg82OCY0LVuRAo60SRsqo1JFNAMdSacVtGbOAsAbCzNaNxfF-i7ds1RIZYc8A9szDnqmAXC-fea_aavw5u9NIJqt_sVnGQfQJWKM8DcjFchh-Dox4aFdMF36OYIBENw7IUSXR5XYCiC0ABCM3jYhXi__-Lif_m35KtjkydO-06ZDW_GNRnIEZMzfn_qv9AqaD5Ro priority: 102 providerName: Springer Nature |
Title | The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages |
URI | https://link.springer.com/article/10.1007/s11064-019-02790-9 https://www.ncbi.nlm.nih.gov/pubmed/30945145 https://www.proquest.com/docview/2202665627 https://www.proquest.com/docview/2203137985 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9sIFFcoj0FauhLiAxfqxu_EJJVVC1YqoqogUuKxs725BIk5L0gP_nhmvkwhV9OSDvWtrxo_55gnw1ueFV67U3OFbxLVWGe972XKK4cz6WljfkEL_y6Q4m-rzWT5LCrdlcqtc34nxoq4XnnTkHyWi9AKFD1l-urnlVDWKrKuphMYj2KPUZbSry9kGcFF2UdHZKjXeNSZLQTNd6BxiIfK_MGTFNBk3_z5M96TNe5bS-ACN9-FJkhzZoGP1U9hpwjM4GAREzfM_7B2LvpxRSX4A35H7LDTXMas363w22KJlc3sdKGqRBRsQLSenOEbKWGaXCEQd9ln_s2aLwCgHMqXqxknnlip9_cC7Z_kcpuPR19MznqoocK_KfMWVKg2JRbr12pMrGkIEZ1yR1U5kVpBAU5dCFH3hlXRaORRKpLeurUupvTPqBewGnOwVsLwRTY2A2hvltM5am_kC6dgaa6Rvc9EDsSZh5VOKcap08avaJkcmsldI9iqSvTI9eL_55qZLsPHg6MM1Z6p02JbVdmv04GTTjceEbB82NIu7OEYJpEQ_78HLjqOb6RRCXCQQ9nxYs3j78_-v5fXDa3kDjyVh86iuOYTd1e-75ggFmJU7jrv0GPYG4-FwQu3nbxcjbIejyeUV9k7l4C_rk-22 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QEuCCiPpS0YCbiAhV9J1geEKqDa0seplVZcgu0kLRLrbdmtqv6p_kZmnGRXqKK3np3E0Xg8M988Ad6ELA_aF4Z71EXcGC34MKiGUw2nGBrpQk0O_YPDfHRsvo-z8Qpc97UwlFbZy8QkqKtpIB_5R4UoPUfjQxWfz845TY2i6Go_QqNli7366hIh2-zT7lc837dK7Xw7-jLi3VQBHnSRzbnWhSUzwTTBBErNQpPZW5-LykvhJCn4qpAyH8qglTfao5JWwfmmKpQJnpovochfQ8UrCOwV4wXAo26mso2NGpRtVnRFOm2pHmIvyvewFDW1gtt_FeEN6_ZGZDYpvJ2H8KCzVNl2y1qPYKWOj2F9OyJKn1yxdyzljian_Dr8QG5jsT5JXcRZmyPCpg2buJNIVZIsuojovEvCY-T8ZW6GwNfjmgu_KjaNjHouU2tw3HTiaLLYKcq62RM4vhP6PoXViJs9B5bVsq4QwAervTGicSLkSMfGOqtCk8kByJ6EZehamtNkjd_lshkzkb1EspeJ7KUdwPvFO2dtQ49bn97sT6bsLvesXLLiAF4vlvFaUqzFxXp6kZ7REikxzAbwrD3RxXYaITUSCFc-9Ee8_Pj__-XF7f_yCu6Njg72y_3dw70NuK_IL5BcRZuwOv9zUW-h8TT3LxPHMvh511fkLx8WIqs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5khZBLiDGPTYy2EHNJmkw_Zmb7IGLUxUeySIgguYzdPTObQLZXsyviX_PXWTWPXYLozXPPTA_V1VX11RPgg48Tr1yquUNdxLVWEe95WXKq4Yx6WlhfkEP_-yDZP9GHp_HpAty0tTCUVtnKxEpQ52NPPvIvElF6gsYHQvWySYs43u1vnV9wmiBFkdZ2nEbNIkfF9RXCt8nmwS6e9YaU_b2fO_u8mTDAvUrjKVcqNWQy6NJrT2laaD4745IodyKygpR9ngqR9IRX0mnlUGFLb12Zp1J7R42YUPwvpoSKOrD4dW9w_GMWwyD1WUdKNUo6EzUlO3XhHiIxyv4wFEM1ETf_q8U7tu6dOG2l_vrP4Vljt7LtmtGWYKEIL2B5OyBmH12zj6zKJK1c9MvwC3mPhWJY9RRndcYIG5dsZIeBaiZZsAGxepOSx8gVzOwEYbDDNev_5GwcGHVgpkbhuOnI0pyx3yj5Ji_h5FEo_Ao6ATd7AywuRJEjnPdGOa2j0kY-QTqWxhrpy1h0QbQkzHzT4JzmbPzN5q2ZiewZkj2ryJ6ZLnyavXNet_d48OmV9mSy5qpPsjljdmF9toyXlCIvNhTjy-oZJZASvbgLr-sTnW2nEGAjgXDlc3vE84_f_y9vH_6XNXiC1yP7djA4egdPJTkJKr_RCnSm_y6L92hJTd1qw7IMzh77ltwCEcMoRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+negative+effect+of+magnetic+nanoparticles+with+ascorbic+acid+on+peritoneal+macrophages&rft.jtitle=Neurochemical+research&rft.au=Jir%C3%A1kov%C3%A1%2C+Kl%C3%A1ra&rft.au=Moskvin%2C+Maksym&rft.au=Machov%C3%A1+Urdz%C3%ADkov%C3%A1%2C+Lucia&rft.au=R%C3%B6ssner%2C+Pavel&rft.date=2020-01-01&rft.issn=1573-6903&rft.eissn=1573-6903&rft.volume=45&rft.issue=1&rft.spage=159&rft_id=info:doi/10.1007%2Fs11064-019-02790-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-3190&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-3190&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-3190&client=summon |