Modeling motor task activation from resting-state fMRI using machine learning in individual subjects

Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly ac...

Full description

Saved in:
Bibliographic Details
Published inBrain imaging and behavior Vol. 15; no. 1; pp. 122 - 132
Main Authors Niu, Chen, Cohen, Alexander D., Wen, Xin, Chen, Ziyi, Lin, Pan, Liu, Xin, Menze, Bjoern H., Wiestler, Benedikt, Wang, Yang, Zhang, Ming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.
AbstractList Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.
Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.
Author Lin, Pan
Wang, Yang
Wen, Xin
Wiestler, Benedikt
Cohen, Alexander D.
Niu, Chen
Liu, Xin
Chen, Ziyi
Menze, Bjoern H.
Zhang, Ming
Author_xml – sequence: 1
  givenname: Chen
  surname: Niu
  fullname: Niu, Chen
  organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Institute for Biomedical Engineering, Technical University of Munich
– sequence: 2
  givenname: Alexander D.
  surname: Cohen
  fullname: Cohen, Alexander D.
  organization: Department of Radiology, Medical College of Wisconsin
– sequence: 3
  givenname: Xin
  surname: Wen
  fullname: Wen, Xin
  organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University
– sequence: 4
  givenname: Ziyi
  surname: Chen
  fullname: Chen, Ziyi
  organization: Department of Radiology, Medical College of Wisconsin
– sequence: 5
  givenname: Pan
  surname: Lin
  fullname: Lin, Pan
  organization: Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University
– sequence: 6
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Institute for Biomedical Engineering, Technical University of Munich
– sequence: 7
  givenname: Bjoern H.
  surname: Menze
  fullname: Menze, Bjoern H.
  organization: Institute for Biomedical Engineering, Technical University of Munich, Department of Computer Science, Technical University of Munich
– sequence: 8
  givenname: Benedikt
  surname: Wiestler
  fullname: Wiestler, Benedikt
  organization: Department of Neuroradiology, Klinikum rechts der Isar, TU München
– sequence: 9
  givenname: Yang
  orcidid: 0000-0002-6319-117X
  surname: Wang
  fullname: Wang, Yang
  email: yangwang@mcw.edu
  organization: Department of Radiology, Medical College of Wisconsin
– sequence: 10
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  email: zhangming01@mail.xjtu.edu.cn
  organization: Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31903530$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rHSEUhiWk5Kv9A10UoZtupvXzOi5LSJNAQqEka_HqMfV2RlN1Av33NfcmLWQREBR5nsPhfY_RfsoJEHpPyWdKiPpSKV2NbCBUD4Qwrge9h46o5nRQciX3_72lOkTHtW4IkWLU9AAdcqoJl5wcIX-dPUwx3eE5t1xws_UXtq7FB9tiTjiUPOMCtXVkqM02wOH6xyVe6tax7mdMgCewJT1-xNSPjw_RL3bCdVlvwLX6Fr0Jdqrw7uk-Qbffzm5OL4ar7-eXp1-vBseVbAMbhbRK2QAKlAjCEkEDrJkVjgEhK0-l9l6AD0KDUtpRaRl4z0cpdRDAT9Cn3dz7kn8vfWkzx-pgmmyCvFTDOOeaKaF5Rz--QDd5KalvZ5gYe1CaS9qpD0_Usp7Bm_sSZ1v-mOf8OjDuAFdyrQWCcbFtk2vFxslQYh6rMruqTK_KbKsyuqvshfo8_VWJ76Ta4XQH5f_ar1h_AbeMpms
CitedBy_id crossref_primary_10_1109_JBHI_2024_3426930
crossref_primary_10_1016_j_neuroimage_2023_120213
crossref_primary_10_3389_fnut_2024_1446854
crossref_primary_10_1016_j_media_2023_102841
crossref_primary_10_3389_fnins_2023_1215400
crossref_primary_10_1016_j_neuroscience_2023_08_017
crossref_primary_10_1007_s00330_021_07825_w
Cites_doi 10.1056/NEJM200101113440207
10.1002/jmri.22629
10.1148/radiol.2482071214
10.1073/pnas.0601417103
10.1007/s00330-016-4369-4
10.1016/j.jneumeth.2010.03.028
10.1177/1545968306286322
10.1016/j.neulet.2010.07.005
10.3174/ajnr.A2733
10.1016/j.neuroimage.2004.07.058
10.1227/01.NEU.0000350868.95634.CA
10.1227/NEU.0000000000000141
10.1371/journal.pone.0096850
10.1002/hbm.20219
10.1203/pdr.0b013e3180332c2e
10.1371/journal.pone.0098860
10.1038/nrclinonc.2017.171
10.1016/j.neuroimage.2015.07.017
10.1111/j.1460-9568.1991.tb00835.x
10.1227/01.NEU.0000064803.05077.40
10.1016/j.neuroimage.2015.11.068
10.1016/S1053-8119(09)71511-3
10.1016/S1474-4422(05)70140-X
10.1227/01.NEU.0000360392.15450.C9
10.1016/j.neuroimage.2013.04.127
10.1148/radiol.2512080231
10.3389/fnhum.2016.00011
10.1002/mrm.1910340409
10.3174/ajnr.A3263
10.1016/j.neuroimage.2014.09.013
10.1126/science.aad8127
10.1007/s10072-011-0636-y
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2009.10.080
10.1016/j.ncl.2016.06.014
10.1016/j.neuron.2014.05.014
10.1016/j.nicl.2016.12.028
10.1007/s00701-014-2236-0
10.1006/nimg.1996.0034
10.1227/01.NEU.0000255386.95464.52
10.1097/MD.0000000000003189
10.1002/hbm.24841
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
88G
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s11682-019-00239-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological science database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1931-7565
EndPage 132
ExternalDocumentID 31903530
10_1007_s11682_019_00239_9
Genre Journal Article
GrantInformation_xml – fundername: the Key Research and Development Program of Shaanxi Province
  grantid: 2018SF-113
– fundername: National Natural Science Foundation of China
  grantid: No.81871331
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: No.81871331
GroupedDBID ---
-55
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
7RV
7X7
875
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
ESBYG
EX3
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9L
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBS
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z82
Z83
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c375t-2845a77afe7e74f4a041feb2a4c2e006d159dd4edf49e779c15a2edd38559f4e3
IEDL.DBID U2A
ISSN 1931-7557
1931-7565
IngestDate Fri Jul 11 10:53:04 EDT 2025
Sat Aug 30 01:20:56 EDT 2025
Wed Feb 19 02:28:40 EST 2025
Thu Apr 24 23:06:27 EDT 2025
Tue Jul 01 04:04:32 EDT 2025
Fri Feb 21 02:49:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional MRI
Resting state
General linear model
Motor function
Machine learning
Independent component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-2845a77afe7e74f4a041feb2a4c2e006d159dd4edf49e779c15a2edd38559f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6319-117X
PMID 31903530
PQID 2480549351
PQPubID 1486349
PageCount 11
ParticipantIDs proquest_miscellaneous_2333927493
proquest_journals_2480549351
pubmed_primary_31903530
crossref_citationtrail_10_1007_s11682_019_00239_9
crossref_primary_10_1007_s11682_019_00239_9
springer_journals_10_1007_s11682_019_00239_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Indianapolis
PublicationTitle Brain imaging and behavior
PublicationTitleAbbrev Brain Imaging and Behavior
PublicationTitleAlternate Brain Imaging Behav
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ward, Brown, Thompson, Frackowiak (CR39) 2006; 20
Rosazza, Aquino, D’Incerti, Cordella, Andronache, Zacà (CR30) 2014; 9
Roux, Boulanouar, Lotterie, Mejdoubi, LeSage, Berry (CR31) 2003; 52
Lee, Smyser, Shimony (CR20) 2013; 34
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (CR8) 2006; 103
Tavor, Jones, Mars, Smith, Behrens, Jbabdi (CR35) 2016; 352
Branco, Seixas, Deprez, Kovacs, Peeters, Castro, Sunaert (CR5) 2016; 10
Sanai, Berger (CR32) 2018; 15
Seitz, Roland, Bohm, Greitz, Stone-Elander (CR33) 1991; 3
Zhang, Johnston, Fox, Leuthardt, Grubb, Chicoine (CR43) 2009; 65
Rosazza, Minati, Ghielmetti, Mandelli, Bruzzone (CR29) 2012; 33
CR36
Kim, Qi, Feng, Ding, Liu, Cao (CR18) 2016; 129
Bizzi, Blasi, Falini, Ferroli, Cadioli, Danesi (CR3) 2008; 248
Giussani, Roux, Ojemann, Sganzerla, Pirillo, Papagno (CR12) 2010; 66
Niu, Zhang, Min, Rana, Zhang, Liu, Li, Lin (CR24) 2014; 9
Cole, Bassett, Power, Braver, Petersen (CR7) 2014; 83
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (CR13) 2013; 80
Kelly, Alexopoulos, Wang, Gunning, Murphy, Morimoto (CR17) 2010; 189
DeAngelis (CR9) 2001; 344
Qiu, Yan, Tang, Wu, Zhuang, Yao (CR26) 2014; 156
Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (CR44) 2010; 49
Xu, Tong, Liu, Chow, AbdulSabur, Mattay, Braun (CR41) 2014; 103
Tombari, Loubinoux, Pariente, Gerdelat, Albucher, Tardy, Cassol, Chollet (CR37) 2004; 23
CR6
Weiller, Jüptner, Fellows, Rijntjes, Leonhardt, Kiebel (CR40) 1996; 4
Field, Yen, Burdette, Elster (CR11) 2000; 21
McNeill (CR22) 2016; 34
Blatow, Reinhardt, Riffel, Nennig, Wengenroth, Stippich (CR4) 2011; 34
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (CR34) 2004; 23
Kocak, Ulmer, Sahin Ugurel, Gaggl, Prost (CR19) 2009; 251
Mitchell, Hacker, Breshears, Szrama, Sharma, Bundy (CR23) 2013; 73
CR25
Beckmann, Mackay, Filippini, Smith (CR1) 2009; 47
Yuan, Qin, Dong, Liu, Sun, Liu (CR42) 2010; 482
Liljeström, Stevenson, Kujala, Salmelin (CR21) 2015; 120
Rosazza, Minati (CR28) 2011; 32
Johnstone, Ores Walsh, Greischar, Alexander, Fox, Davidson, Oakes (CR15) 2006; 27
Duffau (CR10) 2005; 4
Roland, Griffin, Hacker, Vellimana, Akbari, Shimony, Smyth, Leuthardt, Limbrick (CR27) 2017; 20
Guzzetta, Staudt, Petacchi, Ehlers, Erb, Wilke, Krägeloh-Mann, Cioni (CR14) 2007; 61
Tyndall, Reinhardt, Tronnier, Mariani, Stippich (CR38) 2017; 27
Biswal, Zerrin Yetkin, Haughton, Hyde (CR2) 1995; 34
Jones, Voets, Adcock, Stacey, Jbabdi (CR16) 2017; 13
JL Roland (239_CR27) 2017; 20
A Guzzetta (239_CR14) 2007; 61
M Blatow (239_CR4) 2011; 34
B Biswal (239_CR2) 1995; 34
C Niu (239_CR24) 2014; 9
C Giussani (239_CR12) 2010; 66
Y Xu (239_CR41) 2014; 103
LM DeAngelis (239_CR9) 2001; 344
I Tavor (239_CR35) 2016; 352
239_CR6
239_CR25
T-M Qiu (239_CR26) 2014; 156
JS Damoiseaux (239_CR8) 2006; 103
C Rosazza (239_CR30) 2014; 9
C Rosazza (239_CR28) 2011; 32
C Rosazza (239_CR29) 2012; 33
SM Smith (239_CR34) 2004; 23
N Sanai (239_CR32) 2018; 15
SY Kim (239_CR18) 2016; 129
F-E Roux (239_CR31) 2003; 52
CF Beckmann (239_CR1) 2009; 47
M Liljeström (239_CR21) 2015; 120
A Bizzi (239_CR3) 2008; 248
OP Jones (239_CR16) 2017; 13
MH Lee (239_CR20) 2013; 34
TJ Mitchell (239_CR23) 2013; 73
D Tombari (239_CR37) 2004; 23
239_CR36
AJ Tyndall (239_CR38) 2017; 27
K Yuan (239_CR42) 2010; 482
H Duffau (239_CR10) 2005; 4
MF Glasser (239_CR13) 2013; 80
T Johnstone (239_CR15) 2006; 27
P Branco (239_CR5) 2016; 10
RE Kelly Jr (239_CR17) 2010; 189
C Weiller (239_CR40) 1996; 4
NS Ward (239_CR39) 2006; 20
D Zhang (239_CR43) 2009; 65
M Kocak (239_CR19) 2009; 251
MW Cole (239_CR7) 2014; 83
AS Field (239_CR11) 2000; 21
X-N Zuo (239_CR44) 2010; 49
KA McNeill (239_CR22) 2016; 34
RJ Seitz (239_CR33) 1991; 3
References_xml – volume: 344
  start-page: 114
  issue: 2
  year: 2001
  end-page: 123
  ident: CR9
  article-title: Brain tumors
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM200101113440207
– volume: 34
  start-page: 429
  issue: 2
  year: 2011
  end-page: 437
  ident: CR4
  article-title: Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.22629
– volume: 248
  start-page: 579
  issue: 2
  year: 2008
  end-page: 589
  ident: CR3
  article-title: Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping
  publication-title: Radiology
  doi: 10.1148/radiol.2482071214
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  end-page: 13853
  ident: CR8
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0601417103
– volume: 27
  start-page: 267
  issue: 1
  year: 2017
  end-page: 278
  ident: CR38
  article-title: Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years
  publication-title: European Radiology
  doi: 10.1007/s00330-016-4369-4
– volume: 189
  start-page: 233
  issue: 2
  year: 2010
  end-page: 245
  ident: CR17
  article-title: Visual inspection of independent components: defining a procedure for artifact removal from fMRI data
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2010.03.028
– volume: 20
  start-page: 398
  issue: 3
  year: 2006
  end-page: 405
  ident: CR39
  article-title: Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968306286322
– volume: 482
  start-page: 101
  issue: 2
  year: 2010
  end-page: 105
  ident: CR42
  article-title: Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2010.07.005
– volume: 33
  start-page: 180
  issue: 1
  year: 2012
  end-page: 187
  ident: CR29
  article-title: Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest− based methods
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A2733
– volume: 23
  start-page: 827
  issue: 3
  year: 2004
  end-page: 839
  ident: CR37
  article-title: A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.058
– volume: 65
  start-page: ons226
  issue: suppl_6
  year: 2009
  end-page: ons236
  ident: CR43
  article-title: Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience
  publication-title: Operative Neurosurgery
  doi: 10.1227/01.NEU.0000350868.95634.CA
– ident: CR6
– volume: 73
  start-page: 969
  issue: 6
  year: 2013
  end-page: 983
  ident: CR23
  article-title: A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000000141
– volume: 9
  issue: 5
  year: 2014
  ident: CR24
  article-title: Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096850
– volume: 27
  start-page: 779
  issue: 10
  year: 2006
  end-page: 788
  ident: CR15
  article-title: Motion correction and the use of motion covariates in multiple-subject fMRI analysis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20219
– volume: 61
  start-page: 485
  year: 2007
  end-page: 490
  ident: CR14
  article-title: Brain representation of active and passive hand movements in children
  publication-title: Pediatric Research
  doi: 10.1203/pdr.0b013e3180332c2e
– volume: 9
  issue: 6
  year: 2014
  ident: CR30
  article-title: Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098860
– volume: 15
  start-page: 112
  issue: 2
  year: 2018
  end-page: 125
  ident: CR32
  article-title: Surgical oncology for gliomas: the state of the art
  publication-title: Nature Reviews Clinical Oncology
  doi: 10.1038/nrclinonc.2017.171
– volume: 120
  start-page: 75
  year: 2015
  end-page: 87
  ident: CR21
  article-title: Task-and stimulus-related cortical networks in language production: exploring similarity of MEG-and fMRI-derived functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.017
– volume: 3
  start-page: 481
  issue: 6
  year: 1991
  end-page: 492
  ident: CR33
  article-title: Somatosensory discrimination of shape: tactile exploration and cerebral activation
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.1991.tb00835.x
– ident: CR25
– volume: 52
  start-page: 1335
  issue: 6
  year: 2003
  end-page: 1347
  ident: CR31
  article-title: Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000064803.05077.40
– volume: 129
  start-page: 25
  year: 2016
  end-page: 39
  ident: CR18
  article-title: How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean–Chinese–English trilinguals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.068
– volume: 47
  start-page: S148
  issue: Suppl 1
  year: 2009
  ident: CR1
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 4
  start-page: 476
  issue: 8
  year: 2005
  end-page: 486
  ident: CR10
  article-title: Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(05)70140-X
– volume: 66
  start-page: 113
  issue: 1
  year: 2010
  end-page: 120
  ident: CR12
  article-title: Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000360392.15450.C9
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: CR13
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 251
  start-page: 485
  issue: 2
  year: 2009
  end-page: 492
  ident: CR19
  article-title: Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging—initial results
  publication-title: Radiology
  doi: 10.1148/radiol.2512080231
– volume: 10
  start-page: 11
  year: 2016
  ident: CR5
  article-title: Resting-state functional magnetic resonance imaging for language preoperative planning
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2016.00011
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  ident: CR2
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910340409
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  end-page: 1872
  ident: CR20
  article-title: Resting-state fMRI: a review of methods and clinical applications
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A3263
– volume: 21
  start-page: 1388
  issue: 8
  year: 2000
  end-page: 1396
  ident: CR11
  article-title: False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus
  publication-title: American Journal of Neuroradiology
– volume: 103
  start-page: 33
  year: 2014
  end-page: 47
  ident: CR41
  article-title: Denoising the speaking brain: Toward a robust technique for correcting artifact-contaminated fMRI data under severe motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.013
– volume: 352
  start-page: 216
  issue: 6282
  year: 2016
  end-page: 220
  ident: CR35
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 32
  start-page: 773
  issue: 5
  year: 2011
  end-page: 785
  ident: CR28
  article-title: Resting-state brain networks: literature review and clinical applications
  publication-title: Neurological Sciences
  doi: 10.1007/s10072-011-0636-y
– volume: 20
  start-page: 583
  issue: 6
  year: 2017
  end-page: 590
  ident: CR27
  article-title: Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience
  publication-title: Journal of Neurosurgery: Pediatrics
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: CR34
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 49
  start-page: 2163
  issue: 3
  year: 2010
  end-page: 2177
  ident: CR44
  article-title: Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.080
– volume: 34
  start-page: 981
  issue: 4
  year: 2016
  end-page: 998
  ident: CR22
  article-title: Epidemiology of brain tumors
  publication-title: Neurologic Clinics
  doi: 10.1016/j.ncl.2016.06.014
– ident: CR36
– volume: 83
  start-page: 238
  issue: 1
  year: 2014
  end-page: 251
  ident: CR7
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 13
  start-page: 378
  year: 2017
  end-page: 385
  ident: CR16
  article-title: Resting connectivity predicts task activation in pre-surgical populations
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.12.028
– volume: 156
  start-page: 2295
  issue: 12
  year: 2014
  end-page: 2302
  ident: CR26
  article-title: Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation
  publication-title: Acta Neurochirurgica
  doi: 10.1007/s00701-014-2236-0
– volume: 4
  start-page: 105
  issue: 2
  year: 1996
  end-page: 110
  ident: CR40
  article-title: Brain representation of active and passive movements
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0034
– volume: 32
  start-page: 773
  issue: 5
  year: 2011
  ident: 239_CR28
  publication-title: Neurological Sciences
  doi: 10.1007/s10072-011-0636-y
– volume: 15
  start-page: 112
  issue: 2
  year: 2018
  ident: 239_CR32
  publication-title: Nature Reviews Clinical Oncology
  doi: 10.1038/nrclinonc.2017.171
– volume: 4
  start-page: 476
  issue: 8
  year: 2005
  ident: 239_CR10
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(05)70140-X
– volume: 9
  issue: 5
  year: 2014
  ident: 239_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096850
– volume: 352
  start-page: 216
  issue: 6282
  year: 2016
  ident: 239_CR35
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 239_CR2
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910340409
– volume: 20
  start-page: 398
  issue: 3
  year: 2006
  ident: 239_CR39
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968306286322
– volume: 13
  start-page: 378
  year: 2017
  ident: 239_CR16
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.12.028
– volume: 251
  start-page: 485
  issue: 2
  year: 2009
  ident: 239_CR19
  publication-title: Radiology
  doi: 10.1148/radiol.2512080231
– volume: 49
  start-page: 2163
  issue: 3
  year: 2010
  ident: 239_CR44
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.080
– volume: 21
  start-page: 1388
  issue: 8
  year: 2000
  ident: 239_CR11
  publication-title: American Journal of Neuroradiology
– volume: 61
  start-page: 485
  year: 2007
  ident: 239_CR14
  publication-title: Pediatric Research
  doi: 10.1203/pdr.0b013e3180332c2e
– volume: 23
  start-page: 827
  issue: 3
  year: 2004
  ident: 239_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.058
– volume: 66
  start-page: 113
  issue: 1
  year: 2010
  ident: 239_CR12
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000360392.15450.C9
– volume: 47
  start-page: S148
  issue: Suppl 1
  year: 2009
  ident: 239_CR1
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 65
  start-page: ons226
  issue: suppl_6
  year: 2009
  ident: 239_CR43
  publication-title: Operative Neurosurgery
  doi: 10.1227/01.NEU.0000350868.95634.CA
– volume: 129
  start-page: 25
  year: 2016
  ident: 239_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.068
– volume: 189
  start-page: 233
  issue: 2
  year: 2010
  ident: 239_CR17
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2010.03.028
– volume: 73
  start-page: 969
  issue: 6
  year: 2013
  ident: 239_CR23
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000000141
– volume: 344
  start-page: 114
  issue: 2
  year: 2001
  ident: 239_CR9
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM200101113440207
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  ident: 239_CR20
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A3263
– volume: 27
  start-page: 779
  issue: 10
  year: 2006
  ident: 239_CR15
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20219
– volume: 156
  start-page: 2295
  issue: 12
  year: 2014
  ident: 239_CR26
  publication-title: Acta Neurochirurgica
  doi: 10.1007/s00701-014-2236-0
– volume: 23
  start-page: S208
  year: 2004
  ident: 239_CR34
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 120
  start-page: 75
  year: 2015
  ident: 239_CR21
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.017
– volume: 20
  start-page: 583
  issue: 6
  year: 2017
  ident: 239_CR27
  publication-title: Journal of Neurosurgery: Pediatrics
– volume: 27
  start-page: 267
  issue: 1
  year: 2017
  ident: 239_CR38
  publication-title: European Radiology
  doi: 10.1007/s00330-016-4369-4
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 239_CR8
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0601417103
– ident: 239_CR36
  doi: 10.1227/01.NEU.0000255386.95464.52
– volume: 482
  start-page: 101
  issue: 2
  year: 2010
  ident: 239_CR42
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2010.07.005
– volume: 80
  start-page: 105
  year: 2013
  ident: 239_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 103
  start-page: 33
  year: 2014
  ident: 239_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.013
– volume: 34
  start-page: 429
  issue: 2
  year: 2011
  ident: 239_CR4
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.22629
– ident: 239_CR25
  doi: 10.1097/MD.0000000000003189
– volume: 10
  start-page: 11
  year: 2016
  ident: 239_CR5
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2016.00011
– volume: 4
  start-page: 105
  issue: 2
  year: 1996
  ident: 239_CR40
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0034
– volume: 34
  start-page: 981
  issue: 4
  year: 2016
  ident: 239_CR22
  publication-title: Neurologic Clinics
  doi: 10.1016/j.ncl.2016.06.014
– volume: 9
  issue: 6
  year: 2014
  ident: 239_CR30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098860
– volume: 52
  start-page: 1335
  issue: 6
  year: 2003
  ident: 239_CR31
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000064803.05077.40
– volume: 3
  start-page: 481
  issue: 6
  year: 1991
  ident: 239_CR33
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.1991.tb00835.x
– volume: 83
  start-page: 238
  issue: 1
  year: 2014
  ident: 239_CR7
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 248
  start-page: 579
  issue: 2
  year: 2008
  ident: 239_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2482071214
– ident: 239_CR6
  doi: 10.1002/hbm.24841
– volume: 33
  start-page: 180
  issue: 1
  year: 2012
  ident: 239_CR29
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A2733
SSID ssj0054891
Score 2.3089643
Snippet Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122
SubjectTerms Biomedical and Life Sciences
Biomedicine
Brain
Brain Mapping
Functional magnetic resonance imaging
Hand
Humans
Independent component analysis
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Model matching
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Psychiatry
Rest
Sensorimotor system
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qC-KLqFUbrbKFvulikt3NJk8iYqnC9UEs3FvYZGelWHJtc_f_O7PZyyHFvoRAJsky-_Xb-foBnFpfBduXncQmN1KHzsgm77R0XEwqmGAxes8XF9X5pf6xNMtkcBtTWOV2TYwLtV_1bCP_VOqa0EWjTPH55lYyaxR7VxOFxiM44NJlPKrtcj5wERiPjHmEUQppjbEpaWZKnSuqmoMSGhnzO2Xz78Z0D23e85TGDejsGTxNyFF8mbr6Oezh8AIeL5Jv_BA805pxcrkg7a_uxNqNfwSnLUxGV8GJJIKZOEhExjwiERY_vwuOfKd3YlAlisQi8VtcDeJqTtYS46Zjg834Ei7Pvv36ei4Th4LslTVrSbuPcda6gBatDtrlugh0mna6L5FmnCc4471GH3SD1jZ9YVyJ3quajhpBo3oF-8NqwCMQdY2uUlh2dMP2uBpt1Vd9oAsBtQIzKLYKbPtUYJx5Lq7bXWlkVnpLSm-j0tsmgw_zOzdTeY0HpY-3_dKmqTa2u4GRwcn8mCYJez7cgKsNyShFONCSVAavp_6cf0drUK6MyjP4uO3g3cf_35Y3D7flLTwpOfolxncfw_76boPvCL6su_dxjP4Fo_bqFg
  priority: 102
  providerName: ProQuest
Title Modeling motor task activation from resting-state fMRI using machine learning in individual subjects
URI https://link.springer.com/article/10.1007/s11682-019-00239-9
https://www.ncbi.nlm.nih.gov/pubmed/31903530
https://www.proquest.com/docview/2480549351
https://www.proquest.com/docview/2333927493
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7aBspextYfm7c2aNC3VmBbkmU_ZiNp2pIySgPpk5HtUyktzqiT_38nxU4YbQd9kQ0-yebOkj7p7tMBnOgqsbqMC45ZqLi0heJZWEhu3GFSVlmN3ns-uU7GU3k5U7OWFNZ00e6dS9KP1BuyW5SkLowg456RybNt6Clau7tArmk86MZfguA-Tx4hk4hrpXRLlXm9jX-noxcY84V_1E87o0_wscWLbLAy8GfYwnoPdietR3wfKpfMzFHKGel8_swWpnlkjqyw2mpljj7CXP4NEuGePcTs5OaCuXh3quNDKZG1uSPu2UPNHtYULdYsC7dN0xzAdDS8_TXmbeYEXgqtFpzmHGW0NhY1ammlCWVkaQ1tZBkj9bOKQExVSayszFDrrIyUibGqREoLDCtRHMJOPa_xK7A0RZMIjAu6cbtwKeqkTEpLBcGzCAOIOgXmZXusuMtu8ZRvDkR2Ss9J6blXep4FcLqu82d1qMZ_pY86u-RtB2vyWKZk6UyoKIAf68fUNZy_w9Q4X5KMEIT-NEkF8GVlz_XraOQJhRJhAGedgTeNv_0t394n_h0-xC4Gxkd5H8HO4nmJxwRiFkUftvVMU5mOzvvQG5zfXQ3p-nN4_fum7__nv5Pi7AY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGkIAXxH8KA4IETxCtbZKmfUAIAccd2-0BbdLeSts4aAL1xnonxJfiM2Kn7Z3QxN72UlVqkka24zi2fzHAC-syb5u0lljERmpfG1nEtZYVXybljbcYoufzg2x6pD8fm-Mt-DNiYTitctSJQVG7RcM-8t1U52RdFMokb09_Sq4axdHVsYRGLxZ7-PsXHdm6N7MPxN-XaTr5ePh-KoeqArJR1iwl6WNTWVt5tGi111WsE0_ny0o3KZIMOtrgndPovC7Q2qJJTJWicyon49trVDTuFbiqFe3kjEyffBo1Pxn_oUIf2USJtMbYAaTTQ_WSLOckiEIGPKks_t0Iz1m35yKzYcOb3IKbg6Uq3vWidRu2sL0D1-ZDLP4uOC6jxmB2QdxenIll1X0XDJPonbyCgSuCK39QExlwS8LPv8wEZ9pTn5DEiWKoWvFNnLTiZA0OE92qZgdRdw-OLoW692G7XbT4EESeY5UpTGt6Yf9fjjZrssbTgwzDBCNIRgKWzXChOdfV-FFurmJmopdE9DIQvSwieLXuc9pf53Fh652RL-WwtLtyI4gRPF9_pkXJkZaqxcWK2iiSDjrvFyqCBz0_178jnRcro-IIXo8M3gz-_7k8unguz-D69HC-X-7PDvYew42UM29CbvkObC_PVviETKdl_TTIq4Cvl71A_gJikCgV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxJKWAkOIHVJLbj5IAQ0K66lF1VFZV6C3mMUUWVLc2uEH-NX8eMk-wKVfTWSxQptmPNy2PPfB6AV7ZOnK3iUmIWGqldaWQWlloWfJmUM86ij55PZ8nBif58ak434M-AheG0ysEmekNdzys-I9-NdUreRaZMtOv6tIijvfH7i5-SK0hxpHUop9GJyCH-_kXbt_bdZI94_TqOx_tfPx3IvsKArJQ1C0m22RTWFg4tWu10EerI0V6z0FWMJI81LfZ1rbF2OkNrsyoyRYx1rVJyxJ1GRePegk3Lu6IRbH7cnx0dD-sAbQV8vT7ykCJpjbE9ZKcD7kVJyikRmfToUpn9uyxe8XWvxGn98je-C3d6v1V86ATtHmxgcx-2pn1k_gHUXFSNoe2CeD-_FIui_SEYNNEd-QqGsQiuA0JNpEcxCTc9ngjOu6c-PqUTRV_D4rs4a8TZCiom2mXJx0XtQzi5Efo-glEzb_AJiDTFIlEYl_TCp4Ep2qRKKkcPchMjDCAaCJhX_fXmXGXjPF9fzMxEz4nouSd6ngXwZtXnorvc49rWOwNf8l7R23wtlgG8XH0mFeW4S9HgfEltlCIv1FKrAB53_Fz9jixgqIwKA3g7MHg9-P_nsn39XF7AFilH_mUyO3wKt2NOw_GJ5jswWlwu8Rn5UYvyeS-wAr7dtI78BTx6Lac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+motor+task+activation+from+resting-state+fMRI+using+machine+learning+in+individual+subjects&rft.jtitle=Brain+imaging+and+behavior&rft.au=Niu%2C+Chen&rft.au=Cohen%2C+Alexander+D.&rft.au=Wen%2C+Xin&rft.au=Chen%2C+Ziyi&rft.date=2021-02-01&rft.pub=Springer+US&rft.issn=1931-7557&rft.eissn=1931-7565&rft.volume=15&rft.issue=1&rft.spage=122&rft.epage=132&rft_id=info:doi/10.1007%2Fs11682-019-00239-9&rft.externalDocID=10_1007_s11682_019_00239_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon