Double-sided asymmetric method for automated fetal heart rate baseline calculation

The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. A...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 46; no. 4; pp. 1779 - 1790
Main Authors Shapira, Rotem, Kedar, Reuven, Yaniv, Yael, Keidar, Noam
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.
AbstractList The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.
The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.
The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and intra-observer variability, leading to inconsistent clinical decision-making. The baseline of the FHR signal is crucial for its interpretation. An automated method for baseline determination may reduce interpretation variability. Based on this claim, we present the Auto-Regressed Double-Sided Improved Asymmetric Least Squares (ARDSIAsLS) method as a baseline calculation algorithm designed to imitate expert obstetrician baseline determination. As the FHR signal is prone to a high rate of missing data, a step of gap interpolation in a physiological manner was implemented in the algorithm. The baseline of the interpolated signal was determined using a weighted algorithm of two improved asymmetric least squares smoothing models and an improved symmetric least squares smoothing model. The algorithm was validated against a ground truth determined from annotations of six expert obstetricians. FHR baseline calculation performance of the ARDSIAsLS method yielded a mean absolute error of 2.54 bpm, a max absolute error of 5.22 bpm, and a root mean square error of 2.89 bpm. In a comparison between the algorithm and 11 previously published methods, the algorithm outperformed them all. Notably, the algorithm was non-inferior to expert annotations. Automating the baseline FHR determination process may help reduce practitioner discordance and aid decision-making in the delivery room.
Author Keidar, Noam
Yaniv, Yael
Shapira, Rotem
Kedar, Reuven
Author_xml – sequence: 1
  givenname: Rotem
  orcidid: 0000-0002-7049-9981
  surname: Shapira
  fullname: Shapira, Rotem
  organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT
– sequence: 2
  givenname: Reuven
  surname: Kedar
  fullname: Kedar, Reuven
  organization: Department of Obstetrics & Gynecology, Carmel Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
– sequence: 3
  givenname: Yael
  orcidid: 0000-0002-5183-6284
  surname: Yaniv
  fullname: Yaniv, Yael
  email: yaely@bm.technion.ac.il
  organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT
– sequence: 4
  givenname: Noam
  surname: Keidar
  fullname: Keidar, Noam
  email: noamkeidar@campus.technion.ac.il
  organization: Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-IIT
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37770779$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxTAQhoMoXo6-gAspuHFTTSZN0i7FOwiC6DpM01QraaNJujhvb_R4AReuJiTfNxnm3yHrk58sIfuMHjNK1UlkHCpZUuAlZZyrkq2RbZASykpxtf5zhmaL7MX4QikFwZiSYpNscaUUVarZJvfnfm6dLePQ2a7AuBxHm8JgilyefVf0PhQ4Jz9iyu-9TeiKZ4shFSHfFC1G64bJFgadmR2mwU-7ZKNHF-3eV12Qx8uLh7Pr8vbu6ubs9LY0XIlUQiN6iSBr6FjVdiiBUqkAZIOVbGumkHEjLKWiwg-UdYwBcEQlpBHG8AU5WvV9Df5ttjHpcYjGOoeT9XPUUCvaNFBRntHDP-iLn8OUp8tUZkQNufWCHHxRczvaTr-GYcSw1N_bygCsABN8jMH2Pwij-iMVvUpF51T0ZyqaZan-I5khfS4qBRzc_ypfqTH_Mz3Z8Dv2P9Y7MsWekw
CitedBy_id crossref_primary_10_1109_TCE_2024_3424898
Cites_doi 10.1017/9781108918923
10.1109/RETIS.2011.6146892
10.3233/BME-141205
10.1109/CIC.2002.1166813
10.1016/0020-7292(87)90012-9
10.1364/AO.425473
10.23919/EUSIPCO.2018.8553110
10.1016/J.CLINPH.2019.07.025
10.1016/B0-08-043076-7/00526-X
10.1039/C4AN01061B
10.1039/C4AY00068D
10.1111/J.1471-0528.2000.TB11112.X
10.1111/J.1471-0528.1997.TB10935.X
10.5897/IJPS11.174
10.1067/MOB.2002.122447
10.1109/ICOSP.2012.6491896
10.1016/J.BSPC.2011.06.008
10.1111/J.1471-0528.1978.TB15851.X
10.1016/J.IJGO.2015.06.020
10.3390/S20072015
10.1109/BMEI.2012.6513082
10.1109/CBMS.2013.6627812
10.1007/978-1-4613-8122-8
10.1016/0002-9378(76)90523-8
10.1016/J.CLINPH.2019.05.008
10.3109/14767050009053454
10.1109/IEMBS.1990.692125
10.1016/J.COMPBIOMED.2019.103468
10.1016/J.JBI.2014.04.010
10.1007/S11760-023-02606-Y/TABLES/3
10.1016/J.ACRA.2023.04.028
10.7717/PEERJ.82
10.1109/IEMBS.2001.1020526
10.1002/IMA.22769
10.1016/J.AJOG.2015.08.066
10.1109/TBME.2007.903532
10.1016/0002-9149(93)90036-C
10.1364/AO.404863
10.1161/01.CIR.101.23.e215
10.23919/EUSIPCO.2017.8081209
10.1016/0378-3782(87)90082-X
10.1039/B922045C
10.1016/J.BSPC.2018.10.002
10.1016/J.IJGO.2015.06.017
10.1055/S-0034-1382874
10.1177/0003702819885002
10.1007/978-3-319-07064-3_45/COVER
10.36227/techrxiv.20199731
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Australasian College of Physical Scientists and Engineers in Medicine.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Australasian College of Physical Scientists and Engineers in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-023-01337-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 1790
ExternalDocumentID 37770779
10_1007_s13246_023_01337_1
Genre Journal Article
GrantInformation_xml – fundername: Mark S. Kahn Family Fund.
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
ALIPV
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
M1P
M2P
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q9U
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ABRTQ
ID FETCH-LOGICAL-c375t-295f6a2682d14bda6200672269a46b817a13c5e0054a95f61d11223aa756c5cc3
IEDL.DBID 7X7
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Fri Jul 11 08:09:07 EDT 2025
Fri Jul 25 22:14:14 EDT 2025
Thu Apr 03 06:54:07 EDT 2025
Tue Jul 01 02:52:57 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Signal processing
Electronic fetal monitoring
Obstetric decision making
Gap interpolation
Fetal heart rate
Baseline
Language English
License 2023. Australasian College of Physical Scientists and Engineers in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-295f6a2682d14bda6200672269a46b817a13c5e0054a95f61d11223aa756c5cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7049-9981
0000-0002-5183-6284
PMID 37770779
PQID 2899258222
PQPubID 33672
PageCount 12
ParticipantIDs proquest_miscellaneous_2870992403
proquest_journals_2899258222
pubmed_primary_37770779
crossref_primary_10_1007_s13246_023_01337_1
crossref_citationtrail_10_1007_s13246_023_01337_1
springer_journals_10_1007_s13246_023_01337_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Rooth, Huch, Huch (CR4) 1987; 25
Moss (CR6) 1993; 72
Wei, Lu, Liu (CR19) 2012; 532
Jadeja (CR7) 2021
Taylor, Mires, Abel (CR20) 2000; 107
Yaosheng, Xiaodong, Shouyi, Xiaolei (CR24) 2014; 24
Bonferroni (CR50) 1936; 8
Jezewski, Kupka, Horoba (CR1) 2008; 55
Ayres-De-Campos, Spong, Chandraharan (CR5) 2015; 131
Yang, Dai, Liu (CR31) 2020; 74
CR38
Boudet, Houzé de l’Aulnoit, Demailly (CR21) 2019; 114
Zhang, Tang, Tong (CR33) 2020; 20
Ayres-de-campos, Bernardes, Garrido (CR14) 2000; 9
Miller (CR48) 1981
Barzideh, Urdal, Engan (CR36) 2018
Houze de L’Auinoit, Beuscart, Brabant (CR27) 2005
Mittelhammer, Judge, Miller (CR49) 2002
Baek, Park, Ahn (CR34) 2014; 140
CR47
CR46
CR45
Ye, Tian, Wei, Li (CR30) 2020; 59
CR41
Sunnetci, Kaba, Celiker, Alkan (CR57) 2023
Lu, Wei (CR18) 2012; 3
He, Zhang, Liu (CR29) 2014; 6
Mongelli, Dawkins, Chung (CR16) 1997; 104
Alkan, Akben (CR54) 2011; 6
Li, Lu (CR25) 2015; 32
Creel, Kolb, Fernandez, Nelson (CR10) 2012
Stålberg, van Dijk, Falck (CR9) 2019; 130
Oikonomou, Spilka, Stylios, Lhostka (CR40) 2013
CR17
Trimbos, Keirse (CR3) 1978; 85
Jiang, Li, Wang (CR32) 2021; 60
CR51
Cazares, Tarassenko, Impey (CR23) 2001
Pardey, Moulden, Redman (CR15) 2002; 186
Zhang, Chen, Liang (CR35) 2010; 135
Feng, Quirk, Djuric (CR39) 2017
Houzé de l’Aulnoit, Boudet, Demailly (CR28) 2019; 49
Rochard, Schifrin, Goupil (CR2) 1976; 126
Oğuz, Alkan, Schöler (CR55) 2023; 17
Schneider, Beckmann, German Society of Gynecology (CR12) 2014; 74
Spilka, Chudáček, Janků (CR52) 2014; 51
Jiménez, González, Gaitán (CR26) 2002; 29
Sabiani, le Dû, Loundou (CR53) 2015; 213
CR22
von Steinburg, Boulesteix, Lederer (CR43) 2013; 1
Goldberger, Amaral, Glass (CR42) 2000; 101
Tankisi, Burke, Cui (CR8) 2020; 131
Spilka, Chudáček, Koucký (CR37) 2012; 7
Mulder, Visser, Bekedam, Prechtl (CR58) 1987; 15
Muhammed Sünnetci, Alkan, Kubilay Muhammed Sünnetci (CR56) 2022; 32
Ayres-De-Campos, Arulkumaran (CR11) 2015; 131
Stock (CR44) 2001
Das, Roy, Saha (CR13) 2011
VP Oikonomou (1337_CR40) 2013
S-J Baek (1337_CR34) 2014; 140
SP von Steinburg (1337_CR43) 2013; 1
DL Houze de L’Auinoit (1337_CR27) 2005
D Ayres-De-Campos (1337_CR11) 2015; 131
A Houzé de l’Aulnoit (1337_CR28) 2019; 49
1337_CR22
EJH Mulder (1337_CR58) 1987; 15
S Cazares (1337_CR23) 2001
X Jiang (1337_CR32) 2021; 60
RG Miller (1337_CR48) 1981
L Yaosheng (1337_CR24) 2014; 24
RC Mittelhammer (1337_CR49) 2002
F Barzideh (1337_CR36) 2018
J Pardey (1337_CR15) 2002; 186
S Das (1337_CR13) 2011
GM Taylor (1337_CR20) 2000; 107
JH Stock (1337_CR44) 2001
ZM Zhang (1337_CR35) 2010; 135
G Rooth (1337_CR4) 1987; 25
1337_CR38
AL Goldberger (1337_CR42) 2000; 101
A Alkan (1337_CR54) 2011; 6
L Jiménez (1337_CR26) 2002; 29
G Yang (1337_CR31) 2020; 74
S He (1337_CR29) 2014; 6
KM Sunnetci (1337_CR57) 2023
J Ye (1337_CR30) 2020; 59
1337_CR41
NM Jadeja (1337_CR7) 2021
KTM Schneider (1337_CR12) 2014; 74
G Feng (1337_CR39) 2017
1337_CR47
J Spilka (1337_CR52) 2014; 51
1337_CR46
1337_CR45
S Boudet (1337_CR21) 2019; 114
M Mongelli (1337_CR16) 1997; 104
D Ayres-De-Campos (1337_CR5) 2015; 131
H Tankisi (1337_CR8) 2020; 131
E Stålberg (1337_CR9) 2019; 130
F Rochard (1337_CR2) 1976; 126
L Sabiani (1337_CR53) 2015; 213
X Li (1337_CR25) 2015; 32
1337_CR51
Y Lu (1337_CR18) 2012; 3
1337_CR17
K Muhammed Sünnetci (1337_CR56) 2022; 32
F Zhang (1337_CR33) 2020; 20
FE Oğuz (1337_CR55) 2023; 17
JB Trimbos (1337_CR3) 1978; 85
AJ Moss (1337_CR6) 1993; 72
DJ Creel (1337_CR10) 2012
D Ayres-de-campos (1337_CR14) 2000; 9
J Spilka (1337_CR37) 2012; 7
SY Wei (1337_CR19) 2012; 532
CE Bonferroni (1337_CR50) 1936; 8
J Jezewski (1337_CR1) 2008; 55
References_xml – ident: CR45
– ident: CR22
– volume: 32
  start-page: 1106
  year: 2015
  end-page: 1112
  ident: CR25
  article-title: [An Algorithm for correcting fetal heart rate Baseline]
  publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
– year: 2021
  ident: CR7
  publication-title: How to Read an EEG
  doi: 10.1017/9781108918923
– start-page: 336
  year: 2011
  end-page: 339
  ident: CR13
  article-title: A novel approach for extraction and analysis of variability of baseline
  publication-title: 2011 International conference on recent trends in information systems, ReTIS 2011
  doi: 10.1109/RETIS.2011.6146892
– volume: 24
  start-page: 3763
  year: 2014
  end-page: 3769
  ident: CR24
  article-title: Fetal heart rate baseline estimation with analysis of fetal movement signal
  publication-title: Biomed Mater Eng
  doi: 10.3233/BME-141205
– ident: CR51
– volume: 29
  start-page: 477
  year: 2002
  end-page: 480
  ident: CR26
  article-title: Computerized algorithm for baseline estimation of fetal heart rate
  publication-title: Comput Cardiol
  doi: 10.1109/CIC.2002.1166813
– volume: 25
  start-page: 159
  year: 1987
  end-page: 167
  ident: CR4
  article-title: Figo news
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/0020-7292(87)90012-9
– volume: 60
  start-page: 5707
  year: 2021
  ident: CR32
  article-title: Baseline correction method based on improved adaptive iteratively reweighted penalized least squares for the x-ray fluorescence spectrum
  publication-title: Appl Opt
  doi: 10.1364/AO.425473
– start-page: 762
  year: 2018
  end-page: 766
  ident: CR36
  article-title: Estimation of missing data in fetal heart rate signals using shift-invariant dictionary
  publication-title: European Signal Processing Conference 2018-September
  doi: 10.23919/EUSIPCO.2018.8553110
– volume: 131
  start-page: 243
  year: 2020
  end-page: 258
  ident: CR8
  article-title: Standards of instrumentation of EMG
  publication-title: Clin Neurophysiol
  doi: 10.1016/J.CLINPH.2019.07.025
– start-page: 15721
  year: 2001
  end-page: 15724
  ident: CR44
  article-title: Time series: economic forecasting
  publication-title: International encyclopedia of the social & behavioral sciences
  doi: 10.1016/B0-08-043076-7/00526-X
– volume: 140
  start-page: 250
  year: 2014
  end-page: 257
  ident: CR34
  article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing
  publication-title: Analyst
  doi: 10.1039/C4AN01061B
– volume: 6
  start-page: 4402
  year: 2014
  end-page: 4407
  ident: CR29
  article-title: Baseline correction for Raman spectra using an improved asymmetric least squares method
  publication-title: Anal Methods
  doi: 10.1039/C4AY00068D
– year: 2012
  ident: CR10
  article-title: The electroretinogram and electro-oculogram: clinical applications
  publication-title: Webvision: the Organization of the retina and visual system
– volume: 107
  start-page: 1130
  year: 2000
  end-page: 1137
  ident: CR20
  article-title: The development and validation of an algorithm for real-time computerised fetal heart rate monitoring in labour
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.2000.TB11112.X
– ident: CR46
– volume: 104
  start-page: 1128
  year: 1997
  end-page: 1133
  ident: CR16
  article-title: Computerised estimation of the baseline fetal heart rate in labour: the low frequency line
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.1997.TB10935.X
– volume: 6
  start-page: 641
  year: 2011
  end-page: 650
  ident: CR54
  article-title: Use of K-means clustering in migraine detection by using EEG records under flash stimulation
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS11.174
– volume: 186
  start-page: 1095
  year: 2002
  end-page: 1103
  ident: CR15
  article-title: A computer system for the numerical analysis of nonstress tests
  publication-title: Am J Obstet Gynecol
  doi: 10.1067/MOB.2002.122447
– volume: 3
  start-page: 1645
  year: 2012
  end-page: 1649
  ident: CR18
  article-title: Nonlinear baseline estimation of FHR signal using empirical mode decomposition
  publication-title: International Conference on Signal Processing Proceedings, ICSP
  doi: 10.1109/ICOSP.2012.6491896
– volume: 7
  start-page: 350
  year: 2012
  end-page: 357
  ident: CR37
  article-title: Using nonlinear features for fetal heart rate classification
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2011.06.008
– start-page: 61
  year: 2002
  end-page: 85
  ident: CR49
  article-title: The multivariate normal linear regression model: inference
  publication-title: Econometric Foundations
– volume: 85
  start-page: 900
  year: 1978
  end-page: 906
  ident: CR3
  article-title: Observer variability in assessment of antepartum cardiotocograms
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.1978.TB15851.X
– volume: 131
  start-page: 13
  year: 2015
  end-page: 24
  ident: CR5
  article-title: FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/J.IJGO.2015.06.020
– volume: 20
  start-page: 2015
  year: 2020
  ident: CR33
  article-title: An automatic baseline correction method based on the penalized least squares method
  publication-title: Sensors
  doi: 10.3390/S20072015
– volume: 532
  start-page: 536
  year: 2012
  ident: CR19
  article-title: Fetal heart rate analysis using a non-linear baseline and variability estimation method
  publication-title: 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012
  doi: 10.1109/BMEI.2012.6513082
– start-page: 337
  year: 2013
  end-page: 342
  ident: CR40
  article-title: An adaptive method for the recovery of missing samples from FHR time series
  publication-title: CBMS
  doi: 10.1109/CBMS.2013.6627812
– year: 1981
  ident: CR48
  publication-title: Simultaneous Statistical Inference
  doi: 10.1007/978-1-4613-8122-8
– volume: 126
  start-page: 699
  year: 1976
  end-page: 706
  ident: CR2
  article-title: Nonstressed fetal heart rate monitoring in the antepartum period
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(76)90523-8
– volume: 130
  start-page: 1688
  year: 2019
  end-page: 1729
  ident: CR9
  article-title: Standards for quantification of EMG and neurography
  publication-title: Clin Neurophysiol
  doi: 10.1016/J.CLINPH.2019.05.008
– ident: CR47
– volume: 9
  start-page: 311
  year: 2000
  end-page: 318
  ident: CR14
  article-title: SisPorto 2.0: a program for automated analysis of Cardiotocograms
  publication-title: J Maternal-Fetal Neonatal Med
  doi: 10.3109/14767050009053454
– start-page: 1994
  year: 2005
  end-page: 1995
  ident: CR27
  article-title: Real-time analysis of the fetal heart rate
  publication-title: [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/IEMBS.1990.692125
– volume: 114
  start-page: 103468
  year: 2019
  ident: CR21
  article-title: Fetal heart rate baseline computation with a weighted median filter
  publication-title: Comput Biol Med
  doi: 10.1016/J.COMPBIOMED.2019.103468
– volume: 51
  start-page: 72
  year: 2014
  end-page: 79
  ident: CR52
  article-title: Analysis of obstetricians’ decision making on CTG recordings
  publication-title: J Biomed Inform
  doi: 10.1016/J.JBI.2014.04.010
– volume: 17
  start-page: 1
  year: 2023
  end-page: 9
  ident: CR55
  article-title: Emotion detection from ECG signals with different learning algorithms and automated feature engineering
  publication-title: Signal Image Video Process
  doi: 10.1007/S11760-023-02606-Y/TABLES/3
– year: 2023
  ident: CR57
  article-title: Deep Network-Based comprehensive parotid gland tumor detection
  publication-title: Acad Radiol
  doi: 10.1016/J.ACRA.2023.04.028
– volume: 1
  start-page: e82
  year: 2013
  ident: CR43
  article-title: What is the normal fetal heart rate?
  publication-title: PeerJ
  doi: 10.7717/PEERJ.82
– start-page: 1629
  year: 2001
  end-page: 1632
  ident: CR23
  article-title: Automated identification of abnormal cardiotocograms using neural network visualization techniques
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings
  doi: 10.1109/IEMBS.2001.1020526
– volume: 8
  start-page: 3
  year: 1936
  end-page: 62
  ident: CR50
  article-title: Teoria statistica delle classi e calcolo delle probabilità
  publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze.
– volume: 32
  start-page: 2049
  year: 2022
  end-page: 2065
  ident: CR56
  article-title: Lung cancer detection by using probabilistic majority voting and optimization techniques
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/IMA.22769
– volume: 213
  start-page: 856-e1
  year: 2015
  end-page: 856-e8
  ident: CR53
  article-title: Intra- and interobserver agreement among obstetric experts in court regarding the review of abnormal fetal heart rate tracings and obstetrical management
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/J.AJOG.2015.08.066
– volume: 55
  start-page: 805
  year: 2008
  end-page: 810
  ident: CR1
  article-title: Extraction of fetal heart-rate signal as the time event series from evenly sampled data acquired using doppler ultrasound technique
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.903532
– ident: CR38
– ident: CR17
– volume: 72
  start-page: B23
  year: 1993
  end-page: B25
  ident: CR6
  article-title: Measurement of the QT interval and the risk associated with QTc interval prolongation: a review
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(93)90036-C
– volume: 59
  start-page: 10933
  year: 2020
  ident: CR30
  article-title: Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum
  publication-title: Appl Opt
  doi: 10.1364/AO.404863
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: CR42
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 261
  year: 2017
  end-page: 265
  ident: CR39
  article-title: Recovery of missing samples in fetal heart rate recordings with Gaussian processes
  publication-title: 25th European Signal Processing Conference, EUSIPCO
  doi: 10.23919/EUSIPCO.2017.8081209
– volume: 15
  start-page: 231
  year: 1987
  end-page: 251
  ident: CR58
  article-title: Emergence of behavioural states in fetuses of type-1-diabetic women
  publication-title: Early Hum Dev
  doi: 10.1016/0378-3782(87)90082-X
– volume: 135
  start-page: 1138
  year: 2010
  end-page: 1146
  ident: CR35
  article-title: Baseline correction using adaptive iteratively reweighted penalized least squares
  publication-title: Analyst
  doi: 10.1039/B922045C
– ident: CR41
– volume: 49
  start-page: 113
  year: 2019
  end-page: 123
  ident: CR28
  article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: a comparison of 11 methods versus expert consensus
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2018.10.002
– volume: 131
  start-page: 3
  year: 2015
  end-page: 4
  ident: CR11
  article-title: FIGO consensus guidelines on intrapartum fetal monitoring: introduction
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/J.IJGO.2015.06.017
– volume: 74
  start-page: 721
  year: 2014
  ident: CR12
  article-title: S1-Guideline on the use of CTG during pregnancy and labor: long version – AWMF Registry No. 015/036
  publication-title: Geburtshilfe Frauenheilkd
  doi: 10.1055/S-0034-1382874
– volume: 74
  start-page: 1443
  year: 2020
  end-page: 1451
  ident: CR31
  article-title: Multiple constrained reweighted penalized least squares for spectral baseline correction
  publication-title: Appl Spectrosc
  doi: 10.1177/0003702819885002
– volume: 131
  start-page: 243
  year: 2020
  ident: 1337_CR8
  publication-title: Clin Neurophysiol
  doi: 10.1016/J.CLINPH.2019.07.025
– volume: 9
  start-page: 311
  year: 2000
  ident: 1337_CR14
  publication-title: J Maternal-Fetal Neonatal Med
  doi: 10.3109/14767050009053454
– start-page: 762
  volume-title: European Signal Processing Conference 2018-September
  year: 2018
  ident: 1337_CR36
  doi: 10.23919/EUSIPCO.2018.8553110
– volume: 32
  start-page: 2049
  year: 2022
  ident: 1337_CR56
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/IMA.22769
– volume-title: How to Read an EEG
  year: 2021
  ident: 1337_CR7
  doi: 10.1017/9781108918923
– volume: 8
  start-page: 3
  year: 1936
  ident: 1337_CR50
  publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze.
– ident: 1337_CR45
– volume-title: Simultaneous Statistical Inference
  year: 1981
  ident: 1337_CR48
  doi: 10.1007/978-1-4613-8122-8
– volume-title: Webvision: the Organization of the retina and visual system
  year: 2012
  ident: 1337_CR10
– volume: 3
  start-page: 1645
  year: 2012
  ident: 1337_CR18
  publication-title: International Conference on Signal Processing Proceedings, ICSP
  doi: 10.1109/ICOSP.2012.6491896
– volume: 213
  start-page: 856-e1
  year: 2015
  ident: 1337_CR53
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/J.AJOG.2015.08.066
– volume: 186
  start-page: 1095
  year: 2002
  ident: 1337_CR15
  publication-title: Am J Obstet Gynecol
  doi: 10.1067/MOB.2002.122447
– volume: 32
  start-page: 1106
  year: 2015
  ident: 1337_CR25
  publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
– volume: 101
  start-page: e215
  year: 2000
  ident: 1337_CR42
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 51
  start-page: 72
  year: 2014
  ident: 1337_CR52
  publication-title: J Biomed Inform
  doi: 10.1016/J.JBI.2014.04.010
– volume: 20
  start-page: 2015
  year: 2020
  ident: 1337_CR33
  publication-title: Sensors
  doi: 10.3390/S20072015
– start-page: 336
  volume-title: 2011 International conference on recent trends in information systems, ReTIS 2011
  year: 2011
  ident: 1337_CR13
  doi: 10.1109/RETIS.2011.6146892
– volume: 60
  start-page: 5707
  year: 2021
  ident: 1337_CR32
  publication-title: Appl Opt
  doi: 10.1364/AO.425473
– volume: 49
  start-page: 113
  year: 2019
  ident: 1337_CR28
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2018.10.002
– volume: 532
  start-page: 536
  year: 2012
  ident: 1337_CR19
  publication-title: 2012 5th International Conference on Biomedical Engineering and Informatics BMEI 2012
  doi: 10.1109/BMEI.2012.6513082
– start-page: 261
  volume-title: 25th European Signal Processing Conference, EUSIPCO
  year: 2017
  ident: 1337_CR39
  doi: 10.23919/EUSIPCO.2017.8081209
– ident: 1337_CR17
– volume: 135
  start-page: 1138
  year: 2010
  ident: 1337_CR35
  publication-title: Analyst
  doi: 10.1039/B922045C
– start-page: 337
  volume-title: CBMS
  year: 2013
  ident: 1337_CR40
  doi: 10.1109/CBMS.2013.6627812
– start-page: 61
  volume-title: Econometric Foundations
  year: 2002
  ident: 1337_CR49
– volume: 55
  start-page: 805
  year: 2008
  ident: 1337_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.903532
– ident: 1337_CR38
  doi: 10.1007/978-3-319-07064-3_45/COVER
– ident: 1337_CR51
– volume: 131
  start-page: 13
  year: 2015
  ident: 1337_CR5
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/J.IJGO.2015.06.020
– volume: 104
  start-page: 1128
  year: 1997
  ident: 1337_CR16
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.1997.TB10935.X
– volume: 7
  start-page: 350
  year: 2012
  ident: 1337_CR37
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2011.06.008
– volume: 15
  start-page: 231
  year: 1987
  ident: 1337_CR58
  publication-title: Early Hum Dev
  doi: 10.1016/0378-3782(87)90082-X
– volume: 1
  start-page: e82
  year: 2013
  ident: 1337_CR43
  publication-title: PeerJ
  doi: 10.7717/PEERJ.82
– start-page: 15721
  volume-title: International encyclopedia of the social & behavioral sciences
  year: 2001
  ident: 1337_CR44
  doi: 10.1016/B0-08-043076-7/00526-X
– ident: 1337_CR47
– volume: 126
  start-page: 699
  year: 1976
  ident: 1337_CR2
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/0002-9378(76)90523-8
– volume: 131
  start-page: 3
  year: 2015
  ident: 1337_CR11
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/J.IJGO.2015.06.017
– volume: 25
  start-page: 159
  year: 1987
  ident: 1337_CR4
  publication-title: Int J Gynecol Obstet
  doi: 10.1016/0020-7292(87)90012-9
– start-page: 1994
  volume-title: [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2005
  ident: 1337_CR27
  doi: 10.1109/IEMBS.1990.692125
– volume: 6
  start-page: 4402
  year: 2014
  ident: 1337_CR29
  publication-title: Anal Methods
  doi: 10.1039/C4AY00068D
– volume: 6
  start-page: 641
  year: 2011
  ident: 1337_CR54
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS11.174
– volume: 130
  start-page: 1688
  year: 2019
  ident: 1337_CR9
  publication-title: Clin Neurophysiol
  doi: 10.1016/J.CLINPH.2019.05.008
– volume: 107
  start-page: 1130
  year: 2000
  ident: 1337_CR20
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.2000.TB11112.X
– volume: 74
  start-page: 1443
  year: 2020
  ident: 1337_CR31
  publication-title: Appl Spectrosc
  doi: 10.1177/0003702819885002
– volume: 85
  start-page: 900
  year: 1978
  ident: 1337_CR3
  publication-title: BJOG
  doi: 10.1111/J.1471-0528.1978.TB15851.X
– volume: 59
  start-page: 10933
  year: 2020
  ident: 1337_CR30
  publication-title: Appl Opt
  doi: 10.1364/AO.404863
– ident: 1337_CR41
  doi: 10.36227/techrxiv.20199731
– ident: 1337_CR22
– volume: 29
  start-page: 477
  year: 2002
  ident: 1337_CR26
  publication-title: Comput Cardiol
  doi: 10.1109/CIC.2002.1166813
– start-page: 1629
  volume-title: Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings
  year: 2001
  ident: 1337_CR23
  doi: 10.1109/IEMBS.2001.1020526
– ident: 1337_CR46
– volume: 114
  start-page: 103468
  year: 2019
  ident: 1337_CR21
  publication-title: Comput Biol Med
  doi: 10.1016/J.COMPBIOMED.2019.103468
– volume: 24
  start-page: 3763
  year: 2014
  ident: 1337_CR24
  publication-title: Biomed Mater Eng
  doi: 10.3233/BME-141205
– volume: 17
  start-page: 1
  year: 2023
  ident: 1337_CR55
  publication-title: Signal Image Video Process
  doi: 10.1007/S11760-023-02606-Y/TABLES/3
– volume: 74
  start-page: 721
  year: 2014
  ident: 1337_CR12
  publication-title: Geburtshilfe Frauenheilkd
  doi: 10.1055/S-0034-1382874
– volume: 140
  start-page: 250
  year: 2014
  ident: 1337_CR34
  publication-title: Analyst
  doi: 10.1039/C4AN01061B
– volume: 72
  start-page: B23
  year: 1993
  ident: 1337_CR6
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(93)90036-C
– year: 2023
  ident: 1337_CR57
  publication-title: Acad Radiol
  doi: 10.1016/J.ACRA.2023.04.028
SSID ssj0002511765
ssj0024368
Score 2.2972984
Snippet The fetal heart rate (FHR) signal is used to assess the well-being of a fetus during labor. Manual interpretation of the FHR is subject to high inter- and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1779
SubjectTerms Algorithms
Annotations
Asymmetry
Automation
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Clinical decision making
Decision making
Errors
Female
Fetus - diagnostic imaging
Fetuses
Heart rate
Heart Rate, Fetal - physiology
Humans
Interpolation
Labor, Obstetric - physiology
Least squares
Medical and Radiation Physics
Missing data
Observer Variation
Pregnancy
Scientific Paper
Smoothing
Well being
Title Double-sided asymmetric method for automated fetal heart rate baseline calculation
URI https://link.springer.com/article/10.1007/s13246-023-01337-1
https://www.ncbi.nlm.nih.gov/pubmed/37770779
https://www.proquest.com/docview/2899258222
https://www.proquest.com/docview/2870992403
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4NeIEHtI0fC2PISLwNi8aOfcnT1E50aA8VQqvUt8h20idoYU0f-O-5S9yWCY2XRImdxLqzfV985_sALgh0oq-8kYbjcbIsM9KhDpKVr7A3Zd8NR1uM7M04-z0xk7jgtohhlas5sZ2oq3ngNfIr_jFQhs3Zj8cnyaxR7F2NFBpbsMOpyzikCyf4KtdeuxWOLB4N6kLncdNMt3WOkASH33I0kdYo038N0xu0-cZT2hqg4UfYj8hR9DtVf4IP9ewz7L3KJ3gAdwSH_X0tmYKzEm7x_PDAhFlBdDzRggCqcMtmTiiVyqc1AW_BjNaN4IQRgi0ao05BeguR1usQxsPrPz9vZCRNkEGjaaQqzNQ6ZXNVpZmvnFWtt1XZwmXW5ym6VAdTM1RzXDWtCHEp7RwaG0wI-gi2Z_NZ_QWE7zkkxXlta8zyqiiywgfnkUAPXTubQLqSWBliRnEmtrgvN7mQWcolSblspVymCXxfP_PY5dN4t_bpShFlHFuLctMTEjhfF9OoYFeHm9XzJddBgr6cazCB406B689pROwhFglcrjS6efn_23Lyflu-wi4z0XeRLqew3fxd1t8IrzT-rO2UdMyHv85gpz8cDEZ0HlyPbu_o7lj1XwBPkeay
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7qFrKI4WCK7UnsNj4mRxQVRWWpVAOCCRuwXa8J9il3awq_lR_Y2fy2KVC5cYxsuNYM2PP58x4PoBPCDqtL73mmvJxlFKaOysDJ-UL2xtS7IayLU7N4EJ9v9SXC_CnuwtDaZXdnlhv1OU40D_yXToYCE3u7MvtT06sURRd7Sg0GrM4jne_8cg22TvaR_1-FqJ_cP5twFtWAR6k1RUXuR4aJ0wmylT50hlRhyOFyZ0yPkutS2XQkbCMo65piZBESOesNkGHIHHcZ_BcSZnTisr6h_dq-9VX79DD4iaSy6y9pNNc1UPkQum-lL0kpeXpv47wAbp9EJmtHV7_DbxukSr72pjWW1iIoyV4da9-4Ts4Q_jtryMnys-SucndzQ0RdAXW8FIzBMTMTasxomJsH0YE-owYtCtGBSoYeVBCuQztJLQ0Ystw8STiXIHF0XgU14D5nrNoKF6aaFVW5rnKfXDeIsjCZ2cSSDuJFaGtYE5EGtfFvPYySblAKRe1lIs0ge3ZO7dN_Y5He290iijatTwp5paXwMdZM65CCq24URxPqY9FqE21DRNYbRQ4-5y01vaszRPY6TQ6H_z_c3n_-Fy24MXg_MdJcXJ0erwOLwVZVp1lswGL1a9p_IBYqfKbtYEyuHrqFfEXdtccdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJEYfCKLoIkpN9Ekbbttt5_bBEANcQAwxRpJ7W9pu7wnukNsL4V_zr3NmP-4wBN543Gx3t5mPzq870_kBfCTQib70Rhqux8myzEiHOkhWvsLeiHM3XG1xYg9Ps-9DM1yCv91ZGC6r7NbEeqEuJ4H_ke_wxkAZDmc7o7Ys4uf-YPfyj2QGKc60dnQajYkcx5tr2r5Nvx7tk64_KTU4-L13KFuGARk0mkqq3IysU7avyjTzpbOqTk0qm7vM-n6KLtXBRMY1joemJcETpZ1DY4MJQdN7n8AKapOyj-EQb_X5q4_hUbSlBSXX_fbATnNsj1AMl_5yJZPWKNP_g-IdpHsnS1sHv8EarLaoVXxrzOwFLMXxOjy_1cvwJfwiKO7Po2T6z1K46c3FBZN1BdFwVAsCx8LNqgkhZLo_igT6BbNpV4KbVQiOpox4BdlMaCnFXsHpo4hzA5bHk3F8A8L3HJLReG0jZv0yz7PcB-eRABddO5tA2kmsCG03cybVOC8WfZhZygVJuailXKQJfJ4_c9n08nhw9FaniKL162mxsMIEPsxvk0dymsWN42TGY5BgN_c5TOB1o8D55zQi9hDzBL50Gl28_P65bD48l214Sr5Q_Dg6OX4LzxQbVl1wswXL1dUsviPYVPn3tX0KOHtsh_gH5oIgoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-sided+asymmetric+method+for+automated+fetal+heart+rate+baseline+calculation&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Shapira%2C+Rotem&rft.au=Kedar%2C+Reuven&rft.au=Yaniv%2C+Yael&rft.au=Keidar%2C+Noam&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=46&rft.issue=4&rft.spage=1779&rft.epage=1790&rft_id=info:doi/10.1007%2Fs13246-023-01337-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon