A Method for Broccoli Seedling Recognition in Natural Environment Based on Binocular Stereo Vision and Gaussian Mixture Model
Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influ...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 5; p. 1132 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
06.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influence on the stability, velocity and accuracy of broccoli seedling recognition based on traditional 2D image processing technologies. The broccoli seedlings are higher than the soil background and weeds in height due to the growth advantage of transplanted crops. A method of broccoli seedling recognition in natural environments based on Binocular Stereo Vision and a Gaussian Mixture Model is proposed in this paper. Firstly, binocular images of broccoli seedlings were obtained by an integrated, portable and low-cost binocular camera. Then left and right images were rectified, and a disparity map of the rectified images was obtained by the Semi-Global Matching (SGM) algorithm. The original 3D dense point cloud was reconstructed using the disparity map and left camera internal parameters. To reduce the operation time, a non-uniform grid sample method was used for the sparse point cloud. After that, the Gaussian Mixture Model (GMM) cluster was exploited and the broccoli seedling points were recognized from the sparse point cloud. An outlier filtering algorithm based on k-nearest neighbors (KNN) was applied to remove the discrete points along with the recognized broccoli seedling points. Finally, an ideal point cloud of broccoli seedlings can be obtained, and the broccoli seedlings recognized. The experimental results show that the Semi-Global Matching (SGM) algorithm can meet the matching requirements of broccoli images in the natural environment, and the average operation time of SGM is 138 ms. The SGM algorithm is superior to the Sum of Absolute Differences (SAD) algorithm and Sum of Squared Differences (SSD) algorithms. The recognition results of Gaussian Mixture Model (GMM) outperforms K-means and Fuzzy c-means with the average running time of 51 ms. To process a pair of images with the resolution of 640×480, the total running time of the proposed method is 578 ms, and the correct recognition rate is 97.98% of 247 pairs of images. The average value of sensitivity is 85.91%. The average percentage of the theoretical envelope box volume to the measured envelope box volume is 95.66%. The method can provide a low-cost, real-time and high-accuracy solution for crop recognition in natural environment. |
---|---|
AbstractList | Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influence on the stability, velocity and accuracy of broccoli seedling recognition based on traditional 2D image processing technologies. The broccoli seedlings are higher than the soil background and weeds in height due to the growth advantage of transplanted crops. A method of broccoli seedling recognition in natural environments based on Binocular Stereo Vision and a Gaussian Mixture Model is proposed in this paper. Firstly, binocular images of broccoli seedlings were obtained by an integrated, portable and low-cost binocular camera. Then left and right images were rectified, and a disparity map of the rectified images was obtained by the Semi-Global Matching (SGM) algorithm. The original 3D dense point cloud was reconstructed using the disparity map and left camera internal parameters. To reduce the operation time, a non-uniform grid sample method was used for the sparse point cloud. After that, the Gaussian Mixture Model (GMM) cluster was exploited and the broccoli seedling points were recognized from the sparse point cloud. An outlier filtering algorithm based on k-nearest neighbors (KNN) was applied to remove the discrete points along with the recognized broccoli seedling points. Finally, an ideal point cloud of broccoli seedlings can be obtained, and the broccoli seedlings recognized. The experimental results show that the Semi-Global Matching (SGM) algorithm can meet the matching requirements of broccoli images in the natural environment, and the average operation time of SGM is 138 ms. The SGM algorithm is superior to the Sum of Absolute Differences (SAD) algorithm and Sum of Squared Differences (SSD) algorithms. The recognition results of Gaussian Mixture Model (GMM) outperforms K-means and Fuzzy c-means with the average running time of 51 ms. To process a pair of images with the resolution of 640×480, the total running time of the proposed method is 578 ms, and the correct recognition rate is 97.98% of 247 pairs of images. The average value of sensitivity is 85.91%. The average percentage of the theoretical envelope box volume to the measured envelope box volume is 95.66%. The method can provide a low-cost, real-time and high-accuracy solution for crop recognition in natural environment. |
Author | Ge, Luzhen Yang, Zhilun Tan, Yuzhi Li, Wei Zhang, Gan Sun, Zhe Zhang, Chunlong Zhang, Kaifei Zhang, Ming |
AuthorAffiliation | College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China; luzhenge@cau.edu.cn (L.G.); yangzhilun@cau.edu.cn (Z.Y.); 13811604659@163.com (Z.S.); allanopel@sohu.com (G.Z.); JackyM@cau.edu.cn (M.Z.); zhangkaifeiyx@163.com (K.Z.); liww@cau.edu.cn (W.L.) |
AuthorAffiliation_xml | – name: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China; luzhenge@cau.edu.cn (L.G.); yangzhilun@cau.edu.cn (Z.Y.); 13811604659@163.com (Z.S.); allanopel@sohu.com (G.Z.); JackyM@cau.edu.cn (M.Z.); zhangkaifeiyx@163.com (K.Z.); liww@cau.edu.cn (W.L.) |
Author_xml | – sequence: 1 givenname: Luzhen orcidid: 0000-0001-7751-4905 surname: Ge fullname: Ge, Luzhen email: luzhenge@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. luzhenge@cau.edu.cn – sequence: 2 givenname: Zhilun surname: Yang fullname: Yang, Zhilun email: yangzhilun@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. yangzhilun@cau.edu.cn – sequence: 3 givenname: Zhe surname: Sun fullname: Sun, Zhe email: 13811604659@163.com organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. 13811604659@163.com – sequence: 4 givenname: Gan surname: Zhang fullname: Zhang, Gan email: allanopel@sohu.com organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. allanopel@sohu.com – sequence: 5 givenname: Ming surname: Zhang fullname: Zhang, Ming email: JackyM@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. JackyM@cau.edu.cn – sequence: 6 givenname: Kaifei surname: Zhang fullname: Zhang, Kaifei email: zhangkaifeiyx@163.com organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. zhangkaifeiyx@163.com – sequence: 7 givenname: Chunlong surname: Zhang fullname: Zhang, Chunlong email: zcl1515@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. zcl1515@cau.edu.cn – sequence: 8 givenname: Yuzhi surname: Tan fullname: Tan, Yuzhi email: yztan@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. yztan@cau.edu.cn – sequence: 9 givenname: Wei surname: Li fullname: Li, Wei email: liww@cau.edu.cn organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. liww@cau.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30845680$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUctOwzAQtBCI94EfQD7CoeBXHOeC1CJeUgsSBa6WE2-KUWoXO0Fw4N9JBVRw2pVmdmZWs4PWffCA0AElJ5wX5DTRgmSUcraGtqlgYqAYI-t_9i20k9ILIYxzrjbRFidKZFKRbfQ5xBNon4PFdYh4FENVhcbhKYBtnJ_he6jCzLvWBY-dx7em7aJp8IV_czH4OfgWj0wCi3t85HyousZEPG0hQsBPLi3vjLf4ynQpOePxxL33EoAnwUKzhzZq0yTY_5m76PHy4uH8ejC-u7o5H44HFc-zdsCYEoIQQ1Utc2pKRjNaqrxUtYXScKsKqAUrucxkaXIJ3HJaUlbYIlfCmozvorNv3UVXzsFWfez-C72Ibm7ihw7G6f-Id896Ft60FCyXougFjn4EYnjtILV67lIFTWM8hC5pRlWRSSrJ0uv4m1rFkFKEemVDiV7WpVd19dzDv7lWzN9--BfIKZM_ |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107303 crossref_primary_10_1080_01431161_2020_1811917 crossref_primary_10_3390_s21134386 crossref_primary_10_1007_s11119_022_09953_9 crossref_primary_10_1016_j_compag_2021_106242 crossref_primary_10_1002_rob_21987 crossref_primary_10_1109_ACCESS_2021_3100037 crossref_primary_10_1111_jfpe_14519 crossref_primary_10_1109_ACCESS_2019_2954587 crossref_primary_10_3390_rs13020310 crossref_primary_10_3788_LOP223410 crossref_primary_10_3390_s19183921 crossref_primary_10_1016_j_eswa_2022_118573 crossref_primary_10_1016_j_compag_2024_109086 crossref_primary_10_1016_j_compag_2020_105508 crossref_primary_10_3390_electronics9060987 crossref_primary_10_3390_rs14225733 crossref_primary_10_1016_j_biosystemseng_2021_10_008 crossref_primary_10_3390_agronomy14050931 crossref_primary_10_3390_agriculture12122039 crossref_primary_10_1016_j_compag_2022_106800 |
Cites_doi | 10.1002/rob.21763 10.1117/1.JEI.24.2.023018 10.1016/j.biosystemseng.2016.02.004 10.1016/j.compag.2016.01.018 10.3390/s17010214 10.1007/s10514-013-9327-2 10.3390/s17112564 10.1016/j.compag.2017.09.025 10.1093/jxb/erw227 10.1016/j.compag.2015.01.010 10.1093/aob/mcy016 10.1016/j.compag.2017.02.001 10.1016/j.compag.2014.04.008 10.1109/JRA.1987.1087109 10.3390/s16111915 10.3965/j.ijabe.20150804.1442 10.1186/1471-2105-14-238 10.1016/j.biosystemseng.2016.01.013 10.1016/j.biosystemseng.2016.01.007 10.3965/j.ijabe.20140702.003 10.3390/s16122136 10.1016/j.compag.2014.09.005 10.1109/JSEN.2017.2757049 10.3390/s16060874 10.1016/j.compag.2018.01.002 10.1016/j.compag.2017.08.007 10.3390/s16070972 10.1016/j.compag.2014.04.011 10.1016/j.eswa.2017.06.044 10.13031/aea.12135 10.1177/1729881417705276 10.3390/rs10050805 10.1007/s11119-017-9536-3 10.1186/s12859-015-0665-2 10.3390/s141223885 10.3390/s150509651 10.3390/s17122738 10.1016/j.scienta.2016.05.021 10.3390/s18030763 10.1007/s00138-015-0716-8 10.1109/TCBB.2018.2824814 10.1007/s00138-015-0727-5 10.1109/34.888718 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.3390/s19051132 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | 10_3390_s19051132 30845680 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c375t-2284400a18f671ab2151b87b8fdeba3d89ef42b3656ba76e3d31b129d9784da53 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Sep 17 21:10:40 EDT 2024 Fri Jun 28 09:20:01 EDT 2024 Fri Aug 23 03:52:19 EDT 2024 Wed Oct 16 00:51:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 3D point cloud broccoli seedling semi-global matching binocular stereo vision Gaussian mixture model |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-2284400a18f671ab2151b87b8fdeba3d89ef42b3656ba76e3d31b129d9784da53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7751-4905 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427649/ |
PMID | 30845680 |
PQID | 2189561605 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427649 proquest_miscellaneous_2189561605 crossref_primary_10_3390_s19051132 pubmed_primary_30845680 |
PublicationCentury | 2000 |
PublicationDate | 20190306 |
PublicationDateYYYYMMDD | 2019-03-06 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190306 day: 6 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Bezdec (ref59) 1981 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 McLachlan (ref55) 2000 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 |
References_xml | – ident: ref17 doi: 10.1002/rob.21763 – ident: ref4 doi: 10.1117/1.JEI.24.2.023018 – ident: ref22 doi: 10.1016/j.biosystemseng.2016.02.004 – ident: ref18 doi: 10.1016/j.compag.2016.01.018 – ident: ref24 – ident: ref28 doi: 10.3390/s17010214 – ident: ref54 doi: 10.1007/s10514-013-9327-2 – ident: ref1 doi: 10.3390/s17112564 – ident: ref39 doi: 10.1016/j.compag.2017.09.025 – ident: ref48 doi: 10.1093/jxb/erw227 – ident: ref57 – ident: ref13 doi: 10.1016/j.compag.2015.01.010 – ident: ref53 – ident: ref34 – ident: ref30 – ident: ref2 – ident: ref38 doi: 10.1093/aob/mcy016 – ident: ref40 doi: 10.1016/j.compag.2017.02.001 – ident: ref60 doi: 10.1016/j.compag.2014.04.008 – ident: ref52 doi: 10.1109/JRA.1987.1087109 – ident: ref3 doi: 10.3390/s16111915 – ident: ref15 doi: 10.3965/j.ijabe.20150804.1442 – ident: ref32 doi: 10.1186/1471-2105-14-238 – ident: ref12 doi: 10.1016/j.biosystemseng.2016.01.013 – ident: ref20 doi: 10.1016/j.biosystemseng.2016.01.007 – ident: ref7 doi: 10.3965/j.ijabe.20140702.003 – ident: ref36 doi: 10.3390/s16122136 – ident: ref49 doi: 10.1016/j.compag.2014.09.005 – year: 1981 ident: ref59 contributor: fullname: Bezdec – ident: ref9 doi: 10.1109/JSEN.2017.2757049 – ident: ref35 doi: 10.3390/s16060874 – ident: ref16 – ident: ref25 doi: 10.1016/j.compag.2018.01.002 – ident: ref33 – ident: ref58 – ident: ref26 doi: 10.1016/j.compag.2017.08.007 – ident: ref45 – ident: ref41 – ident: ref6 doi: 10.3390/s16070972 – ident: ref23 doi: 10.1016/j.compag.2014.04.011 – ident: ref19 doi: 10.1016/j.eswa.2017.06.044 – ident: ref37 doi: 10.13031/aea.12135 – ident: ref14 doi: 10.1177/1729881417705276 – ident: ref29 doi: 10.3390/rs10050805 – ident: ref8 doi: 10.1007/s11119-017-9536-3 – ident: ref10 doi: 10.1186/s12859-015-0665-2 – ident: ref27 doi: 10.3390/s141223885 – ident: ref50 doi: 10.3390/s150509651 – ident: ref5 doi: 10.3390/s17122738 – ident: ref47 doi: 10.1016/j.scienta.2016.05.021 – year: 2000 ident: ref55 contributor: fullname: McLachlan – ident: ref42 – ident: ref21 – ident: ref46 doi: 10.3390/s18030763 – ident: ref43 doi: 10.1007/s00138-015-0716-8 – ident: ref11 doi: 10.1109/TCBB.2018.2824814 – ident: ref56 – ident: ref44 doi: 10.1007/s00138-015-0727-5 – ident: ref51 doi: 10.1109/34.888718 – ident: ref31 |
SSID | ssj0023338 |
Score | 2.4293373 |
Snippet | Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1132 |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58gOhBfFtfjOI12maTbHIQUfGBUA9qxVvYzW4xIBu1LejB_-5M2tRWPXneTQ7z7TLfx858A7AfCh2yyYmXaWU8LmD0lPRjz8p6Yq0fZ0k5i6B5E121guvH8HECqhmbgwB2_pR2PE-q9fZ88P76cUwX_ogVJ0n2w06DTaZIVk3CtM8dQFzBFwwfE3xBMqxvKjS-fRZmRD0mBsGekKNZ6RfV_FkxOZKCLhZgfsAd8aQP9iJMWLcEcyOOgsvweYLNciY0EhlF0tgZAZ3jHeUo7jvH26peqHCYO7xRpe0Gnn-3u-Ep5TWDtH6au6KsUsU7Cr4t8KHsQ0flDF6qXofbL7GZv_MbBPJMtecVaF2c359deYMJC14mZNj1fEpOdIlVI25HsqE0538dSx23jdVKmDix7cDXgkifVjKywoiGJoZgSHsGRoViFaZc4ew6oJGiLYwJQp2JgE5ALLJ6Jq1PEskSS6nXYK-KcPrSN9JISYAwIukQkRrsVrFP6Zjz24Vytuh1UmIi3IJL4qsGa30shr-pQKyBHENpuIEttMdXXP5UWmmT-pJRkGz8-8tNmCUKlZRVadEWTHXfenabaEpX75SH8Atw2Oov priority: 102 providerName: Scholars Portal |
Title | A Method for Broccoli Seedling Recognition in Natural Environment Based on Binocular Stereo Vision and Gaussian Mixture Model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30845680 https://search.proquest.com/docview/2189561605 https://pubmed.ncbi.nlm.nih.gov/PMC6427649 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xIVVwQP2EAI2mVa8midf2ro8EJSAkRwhKlZu1XxGWYI1IInHhvzO7iUNob73sZW3L2hlr3pPfvAH4lTKVepOTSCtpIi9gjCSPRWR5N7c2FjoPswiKUXZxm1yO0_EGpE0vTBDta1WduPuHE1fdBW3l44PuNDqxzlVxRpiZZ0ne2YRNStCGoi9ZFiPStbAQYsTnO9Oed6AizrUDH1hXEF7wDpDrNegfYPm3PnKt4Aw_wt4SKeLp4o0-wYZ1n2F3zT_wC7ycYhEmQCNBTyRGrSmsFd5QRfJd5njdqINqh5XDkQwmGzh4a27DPlUxg7Tfr1wdNKl4Q0dta_wTus5ROoPncj71zZZYVM_-jwP6CWr3X-F2OPh9dhEt5ylEmvF0FsVUiuiTlT0xyXhPKl_tleBKTIxVkhmR20kSK0YQT0meWWZYTxEeMMQ0EyNT9g22XO3sAaDhbMKMSVKlWULxFkx3NbcxESJLmKTbgp_NCZePC9uMkuiGj0i5ikgLfjRnX1JS-z8V0tl6Pi0Jd_iGW6JaLdhfxGL1mCaILeDvorS6wBtmv9-hPArG2cu8OfzvO49ghwBTHjRo2TFszZ7m9juBkplqUyqOOa1ieN6G7f5gdHXdDgSf1iIR7ZCkr3bS6ao |
link.rule.ids | 230,315,730,783,787,867,888,2228,24331,27937,27938,31733,33387,33758,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9RAFL1BTBQeFBR1lY-r8bW73U7baR-BAKvSjZGP8NbM18ZGmBJ3NyEk_HfvTLfLgk_6PG3T5sz0npM59wzA54TJxIWcBEoKHTgDYyB4lAWGh7kxUaZyfxZBMUwHZ_HXi-RiCZK2F8ab9pWsuvbyqmurn95beX2leq1PrPe92CfOzNM47z2Bp7Rew6QV6TOdxUh2NSFCjBR9b9x3GVSkulbgGQszYgwuA3KxCv1FLR87JBdKzuFLOG9ftnGa_OpOJ7Krbh_lOP7z16zBixkJxd1meB2WjH0FqwvRhK_hbhcLf7g0EqtFEuuKZkyFJ1TsXAM7_miNR7XFyuJQ-PwOPLjvm8M9KpAaaXyvsrW3u-IJoWhqPPcN7SisxiMxHbs-TiyqG7eZge5wtssNODs8ON0fBLOjGgLFeDIJIqpy9DcQ_WyU8r6QjkjIjMtspI0UTGe5GcWRZMQepeCpYZr1JVENTSI21iJhb2DZ1ta8A9ScjZjWcSIVi2kqZUyFipuItJYhuhN24FMLXXndJHKUpGQc1OUc6g58bEEtab24TRBhTT0dl0RpXC8vqbgOvG1Anj-mnR0d4A_gn1_gsrgfjhCoPpN7BuL7_75zB54PTovj8vjL8NsHWCFelnurW7oJy5PfU7NF3Gcit_1M_wNBYQaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5RkBA9FPpOoe206tVx4rW99pFXoI9EqJQK9WLty6pVWEdNIiEk_juz6zgN9MZ515atGXu-T_vNNwCfEiYTZ3ISKCl04ASMgeBRFhjey42JMpX7WQTDUXp8Fn85T86XRn150b6SVddeXHZt9dtrK8eXKmx1YuHJcJ8wM0_jPBzrMnwEa4kzTW-J-pxrMaJejZEQI1YfTvrOh4qY1wass15GqMH5QC5Xov_g5X2V5FLZGWzCr_aBG7XJn-5sKrvq-p6X44PeaAuezMEo7jZbnsKKsc_g8ZJF4XO42cWhHzKNhG6RSLuizKnwlIqea2TH760AqbZYWRwJ7-OBh__653CPCqVGWt-rbO1lr3hK0TQ1_vSN7SisxiMxm7h-ThxWV-5QA92QtosXcDY4_LF_HMxHNgSK8WQaRFTt6K8g-lmZ8r6QDlDIjMus1EYKprPclHEkGaFIKXhqmGZ9SZBDE5mNtUjYS1i1tTWvATVnJdM6TqRiMaVUxlRPcRMR5zIEe3od-NiGrxg3zhwFMRoX7mIR7g58aANb0HfjDkOENfVsUhC0cT29xOY68KoJ9OI2bYZ0gN9JgcUG58l9d4UC672554F88-Ar38P6ycGg-PZ59HUbNgie5V7xlu7A6vTvzLwlCDSV73yy3wJv7wkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Broccoli+Seedling+Recognition+in+Natural+Environment+Based+on+Binocular+Stereo+Vision+and+Gaussian+Mixture+Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ge%2C+Luzhen&rft.au=Yang%2C+Zhilun&rft.au=Sun%2C+Zhe&rft.au=Zhang%2C+Gan&rft.date=2019-03-06&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=5&rft_id=info:doi/10.3390%2Fs19051132&rft_id=info%3Apmid%2F30845680&rft.externalDBID=PMC6427649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |