Modeling motor task activation from resting-state fMRI using machine learning in individual subjects
Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly ac...
Saved in:
Published in | Brain imaging and behavior Vol. 15; no. 1; pp. 122 - 132 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications. |
---|---|
AbstractList | Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications. Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications. |
Author | Lin, Pan Wang, Yang Wen, Xin Wiestler, Benedikt Cohen, Alexander D. Niu, Chen Liu, Xin Chen, Ziyi Menze, Bjoern H. Zhang, Ming |
Author_xml | – sequence: 1 givenname: Chen surname: Niu fullname: Niu, Chen organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Institute for Biomedical Engineering, Technical University of Munich – sequence: 2 givenname: Alexander D. surname: Cohen fullname: Cohen, Alexander D. organization: Department of Radiology, Medical College of Wisconsin – sequence: 3 givenname: Xin surname: Wen fullname: Wen, Xin organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University – sequence: 4 givenname: Ziyi surname: Chen fullname: Chen, Ziyi organization: Department of Radiology, Medical College of Wisconsin – sequence: 5 givenname: Pan surname: Lin fullname: Lin, Pan organization: Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University – sequence: 6 givenname: Xin surname: Liu fullname: Liu, Xin organization: Institute for Biomedical Engineering, Technical University of Munich – sequence: 7 givenname: Bjoern H. surname: Menze fullname: Menze, Bjoern H. organization: Institute for Biomedical Engineering, Technical University of Munich, Department of Computer Science, Technical University of Munich – sequence: 8 givenname: Benedikt surname: Wiestler fullname: Wiestler, Benedikt organization: Department of Neuroradiology, Klinikum rechts der Isar, TU München – sequence: 9 givenname: Yang orcidid: 0000-0002-6319-117X surname: Wang fullname: Wang, Yang email: yangwang@mcw.edu organization: Department of Radiology, Medical College of Wisconsin – sequence: 10 givenname: Ming surname: Zhang fullname: Zhang, Ming email: zhangming01@mail.xjtu.edu.cn organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31903530$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rHSEUhiWk5Kv9A10UoZtupvXzOi5LSJNAQqEka_HqMfV2RlN1Av33NfcmLWQREBR5nsPhfY_RfsoJEHpPyWdKiPpSKV2NbCBUD4Qwrge9h46o5nRQciX3_72lOkTHtW4IkWLU9AAdcqoJl5wcIX-dPUwx3eE5t1xws_UXtq7FB9tiTjiUPOMCtXVkqM02wOH6xyVe6tax7mdMgCewJT1-xNSPjw_RL3bCdVlvwLX6Fr0Jdqrw7uk-Qbffzm5OL4ar7-eXp1-vBseVbAMbhbRK2QAKlAjCEkEDrJkVjgEhK0-l9l6AD0KDUtpRaRl4z0cpdRDAT9Cn3dz7kn8vfWkzx-pgmmyCvFTDOOeaKaF5Rz--QDd5KalvZ5gYe1CaS9qpD0_Usp7Bm_sSZ1v-mOf8OjDuAFdyrQWCcbFtk2vFxslQYh6rMruqTK_KbKsyuqvshfo8_VWJ76Ta4XQH5f_ar1h_AbeMpms |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3426930 crossref_primary_10_1016_j_neuroimage_2023_120213 crossref_primary_10_3389_fnut_2024_1446854 crossref_primary_10_1016_j_media_2023_102841 crossref_primary_10_3389_fnins_2023_1215400 crossref_primary_10_1016_j_neuroscience_2023_08_017 crossref_primary_10_1007_s00330_021_07825_w |
Cites_doi | 10.1056/NEJM200101113440207 10.1002/jmri.22629 10.1148/radiol.2482071214 10.1073/pnas.0601417103 10.1007/s00330-016-4369-4 10.1016/j.jneumeth.2010.03.028 10.1177/1545968306286322 10.1016/j.neulet.2010.07.005 10.3174/ajnr.A2733 10.1016/j.neuroimage.2004.07.058 10.1227/01.NEU.0000350868.95634.CA 10.1227/NEU.0000000000000141 10.1371/journal.pone.0096850 10.1002/hbm.20219 10.1203/pdr.0b013e3180332c2e 10.1371/journal.pone.0098860 10.1038/nrclinonc.2017.171 10.1016/j.neuroimage.2015.07.017 10.1111/j.1460-9568.1991.tb00835.x 10.1227/01.NEU.0000064803.05077.40 10.1016/j.neuroimage.2015.11.068 10.1016/S1053-8119(09)71511-3 10.1016/S1474-4422(05)70140-X 10.1227/01.NEU.0000360392.15450.C9 10.1016/j.neuroimage.2013.04.127 10.1148/radiol.2512080231 10.3389/fnhum.2016.00011 10.1002/mrm.1910340409 10.3174/ajnr.A3263 10.1016/j.neuroimage.2014.09.013 10.1126/science.aad8127 10.1007/s10072-011-0636-y 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2009.10.080 10.1016/j.ncl.2016.06.014 10.1016/j.neuron.2014.05.014 10.1016/j.nicl.2016.12.028 10.1007/s00701-014-2236-0 10.1006/nimg.1996.0034 10.1227/01.NEU.0000255386.95464.52 10.1097/MD.0000000000003189 10.1002/hbm.24841 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 88G 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s11682-019-00239-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological science database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1931-7565 |
EndPage | 132 |
ExternalDocumentID | 31903530 10_1007_s11682_019_00239_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Key Research and Development Program of Shaanxi Province grantid: 2018SF-113 – fundername: National Natural Science Foundation of China grantid: No.81871331 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: No.81871331 |
GroupedDBID | --- -55 -5G -BR -EM -Y2 -~C .86 .VR 04C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 7RV 7X7 875 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMOBN ESBYG EX3 F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LK8 LLZTM M1P M2M M4Y M7P MA- NAPCQ NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9L PF0 PQQKQ PROAC PSQYO PSYQQ PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBS SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z82 Z83 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-2845a77afe7e74f4a041feb2a4c2e006d159dd4edf49e779c15a2edd38559f4e3 |
IEDL.DBID | U2A |
ISSN | 1931-7557 1931-7565 |
IngestDate | Fri Jul 11 10:53:04 EDT 2025 Sat Aug 30 01:20:56 EDT 2025 Wed Feb 19 02:28:40 EST 2025 Thu Apr 24 23:06:27 EDT 2025 Tue Jul 01 04:04:32 EDT 2025 Fri Feb 21 02:49:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Functional MRI Resting state General linear model Motor function Machine learning Independent component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-2845a77afe7e74f4a041feb2a4c2e006d159dd4edf49e779c15a2edd38559f4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6319-117X |
PMID | 31903530 |
PQID | 2480549351 |
PQPubID | 1486349 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2333927493 proquest_journals_2480549351 pubmed_primary_31903530 crossref_citationtrail_10_1007_s11682_019_00239_9 crossref_primary_10_1007_s11682_019_00239_9 springer_journals_10_1007_s11682_019_00239_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 2021-Feb 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Indianapolis |
PublicationTitle | Brain imaging and behavior |
PublicationTitleAbbrev | Brain Imaging and Behavior |
PublicationTitleAlternate | Brain Imaging Behav |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ward, Brown, Thompson, Frackowiak (CR39) 2006; 20 Rosazza, Aquino, D’Incerti, Cordella, Andronache, Zacà (CR30) 2014; 9 Roux, Boulanouar, Lotterie, Mejdoubi, LeSage, Berry (CR31) 2003; 52 Lee, Smyser, Shimony (CR20) 2013; 34 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (CR8) 2006; 103 Tavor, Jones, Mars, Smith, Behrens, Jbabdi (CR35) 2016; 352 Branco, Seixas, Deprez, Kovacs, Peeters, Castro, Sunaert (CR5) 2016; 10 Sanai, Berger (CR32) 2018; 15 Seitz, Roland, Bohm, Greitz, Stone-Elander (CR33) 1991; 3 Zhang, Johnston, Fox, Leuthardt, Grubb, Chicoine (CR43) 2009; 65 Rosazza, Minati, Ghielmetti, Mandelli, Bruzzone (CR29) 2012; 33 CR36 Kim, Qi, Feng, Ding, Liu, Cao (CR18) 2016; 129 Bizzi, Blasi, Falini, Ferroli, Cadioli, Danesi (CR3) 2008; 248 Giussani, Roux, Ojemann, Sganzerla, Pirillo, Papagno (CR12) 2010; 66 Niu, Zhang, Min, Rana, Zhang, Liu, Li, Lin (CR24) 2014; 9 Cole, Bassett, Power, Braver, Petersen (CR7) 2014; 83 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (CR13) 2013; 80 Kelly, Alexopoulos, Wang, Gunning, Murphy, Morimoto (CR17) 2010; 189 DeAngelis (CR9) 2001; 344 Qiu, Yan, Tang, Wu, Zhuang, Yao (CR26) 2014; 156 Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (CR44) 2010; 49 Xu, Tong, Liu, Chow, AbdulSabur, Mattay, Braun (CR41) 2014; 103 Tombari, Loubinoux, Pariente, Gerdelat, Albucher, Tardy, Cassol, Chollet (CR37) 2004; 23 CR6 Weiller, Jüptner, Fellows, Rijntjes, Leonhardt, Kiebel (CR40) 1996; 4 Field, Yen, Burdette, Elster (CR11) 2000; 21 McNeill (CR22) 2016; 34 Blatow, Reinhardt, Riffel, Nennig, Wengenroth, Stippich (CR4) 2011; 34 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (CR34) 2004; 23 Kocak, Ulmer, Sahin Ugurel, Gaggl, Prost (CR19) 2009; 251 Mitchell, Hacker, Breshears, Szrama, Sharma, Bundy (CR23) 2013; 73 CR25 Beckmann, Mackay, Filippini, Smith (CR1) 2009; 47 Yuan, Qin, Dong, Liu, Sun, Liu (CR42) 2010; 482 Liljeström, Stevenson, Kujala, Salmelin (CR21) 2015; 120 Rosazza, Minati (CR28) 2011; 32 Johnstone, Ores Walsh, Greischar, Alexander, Fox, Davidson, Oakes (CR15) 2006; 27 Duffau (CR10) 2005; 4 Roland, Griffin, Hacker, Vellimana, Akbari, Shimony, Smyth, Leuthardt, Limbrick (CR27) 2017; 20 Guzzetta, Staudt, Petacchi, Ehlers, Erb, Wilke, Krägeloh-Mann, Cioni (CR14) 2007; 61 Tyndall, Reinhardt, Tronnier, Mariani, Stippich (CR38) 2017; 27 Biswal, Zerrin Yetkin, Haughton, Hyde (CR2) 1995; 34 Jones, Voets, Adcock, Stacey, Jbabdi (CR16) 2017; 13 JL Roland (239_CR27) 2017; 20 A Guzzetta (239_CR14) 2007; 61 M Blatow (239_CR4) 2011; 34 B Biswal (239_CR2) 1995; 34 C Niu (239_CR24) 2014; 9 C Giussani (239_CR12) 2010; 66 Y Xu (239_CR41) 2014; 103 LM DeAngelis (239_CR9) 2001; 344 I Tavor (239_CR35) 2016; 352 239_CR6 239_CR25 T-M Qiu (239_CR26) 2014; 156 JS Damoiseaux (239_CR8) 2006; 103 C Rosazza (239_CR30) 2014; 9 C Rosazza (239_CR28) 2011; 32 C Rosazza (239_CR29) 2012; 33 SM Smith (239_CR34) 2004; 23 N Sanai (239_CR32) 2018; 15 SY Kim (239_CR18) 2016; 129 F-E Roux (239_CR31) 2003; 52 CF Beckmann (239_CR1) 2009; 47 M Liljeström (239_CR21) 2015; 120 A Bizzi (239_CR3) 2008; 248 OP Jones (239_CR16) 2017; 13 MH Lee (239_CR20) 2013; 34 TJ Mitchell (239_CR23) 2013; 73 D Tombari (239_CR37) 2004; 23 239_CR36 AJ Tyndall (239_CR38) 2017; 27 K Yuan (239_CR42) 2010; 482 H Duffau (239_CR10) 2005; 4 MF Glasser (239_CR13) 2013; 80 T Johnstone (239_CR15) 2006; 27 P Branco (239_CR5) 2016; 10 RE Kelly Jr (239_CR17) 2010; 189 C Weiller (239_CR40) 1996; 4 NS Ward (239_CR39) 2006; 20 D Zhang (239_CR43) 2009; 65 M Kocak (239_CR19) 2009; 251 MW Cole (239_CR7) 2014; 83 AS Field (239_CR11) 2000; 21 X-N Zuo (239_CR44) 2010; 49 KA McNeill (239_CR22) 2016; 34 RJ Seitz (239_CR33) 1991; 3 |
References_xml | – volume: 344 start-page: 114 issue: 2 year: 2001 end-page: 123 ident: CR9 article-title: Brain tumors publication-title: New England Journal of Medicine doi: 10.1056/NEJM200101113440207 – volume: 34 start-page: 429 issue: 2 year: 2011 end-page: 437 ident: CR4 article-title: Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.22629 – volume: 248 start-page: 579 issue: 2 year: 2008 end-page: 589 ident: CR3 article-title: Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping publication-title: Radiology doi: 10.1148/radiol.2482071214 – volume: 103 start-page: 13848 issue: 37 year: 2006 end-page: 13853 ident: CR8 article-title: Consistent resting-state networks across healthy subjects publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0601417103 – volume: 27 start-page: 267 issue: 1 year: 2017 end-page: 278 ident: CR38 article-title: Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years publication-title: European Radiology doi: 10.1007/s00330-016-4369-4 – volume: 189 start-page: 233 issue: 2 year: 2010 end-page: 245 ident: CR17 article-title: Visual inspection of independent components: defining a procedure for artifact removal from fMRI data publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2010.03.028 – volume: 20 start-page: 398 issue: 3 year: 2006 end-page: 405 ident: CR39 article-title: Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968306286322 – volume: 482 start-page: 101 issue: 2 year: 2010 end-page: 105 ident: CR42 article-title: Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2010.07.005 – volume: 33 start-page: 180 issue: 1 year: 2012 end-page: 187 ident: CR29 article-title: Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest− based methods publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A2733 – volume: 23 start-page: 827 issue: 3 year: 2004 end-page: 839 ident: CR37 article-title: A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.058 – volume: 65 start-page: ons226 issue: suppl_6 year: 2009 end-page: ons236 ident: CR43 article-title: Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience publication-title: Operative Neurosurgery doi: 10.1227/01.NEU.0000350868.95634.CA – ident: CR6 – volume: 73 start-page: 969 issue: 6 year: 2013 end-page: 983 ident: CR23 article-title: A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging publication-title: Neurosurgery doi: 10.1227/NEU.0000000000000141 – volume: 9 issue: 5 year: 2014 ident: CR24 article-title: Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study publication-title: PLoS One doi: 10.1371/journal.pone.0096850 – volume: 27 start-page: 779 issue: 10 year: 2006 end-page: 788 ident: CR15 article-title: Motion correction and the use of motion covariates in multiple-subject fMRI analysis publication-title: Human Brain Mapping doi: 10.1002/hbm.20219 – volume: 61 start-page: 485 year: 2007 end-page: 490 ident: CR14 article-title: Brain representation of active and passive hand movements in children publication-title: Pediatric Research doi: 10.1203/pdr.0b013e3180332c2e – volume: 9 issue: 6 year: 2014 ident: CR30 article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI publication-title: PLoS One doi: 10.1371/journal.pone.0098860 – volume: 15 start-page: 112 issue: 2 year: 2018 end-page: 125 ident: CR32 article-title: Surgical oncology for gliomas: the state of the art publication-title: Nature Reviews Clinical Oncology doi: 10.1038/nrclinonc.2017.171 – volume: 120 start-page: 75 year: 2015 end-page: 87 ident: CR21 article-title: Task-and stimulus-related cortical networks in language production: exploring similarity of MEG-and fMRI-derived functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.017 – volume: 3 start-page: 481 issue: 6 year: 1991 end-page: 492 ident: CR33 article-title: Somatosensory discrimination of shape: tactile exploration and cerebral activation publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.1991.tb00835.x – ident: CR25 – volume: 52 start-page: 1335 issue: 6 year: 2003 end-page: 1347 ident: CR31 article-title: Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation publication-title: Neurosurgery doi: 10.1227/01.NEU.0000064803.05077.40 – volume: 129 start-page: 25 year: 2016 end-page: 39 ident: CR18 article-title: How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean–Chinese–English trilinguals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.068 – volume: 47 start-page: S148 issue: Suppl 1 year: 2009 ident: CR1 article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression publication-title: NeuroImage doi: 10.1016/S1053-8119(09)71511-3 – volume: 4 start-page: 476 issue: 8 year: 2005 end-page: 486 ident: CR10 article-title: Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(05)70140-X – volume: 66 start-page: 113 issue: 1 year: 2010 end-page: 120 ident: CR12 article-title: Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies publication-title: Neurosurgery doi: 10.1227/01.NEU.0000360392.15450.C9 – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: CR13 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 251 start-page: 485 issue: 2 year: 2009 end-page: 492 ident: CR19 article-title: Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging—initial results publication-title: Radiology doi: 10.1148/radiol.2512080231 – volume: 10 start-page: 11 year: 2016 ident: CR5 article-title: Resting-state functional magnetic resonance imaging for language preoperative planning publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2016.00011 – volume: 34 start-page: 537 issue: 4 year: 1995 end-page: 541 ident: CR2 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340409 – volume: 34 start-page: 1866 issue: 10 year: 2013 end-page: 1872 ident: CR20 article-title: Resting-state fMRI: a review of methods and clinical applications publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A3263 – volume: 21 start-page: 1388 issue: 8 year: 2000 end-page: 1396 ident: CR11 article-title: False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus publication-title: American Journal of Neuroradiology – volume: 103 start-page: 33 year: 2014 end-page: 47 ident: CR41 article-title: Denoising the speaking brain: Toward a robust technique for correcting artifact-contaminated fMRI data under severe motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.013 – volume: 352 start-page: 216 issue: 6282 year: 2016 end-page: 220 ident: CR35 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – volume: 32 start-page: 773 issue: 5 year: 2011 end-page: 785 ident: CR28 article-title: Resting-state brain networks: literature review and clinical applications publication-title: Neurological Sciences doi: 10.1007/s10072-011-0636-y – volume: 20 start-page: 583 issue: 6 year: 2017 end-page: 590 ident: CR27 article-title: Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience publication-title: Journal of Neurosurgery: Pediatrics – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: CR34 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 49 start-page: 2163 issue: 3 year: 2010 end-page: 2177 ident: CR44 article-title: Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.080 – volume: 34 start-page: 981 issue: 4 year: 2016 end-page: 998 ident: CR22 article-title: Epidemiology of brain tumors publication-title: Neurologic Clinics doi: 10.1016/j.ncl.2016.06.014 – ident: CR36 – volume: 83 start-page: 238 issue: 1 year: 2014 end-page: 251 ident: CR7 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 13 start-page: 378 year: 2017 end-page: 385 ident: CR16 article-title: Resting connectivity predicts task activation in pre-surgical populations publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.12.028 – volume: 156 start-page: 2295 issue: 12 year: 2014 end-page: 2302 ident: CR26 article-title: Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation publication-title: Acta Neurochirurgica doi: 10.1007/s00701-014-2236-0 – volume: 4 start-page: 105 issue: 2 year: 1996 end-page: 110 ident: CR40 article-title: Brain representation of active and passive movements publication-title: NeuroImage doi: 10.1006/nimg.1996.0034 – volume: 32 start-page: 773 issue: 5 year: 2011 ident: 239_CR28 publication-title: Neurological Sciences doi: 10.1007/s10072-011-0636-y – volume: 15 start-page: 112 issue: 2 year: 2018 ident: 239_CR32 publication-title: Nature Reviews Clinical Oncology doi: 10.1038/nrclinonc.2017.171 – volume: 4 start-page: 476 issue: 8 year: 2005 ident: 239_CR10 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(05)70140-X – volume: 9 issue: 5 year: 2014 ident: 239_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0096850 – volume: 352 start-page: 216 issue: 6282 year: 2016 ident: 239_CR35 publication-title: Science doi: 10.1126/science.aad8127 – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 239_CR2 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340409 – volume: 20 start-page: 398 issue: 3 year: 2006 ident: 239_CR39 publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968306286322 – volume: 13 start-page: 378 year: 2017 ident: 239_CR16 publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.12.028 – volume: 251 start-page: 485 issue: 2 year: 2009 ident: 239_CR19 publication-title: Radiology doi: 10.1148/radiol.2512080231 – volume: 49 start-page: 2163 issue: 3 year: 2010 ident: 239_CR44 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.080 – volume: 21 start-page: 1388 issue: 8 year: 2000 ident: 239_CR11 publication-title: American Journal of Neuroradiology – volume: 61 start-page: 485 year: 2007 ident: 239_CR14 publication-title: Pediatric Research doi: 10.1203/pdr.0b013e3180332c2e – volume: 23 start-page: 827 issue: 3 year: 2004 ident: 239_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.058 – volume: 66 start-page: 113 issue: 1 year: 2010 ident: 239_CR12 publication-title: Neurosurgery doi: 10.1227/01.NEU.0000360392.15450.C9 – volume: 47 start-page: S148 issue: Suppl 1 year: 2009 ident: 239_CR1 publication-title: NeuroImage doi: 10.1016/S1053-8119(09)71511-3 – volume: 65 start-page: ons226 issue: suppl_6 year: 2009 ident: 239_CR43 publication-title: Operative Neurosurgery doi: 10.1227/01.NEU.0000350868.95634.CA – volume: 129 start-page: 25 year: 2016 ident: 239_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.068 – volume: 189 start-page: 233 issue: 2 year: 2010 ident: 239_CR17 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2010.03.028 – volume: 73 start-page: 969 issue: 6 year: 2013 ident: 239_CR23 publication-title: Neurosurgery doi: 10.1227/NEU.0000000000000141 – volume: 344 start-page: 114 issue: 2 year: 2001 ident: 239_CR9 publication-title: New England Journal of Medicine doi: 10.1056/NEJM200101113440207 – volume: 34 start-page: 1866 issue: 10 year: 2013 ident: 239_CR20 publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A3263 – volume: 27 start-page: 779 issue: 10 year: 2006 ident: 239_CR15 publication-title: Human Brain Mapping doi: 10.1002/hbm.20219 – volume: 156 start-page: 2295 issue: 12 year: 2014 ident: 239_CR26 publication-title: Acta Neurochirurgica doi: 10.1007/s00701-014-2236-0 – volume: 23 start-page: S208 year: 2004 ident: 239_CR34 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 120 start-page: 75 year: 2015 ident: 239_CR21 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.017 – volume: 20 start-page: 583 issue: 6 year: 2017 ident: 239_CR27 publication-title: Journal of Neurosurgery: Pediatrics – volume: 27 start-page: 267 issue: 1 year: 2017 ident: 239_CR38 publication-title: European Radiology doi: 10.1007/s00330-016-4369-4 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 239_CR8 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0601417103 – ident: 239_CR36 doi: 10.1227/01.NEU.0000255386.95464.52 – volume: 482 start-page: 101 issue: 2 year: 2010 ident: 239_CR42 publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2010.07.005 – volume: 80 start-page: 105 year: 2013 ident: 239_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 103 start-page: 33 year: 2014 ident: 239_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.013 – volume: 34 start-page: 429 issue: 2 year: 2011 ident: 239_CR4 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.22629 – ident: 239_CR25 doi: 10.1097/MD.0000000000003189 – volume: 10 start-page: 11 year: 2016 ident: 239_CR5 publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2016.00011 – volume: 4 start-page: 105 issue: 2 year: 1996 ident: 239_CR40 publication-title: NeuroImage doi: 10.1006/nimg.1996.0034 – volume: 34 start-page: 981 issue: 4 year: 2016 ident: 239_CR22 publication-title: Neurologic Clinics doi: 10.1016/j.ncl.2016.06.014 – volume: 9 issue: 6 year: 2014 ident: 239_CR30 publication-title: PLoS One doi: 10.1371/journal.pone.0098860 – volume: 52 start-page: 1335 issue: 6 year: 2003 ident: 239_CR31 publication-title: Neurosurgery doi: 10.1227/01.NEU.0000064803.05077.40 – volume: 3 start-page: 481 issue: 6 year: 1991 ident: 239_CR33 publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.1991.tb00835.x – volume: 83 start-page: 238 issue: 1 year: 2014 ident: 239_CR7 publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 248 start-page: 579 issue: 2 year: 2008 ident: 239_CR3 publication-title: Radiology doi: 10.1148/radiol.2482071214 – ident: 239_CR6 doi: 10.1002/hbm.24841 – volume: 33 start-page: 180 issue: 1 year: 2012 ident: 239_CR29 publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A2733 |
SSID | ssj0054891 |
Score | 2.3089643 |
Snippet | Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122 |
SubjectTerms | Biomedical and Life Sciences Biomedicine Brain Brain Mapping Functional magnetic resonance imaging Hand Humans Independent component analysis Learning algorithms Machine Learning Magnetic Resonance Imaging Model matching Neuropsychology Neuroradiology Neurosciences Original Research Psychiatry Rest Sensorimotor system |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qC-KLqFUbrbKFvulikt3NJk8iYqnC9UEs3FvYZGelWHJtc_f_O7PZyyHFvoRAJsky-_Xb-foBnFpfBduXncQmN1KHzsgm77R0XEwqmGAxes8XF9X5pf6xNMtkcBtTWOV2TYwLtV_1bCP_VOqa0EWjTPH55lYyaxR7VxOFxiM44NJlPKrtcj5wERiPjHmEUQppjbEpaWZKnSuqmoMSGhnzO2Xz78Z0D23e85TGDejsGTxNyFF8mbr6Oezh8AIeL5Jv_BA805pxcrkg7a_uxNqNfwSnLUxGV8GJJIKZOEhExjwiERY_vwuOfKd3YlAlisQi8VtcDeJqTtYS46Zjg834Ei7Pvv36ei4Th4LslTVrSbuPcda6gBatDtrlugh0mna6L5FmnCc4471GH3SD1jZ9YVyJ3quajhpBo3oF-8NqwCMQdY2uUlh2dMP2uBpt1Vd9oAsBtQIzKLYKbPtUYJx5Lq7bXWlkVnpLSm-j0tsmgw_zOzdTeY0HpY-3_dKmqTa2u4GRwcn8mCYJez7cgKsNyShFONCSVAavp_6cf0drUK6MyjP4uO3g3cf_35Y3D7flLTwpOfolxncfw_76boPvCL6su_dxjP4Fo_bqFg priority: 102 providerName: ProQuest |
Title | Modeling motor task activation from resting-state fMRI using machine learning in individual subjects |
URI | https://link.springer.com/article/10.1007/s11682-019-00239-9 https://www.ncbi.nlm.nih.gov/pubmed/31903530 https://www.proquest.com/docview/2480549351 https://www.proquest.com/docview/2333927493 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7aBspextYfm7c2aNC3VmBbkmU_ZiNp2pIySgPpk5HtUyktzqiT_38nxU4YbQd9kQ0-yebOkj7p7tMBnOgqsbqMC45ZqLi0heJZWEhu3GFSVlmN3ns-uU7GU3k5U7OWFNZ00e6dS9KP1BuyW5SkLowg456RybNt6Clau7tArmk86MZfguA-Tx4hk4hrpXRLlXm9jX-noxcY84V_1E87o0_wscWLbLAy8GfYwnoPdietR3wfKpfMzFHKGel8_swWpnlkjqyw2mpljj7CXP4NEuGePcTs5OaCuXh3quNDKZG1uSPu2UPNHtYULdYsC7dN0xzAdDS8_TXmbeYEXgqtFpzmHGW0NhY1ammlCWVkaQ1tZBkj9bOKQExVSayszFDrrIyUibGqREoLDCtRHMJOPa_xK7A0RZMIjAu6cbtwKeqkTEpLBcGzCAOIOgXmZXusuMtu8ZRvDkR2Ss9J6blXep4FcLqu82d1qMZ_pY86u-RtB2vyWKZk6UyoKIAf68fUNZy_w9Q4X5KMEIT-NEkF8GVlz_XraOQJhRJhAGedgTeNv_0t394n_h0-xC4Gxkd5H8HO4nmJxwRiFkUftvVMU5mOzvvQG5zfXQ3p-nN4_fum7__nv5Pi7AY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGkIAXxH8KA4IETxCtbZKmfUAIAccd2-0BbdLeSts4aAL1xnonxJfiM2Kn7Z3QxN72UlVqkka24zi2fzHAC-syb5u0lljERmpfG1nEtZYVXybljbcYoufzg2x6pD8fm-Mt-DNiYTitctSJQVG7RcM-8t1U52RdFMokb09_Sq4axdHVsYRGLxZ7-PsXHdm6N7MPxN-XaTr5ePh-KoeqArJR1iwl6WNTWVt5tGi111WsE0_ny0o3KZIMOtrgndPovC7Q2qJJTJWicyon49trVDTuFbiqFe3kjEyffBo1Pxn_oUIf2USJtMbYAaTTQ_WSLOckiEIGPKks_t0Iz1m35yKzYcOb3IKbg6Uq3vWidRu2sL0D1-ZDLP4uOC6jxmB2QdxenIll1X0XDJPonbyCgSuCK39QExlwS8LPv8wEZ9pTn5DEiWKoWvFNnLTiZA0OE92qZgdRdw-OLoW692G7XbT4EESeY5UpTGt6Yf9fjjZrssbTgwzDBCNIRgKWzXChOdfV-FFurmJmopdE9DIQvSwieLXuc9pf53Fh652RL-WwtLtyI4gRPF9_pkXJkZaqxcWK2iiSDjrvFyqCBz0_178jnRcro-IIXo8M3gz-_7k8unguz-D69HC-X-7PDvYew42UM29CbvkObC_PVviETKdl_TTIq4Cvl71A_gJikCgV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxJKWAkOIHVJLbj5IAQ0K66lF1VFZV6C3mMUUWVLc2uEH-NX8eMk-wKVfTWSxQptmPNy2PPfB6AV7ZOnK3iUmIWGqldaWQWlloWfJmUM86ij55PZ8nBif58ak434M-AheG0ysEmekNdzys-I9-NdUreRaZMtOv6tIijvfH7i5-SK0hxpHUop9GJyCH-_kXbt_bdZI94_TqOx_tfPx3IvsKArJQ1C0m22RTWFg4tWu10EerI0V6z0FWMJI81LfZ1rbF2OkNrsyoyRYx1rVJyxJ1GRePegk3Lu6IRbH7cnx0dD-sAbQV8vT7ykCJpjbE9ZKcD7kVJyikRmfToUpn9uyxe8XWvxGn98je-C3d6v1V86ATtHmxgcx-2pn1k_gHUXFSNoe2CeD-_FIui_SEYNNEd-QqGsQiuA0JNpEcxCTc9ngjOu6c-PqUTRV_D4rs4a8TZCiom2mXJx0XtQzi5Efo-glEzb_AJiDTFIlEYl_TCp4Ep2qRKKkcPchMjDCAaCJhX_fXmXGXjPF9fzMxEz4nouSd6ngXwZtXnorvc49rWOwNf8l7R23wtlgG8XH0mFeW4S9HgfEltlCIv1FKrAB53_Fz9jixgqIwKA3g7MHg9-P_nsn39XF7AFilH_mUyO3wKt2NOw_GJ5jswWlwu8Rn5UYvyeS-wAr7dtI78BTx6Lac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+motor+task+activation+from+resting-state+fMRI+using+machine+learning+in+individual+subjects&rft.jtitle=Brain+imaging+and+behavior&rft.au=Niu%2C+Chen&rft.au=Cohen%2C+Alexander+D.&rft.au=Wen%2C+Xin&rft.au=Chen%2C+Ziyi&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=15&rft.issue=1&rft.spage=122&rft.epage=132&rft_id=info:doi/10.1007%2Fs11682-019-00239-9&rft.externalDocID=10_1007_s11682_019_00239_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon |