Double-sided asymmetric method for automated fetal heart rate baseline calculation
The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. A...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 46; no. 4; pp. 1779 - 1790 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room. |
---|---|
AbstractList | The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room. The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room. The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room. |
Author | Keidar, Noam Yaniv, Yael Shapira, Rotem Kedar, Reuven |
Author_xml | – sequence: 1 givenname: Rotem orcidid: 0000-0002-7049-9981 surname: Shapira fullname: Shapira, Rotem organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT – sequence: 2 givenname: Reuven surname: Kedar fullname: Kedar, Reuven organization: Department of Obstetrics & Gynecology, Carmel Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology – sequence: 3 givenname: Yael orcidid: 0000-0002-5183-6284 surname: Yaniv fullname: Yaniv, Yael email: yaely@bm.technion.ac.il organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT – sequence: 4 givenname: Noam surname: Keidar fullname: Keidar, Noam email: noamkeidar@campus.technion.ac.il organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37770779$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKxTAQhoMoXo6-gAspuHFTTSZN0i7FOwiC6DpM01QraaNJujhvb_R4AReuJiTfNxnm3yHrk58sIfuMHjNK1UlkHCpZUuAlZZyrkq2RbZASykpxtf5zhmaL7MX4QikFwZiSYpNscaUUVarZJvfnfm6dLePQ2a7AuBxHm8JgilyefVf0PhQ4Jz9iyu-9TeiKZ4shFSHfFC1G64bJFgadmR2mwU-7ZKNHF-3eV12Qx8uLh7Pr8vbu6ubs9LY0XIlUQiN6iSBr6FjVdiiBUqkAZIOVbGumkHEjLKWiwg-UdYwBcEQlpBHG8AU5WvV9Df5ttjHpcYjGOoeT9XPUUCvaNFBRntHDP-iLn8OUp8tUZkQNufWCHHxRczvaTr-GYcSw1N_bygCsABN8jMH2Pwij-iMVvUpF51T0ZyqaZan-I5khfS4qBRzc_ypfqTH_Mz3Z8Dv2P9Y7MsWekw |
CitedBy_id | crossref_primary_10_1109_TCE_2024_3424898 |
Cites_doi | 10.1017/9781108918923 10.1109/RETIS.2011.6146892 10.3233/BME-141205 10.1109/CIC.2002.1166813 10.1016/0020-7292(87)90012-9 10.1364/AO.425473 10.23919/EUSIPCO.2018.8553110 10.1016/J.CLINPH.2019.07.025 10.1016/B0-08-043076-7/00526-X 10.1039/C4AN01061B 10.1039/C4AY00068D 10.1111/J.1471-0528.2000.TB11112.X 10.1111/J.1471-0528.1997.TB10935.X 10.5897/IJPS11.174 10.1067/MOB.2002.122447 10.1109/ICOSP.2012.6491896 10.1016/J.BSPC.2011.06.008 10.1111/J.1471-0528.1978.TB15851.X 10.1016/J.IJGO.2015.06.020 10.3390/S20072015 10.1109/BMEI.2012.6513082 10.1109/CBMS.2013.6627812 10.1007/978-1-4613-8122-8 10.1016/0002-9378(76)90523-8 10.1016/J.CLINPH.2019.05.008 10.3109/14767050009053454 10.1109/IEMBS.1990.692125 10.1016/J.COMPBIOMED.2019.103468 10.1016/J.JBI.2014.04.010 10.1007/S11760-023-02606-Y/TABLES/3 10.1016/J.ACRA.2023.04.028 10.7717/PEERJ.82 10.1109/IEMBS.2001.1020526 10.1002/IMA.22769 10.1016/J.AJOG.2015.08.066 10.1109/TBME.2007.903532 10.1016/0002-9149(93)90036-C 10.1364/AO.404863 10.1161/01.CIR.101.23.e215 10.23919/EUSIPCO.2017.8081209 10.1016/0378-3782(87)90082-X 10.1039/B922045C 10.1016/J.BSPC.2018.10.002 10.1016/J.IJGO.2015.06.017 10.1055/S-0034-1382874 10.1177/0003702819885002 10.1007/978-3-319-07064-3_45/COVER 10.36227/techrxiv.20199731 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Australasian College of Physical Scientists and Engineers in Medicine. |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Australasian College of Physical Scientists and Engineers in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-023-01337-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-4737 1879-5447 |
EndPage | 1790 |
ExternalDocumentID | 37770779 10_1007_s13246_023_01337_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Mark S. Kahn Family Fund. |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AASML AATNV AAUYE AAYZH ABAKF ABDZT ABECU ABJNI ABMQK ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AFBBN AFLOW AFQWF AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 3V. 4.4 408 40D 53G 5GY 67N 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABUWG ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC ALIPV AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CSCUP DWQXO EIOEI EN4 ESBYG FRRFC FYJPI FYUFA GGRSB GJIRD GNUQQ GQ7 HCIFZ HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW K9. KOV KTM M1P M2P O9- O93 O9I O9J P2P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSQYO Q9U R9I RLLFE S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UKHRP UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 7X8 ABRTQ |
ID | FETCH-LOGICAL-c375t-295f6a2682d14bda6200672269a46b817a13c5e0054a95f61d11223aa756c5cc3 |
IEDL.DBID | 7X7 |
ISSN | 2662-4729 0158-9938 2662-4737 |
IngestDate | Fri Jul 11 08:09:07 EDT 2025 Fri Jul 25 22:14:14 EDT 2025 Thu Apr 03 06:54:07 EDT 2025 Tue Jul 01 02:52:57 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Fri Feb 21 02:40:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Signal processing Electronic fetal monitoring Obstetric decision making Gap interpolation Fetal heart rate Baseline |
Language | English |
License | 2023. Australasian College of Physical Scientists and Engineers in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-295f6a2682d14bda6200672269a46b817a13c5e0054a95f61d11223aa756c5cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7049-9981 0000-0002-5183-6284 |
PMID | 37770779 |
PQID | 2899258222 |
PQPubID | 33672 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2870992403 proquest_journals_2899258222 pubmed_primary_37770779 crossref_primary_10_1007_s13246_023_01337_1 crossref_citationtrail_10_1007_s13246_023_01337_1 springer_journals_10_1007_s13246_023_01337_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 2023-Dec 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Phys Eng Sci Med |
PublicationTitleAlternate | Phys Eng Sci Med |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Rooth, Huch, Huch (CR4) 1987; 25 Moss (CR6) 1993; 72 Wei, Lu, Liu (CR19) 2012; 532 Jadeja (CR7) 2021 Taylor, Mires, Abel (CR20) 2000; 107 Yaosheng, Xiaodong, Shouyi, Xiaolei (CR24) 2014; 24 Bonferroni (CR50) 1936; 8 Jezewski, Kupka, Horoba (CR1) 2008; 55 Ayres-De-Campos, Spong, Chandraharan (CR5) 2015; 131 Yang, Dai, Liu (CR31) 2020; 74 CR38 Boudet, Houzé de l’Aulnoit, Demailly (CR21) 2019; 114 Zhang, Tang, Tong (CR33) 2020; 20 Ayres-de-campos, Bernardes, Garrido (CR14) 2000; 9 Miller (CR48) 1981 Barzideh, Urdal, Engan (CR36) 2018 Houze de L’Auinoit, Beuscart, Brabant (CR27) 2005 Mittelhammer, Judge, Miller (CR49) 2002 Baek, Park, Ahn (CR34) 2014; 140 CR47 CR46 CR45 Ye, Tian, Wei, Li (CR30) 2020; 59 CR41 Sunnetci, Kaba, Celiker, Alkan (CR57) 2023 Lu, Wei (CR18) 2012; 3 He, Zhang, Liu (CR29) 2014; 6 Mongelli, Dawkins, Chung (CR16) 1997; 104 Alkan, Akben (CR54) 2011; 6 Li, Lu (CR25) 2015; 32 Creel, Kolb, Fernandez, Nelson (CR10) 2012 Stålberg, van Dijk, Falck (CR9) 2019; 130 Oikonomou, Spilka, Stylios, Lhostka (CR40) 2013 CR17 Trimbos, Keirse (CR3) 1978; 85 Jiang, Li, Wang (CR32) 2021; 60 CR51 Cazares, Tarassenko, Impey (CR23) 2001 Pardey, Moulden, Redman (CR15) 2002; 186 Zhang, Chen, Liang (CR35) 2010; 135 Feng, Quirk, Djuric (CR39) 2017 Houzé de l’Aulnoit, Boudet, Demailly (CR28) 2019; 49 Rochard, Schifrin, Goupil (CR2) 1976; 126 Oğuz, Alkan, Schöler (CR55) 2023; 17 Schneider, Beckmann, German Society of Gynecology (CR12) 2014; 74 Spilka, Chudáček, Janků (CR52) 2014; 51 Jiménez, González, Gaitán (CR26) 2002; 29 Sabiani, le Dû, Loundou (CR53) 2015; 213 CR22 von Steinburg, Boulesteix, Lederer (CR43) 2013; 1 Goldberger, Amaral, Glass (CR42) 2000; 101 Tankisi, Burke, Cui (CR8) 2020; 131 Spilka, Chudáček, Koucký (CR37) 2012; 7 Mulder, Visser, Bekedam, Prechtl (CR58) 1987; 15 Muhammed Sünnetci, Alkan, Kubilay Muhammed Sünnetci (CR56) 2022; 32 Ayres-De-Campos, Arulkumaran (CR11) 2015; 131 Stock (CR44) 2001 Das, Roy, Saha (CR13) 2011 VP Oikonomou (1337_CR40) 2013 S-J Baek (1337_CR34) 2014; 140 SP von Steinburg (1337_CR43) 2013; 1 DL Houze de L’Auinoit (1337_CR27) 2005 D Ayres-De-Campos (1337_CR11) 2015; 131 A Houzé de l’Aulnoit (1337_CR28) 2019; 49 1337_CR22 EJH Mulder (1337_CR58) 1987; 15 S Cazares (1337_CR23) 2001 X Jiang (1337_CR32) 2021; 60 RG Miller (1337_CR48) 1981 L Yaosheng (1337_CR24) 2014; 24 RC Mittelhammer (1337_CR49) 2002 F Barzideh (1337_CR36) 2018 J Pardey (1337_CR15) 2002; 186 S Das (1337_CR13) 2011 GM Taylor (1337_CR20) 2000; 107 JH Stock (1337_CR44) 2001 ZM Zhang (1337_CR35) 2010; 135 G Rooth (1337_CR4) 1987; 25 1337_CR38 AL Goldberger (1337_CR42) 2000; 101 A Alkan (1337_CR54) 2011; 6 L Jiménez (1337_CR26) 2002; 29 G Yang (1337_CR31) 2020; 74 S He (1337_CR29) 2014; 6 KM Sunnetci (1337_CR57) 2023 J Ye (1337_CR30) 2020; 59 1337_CR41 NM Jadeja (1337_CR7) 2021 KTM Schneider (1337_CR12) 2014; 74 G Feng (1337_CR39) 2017 1337_CR47 J Spilka (1337_CR52) 2014; 51 1337_CR46 1337_CR45 S Boudet (1337_CR21) 2019; 114 M Mongelli (1337_CR16) 1997; 104 D Ayres-De-Campos (1337_CR5) 2015; 131 H Tankisi (1337_CR8) 2020; 131 E Stålberg (1337_CR9) 2019; 130 F Rochard (1337_CR2) 1976; 126 L Sabiani (1337_CR53) 2015; 213 X Li (1337_CR25) 2015; 32 1337_CR51 Y Lu (1337_CR18) 2012; 3 1337_CR17 K Muhammed Sünnetci (1337_CR56) 2022; 32 F Zhang (1337_CR33) 2020; 20 FE Oğuz (1337_CR55) 2023; 17 JB Trimbos (1337_CR3) 1978; 85 AJ Moss (1337_CR6) 1993; 72 DJ Creel (1337_CR10) 2012 D Ayres-de-campos (1337_CR14) 2000; 9 J Spilka (1337_CR37) 2012; 7 SY Wei (1337_CR19) 2012; 532 CE Bonferroni (1337_CR50) 1936; 8 J Jezewski (1337_CR1) 2008; 55 |
References_xml | – ident: CR45 – ident: CR22 – volume: 32 start-page: 1106 year: 2015 end-page: 1112 ident: CR25 article-title: [An Algorithm for correcting fetal heart rate Baseline] publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi – year: 2021 ident: CR7 publication-title: How to Read an EEG doi: 10.1017/9781108918923 – start-page: 336 year: 2011 end-page: 339 ident: CR13 article-title: A novel approach for extraction and analysis of variability of baseline publication-title: 2011 International conference on recent trends in information systems, ReTIS 2011 doi: 10.1109/RETIS.2011.6146892 – volume: 24 start-page: 3763 year: 2014 end-page: 3769 ident: CR24 article-title: Fetal heart rate baseline estimation with analysis of fetal movement signal publication-title: Biomed Mater Eng doi: 10.3233/BME-141205 – ident: CR51 – volume: 29 start-page: 477 year: 2002 end-page: 480 ident: CR26 article-title: Computerized algorithm for baseline estimation of fetal heart rate publication-title: Comput Cardiol doi: 10.1109/CIC.2002.1166813 – volume: 25 start-page: 159 year: 1987 end-page: 167 ident: CR4 article-title: Figo news publication-title: Int J Gynecol Obstet doi: 10.1016/0020-7292(87)90012-9 – volume: 60 start-page: 5707 year: 2021 ident: CR32 article-title: Baseline correction method based on improved adaptive iteratively reweighted penalized least squares for the x-ray fluorescence spectrum publication-title: Appl Opt doi: 10.1364/AO.425473 – start-page: 762 year: 2018 end-page: 766 ident: CR36 article-title: Estimation of missing data in fetal heart rate signals using shift-invariant dictionary publication-title: European Signal Processing Conference 2018-September doi: 10.23919/EUSIPCO.2018.8553110 – volume: 131 start-page: 243 year: 2020 end-page: 258 ident: CR8 article-title: Standards of instrumentation of EMG publication-title: Clin Neurophysiol doi: 10.1016/J.CLINPH.2019.07.025 – start-page: 15721 year: 2001 end-page: 15724 ident: CR44 article-title: Time series: economic forecasting publication-title: International encyclopedia of the social & behavioral sciences doi: 10.1016/B0-08-043076-7/00526-X – volume: 140 start-page: 250 year: 2014 end-page: 257 ident: CR34 article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing publication-title: Analyst doi: 10.1039/C4AN01061B – volume: 6 start-page: 4402 year: 2014 end-page: 4407 ident: CR29 article-title: Baseline correction for Raman spectra using an improved asymmetric least squares method publication-title: Anal Methods doi: 10.1039/C4AY00068D – year: 2012 ident: CR10 article-title: The electroretinogram and electro-oculogram: clinical applications publication-title: Webvision: the Organization of the retina and visual system – volume: 107 start-page: 1130 year: 2000 end-page: 1137 ident: CR20 article-title: The development and validation of an algorithm for real-time computerised fetal heart rate monitoring in labour publication-title: BJOG doi: 10.1111/J.1471-0528.2000.TB11112.X – ident: CR46 – volume: 104 start-page: 1128 year: 1997 end-page: 1133 ident: CR16 article-title: Computerised estimation of the baseline fetal heart rate in labour: the low frequency line publication-title: BJOG doi: 10.1111/J.1471-0528.1997.TB10935.X – volume: 6 start-page: 641 year: 2011 end-page: 650 ident: CR54 article-title: Use of K-means clustering in migraine detection by using EEG records under flash stimulation publication-title: Int J Phys Sci doi: 10.5897/IJPS11.174 – volume: 186 start-page: 1095 year: 2002 end-page: 1103 ident: CR15 article-title: A computer system for the numerical analysis of nonstress tests publication-title: Am J Obstet Gynecol doi: 10.1067/MOB.2002.122447 – volume: 3 start-page: 1645 year: 2012 end-page: 1649 ident: CR18 article-title: Nonlinear baseline estimation of FHR signal using empirical mode decomposition publication-title: International Conference on Signal Processing Proceedings, ICSP doi: 10.1109/ICOSP.2012.6491896 – volume: 7 start-page: 350 year: 2012 end-page: 357 ident: CR37 article-title: Using nonlinear features for fetal heart rate classification publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2011.06.008 – start-page: 61 year: 2002 end-page: 85 ident: CR49 article-title: The multivariate normal linear regression model: inference publication-title: Econometric Foundations – volume: 85 start-page: 900 year: 1978 end-page: 906 ident: CR3 article-title: Observer variability in assessment of antepartum cardiotocograms publication-title: BJOG doi: 10.1111/J.1471-0528.1978.TB15851.X – volume: 131 start-page: 13 year: 2015 end-page: 24 ident: CR5 article-title: FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography publication-title: Int J Gynecol Obstet doi: 10.1016/J.IJGO.2015.06.020 – volume: 20 start-page: 2015 year: 2020 ident: CR33 article-title: An automatic baseline correction method based on the penalized least squares method publication-title: Sensors doi: 10.3390/S20072015 – volume: 532 start-page: 536 year: 2012 ident: CR19 article-title: Fetal heart rate analysis using a non-linear baseline and variability estimation method publication-title: 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012 doi: 10.1109/BMEI.2012.6513082 – start-page: 337 year: 2013 end-page: 342 ident: CR40 article-title: An adaptive method for the recovery of missing samples from FHR time series publication-title: CBMS doi: 10.1109/CBMS.2013.6627812 – year: 1981 ident: CR48 publication-title: Simultaneous Statistical Inference doi: 10.1007/978-1-4613-8122-8 – volume: 126 start-page: 699 year: 1976 end-page: 706 ident: CR2 article-title: Nonstressed fetal heart rate monitoring in the antepartum period publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(76)90523-8 – volume: 130 start-page: 1688 year: 2019 end-page: 1729 ident: CR9 article-title: Standards for quantification of EMG and neurography publication-title: Clin Neurophysiol doi: 10.1016/J.CLINPH.2019.05.008 – ident: CR47 – volume: 9 start-page: 311 year: 2000 end-page: 318 ident: CR14 article-title: SisPorto 2.0: a program for automated analysis of Cardiotocograms publication-title: J Maternal-Fetal Neonatal Med doi: 10.3109/14767050009053454 – start-page: 1994 year: 2005 end-page: 1995 ident: CR27 article-title: Real-time analysis of the fetal heart rate publication-title: [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/IEMBS.1990.692125 – volume: 114 start-page: 103468 year: 2019 ident: CR21 article-title: Fetal heart rate baseline computation with a weighted median filter publication-title: Comput Biol Med doi: 10.1016/J.COMPBIOMED.2019.103468 – volume: 51 start-page: 72 year: 2014 end-page: 79 ident: CR52 article-title: Analysis of obstetricians’ decision making on CTG recordings publication-title: J Biomed Inform doi: 10.1016/J.JBI.2014.04.010 – volume: 17 start-page: 1 year: 2023 end-page: 9 ident: CR55 article-title: Emotion detection from ECG signals with different learning algorithms and automated feature engineering publication-title: Signal Image Video Process doi: 10.1007/S11760-023-02606-Y/TABLES/3 – year: 2023 ident: CR57 article-title: Deep Network-Based comprehensive parotid gland tumor detection publication-title: Acad Radiol doi: 10.1016/J.ACRA.2023.04.028 – volume: 1 start-page: e82 year: 2013 ident: CR43 article-title: What is the normal fetal heart rate? publication-title: PeerJ doi: 10.7717/PEERJ.82 – start-page: 1629 year: 2001 end-page: 1632 ident: CR23 article-title: Automated identification of abnormal cardiotocograms using neural network visualization techniques publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings doi: 10.1109/IEMBS.2001.1020526 – volume: 8 start-page: 3 year: 1936 end-page: 62 ident: CR50 article-title: Teoria statistica delle classi e calcolo delle probabilità publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. – volume: 32 start-page: 2049 year: 2022 end-page: 2065 ident: CR56 article-title: Lung cancer detection by using probabilistic majority voting and optimization techniques publication-title: Int J Imaging Syst Technol doi: 10.1002/IMA.22769 – volume: 213 start-page: 856-e1 year: 2015 end-page: 856-e8 ident: CR53 article-title: Intra- and interobserver agreement among obstetric experts in court regarding the review of abnormal fetal heart rate tracings and obstetrical management publication-title: Am J Obstet Gynecol doi: 10.1016/J.AJOG.2015.08.066 – volume: 55 start-page: 805 year: 2008 end-page: 810 ident: CR1 article-title: Extraction of fetal heart-rate signal as the time event series from evenly sampled data acquired using doppler ultrasound technique publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.903532 – ident: CR38 – ident: CR17 – volume: 72 start-page: B23 year: 1993 end-page: B25 ident: CR6 article-title: Measurement of the QT interval and the risk associated with QTc interval prolongation: a review publication-title: Am J Cardiol doi: 10.1016/0002-9149(93)90036-C – volume: 59 start-page: 10933 year: 2020 ident: CR30 article-title: Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum publication-title: Appl Opt doi: 10.1364/AO.404863 – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: CR42 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 261 year: 2017 end-page: 265 ident: CR39 article-title: Recovery of missing samples in fetal heart rate recordings with Gaussian processes publication-title: 25th European Signal Processing Conference, EUSIPCO doi: 10.23919/EUSIPCO.2017.8081209 – volume: 15 start-page: 231 year: 1987 end-page: 251 ident: CR58 article-title: Emergence of behavioural states in fetuses of type-1-diabetic women publication-title: Early Hum Dev doi: 10.1016/0378-3782(87)90082-X – volume: 135 start-page: 1138 year: 2010 end-page: 1146 ident: CR35 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst doi: 10.1039/B922045C – ident: CR41 – volume: 49 start-page: 113 year: 2019 end-page: 123 ident: CR28 article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: a comparison of 11 methods versus expert consensus publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2018.10.002 – volume: 131 start-page: 3 year: 2015 end-page: 4 ident: CR11 article-title: FIGO consensus guidelines on intrapartum fetal monitoring: introduction publication-title: Int J Gynecol Obstet doi: 10.1016/J.IJGO.2015.06.017 – volume: 74 start-page: 721 year: 2014 ident: CR12 article-title: S1-Guideline on the use of CTG during pregnancy and labor: long version – AWMF Registry No. 015/036 publication-title: Geburtshilfe Frauenheilkd doi: 10.1055/S-0034-1382874 – volume: 74 start-page: 1443 year: 2020 end-page: 1451 ident: CR31 article-title: Multiple constrained reweighted penalized least squares for spectral baseline correction publication-title: Appl Spectrosc doi: 10.1177/0003702819885002 – volume: 131 start-page: 243 year: 2020 ident: 1337_CR8 publication-title: Clin Neurophysiol doi: 10.1016/J.CLINPH.2019.07.025 – volume: 9 start-page: 311 year: 2000 ident: 1337_CR14 publication-title: J Maternal-Fetal Neonatal Med doi: 10.3109/14767050009053454 – start-page: 762 volume-title: European Signal Processing Conference 2018-September year: 2018 ident: 1337_CR36 doi: 10.23919/EUSIPCO.2018.8553110 – volume: 32 start-page: 2049 year: 2022 ident: 1337_CR56 publication-title: Int J Imaging Syst Technol doi: 10.1002/IMA.22769 – volume-title: How to Read an EEG year: 2021 ident: 1337_CR7 doi: 10.1017/9781108918923 – volume: 8 start-page: 3 year: 1936 ident: 1337_CR50 publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. – ident: 1337_CR45 – volume-title: Simultaneous Statistical Inference year: 1981 ident: 1337_CR48 doi: 10.1007/978-1-4613-8122-8 – volume-title: Webvision: the Organization of the retina and visual system year: 2012 ident: 1337_CR10 – volume: 3 start-page: 1645 year: 2012 ident: 1337_CR18 publication-title: International Conference on Signal Processing Proceedings, ICSP doi: 10.1109/ICOSP.2012.6491896 – volume: 213 start-page: 856-e1 year: 2015 ident: 1337_CR53 publication-title: Am J Obstet Gynecol doi: 10.1016/J.AJOG.2015.08.066 – volume: 186 start-page: 1095 year: 2002 ident: 1337_CR15 publication-title: Am J Obstet Gynecol doi: 10.1067/MOB.2002.122447 – volume: 32 start-page: 1106 year: 2015 ident: 1337_CR25 publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi – volume: 101 start-page: e215 year: 2000 ident: 1337_CR42 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 51 start-page: 72 year: 2014 ident: 1337_CR52 publication-title: J Biomed Inform doi: 10.1016/J.JBI.2014.04.010 – volume: 20 start-page: 2015 year: 2020 ident: 1337_CR33 publication-title: Sensors doi: 10.3390/S20072015 – start-page: 336 volume-title: 2011 International conference on recent trends in information systems, ReTIS 2011 year: 2011 ident: 1337_CR13 doi: 10.1109/RETIS.2011.6146892 – volume: 60 start-page: 5707 year: 2021 ident: 1337_CR32 publication-title: Appl Opt doi: 10.1364/AO.425473 – volume: 49 start-page: 113 year: 2019 ident: 1337_CR28 publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2018.10.002 – volume: 532 start-page: 536 year: 2012 ident: 1337_CR19 publication-title: 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012 doi: 10.1109/BMEI.2012.6513082 – start-page: 261 volume-title: 25th European Signal Processing Conference, EUSIPCO year: 2017 ident: 1337_CR39 doi: 10.23919/EUSIPCO.2017.8081209 – ident: 1337_CR17 – volume: 135 start-page: 1138 year: 2010 ident: 1337_CR35 publication-title: Analyst doi: 10.1039/B922045C – start-page: 337 volume-title: CBMS year: 2013 ident: 1337_CR40 doi: 10.1109/CBMS.2013.6627812 – start-page: 61 volume-title: Econometric Foundations year: 2002 ident: 1337_CR49 – volume: 55 start-page: 805 year: 2008 ident: 1337_CR1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.903532 – ident: 1337_CR38 doi: 10.1007/978-3-319-07064-3_45/COVER – ident: 1337_CR51 – volume: 131 start-page: 13 year: 2015 ident: 1337_CR5 publication-title: Int J Gynecol Obstet doi: 10.1016/J.IJGO.2015.06.020 – volume: 104 start-page: 1128 year: 1997 ident: 1337_CR16 publication-title: BJOG doi: 10.1111/J.1471-0528.1997.TB10935.X – volume: 7 start-page: 350 year: 2012 ident: 1337_CR37 publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2011.06.008 – volume: 15 start-page: 231 year: 1987 ident: 1337_CR58 publication-title: Early Hum Dev doi: 10.1016/0378-3782(87)90082-X – volume: 1 start-page: e82 year: 2013 ident: 1337_CR43 publication-title: PeerJ doi: 10.7717/PEERJ.82 – start-page: 15721 volume-title: International encyclopedia of the social & behavioral sciences year: 2001 ident: 1337_CR44 doi: 10.1016/B0-08-043076-7/00526-X – ident: 1337_CR47 – volume: 126 start-page: 699 year: 1976 ident: 1337_CR2 publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(76)90523-8 – volume: 131 start-page: 3 year: 2015 ident: 1337_CR11 publication-title: Int J Gynecol Obstet doi: 10.1016/J.IJGO.2015.06.017 – volume: 25 start-page: 159 year: 1987 ident: 1337_CR4 publication-title: Int J Gynecol Obstet doi: 10.1016/0020-7292(87)90012-9 – start-page: 1994 volume-title: [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2005 ident: 1337_CR27 doi: 10.1109/IEMBS.1990.692125 – volume: 6 start-page: 4402 year: 2014 ident: 1337_CR29 publication-title: Anal Methods doi: 10.1039/C4AY00068D – volume: 6 start-page: 641 year: 2011 ident: 1337_CR54 publication-title: Int J Phys Sci doi: 10.5897/IJPS11.174 – volume: 130 start-page: 1688 year: 2019 ident: 1337_CR9 publication-title: Clin Neurophysiol doi: 10.1016/J.CLINPH.2019.05.008 – volume: 107 start-page: 1130 year: 2000 ident: 1337_CR20 publication-title: BJOG doi: 10.1111/J.1471-0528.2000.TB11112.X – volume: 74 start-page: 1443 year: 2020 ident: 1337_CR31 publication-title: Appl Spectrosc doi: 10.1177/0003702819885002 – volume: 85 start-page: 900 year: 1978 ident: 1337_CR3 publication-title: BJOG doi: 10.1111/J.1471-0528.1978.TB15851.X – volume: 59 start-page: 10933 year: 2020 ident: 1337_CR30 publication-title: Appl Opt doi: 10.1364/AO.404863 – ident: 1337_CR41 doi: 10.36227/techrxiv.20199731 – ident: 1337_CR22 – volume: 29 start-page: 477 year: 2002 ident: 1337_CR26 publication-title: Comput Cardiol doi: 10.1109/CIC.2002.1166813 – start-page: 1629 volume-title: Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings year: 2001 ident: 1337_CR23 doi: 10.1109/IEMBS.2001.1020526 – ident: 1337_CR46 – volume: 114 start-page: 103468 year: 2019 ident: 1337_CR21 publication-title: Comput Biol Med doi: 10.1016/J.COMPBIOMED.2019.103468 – volume: 24 start-page: 3763 year: 2014 ident: 1337_CR24 publication-title: Biomed Mater Eng doi: 10.3233/BME-141205 – volume: 17 start-page: 1 year: 2023 ident: 1337_CR55 publication-title: Signal Image Video Process doi: 10.1007/S11760-023-02606-Y/TABLES/3 – volume: 74 start-page: 721 year: 2014 ident: 1337_CR12 publication-title: Geburtshilfe Frauenheilkd doi: 10.1055/S-0034-1382874 – volume: 140 start-page: 250 year: 2014 ident: 1337_CR34 publication-title: Analyst doi: 10.1039/C4AN01061B – volume: 72 start-page: B23 year: 1993 ident: 1337_CR6 publication-title: Am J Cardiol doi: 10.1016/0002-9149(93)90036-C – year: 2023 ident: 1337_CR57 publication-title: Acad Radiol doi: 10.1016/J.ACRA.2023.04.028 |
SSID | ssj0002511765 ssj0024368 |
Score | 2.2972984 |
Snippet | The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1779 |
SubjectTerms | Algorithms Annotations Asymmetry Automation Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Clinical decision making Decision making Errors Female Fetus - diagnostic imaging Fetuses Heart rate Heart Rate, Fetal - physiology Humans Interpolation Labor, Obstetric - physiology Least squares Medical and Radiation Physics Missing data Observer Variation Pregnancy Scientific Paper Smoothing Well being |
Title | Double-sided asymmetric method for automated fetal heart rate baseline calculation |
URI | https://link.springer.com/article/10.1007/s13246-023-01337-1 https://www.ncbi.nlm.nih.gov/pubmed/37770779 https://www.proquest.com/docview/2899258222 https://www.proquest.com/docview/2870992403 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4NeIEHtI0fC2PISLwNi8aOfcnT1E50aA8VQqvUt8h20idoYU0f-O-5S9yWCY2XRImdxLqzfV985_sALgh0oq-8kYbjcbIsM9KhDpKVr7A3Zd8NR1uM7M04-z0xk7jgtohhlas5sZ2oq3ngNfIr_jFQhs3Zj8cnyaxR7F2NFBpbsMOpyzikCyf4KtdeuxWOLB4N6kLncdNMt3WOkASH33I0kdYo038N0xu0-cZT2hqg4UfYj8hR9DtVf4IP9ewz7L3KJ3gAdwSH_X0tmYKzEm7x_PDAhFlBdDzRggCqcMtmTiiVyqc1AW_BjNaN4IQRgi0ao05BeguR1usQxsPrPz9vZCRNkEGjaaQqzNQ6ZXNVpZmvnFWtt1XZwmXW5ym6VAdTM1RzXDWtCHEp7RwaG0wI-gi2Z_NZ_QWE7zkkxXlta8zyqiiywgfnkUAPXTubQLqSWBliRnEmtrgvN7mQWcolSblspVymCXxfP_PY5dN4t_bpShFlHFuLctMTEjhfF9OoYFeHm9XzJddBgr6cazCB406B689pROwhFglcrjS6efn_23Lyflu-wi4z0XeRLqew3fxd1t8IrzT-rO2UdMyHv85gpz8cDEZ0HlyPbu_o7lj1XwBPkeay |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7qFrKI4WCK7UnsNj4mRxQVRWWpVAOCCRuwXa8J9il3awq_lR_Y2fy2KVC5cYxsuNYM2PP58x4PoBPCDqtL73mmvJxlFKaOysDJ-UL2xtS7IayLU7N4EJ9v9SXC_CnuwtDaZXdnlhv1OU40D_yXToYCE3u7MvtT06sURRd7Sg0GrM4jne_8cg22TvaR_1-FqJ_cP5twFtWAR6k1RUXuR4aJ0wmylT50hlRhyOFyZ0yPkutS2XQkbCMo65piZBESOesNkGHIHHcZ_BcSZnTisr6h_dq-9VX79DD4iaSy6y9pNNc1UPkQum-lL0kpeXpv47wAbp9EJmtHV7_DbxukSr72pjWW1iIoyV4da9-4Ts4Q_jtryMnys-SucndzQ0RdAXW8FIzBMTMTasxomJsH0YE-owYtCtGBSoYeVBCuQztJLQ0Ystw8STiXIHF0XgU14D5nrNoKF6aaFVW5rnKfXDeIsjCZ2cSSDuJFaGtYE5EGtfFvPYySblAKRe1lIs0ge3ZO7dN_Y5He290iijatTwp5paXwMdZM65CCq24URxPqY9FqE21DRNYbRQ4-5y01vaszRPY6TQ6H_z_c3n_-Fy24MXg_MdJcXJ0erwOLwVZVp1lswGL1a9p_IBYqfKbtYEyuHrqFfEXdtccdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJEYfCKLoIkpN9Ekbbttt5_bBEANcQAwxRpJ7W9pu7wnukNsL4V_zr3NmP-4wBN543Gx3t5mPzq870_kBfCTQib70Rhqux8myzEiHOkhWvsLeiHM3XG1xYg9Ps-9DM1yCv91ZGC6r7NbEeqEuJ4H_ke_wxkAZDmc7o7Ys4uf-YPfyj2QGKc60dnQajYkcx5tr2r5Nvx7tk64_KTU4-L13KFuGARk0mkqq3IysU7avyjTzpbOqTk0qm7vM-n6KLtXBRMY1joemJcETpZ1DY4MJQdN7n8AKapOyj-EQb_X5q4_hUbSlBSXX_fbATnNsj1AMl_5yJZPWKNP_g-IdpHsnS1sHv8EarLaoVXxrzOwFLMXxOjy_1cvwJfwiKO7Po2T6z1K46c3FBZN1BdFwVAsCx8LNqgkhZLo_igT6BbNpV4KbVQiOpox4BdlMaCnFXsHpo4hzA5bHk3F8A8L3HJLReG0jZv0yz7PcB-eRABddO5tA2kmsCG03cybVOC8WfZhZygVJuailXKQJfJ4_c9n08nhw9FaniKL162mxsMIEPsxvk0dymsWN42TGY5BgN_c5TOB1o8D55zQi9hDzBL50Gl28_P65bD48l214Sr5Q_Dg6OX4LzxQbVl1wswXL1dUsviPYVPn3tX0KOHtsh_gH5oIgoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-sided+asymmetric+method+for+automated+fetal+heart+rate+baseline+calculation&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Shapira%2C+Rotem&rft.au=Kedar%2C+Reuven&rft.au=Yaniv%2C+Yael&rft.au=Keidar%2C+Noam&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=46&rft.issue=4&rft.spage=1779&rft.epage=1790&rft_id=info:doi/10.1007%2Fs13246-023-01337-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |