Fatou Components and Julia Sets of Singularly Perturbed Rational Maps with Positive Parameter
In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞ for Fλ is always a Jordan domain if the Julia set of Fλ is not a Cantor set. Fuhermore, Bλ is a quasidisk if there is no parabolic fixed point...
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 28; no. 10; pp. 1937 - 1954 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
01.10.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞ for Fλ is always a Jordan domain if the Julia set of Fλ is not a Cantor set. Fuhermore, Bλ is a quasidisk if there is no parabolic fixed point on the boundary of Bλ. It is also shown that if the Julia set of Fλ is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpirlski curve is given. |
---|---|
AbstractList | In this paper, we discuss the rational maps ... with the positive real parameter ... . It is shown that the immediately attracting basin ... of ... is always a Jordan domain if the Julia set of ... is not a Cantor set. Furthermore, ... is a quasidisk if there is no parabolic fixed point on the boundary of ... . It is also shown that if the Julia set of F ... is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpiski curve is given. (ProQuest: ... denotes formulae and non-USASCII text omitted) In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞ for Fλ is always a Jordan domain if the Julia set of Fλ is not a Cantor set. Fuhermore, Bλ is a quasidisk if there is no parabolic fixed point on the boundary of Bλ. It is also shown that if the Julia set of Fλ is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpirlski curve is given. In this paper, we discuss the rational maps with the positive real parameter λ . It is shown that the immediately attracting basin B λ of ∞ for F λ is always a Jordan domain if the Julia set of F λ is not a Cantor set. Furthermore, B λ is a quasidisk if there is no parabolic fixed point on the boundary of B λ . It is also shown that if the Julia set of F λ is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpiński curve is given. In this paper, we discuss the rational maps $F_\lambda (z) = z Delta + \lambda /z Delta ,n \geqslant 2$ with the positive real parameter lambda . It is shown that the immediately attracting basin B sub( ) lambda of infinity for F sub( ) lambda is always a Jordan domain if the Julia set of F sub( ) lambda is not a Cantor set. Furthermore, B sub( ) lambda is a quasidisk if there is no parabolic fixed point on the boundary of B sub( ) lambda It is also shown that if the Julia set of F sub( ) lambda is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpiski curve is given. |
Author | Wei Yuan QIU Lan XIE Yong Cheng YIN |
AuthorAffiliation | School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China |
Author_xml | – sequence: 1 givenname: Wei Yuan surname: Qiu fullname: Qiu, Wei Yuan email: wyqiu@fudan.edu.cn organization: School of Mathematical Sciences, Fudan University – sequence: 2 givenname: Lan surname: Xie fullname: Xie, Lan organization: School of Mathematical Sciences, Fudan University – sequence: 3 givenname: Yong Cheng surname: Yin fullname: Yin, Yong Cheng organization: School of Mathematical Sciences, Fudan University |
BookMark | eNp9kE1P3DAQhi1EJT5_QG9GvfQS6okTfxyrVfmoqFgVeqwixztZjLL2Yjsg_j2mu6oQUnuyPXqemfF7QHZ98EjIR2CnwJj8koABNBWDumKtEhXskH1ouK6kALm7vasWxB45SOmesbbVTOyT32cmh4nOwmpdGvqcqPEL-n0anaE3WJ5hoDfOL6fRxPGZzjHmKfa4oD9NdsGbkf4w60SfXL6j85Bcdo9I5yaaFWaMR-TDYMaEx9vzkPw6-3Y7u6iurs8vZ1-vKstlm6tac72w0DcAxkJdNhuMavpSlpqjVAsr1MCM7W2LGgQvWK-wMdizlqEU_JB83vRdx_AwYcrdyiWL42g8hil1AFw0ILnSBf30Dr0PUywfKRTjSgrG26ZQsKFsDClFHLp1dCsTnwvUvQbebQLvSuDda-AdFEe-c6zLf1LK0bjxv2a9MVOZ4pcY3-70b-lkO-4u-OVD8f7u2PBaMak1fwERKqEd |
CitedBy_id | crossref_primary_10_1007_s11425_016_9228_x |
Cites_doi | 10.1090/S1088-4173-06-00149-4 10.1142/S0218127404009259 10.4064/fm206-0-9 10.1007/978-1-4612-4364-9 10.3934/dcds.2005.13.1035 10.1142/S0218127408021725 10.4064/fm202-2-5 10.1512/iumj.2005.54.2615 10.1007/BF01232933 10.4064/fm185-3-5 10.1007/BF02972685 10.1016/j.topol.2006.03.024 10.1017/S0143385704000380 10.1017/S0143385707000156 10.1090/S1088-4173-07-00166-X 10.4171/011-1/6 10.1007/BF03321617 10.24033/asens.1491 10.1090/conm/396 10.4310/jdg/1214460037 |
ContentType | Journal Article |
Copyright | Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
Copyright_xml | – notice: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10114-012-0586-1 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Fatou Components and Julia Sets of Singularly Perturbed Rational Maps with Positive Parameter |
EISSN | 1439-7617 |
EndPage | 1954 |
ExternalDocumentID | 2756318691 10_1007_s10114_012_0586_1 43280799 |
Genre | Feature |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 92L 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACDTI ACPIV ACUHS AEFQL AEMSY AGQEE AGRTI AIGIU BSONS H13 PQBZA AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR CITATION PHGZM PHGZT TGP 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c375t-2939dc1b411ac12590fa84b293793e78dc68f0acbc5e916311ab8e4aeb050e763 |
IEDL.DBID | BENPR |
ISSN | 1439-8516 |
IngestDate | Fri Jul 11 03:59:43 EDT 2025 Fri Jul 25 10:54:32 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Tue Jul 01 03:37:57 EDT 2025 Fri Feb 21 02:32:30 EST 2025 Wed Feb 14 10:45:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Jordan domain local connectivity 37F10 Sierpiński curve Julia set Fatou component |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-2939dc1b411ac12590fa84b293793e78dc68f0acbc5e916311ab8e4aeb050e763 |
Notes | Julia set, Fatou component, Jordan domain, local connectivity, Sierpifiski curve In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞ for Fλ is always a Jordan domain if the Julia set of Fλ is not a Cantor set. Fuhermore, Bλ is a quasidisk if there is no parabolic fixed point on the boundary of Bλ. It is also shown that if the Julia set of Fλ is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpirlski curve is given. 11-2039/O1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1038760354 |
PQPubID | 54875 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1136417389 proquest_journals_1038760354 crossref_primary_10_1007_s10114_012_0586_1 crossref_citationtrail_10_1007_s10114_012_0586_1 springer_journals_10_1007_s10114_012_0586_1 chongqing_primary_43280799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationTitleAlternate | Acta Mathematica Sinica |
PublicationYear | 2012 |
Publisher | Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society Springer Nature B.V |
Publisher_xml | – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society – name: Springer Nature B.V |
References | McMullen (CR1) 1988 Devaney (CR13) 2009; 206 CR19 Steinmetz (CR16) 2006; 10 CR18 Devaney, Look (CR7) 2005; 13 Roesch (CR15) 2006 Devaney (CR10) 2007; 11 Steinmetz (CR17) 2006; 6 McMullen (CR31) 1994 Pommerenke (CR27) 1975 Carleson, Gamelin (CR20) 1993 Milnor (CR21) 2006 Lyubich, Minsky (CR30) 1997; 47 Carleson, Jones, Yoccoz (CR24) 1994; 25 Devaney (CR5) 2004; 5 Devaney (CR6) 2005; 185 Devaney, Pilgrim (CR14) 2009; 202 CR29 Blanchard, Devaney, Garijo (CR3) 2008; 18 CR25 Douady, Hubbard (CR28) 1985; 18 Devaney, Josić, Shapiro (CR4) 2004; 14 Devaney (CR11) 2007; 27 Milnor (CR23) 2000; 261 Blanchard, Devaney, Look (CR2) 2005; 25 Devaney, Look (CR9) 2006; 30 Whyburn (CR22) 1971 Tan, Yin (CR26) 1996; 39 Devaney, Look, Uminsky (CR8) 2005; 54 Devaney, Rocha, Siegmund (CR12) 2007; 154 R. Devaney (586_CR8) 2005; 54 P. Roesch (586_CR15) 2006 J. Milnor (586_CR21) 2006 L. Carleson (586_CR20) 1993 R. Devaney (586_CR5) 2004; 5 586_CR25 C. T. McMullen (586_CR1) 1988 P. Blanchard (586_CR2) 2005; 25 N. Steinmetz (586_CR17) 2006; 6 586_CR19 586_CR18 R. Devaney (586_CR12) 2007; 154 R. Devaney (586_CR7) 2005; 13 N. Steinmetz (586_CR16) 2006; 10 J. Milnor (586_CR23) 2000; 261 R. Devaney (586_CR4) 2004; 14 L. Tan (586_CR26) 1996; 39 P. Blanchard (586_CR3) 2008; 18 M. Lyubich (586_CR30) 1997; 47 L. Carleson (586_CR24) 1994; 25 R. Devaney (586_CR11) 2007; 27 G. T. Whyburn (586_CR22) 1971 A. Douady (586_CR28) 1985; 18 R. Devaney (586_CR14) 2009; 202 R. Devaney (586_CR10) 2007; 11 R. Devaney (586_CR6) 2005; 185 R. Devaney (586_CR9) 2006; 30 Ch. Pommerenke (586_CR27) 1975 586_CR29 C. T. McMullen (586_CR31) 1994 R. Devaney (586_CR13) 2009; 206 |
References_xml | – volume: 10 start-page: 159 year: 2006 end-page: 183 ident: CR16 article-title: On the dynamics of the McMullen family ( ) = + publication-title: Conform. Geom. Dyn. doi: 10.1090/S1088-4173-06-00149-4 – ident: CR18 – volume: 18 start-page: 287 year: 1985 end-page: 343 ident: CR28 article-title: On the dynamics of polynomial-like mappings publication-title: Ann. Sci. Ec. Norm. Sup. – volume: 14 start-page: 161 issue: 1 year: 2004 end-page: 169 ident: CR4 article-title: Singular perturbations of quadratic maps publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. doi: 10.1142/S0218127404009259 – volume: 206 start-page: 139 year: 2009 end-page: 159 ident: CR13 article-title: Intertwined internal rays in Julia sets of rational maps publication-title: Fund. Math. doi: 10.4064/fm206-0-9 – year: 1975 ident: CR27 publication-title: Univalent Functions – year: 1994 ident: CR31 publication-title: Complex Dynamics and Renormalization – year: 1988 ident: CR1 article-title: Automorphism of rational maps publication-title: Holomorphic Functions and Moduli – year: 1993 ident: CR20 publication-title: Complex Dynamics doi: 10.1007/978-1-4612-4364-9 – volume: 13 start-page: 1035 issue: 4 year: 2005 end-page: 1046 ident: CR7 article-title: Buried Sierpiński curve Julia sets publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2005.13.1035 – volume: 18 start-page: 2309 issue: 8 year: 2008 end-page: 2318 ident: CR3 article-title: A generalized version of the McMullen domain publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. doi: 10.1142/S0218127408021725 – volume: 202 start-page: 181 year: 2009 end-page: 198 ident: CR14 article-title: Dynamic classification of escape time Sierpiński curve Julia sets publication-title: Fund. Math. doi: 10.4064/fm202-2-5 – volume: 39 start-page: 39 issue: 1 year: 1996 end-page: 47 ident: CR26 article-title: Local connectivity of the Julia set for geometrically finite rational maps publication-title: Sci. China Ser. A – volume: 6 start-page: 317 issue: 2 year: 2006 end-page: 327 ident: CR17 article-title: Sierpiński curve Julia sets of rational maps publication-title: Comput. Methods Funct. Theory – year: 2006 ident: CR21 publication-title: Dynamics in One Complex Variable – ident: CR29 – volume: 54 start-page: 1621 issue: 6 year: 2005 end-page: 1634 ident: CR8 article-title: The escape trichotomy for singularly perturbed rational maps publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2005.54.2615 – ident: CR25 – volume: 25 start-page: 1 issue: 1 year: 1994 end-page: 30 ident: CR24 article-title: Julia and John publication-title: Bol. Soc. Brasil. Mat. doi: 10.1007/BF01232933 – volume: 185 start-page: 267 issue: 3 year: 2005 end-page: 285 ident: CR6 article-title: Structure of the McMullen domain in the parameter planes for rational maps publication-title: Fund. Math. doi: 10.4064/fm185-3-5 – year: 1971 ident: CR22 publication-title: Analytic Topology – ident: CR19 – volume: 5 start-page: 337 issue: 2 year: 2004 end-page: 359 ident: CR5 article-title: Cantor necklaces and structurally unstable Sierpiński curve Julia sets for rational maps publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/BF02972685 – volume: 47 start-page: 17 year: 1997 end-page: 94 ident: CR30 article-title: Laminations in holomorphic dynamics publication-title: J. Differential Geom. – volume: 154 start-page: 11 issue: 1 year: 2007 end-page: 27 ident: CR12 article-title: Rational maps with generalized Sierpiński gasket Julia sets publication-title: Topology Appl. doi: 10.1016/j.topol.2006.03.024 – volume: 30 start-page: 163 issue: 1 year: 2006 end-page: 179 ident: CR9 article-title: A criterion for Sierpiński curve Julia sets publication-title: Topology Proc. – volume: 25 start-page: 1047 issue: 4 year: 2005 end-page: 1055 ident: CR2 article-title: Sierpiński-curve Julia sets and singular perturbations of complex polynomials publication-title: Ergodic Theory Dynam. Systems doi: 10.1017/S0143385704000380 – volume: 261 start-page: 277 issue: xiii year: 2000 end-page: 333 ident: CR23 article-title: Periodic orbits, external rays, and the Mandelbrot set: An expository account publication-title: Asterisque – volume: 27 start-page: 1525 issue: 5 year: 2007 end-page: 1539 ident: CR11 article-title: Cantor sets of circles of Sierpiński curve Julia sets publication-title: Ergodic Theory Dynam. Systems doi: 10.1017/S0143385707000156 – volume: 11 start-page: 164 year: 2007 end-page: 190 ident: CR10 article-title: The McMullen domain: Satellite Mandelbrot sets and Sierpiński holes publication-title: Conform. Geom. Dyn. doi: 10.1090/S1088-4173-07-00166-X – start-page: 121 year: 2006 end-page: 129 ident: CR15 article-title: On capture zones for the family ( ) = + publication-title: Dynamics on the Riemann Sphere doi: 10.4171/011-1/6 – volume: 13 start-page: 1035 issue: 4 year: 2005 ident: 586_CR7 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2005.13.1035 – ident: 586_CR19 – volume: 30 start-page: 163 issue: 1 year: 2006 ident: 586_CR9 publication-title: Topology Proc. – volume: 185 start-page: 267 issue: 3 year: 2005 ident: 586_CR6 publication-title: Fund. Math. doi: 10.4064/fm185-3-5 – volume: 25 start-page: 1 issue: 1 year: 1994 ident: 586_CR24 publication-title: Bol. Soc. Brasil. Mat. doi: 10.1007/BF01232933 – volume: 25 start-page: 1047 issue: 4 year: 2005 ident: 586_CR2 publication-title: Ergodic Theory Dynam. Systems doi: 10.1017/S0143385704000380 – start-page: 121 volume-title: Dynamics on the Riemann Sphere year: 2006 ident: 586_CR15 doi: 10.4171/011-1/6 – ident: 586_CR25 – volume: 54 start-page: 1621 issue: 6 year: 2005 ident: 586_CR8 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2005.54.2615 – ident: 586_CR29 – volume: 39 start-page: 39 issue: 1 year: 1996 ident: 586_CR26 publication-title: Sci. China Ser. A – volume: 6 start-page: 317 issue: 2 year: 2006 ident: 586_CR17 publication-title: Comput. Methods Funct. Theory doi: 10.1007/BF03321617 – volume: 18 start-page: 287 year: 1985 ident: 586_CR28 publication-title: Ann. Sci. Ec. Norm. Sup. doi: 10.24033/asens.1491 – volume-title: Dynamics in One Complex Variable year: 2006 ident: 586_CR21 – volume: 10 start-page: 159 year: 2006 ident: 586_CR16 publication-title: Conform. Geom. Dyn. doi: 10.1090/S1088-4173-06-00149-4 – ident: 586_CR18 doi: 10.1090/conm/396 – volume: 206 start-page: 139 year: 2009 ident: 586_CR13 publication-title: Fund. Math. doi: 10.4064/fm206-0-9 – volume: 5 start-page: 337 issue: 2 year: 2004 ident: 586_CR5 publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/BF02972685 – volume: 47 start-page: 17 year: 1997 ident: 586_CR30 publication-title: J. Differential Geom. doi: 10.4310/jdg/1214460037 – volume: 18 start-page: 2309 issue: 8 year: 2008 ident: 586_CR3 publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. doi: 10.1142/S0218127408021725 – volume-title: Univalent Functions year: 1975 ident: 586_CR27 – volume: 202 start-page: 181 year: 2009 ident: 586_CR14 publication-title: Fund. Math. doi: 10.4064/fm202-2-5 – volume: 27 start-page: 1525 issue: 5 year: 2007 ident: 586_CR11 publication-title: Ergodic Theory Dynam. Systems doi: 10.1017/S0143385707000156 – volume-title: Complex Dynamics and Renormalization year: 1994 ident: 586_CR31 – volume-title: Holomorphic Functions and Moduli year: 1988 ident: 586_CR1 – volume-title: Analytic Topology year: 1971 ident: 586_CR22 – volume: 11 start-page: 164 year: 2007 ident: 586_CR10 publication-title: Conform. Geom. Dyn. doi: 10.1090/S1088-4173-07-00166-X – volume-title: Complex Dynamics year: 1993 ident: 586_CR20 doi: 10.1007/978-1-4612-4364-9 – volume: 14 start-page: 161 issue: 1 year: 2004 ident: 586_CR4 publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. doi: 10.1142/S0218127404009259 – volume: 154 start-page: 11 issue: 1 year: 2007 ident: 586_CR12 publication-title: Topology Appl. doi: 10.1016/j.topol.2006.03.024 – volume: 261 start-page: 277 issue: xiii year: 2000 ident: 586_CR23 publication-title: Asterisque |
SSID | ssj0055906 |
Score | 1.9061072 |
Snippet | In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞... In this paper, we discuss the rational maps with the positive real parameter λ . It is shown that the immediately attracting basin B λ of ∞ for F λ is always a... In this paper, we discuss the rational maps ... with the positive real parameter ... . It is shown that the immediately attracting basin ... of ... is always a... In this paper, we discuss the rational maps $F_\lambda (z) = z Delta + \lambda /z Delta ,n \geqslant 2$ with the positive real parameter lambda . It is shown... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1937 |
SubjectTerms | Basins Boundaries Cantor集 Fatou分支 Julia集 Mathematical analysis Mathematics Mathematics and Statistics Orbits Studies Zinc 参数摄动 吸引盆 固定点 地图 抛物线 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdQd4EDGgNEujF5EieQJSf-qHOsENWEtJ1WaRdk-eMFDmtamm4S_z3vtUk3JobEMcmLE_nZfj-_j58Z-5CCqrLORihjM25QAESUNorkUoP2BlwI5Bq4uLTnc_312lz3ddzdkO0-hCS3K_WDYjfE7rj1rYQ0zgrc8hwY3LpTHte8mg7LLyJkuSspUrVAOGGHUObfmiBChR_L9vtP_NyfhukebT4KkG7tzuyQvewBI5_uNPyKPYP2iL242LOtdq_ZtxkdbM4pO3zZUmIED23mVPkceAd4uWw4uQQo4_TmF1_BGu1MhMzXvSeQL8Kq4-SS5bskrjvgxAm-oFyZN2w--3L1-Vz0xyaIpCZmI9CA1zmVUZdlSIhfatkEpyPexrkIE5eTdY0MKSYDCA4VikUHOkCURgKuN2_ZqMXffcd4lUrjgq4gh0anmBGOVVZJ0M7axsRQsPG-__xqR4_htSKGnboumBw61KeecJzOvbjx91TJpA-P-vCkD18W7OP-laG5fwifDFry_cTrPPG9T6xURhfsbP8YpwzFQUILy1uUKZXV5QShWsE-Ddp92MQTHxz_l_Qxe17RSNsm_p2w0WZ9C-8RwGzi6XbA_gb3UucZ priority: 102 providerName: Springer Nature |
Title | Fatou Components and Julia Sets of Singularly Perturbed Rational Maps with Positive Parameter |
URI | http://lib.cqvip.com/qk/85800X/201210/43280799.html https://link.springer.com/article/10.1007/s10114-012-0586-1 https://www.proquest.com/docview/1038760354 https://www.proquest.com/docview/1136417389 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEJ8iY1RG4gkU4SS26zyhFppNoE0IUWk8oMhfGQ9b0jUdEv89d03SAhJ7ihI7ceSz734-n38H8MqZLPXCyziTyuMCJYTYcmVjp12F9iZoY8g1cHqmTpbi47k87x1ubR9WOejEraL2jSMf-Vsi8p4qnknxbnUdU9Yo2l3tU2gcwBhVsNYjGM8XZ5-_DLoY4TLvzhdleYzYQg37mt3hOVwL4FI6jbnUKk6IXeFHU19co83420rtoec_u6VbI1Q8gPs9emSzTtwP4U6oH8G90x31avsYvheU5ZxRqHhTU5QEM7VndAzasDbgbVMx8g9Q-OnlL7YKazQ6Nni27t2C7MqsWkb-WdZFdP0MjAjCryhw5gksi8XX9ydxn0MhdtlUbmK05rl3iRVJYhyCmZxXRguLj3Fihqn2TumKG2edDIgUM6xmdRAmWC55QOXzFEY1_u4zYKlLpDYiDd5UwlmP2CxVGQ9CK1VJayI43PVfueq4MkqREd1OnkfAhw4tXc8-TkkwLss9bzLJo0R5lCSPMong9e6V4XO3VD4apFT2s7At92Mmgpe7Ypw_tCli6tDcYJ0kUyKZIm6L4M0g3T8_8Z8GD29v8DncTWlobcP-jmC0Wd-EFwhfNnYCB7o4nsB4Nv8wL-h6_O3TYtKPXCxdprPfOEvw3w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKeaUsBIcAFZOIntTQ4IIWDZ0m5PrdQLMn4FDm2y3WxB_VP8RmY2yS4g0VuPSRwn8ow937wBnnubZ0EGxXOlAyooMXIntOO-8BXKm1hYS6aB6YGeHMnPx-p4A34NuTAUVjmcicuDOjSebOSvqZD3SItcybezM05do8i7OrTQ6NhiL178RJWtfbP7Aen7IsvGHw_fT3jfVYD7fKQWHOVbGXzqZJpaj-K9FJUtpMPbyKpxVASvi0pY77yKiJ1yHOaKKG10QomI2xHnvQbXZY6SnDLTx5-Gkx_BueiymfKSI5LRgxe1S9VDzQMV94wLVWieUi2H70397Qwl1N8ycQ10__HNLkXe-A7c7rEqe9cx113YiPU9uDVdFXpt78OXMfVUZxSY3tQUk8FsHRglXVvWRrxsKkbWCAp2PblgszhHEediYPPeCMlO7axlZA1mXfzYj8ioHPkphek8gKMrWduHsFnj724By3yqCiuzGGwlvQuIBDOdiygLrSvlbALbq_Uzs64yh5E5FfcpywTEsKDG97XOqeXGiVlXaSZ6GKSHIXqYNIGXq1eG6S4ZvDNQyfR7vjVrDk3g2eox7lZywdg6Nuc4Js21TEeIEhN4NVD3zyn-88Htyz_4FG5MDqf7Zn_3YO8R3MyIzZYBhzuwuZifx8cInBbuyZJbGXy96u3xG9MuJ1M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4ipYCR4AKy6iS21zlwqCirltKKAyv1goxfgUObXTZbUH8Vf5GZTbItCJA49JjEcRLPTObzeOYzwLPgyiLKqHipdMQJSkrcC-15MKFGf5OMcxQaODjUuxP59kgdrcGPoRZmme0-LEl2NQ3E0tQstmax3rpQ-IY4HqfBBRfKaJ73WZX76ew7ztnaV3s7KODnRTF-8-H1Lu-3FeChHKkFRwdXxZB7mecuoH-vRO2M9HgadTWNTAza1MIFH1RC8FRiM2-SdMkLJRLaI_Z7Ba5KKj5GA5oU28OvH9G56MqZyoojlNHDMuqfXpnIHL5Mm89f8VN_dYrnSPe3xdmlzxvfgps9WGXbnXbdhrXU3IEbByum1_YufBzTpuqMMtOnDSVlMNdERlXXjrUJD6c1o3AEZbsen7FZmqOP8ymyeR-FZCdu1jIKB7MugexbYsRHfkJ5Ovdgciljex_WG3zdB8CKkCvjZJGiq2XwEaFgoUuRpNG6Vt5lsLEaPzvrqDmsLIndp6oyEMOA2tCTndOeG8f2nKaZ5GFRHpbkYfMMXqxuGbr7R-PNQUq2N_rWEtf8SItSyQyeri6judIajGvS9BTb5KWW-QhhYgYvB-le7OIvD9z4r9ZP4Nr7nbF9t3e4_xCuF6R0y_zDTVhfzE_TI8RRC_94qbsMPl22sfwECSwoGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatou+components+and+Julia+sets+of+singularly+perturbed+rational+maps+with+positive+parameter&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Qiu%2C+Wei+Yuan&rft.au=Xie%2C+Lan&rft.au=Yin%2C+Yong+Cheng&rft.date=2012-10-01&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=28&rft.issue=10&rft.spage=1937&rft.epage=1954&rft_id=info:doi/10.1007%2Fs10114-012-0586-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10114_012_0586_1 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85800X%2F85800X.jpg |