A Method for Broccoli Seedling Recognition in Natural Environment Based on Binocular Stereo Vision and Gaussian Mixture Model

Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influ...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 5; p. 1132
Main Authors Ge, Luzhen, Yang, Zhilun, Sun, Zhe, Zhang, Gan, Zhang, Ming, Zhang, Kaifei, Zhang, Chunlong, Tan, Yuzhi, Li, Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 06.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influence on the stability, velocity and accuracy of broccoli seedling recognition based on traditional 2D image processing technologies. The broccoli seedlings are higher than the soil background and weeds in height due to the growth advantage of transplanted crops. A method of broccoli seedling recognition in natural environments based on Binocular Stereo Vision and a Gaussian Mixture Model is proposed in this paper. Firstly, binocular images of broccoli seedlings were obtained by an integrated, portable and low-cost binocular camera. Then left and right images were rectified, and a disparity map of the rectified images was obtained by the Semi-Global Matching (SGM) algorithm. The original 3D dense point cloud was reconstructed using the disparity map and left camera internal parameters. To reduce the operation time, a non-uniform grid sample method was used for the sparse point cloud. After that, the Gaussian Mixture Model (GMM) cluster was exploited and the broccoli seedling points were recognized from the sparse point cloud. An outlier filtering algorithm based on k-nearest neighbors (KNN) was applied to remove the discrete points along with the recognized broccoli seedling points. Finally, an ideal point cloud of broccoli seedlings can be obtained, and the broccoli seedlings recognized. The experimental results show that the Semi-Global Matching (SGM) algorithm can meet the matching requirements of broccoli images in the natural environment, and the average operation time of SGM is 138 ms. The SGM algorithm is superior to the Sum of Absolute Differences (SAD) algorithm and Sum of Squared Differences (SSD) algorithms. The recognition results of Gaussian Mixture Model (GMM) outperforms K-means and Fuzzy c-means with the average running time of 51 ms. To process a pair of images with the resolution of 640×480, the total running time of the proposed method is 578 ms, and the correct recognition rate is 97.98% of 247 pairs of images. The average value of sensitivity is 85.91%. The average percentage of the theoretical envelope box volume to the measured envelope box volume is 95.66%. The method can provide a low-cost, real-time and high-accuracy solution for crop recognition in natural environment.
AbstractList Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli seedling images. The colors of weeds and broccoli seedlings are close, especially under weedy conditions. The factors above have a large influence on the stability, velocity and accuracy of broccoli seedling recognition based on traditional 2D image processing technologies. The broccoli seedlings are higher than the soil background and weeds in height due to the growth advantage of transplanted crops. A method of broccoli seedling recognition in natural environments based on Binocular Stereo Vision and a Gaussian Mixture Model is proposed in this paper. Firstly, binocular images of broccoli seedlings were obtained by an integrated, portable and low-cost binocular camera. Then left and right images were rectified, and a disparity map of the rectified images was obtained by the Semi-Global Matching (SGM) algorithm. The original 3D dense point cloud was reconstructed using the disparity map and left camera internal parameters. To reduce the operation time, a non-uniform grid sample method was used for the sparse point cloud. After that, the Gaussian Mixture Model (GMM) cluster was exploited and the broccoli seedling points were recognized from the sparse point cloud. An outlier filtering algorithm based on k-nearest neighbors (KNN) was applied to remove the discrete points along with the recognized broccoli seedling points. Finally, an ideal point cloud of broccoli seedlings can be obtained, and the broccoli seedlings recognized. The experimental results show that the Semi-Global Matching (SGM) algorithm can meet the matching requirements of broccoli images in the natural environment, and the average operation time of SGM is 138 ms. The SGM algorithm is superior to the Sum of Absolute Differences (SAD) algorithm and Sum of Squared Differences (SSD) algorithms. The recognition results of Gaussian Mixture Model (GMM) outperforms K-means and Fuzzy c-means with the average running time of 51 ms. To process a pair of images with the resolution of 640×480, the total running time of the proposed method is 578 ms, and the correct recognition rate is 97.98% of 247 pairs of images. The average value of sensitivity is 85.91%. The average percentage of the theoretical envelope box volume to the measured envelope box volume is 95.66%. The method can provide a low-cost, real-time and high-accuracy solution for crop recognition in natural environment.
Author Ge, Luzhen
Yang, Zhilun
Tan, Yuzhi
Li, Wei
Zhang, Gan
Sun, Zhe
Zhang, Chunlong
Zhang, Kaifei
Zhang, Ming
AuthorAffiliation College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China; luzhenge@cau.edu.cn (L.G.); yangzhilun@cau.edu.cn (Z.Y.); 13811604659@163.com (Z.S.); allanopel@sohu.com (G.Z.); JackyM@cau.edu.cn (M.Z.); zhangkaifeiyx@163.com (K.Z.); liww@cau.edu.cn (W.L.)
AuthorAffiliation_xml – name: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China; luzhenge@cau.edu.cn (L.G.); yangzhilun@cau.edu.cn (Z.Y.); 13811604659@163.com (Z.S.); allanopel@sohu.com (G.Z.); JackyM@cau.edu.cn (M.Z.); zhangkaifeiyx@163.com (K.Z.); liww@cau.edu.cn (W.L.)
Author_xml – sequence: 1
  givenname: Luzhen
  orcidid: 0000-0001-7751-4905
  surname: Ge
  fullname: Ge, Luzhen
  email: luzhenge@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. luzhenge@cau.edu.cn
– sequence: 2
  givenname: Zhilun
  surname: Yang
  fullname: Yang, Zhilun
  email: yangzhilun@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. yangzhilun@cau.edu.cn
– sequence: 3
  givenname: Zhe
  surname: Sun
  fullname: Sun, Zhe
  email: 13811604659@163.com
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. 13811604659@163.com
– sequence: 4
  givenname: Gan
  surname: Zhang
  fullname: Zhang, Gan
  email: allanopel@sohu.com
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. allanopel@sohu.com
– sequence: 5
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  email: JackyM@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. JackyM@cau.edu.cn
– sequence: 6
  givenname: Kaifei
  surname: Zhang
  fullname: Zhang, Kaifei
  email: zhangkaifeiyx@163.com
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. zhangkaifeiyx@163.com
– sequence: 7
  givenname: Chunlong
  surname: Zhang
  fullname: Zhang, Chunlong
  email: zcl1515@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. zcl1515@cau.edu.cn
– sequence: 8
  givenname: Yuzhi
  surname: Tan
  fullname: Tan, Yuzhi
  email: yztan@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. yztan@cau.edu.cn
– sequence: 9
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  email: liww@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Qinghua Rd.(E) No.17, Haidian District, Beijing 100083, China. liww@cau.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30845680$$D View this record in MEDLINE/PubMed
BookMark eNpVUctOwzAQtBCI94EfQD7CoeBXHOeC1CJeUgsSBa6WE2-KUWoXO0Fw4N9JBVRw2pVmdmZWs4PWffCA0AElJ5wX5DTRgmSUcraGtqlgYqAYI-t_9i20k9ILIYxzrjbRFidKZFKRbfQ5xBNon4PFdYh4FENVhcbhKYBtnJ_he6jCzLvWBY-dx7em7aJp8IV_czH4OfgWj0wCi3t85HyousZEPG0hQsBPLi3vjLf4ynQpOePxxL33EoAnwUKzhzZq0yTY_5m76PHy4uH8ejC-u7o5H44HFc-zdsCYEoIQQ1Utc2pKRjNaqrxUtYXScKsKqAUrucxkaXIJ3HJaUlbYIlfCmozvorNv3UVXzsFWfez-C72Ibm7ihw7G6f-Id896Ft60FCyXougFjn4EYnjtILV67lIFTWM8hC5pRlWRSSrJ0uv4m1rFkFKEemVDiV7WpVd19dzDv7lWzN9--BfIKZM_
CitedBy_id crossref_primary_10_1016_j_compag_2022_107303
crossref_primary_10_1080_01431161_2020_1811917
crossref_primary_10_3390_s21134386
crossref_primary_10_1007_s11119_022_09953_9
crossref_primary_10_1016_j_compag_2021_106242
crossref_primary_10_1002_rob_21987
crossref_primary_10_1109_ACCESS_2021_3100037
crossref_primary_10_1111_jfpe_14519
crossref_primary_10_1109_ACCESS_2019_2954587
crossref_primary_10_3390_rs13020310
crossref_primary_10_3788_LOP223410
crossref_primary_10_3390_s19183921
crossref_primary_10_1016_j_eswa_2022_118573
crossref_primary_10_1016_j_compag_2024_109086
crossref_primary_10_1016_j_compag_2020_105508
crossref_primary_10_3390_electronics9060987
crossref_primary_10_3390_rs14225733
crossref_primary_10_1016_j_biosystemseng_2021_10_008
crossref_primary_10_3390_agronomy14050931
crossref_primary_10_3390_agriculture12122039
crossref_primary_10_1016_j_compag_2022_106800
Cites_doi 10.1002/rob.21763
10.1117/1.JEI.24.2.023018
10.1016/j.biosystemseng.2016.02.004
10.1016/j.compag.2016.01.018
10.3390/s17010214
10.1007/s10514-013-9327-2
10.3390/s17112564
10.1016/j.compag.2017.09.025
10.1093/jxb/erw227
10.1016/j.compag.2015.01.010
10.1093/aob/mcy016
10.1016/j.compag.2017.02.001
10.1016/j.compag.2014.04.008
10.1109/JRA.1987.1087109
10.3390/s16111915
10.3965/j.ijabe.20150804.1442
10.1186/1471-2105-14-238
10.1016/j.biosystemseng.2016.01.013
10.1016/j.biosystemseng.2016.01.007
10.3965/j.ijabe.20140702.003
10.3390/s16122136
10.1016/j.compag.2014.09.005
10.1109/JSEN.2017.2757049
10.3390/s16060874
10.1016/j.compag.2018.01.002
10.1016/j.compag.2017.08.007
10.3390/s16070972
10.1016/j.compag.2014.04.011
10.1016/j.eswa.2017.06.044
10.13031/aea.12135
10.1177/1729881417705276
10.3390/rs10050805
10.1007/s11119-017-9536-3
10.1186/s12859-015-0665-2
10.3390/s141223885
10.3390/s150509651
10.3390/s17122738
10.1016/j.scienta.2016.05.021
10.3390/s18030763
10.1007/s00138-015-0716-8
10.1109/TCBB.2018.2824814
10.1007/s00138-015-0727-5
10.1109/34.888718
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.3390/s19051132
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID 10_3390_s19051132
30845680
Genre Journal Article
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c375t-2284400a18f671ab2151b87b8fdeba3d89ef42b3656ba76e3d31b129d9784da53
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Sep 17 21:10:40 EDT 2024
Fri Jun 28 09:20:01 EDT 2024
Fri Aug 23 03:52:19 EDT 2024
Wed Oct 16 00:51:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 3D point cloud
broccoli seedling
semi-global matching
binocular stereo vision
Gaussian mixture model
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-2284400a18f671ab2151b87b8fdeba3d89ef42b3656ba76e3d31b129d9784da53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7751-4905
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427649/
PMID 30845680
PQID 2189561605
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427649
proquest_miscellaneous_2189561605
crossref_primary_10_3390_s19051132
pubmed_primary_30845680
PublicationCentury 2000
PublicationDate 20190306
PublicationDateYYYYMMDD 2019-03-06
PublicationDate_xml – month: 3
  year: 2019
  text: 20190306
  day: 6
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI
Publisher_xml – name: MDPI
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Bezdec (ref59) 1981
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
McLachlan (ref55) 2000
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
References_xml – ident: ref17
  doi: 10.1002/rob.21763
– ident: ref4
  doi: 10.1117/1.JEI.24.2.023018
– ident: ref22
  doi: 10.1016/j.biosystemseng.2016.02.004
– ident: ref18
  doi: 10.1016/j.compag.2016.01.018
– ident: ref24
– ident: ref28
  doi: 10.3390/s17010214
– ident: ref54
  doi: 10.1007/s10514-013-9327-2
– ident: ref1
  doi: 10.3390/s17112564
– ident: ref39
  doi: 10.1016/j.compag.2017.09.025
– ident: ref48
  doi: 10.1093/jxb/erw227
– ident: ref57
– ident: ref13
  doi: 10.1016/j.compag.2015.01.010
– ident: ref53
– ident: ref34
– ident: ref30
– ident: ref2
– ident: ref38
  doi: 10.1093/aob/mcy016
– ident: ref40
  doi: 10.1016/j.compag.2017.02.001
– ident: ref60
  doi: 10.1016/j.compag.2014.04.008
– ident: ref52
  doi: 10.1109/JRA.1987.1087109
– ident: ref3
  doi: 10.3390/s16111915
– ident: ref15
  doi: 10.3965/j.ijabe.20150804.1442
– ident: ref32
  doi: 10.1186/1471-2105-14-238
– ident: ref12
  doi: 10.1016/j.biosystemseng.2016.01.013
– ident: ref20
  doi: 10.1016/j.biosystemseng.2016.01.007
– ident: ref7
  doi: 10.3965/j.ijabe.20140702.003
– ident: ref36
  doi: 10.3390/s16122136
– ident: ref49
  doi: 10.1016/j.compag.2014.09.005
– year: 1981
  ident: ref59
  contributor:
    fullname: Bezdec
– ident: ref9
  doi: 10.1109/JSEN.2017.2757049
– ident: ref35
  doi: 10.3390/s16060874
– ident: ref16
– ident: ref25
  doi: 10.1016/j.compag.2018.01.002
– ident: ref33
– ident: ref58
– ident: ref26
  doi: 10.1016/j.compag.2017.08.007
– ident: ref45
– ident: ref41
– ident: ref6
  doi: 10.3390/s16070972
– ident: ref23
  doi: 10.1016/j.compag.2014.04.011
– ident: ref19
  doi: 10.1016/j.eswa.2017.06.044
– ident: ref37
  doi: 10.13031/aea.12135
– ident: ref14
  doi: 10.1177/1729881417705276
– ident: ref29
  doi: 10.3390/rs10050805
– ident: ref8
  doi: 10.1007/s11119-017-9536-3
– ident: ref10
  doi: 10.1186/s12859-015-0665-2
– ident: ref27
  doi: 10.3390/s141223885
– ident: ref50
  doi: 10.3390/s150509651
– ident: ref5
  doi: 10.3390/s17122738
– ident: ref47
  doi: 10.1016/j.scienta.2016.05.021
– year: 2000
  ident: ref55
  contributor:
    fullname: McLachlan
– ident: ref42
– ident: ref21
– ident: ref46
  doi: 10.3390/s18030763
– ident: ref43
  doi: 10.1007/s00138-015-0716-8
– ident: ref11
  doi: 10.1109/TCBB.2018.2824814
– ident: ref56
– ident: ref44
  doi: 10.1007/s00138-015-0727-5
– ident: ref51
  doi: 10.1109/34.888718
– ident: ref31
SSID ssj0023338
Score 2.4293373
Snippet Illumination in the natural environment is uncontrollable, and the field background is complex and changeable which all leads to the poor quality of broccoli...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1132
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58gOhBfFtfjOI12maTbHIQUfGBUA9qxVvYzW4xIBu1LejB_-5M2tRWPXneTQ7z7TLfx858A7AfCh2yyYmXaWU8LmD0lPRjz8p6Yq0fZ0k5i6B5E121guvH8HECqhmbgwB2_pR2PE-q9fZ88P76cUwX_ogVJ0n2w06DTaZIVk3CtM8dQFzBFwwfE3xBMqxvKjS-fRZmRD0mBsGekKNZ6RfV_FkxOZKCLhZgfsAd8aQP9iJMWLcEcyOOgsvweYLNciY0EhlF0tgZAZ3jHeUo7jvH26peqHCYO7xRpe0Gnn-3u-Ep5TWDtH6au6KsUsU7Cr4t8KHsQ0flDF6qXofbL7GZv_MbBPJMtecVaF2c359deYMJC14mZNj1fEpOdIlVI25HsqE0538dSx23jdVKmDix7cDXgkifVjKywoiGJoZgSHsGRoViFaZc4ew6oJGiLYwJQp2JgE5ALLJ6Jq1PEskSS6nXYK-KcPrSN9JISYAwIukQkRrsVrFP6Zjz24Vytuh1UmIi3IJL4qsGa30shr-pQKyBHENpuIEttMdXXP5UWmmT-pJRkGz8-8tNmCUKlZRVadEWTHXfenabaEpX75SH8Atw2Oov
  priority: 102
  providerName: Scholars Portal
Title A Method for Broccoli Seedling Recognition in Natural Environment Based on Binocular Stereo Vision and Gaussian Mixture Model
URI https://www.ncbi.nlm.nih.gov/pubmed/30845680
https://search.proquest.com/docview/2189561605
https://pubmed.ncbi.nlm.nih.gov/PMC6427649
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xIVVwQP2EAI2mVa8midf2ro8EJSAkRwhKlZu1XxGWYI1IInHhvzO7iUNob73sZW3L2hlr3pPfvAH4lTKVepOTSCtpIi9gjCSPRWR5N7c2FjoPswiKUXZxm1yO0_EGpE0vTBDta1WduPuHE1fdBW3l44PuNDqxzlVxRpiZZ0ne2YRNStCGoi9ZFiPStbAQYsTnO9Oed6AizrUDH1hXEF7wDpDrNegfYPm3PnKt4Aw_wt4SKeLp4o0-wYZ1n2F3zT_wC7ycYhEmQCNBTyRGrSmsFd5QRfJd5njdqINqh5XDkQwmGzh4a27DPlUxg7Tfr1wdNKl4Q0dta_wTus5ROoPncj71zZZYVM_-jwP6CWr3X-F2OPh9dhEt5ylEmvF0FsVUiuiTlT0xyXhPKl_tleBKTIxVkhmR20kSK0YQT0meWWZYTxEeMMQ0EyNT9g22XO3sAaDhbMKMSVKlWULxFkx3NbcxESJLmKTbgp_NCZePC9uMkuiGj0i5ikgLfjRnX1JS-z8V0tl6Pi0Jd_iGW6JaLdhfxGL1mCaILeDvorS6wBtmv9-hPArG2cu8OfzvO49ghwBTHjRo2TFszZ7m9juBkplqUyqOOa1ieN6G7f5gdHXdDgSf1iIR7ZCkr3bS6ao
link.rule.ids 230,315,730,783,787,867,888,2228,24331,27937,27938,31733,33387,33758,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9RAFL1BTBQeFBR1lY-r8bW73U7baR-BAKvSjZGP8NbM18ZGmBJ3NyEk_HfvTLfLgk_6PG3T5sz0npM59wzA54TJxIWcBEoKHTgDYyB4lAWGh7kxUaZyfxZBMUwHZ_HXi-RiCZK2F8ab9pWsuvbyqmurn95beX2leq1PrPe92CfOzNM47z2Bp7Rew6QV6TOdxUh2NSFCjBR9b9x3GVSkulbgGQszYgwuA3KxCv1FLR87JBdKzuFLOG9ftnGa_OpOJ7Krbh_lOP7z16zBixkJxd1meB2WjH0FqwvRhK_hbhcLf7g0EqtFEuuKZkyFJ1TsXAM7_miNR7XFyuJQ-PwOPLjvm8M9KpAaaXyvsrW3u-IJoWhqPPcN7SisxiMxHbs-TiyqG7eZge5wtssNODs8ON0fBLOjGgLFeDIJIqpy9DcQ_WyU8r6QjkjIjMtspI0UTGe5GcWRZMQepeCpYZr1JVENTSI21iJhb2DZ1ta8A9ScjZjWcSIVi2kqZUyFipuItJYhuhN24FMLXXndJHKUpGQc1OUc6g58bEEtab24TRBhTT0dl0RpXC8vqbgOvG1Anj-mnR0d4A_gn1_gsrgfjhCoPpN7BuL7_75zB54PTovj8vjL8NsHWCFelnurW7oJy5PfU7NF3Gcit_1M_wNBYQaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5RkBA9FPpOoe206tVx4rW99pFXoI9EqJQK9WLty6pVWEdNIiEk_juz6zgN9MZ515atGXu-T_vNNwCfEiYTZ3ISKCl04ASMgeBRFhjey42JMpX7WQTDUXp8Fn85T86XRn150b6SVddeXHZt9dtrK8eXKmx1YuHJcJ8wM0_jPBzrMnwEa4kzTW-J-pxrMaJejZEQI1YfTvrOh4qY1wass15GqMH5QC5Xov_g5X2V5FLZGWzCr_aBG7XJn-5sKrvq-p6X44PeaAuezMEo7jZbnsKKsc_g8ZJF4XO42cWhHzKNhG6RSLuizKnwlIqea2TH760AqbZYWRwJ7-OBh__653CPCqVGWt-rbO1lr3hK0TQ1_vSN7SisxiMxm7h-ThxWV-5QA92QtosXcDY4_LF_HMxHNgSK8WQaRFTt6K8g-lmZ8r6QDlDIjMus1EYKprPclHEkGaFIKXhqmGZ9SZBDE5mNtUjYS1i1tTWvATVnJdM6TqRiMaVUxlRPcRMR5zIEe3od-NiGrxg3zhwFMRoX7mIR7g58aANb0HfjDkOENfVsUhC0cT29xOY68KoJ9OI2bYZ0gN9JgcUG58l9d4UC672554F88-Ar38P6ycGg-PZ59HUbNgie5V7xlu7A6vTvzLwlCDSV73yy3wJv7wkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Broccoli+Seedling+Recognition+in+Natural+Environment+Based+on+Binocular+Stereo+Vision+and+Gaussian+Mixture+Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ge%2C+Luzhen&rft.au=Yang%2C+Zhilun&rft.au=Sun%2C+Zhe&rft.au=Zhang%2C+Gan&rft.date=2019-03-06&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=5&rft_id=info:doi/10.3390%2Fs19051132&rft_id=info%3Apmid%2F30845680&rft.externalDBID=PMC6427649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon