Pruned hierarchical Random Forest framework for digital soil mapping: Evaluation using NEON soil properties

•A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertaintie...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 459; p. 117392
Main Authors Xu, Chengcheng, Huang, Jingyi, Hartemink, Alfred E., Chaney, Nathaniel W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertainties in soil property estimates. Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates.
AbstractList •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertainties in soil property estimates. Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates.
Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates.
ArticleNumber 117392
Author Hartemink, Alfred E.
Chaney, Nathaniel W.
Xu, Chengcheng
Huang, Jingyi
Author_xml – sequence: 1
  givenname: Chengcheng
  orcidid: 0000-0002-2134-4449
  surname: Xu
  fullname: Xu, Chengcheng
  email: chengcheng.xu@duke.edu
  organization: Department of Civil and Environmental Engineering, Duke University, Durham, NC 27705, USA
– sequence: 2
  givenname: Jingyi
  orcidid: 0000-0002-1209-9699
  surname: Huang
  fullname: Huang, Jingyi
  organization: Department of Soil and Environmental Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Alfred E.
  orcidid: 0000-0002-5797-6798
  surname: Hartemink
  fullname: Hartemink, Alfred E.
  organization: Department of Soil and Environmental Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 4
  givenname: Nathaniel W.
  surname: Chaney
  fullname: Chaney, Nathaniel W.
  organization: Department of Civil and Environmental Engineering, Duke University, Durham, NC 27705, USA
BookMark eNqFkN1K9DAQhoMouP7cguQGuibpttl6pMj6A6IiehwmyWTN2jYl6frx3b3RqqeeTJjhnYfJc0B2-9AjISeczTnj9elmvsZgMXYwF0xUc85l2YgdMuNLKYpaVM0umbGcLCSr-T45SGmTW8kEm5G3x7jt0dJXjxGiefUGWvoEvQ0dvQoR00hdhA7_hfhGXYjU-rUfcyYF39IOhsH36zO6eod2C6MPPd2mPKH3q4f7KTPEMGAcPaYjsuegTXj8_R6Sl6vV8-VNcfdwfXt5cVeYUlZjwY3mBmt0yBrmNFheOdS1Nq5CaKyoSqGZyQUcx9I6rl3ZaCy1E1Y0jS4Pye3EtQE2aoi-g_hfBfDqaxDiWkE-yLSoJF8A1EujKyYWCymXfFEtBcu4WrhG8syqJ5aJIaWI7pfHmfrUrzbqR7_61K8m_XnxfFrE_NP3bFcl47E3aH1EM-ZT_F-ID4A2lec
Cites_doi 10.1029/2022WR032336
10.5194/soil-6-371-2020
10.1038/nature13855
10.1007/978-3-319-63439-5_3
10.1029/2022JG006981
10.1029/2018WR022797
10.5194/soil-7-217-2021
10.5194/hess-25-1827-2021
10.1097/01.ss.0000080335.10341.23
10.1002/saj2.20769
10.1016/j.rse.2011.09.025
10.1126/science.1183899
10.1016/j.geoderma.2023.116360
10.1016/j.geoderma.2015.11.014
10.1613/jair.953
10.3390/agronomy12061338
10.1080/00224561.1991.12456622
10.1111/ejss.12893
10.1016/j.geoderma.2023.116579
10.1016/j.agee.2011.07.022
10.1016/j.geoderma.2014.05.013
10.1016/j.geoderma.2015.08.009
10.1038/s43247-021-00180-0
10.1007/s11104-010-0425-z
10.5194/essd-16-4735-2024
10.1016/j.cageo.2005.12.009
10.2136/sssaj2011.0025
10.1016/j.geoderma.2019.113913
10.1016/j.geoderma.2016.06.006
10.1016/j.geoderma.2024.117052
10.1016/j.geoderma.2023.116585
10.1016/j.geoderma.2016.03.025
10.3390/rs11121504
10.1016/j.geoderma.2013.09.024
10.2136/sssaj2000.643974x
10.1080/17538947.2013.786146
10.5194/soil-8-559-2022
10.3390/rs70708830
10.1007/978-3-319-63439-5_14
10.1016/S0016-7061(03)00223-4
10.3133/ds9
10.1016/j.geoderma.2010.12.018
10.1111/sum.12694
10.2136/vzj2015.09.0131
10.1016/j.geoderma.2017.01.002
10.1111/j.1365-2389.2011.01364.x
10.5194/soil-6-269-2020
10.1371/journal.pone.0169748
10.1139/cjss-2020-0078
10.1111/ejss.12790
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.geoderma.2025.117392
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_714aa68cb502447781458209be62f971
10_1016_j_geoderma_2025_117392
S0016706125002307
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSH
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c375t-1cb1ce6efe090fbad15feb6bcf5ea9d2532b0c32baf1e3df1bf39be3bf2d299b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 14 00:03:18 EDT 2025
Sat Jul 19 17:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty reduction
Soil properties estimation
Pruned Hierarchical Random Forest (pHRF)
Soil covariates
Digital soil mapping
POLARIS
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1cb1ce6efe090fbad15feb6bcf5ea9d2532b0c32baf1e3df1bf39be3bf2d299b3
ORCID 0000-0002-1209-9699
0000-0002-5797-6798
0000-0002-2134-4449
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706125002307
ParticipantIDs doaj_primary_oai_doaj_org_article_714aa68cb502447781458209be62f971
crossref_primary_10_1016_j_geoderma_2025_117392
elsevier_sciencedirect_doi_10_1016_j_geoderma_2025_117392
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Phillips, J.D., Duval, J.S., Ambroziak, R.A., 1993. National geophysical data grids; gamma-ray, gravity, magnetic, and topographic data for the conterminous United States. US Geological Survey.
Brejda, Moorman, Smith, Karlen, Allan, Dao (b0040) 2000; 64
Miller, Park, McCormack, Talbot (b0175) 1979
Heuvelink, G.B.M., 2018. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 439–461. https://doi.org/10.1007/978-3-319-63439-5_14.
Xu, Torres-Rojas, Vergopolan, Chaney (b0335) 2023; 59
Ma, Minasny, Malone, Mcbratney (b0160) 2019; 70
Vergopolan, Xiong, Estes, Wanders, Chaney, Wood, Konar, Caylor, Beck, Gatti, Evans, Sheffield (b0315) 2021; 25
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2023. Soil Survey Geographic (SSURGO) Database for the CONUS.
Schmidinger, Heuvelink (b0265) 2023; 437
Taghizadeh-Mehrjardi, Schmidt, Eftekhari, Behrens, Jamshidi, Davatgar, Toomanian, Scholten (b0300) 2020; 71
Huang, Hartemink, Zhang (b0145) 2019; 11
Brus, D. j., Kempen, B., Heuvelink, G. b. m., 2011. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x.
Chaney, Minasny, Herman, Nauman, Brungard, Morgan, McBratney, Wood, Yimam (b0060) 2019
Wiesmeier, Barthold, Blank, Kögel-Knabner (b0330) 2011; 340
Odeh, Todd, Triantafilis (b0225) 2003; 168
Minasny, McBratney (b0185) 2006; 32
Chawla, Bowyer, Hall, Kegelmeyer (b0070) 2002; 16
Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O’Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (b0180) 2017; 292
Easher, T.H., Saurette, D., Chappell, E., Lopez, F. de J.M., Gasser, M.-O., Gillespie, A., Heck, R.J., Heung, B., Biswas, A., 2023. Sampling and classifier modification to DSMART for disaggregating soil polygon maps. Geoderma 431, 116360. https://doi.org/10.1016/j.geoderma.2023.116360.
Chaney, Wood, McBratney, Hempel, Nauman, Brungard, Odgers (b0065) 2016
Bonetti, Wei, Or (b0030) 2021; 2
McBratney, Mendonça Santos, Minasny (b0165) 2003
Arrouays, McKenzie, Hempel, de Forges, McBratney (b0015) 2014
Piikki, Wetterlind, Söderström, Stenberg (b0245) 2021; 37
McBratney, Alex.B., Minasny, B., Mikheeva, I., Moyce, M., Bishop, T.F.A., 2018. Statistical Distributions of Soil Properties, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 59–86. https://doi.org/10.1007/978-3-319-63439-5_3.
Sentinel (b0275) 2021; 1
Brady, Weil, Weil (b0035) 2008
Nussbaum, Zimmermann, Walthert, Baltensweiler (b0220) 2023; 437
Adhikari, Hartemink (b0005) 2016; 262
Bardgett, van der Putten (b0020) 2014; 515
Pflugmacher, D., Cohen, W.B., E. Kennedy, R., 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ., Landsat Legacy Special Issue 122, 146–165. https://doi.org/10.1016/j.rse.2011.09.025.
Hu, Hartemink, Desai, Townsend, Abramoff, Zhu, Sihi, Huang (b0140) 2023; 128
Møller, Beucher, Pouladi, Greve (b0190) 2020; 6
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2024. The National Soil Information System.
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0130) 2016; 265
Brungard, Boettinger, Duniway, Wills, Edwards (b0045) 2015; 239
Soil Survey Staff (b0285) 2025
Mulder, de Bruin, Schaepman, Mayr (b0195) 2011; 162
Ellili-Bargaoui, Malone, Michot, Minasny, Vincent, Walter, Lemercier (b0090) 2020; 6
Schmidt, Behrens, Daumann, Ramirez-Lopez, Werban, Dietrich, Scholten (b0270) 2014; 232–234
National Cooperative Soil Survey, 2024. The National Cooperative Soil Survey Characterization Database.
Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0250) 2021; 7
Furze, Arp (b0105) 2020; 101
Wadoux, Brus, Heuvelink (b0325) 2019; 355
Gebbers, Adamchuk (b0110) 2010; 327
Sexton, Song, Feng, Noojipady, Anand, Huang, Kim, Collins, Channan, DiMiceli, Townshend (b0280) 2013; 6
USGS, 2024. Watershed Boundary Dataset, Eight-Digit Hydrologic Units (Watersheds) of the Eight Digit Sub-Basins.
Rahmani, Ackerson, Schulze, Adhikari, Libohova (b0255) 2022; 12
Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, vzj2015.09.0131. https://doi.org/10.2136/vzj2015.09.0131.
Lilburne, Helfenstein, Heuvelink, Eger (b0150) 2024; 450
Long, Degloria, Galbraith (b0155) 1991; 46
Bui, Hancock, Wilkinson (b0055) 2011; 144
Hengl, De Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (b0125) 2017
Guanter, Kaufmann, Segl, Foerster, Rogass, Chabrillat, Kuester, Hollstein, Rossner, Chlebek, Straif, Fischer, Schrader, Storch, Heiden, Mueller, Bachmann, Mühle, Müller, Habermeyer, Ohndorf, Hill, Buddenbaum, Hostert, Van der Linden, Leitão, Rabe, Doerffer, Krasemann, Xi, Mauser, Hank, Locherer, Rast, Staenz, Sang (b0120) 2015; 7
Croft, Kuhn, Anderson (b0075) 2012; 94
Rossiter, Poggio, Beaudette, Libohova (b0260) 2022; 8
Odgers, Sun, McBratney, Minasny, Clifford (b0230) 2014
Batjes, Calisto, de Sousa (b0025) 2024; 16
Grunwald, Thompson, Boettinger (b0115) 2011; 75
Vincent, Lemercier, Berthier, Walter (b0320) 2018; 311
Nauman, Kienast-Brown, Roecker, Brungard, White, Philippe, Thompson (b0210) 2024; 88
Brady (10.1016/j.geoderma.2025.117392_b0035) 2008
Odgers (10.1016/j.geoderma.2025.117392_b0230) 2014
10.1016/j.geoderma.2025.117392_b0240
10.1016/j.geoderma.2025.117392_b0085
Wiesmeier (10.1016/j.geoderma.2025.117392_b0330) 2011; 340
10.1016/j.geoderma.2025.117392_b0200
Miller (10.1016/j.geoderma.2025.117392_b0175) 1979
Minasny (10.1016/j.geoderma.2025.117392_b0185) 2006; 32
Schmidinger (10.1016/j.geoderma.2025.117392_b0265) 2023; 437
Xu (10.1016/j.geoderma.2025.117392_b0335) 2023; 59
Sexton (10.1016/j.geoderma.2025.117392_b0280) 2013; 6
Brejda (10.1016/j.geoderma.2025.117392_b0040) 2000; 64
Batjes (10.1016/j.geoderma.2025.117392_b0025) 2024; 16
Soil Survey Staff (10.1016/j.geoderma.2025.117392_b0285) 2025
Vergopolan (10.1016/j.geoderma.2025.117392_b0315) 2021; 25
Bardgett (10.1016/j.geoderma.2025.117392_b0020) 2014; 515
Schmidt (10.1016/j.geoderma.2025.117392_b0270) 2014; 232–234
10.1016/j.geoderma.2025.117392_b0310
Lilburne (10.1016/j.geoderma.2025.117392_b0150) 2024; 450
10.1016/j.geoderma.2025.117392_b0235
Minasny (10.1016/j.geoderma.2025.117392_b0180) 2017; 292
Wadoux (10.1016/j.geoderma.2025.117392_b0325) 2019; 355
Hengl (10.1016/j.geoderma.2025.117392_b0125) 2017
Chaney (10.1016/j.geoderma.2025.117392_b0065) 2016
Odeh (10.1016/j.geoderma.2025.117392_b0225) 2003; 168
Bui (10.1016/j.geoderma.2025.117392_b0055) 2011; 144
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2025.117392_b0300) 2020; 71
Piikki (10.1016/j.geoderma.2025.117392_b0245) 2021; 37
Nussbaum (10.1016/j.geoderma.2025.117392_b0220) 2023; 437
Grunwald (10.1016/j.geoderma.2025.117392_b0115) 2011; 75
Long (10.1016/j.geoderma.2025.117392_b0155) 1991; 46
Arrouays (10.1016/j.geoderma.2025.117392_b0015) 2014
Ellili-Bargaoui (10.1016/j.geoderma.2025.117392_b0090) 2020; 6
Rahmani (10.1016/j.geoderma.2025.117392_b0255) 2022; 12
Hu (10.1016/j.geoderma.2025.117392_b0140) 2023; 128
Bonetti (10.1016/j.geoderma.2025.117392_b0030) 2021; 2
10.1016/j.geoderma.2025.117392_b0305
McBratney (10.1016/j.geoderma.2025.117392_b0165) 2003
Huang (10.1016/j.geoderma.2025.117392_b0145) 2019; 11
Poggio (10.1016/j.geoderma.2025.117392_b0250) 2021; 7
Nauman (10.1016/j.geoderma.2025.117392_b0210) 2024; 88
10.1016/j.geoderma.2025.117392_b0170
10.1016/j.geoderma.2025.117392_b0290
10.1016/j.geoderma.2025.117392_b0050
Ma (10.1016/j.geoderma.2025.117392_b0160) 2019; 70
Furze (10.1016/j.geoderma.2025.117392_b0105) 2020; 101
Møller (10.1016/j.geoderma.2025.117392_b0190) 2020; 6
10.1016/j.geoderma.2025.117392_b0295
Vincent (10.1016/j.geoderma.2025.117392_b0320) 2018; 311
Mulder (10.1016/j.geoderma.2025.117392_b0195) 2011; 162
Adhikari (10.1016/j.geoderma.2025.117392_b0005) 2016; 262
Sentinel (10.1016/j.geoderma.2025.117392_b0275) 2021; 1
Gebbers (10.1016/j.geoderma.2025.117392_b0110) 2010; 327
10.1016/j.geoderma.2025.117392_b0135
Brungard (10.1016/j.geoderma.2025.117392_b0045) 2015; 239
Guanter (10.1016/j.geoderma.2025.117392_b0120) 2015; 7
Heung (10.1016/j.geoderma.2025.117392_b0130) 2016; 265
Chaney (10.1016/j.geoderma.2025.117392_b0060) 2019
Chawla (10.1016/j.geoderma.2025.117392_b0070) 2002; 16
Rossiter (10.1016/j.geoderma.2025.117392_b0260) 2022; 8
Croft (10.1016/j.geoderma.2025.117392_b0075) 2012; 94
References_xml – volume: 11
  start-page: 1504
  year: 2019
  ident: b0145
  article-title: Climate and land-use change effects on soil Carbon stocks over 150 Years in Wisconsin, USA
  publication-title: Remote Sens.
– volume: 12
  start-page: 1338
  year: 2022
  ident: b0255
  article-title: Digital mapping of soil organic matter and cation exchange capacity in a low relief landscape using LiDAR data
  publication-title: Agronomy
– volume: 7
  start-page: 8830
  year: 2015
  end-page: 8857
  ident: b0120
  article-title: The EnMAP spaceborne imaging spectroscopy Mission for Earth observation
  publication-title: Remote Sens.
– volume: 71
  start-page: 352
  year: 2020
  end-page: 368
  ident: b0300
  article-title: Synthetic resampling strategies and machine learning for digital soil mapping in Iran
  publication-title: Eur. J. Soil Sci.
– volume: 8
  start-page: 559
  year: 2022
  end-page: 586
  ident: b0260
  article-title: How well does digital soil mapping represent soil geography? an investigation from the USA
  publication-title: SOIL
– year: 2008
  ident: b0035
  article-title: The nature and properties of soils
– year: 2025
  ident: b0285
  article-title: Gridded soil survey geographic (gSSURGO)
– reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2023. Soil Survey Geographic (SSURGO) Database for the CONUS.
– volume: 144
  start-page: 136
  year: 2011
  end-page: 149
  ident: b0055
  article-title: ‘Tolerable’ hillslope soil erosion rates in Australia: linking science and policy
  publication-title: Agric. Ecosyst. Environ.
– volume: 88
  start-page: 2046
  year: 2024
  end-page: 2065
  ident: b0210
  article-title: Soil landscapes of the United States (SOLUS): developing predictive soil property maps of the conterminous United States using hybrid training sets
  publication-title: Soil Sci. Soc. Am. J.
– volume: 6
  start-page: 371
  year: 2020
  end-page: 388
  ident: b0090
  article-title: Comparing three approaches of spatial disaggregation of legacy soil maps based on the disaggregation and harmonisation of soil map units through resampled classification trees (DSMART) algorithm
  publication-title: SOIL
– reference: Phillips, J.D., Duval, J.S., Ambroziak, R.A., 1993. National geophysical data grids; gamma-ray, gravity, magnetic, and topographic data for the conterminous United States. US Geological Survey.
– volume: 128
  year: 2023
  ident: b0140
  article-title: A continental-scale estimate of soil organic Carbon change at NEON sites and their environmental and edaphic controls
  publication-title: J. Geophys. res Biogeosciences
– volume: 327
  start-page: 828
  year: 2010
  end-page: 831
  ident: b0110
  article-title: Precision agriculture and food security
  publication-title: Science
– reference: Brus, D. j., Kempen, B., Heuvelink, G. b. m., 2011. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0130
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  ident: b0180
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
– volume: 232–234
  start-page: 243
  year: 2014
  end-page: 256
  ident: b0270
  article-title: A comparison of calibration sampling schemes at the field scale
  publication-title: Geoderma
– volume: 162
  start-page: 1
  year: 2011
  end-page: 19
  ident: b0195
  article-title: The use of remote sensing in soil and terrain mapping — a review
  publication-title: Geoderma
– volume: 16
  year: 2002
  ident: b0070
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– reference: Heuvelink, G.B.M., 2018. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 439–461. https://doi.org/10.1007/978-3-319-63439-5_14.
– reference: McBratney, Alex.B., Minasny, B., Mikheeva, I., Moyce, M., Bishop, T.F.A., 2018. Statistical Distributions of Soil Properties, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 59–86. https://doi.org/10.1007/978-3-319-63439-5_3.
– reference: National Cooperative Soil Survey, 2024. The National Cooperative Soil Survey Characterization Database.
– volume: 7
  start-page: 217
  year: 2021
  end-page: 240
  ident: b0250
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: SOIL
– volume: 355
  year: 2019
  ident: b0325
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma
– volume: 515
  start-page: 505
  year: 2014
  end-page: 511
  ident: b0020
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
– year: 2003
  ident: b0165
  article-title: On digital soil mapping
  publication-title: Geoderma
– year: 1979
  ident: b0175
  article-title: Soil surveys: review of data-collection methodologies, confidence limits, and uses
– volume: 450
  year: 2024
  ident: b0150
  article-title: Interpreting and evaluating digital soil mapping prediction uncertainty: a case study using texture from SoilGrids
  publication-title: Geoderma
– volume: 239
  year: 2015
  ident: b0045
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 6
  start-page: 427
  year: 2013
  end-page: 448
  ident: b0280
  article-title: Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
  publication-title: Int. J. Digit. Earth
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  ident: b0115
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
– volume: 101
  start-page: 222
  year: 2020
  end-page: 247
  ident: b0105
  article-title: Amalgamation and harmonization of soil survey reports into a multi-purpose database
  publication-title: Can. J. Soil Sci.
– year: 2014
  ident: b0015
  article-title: GlobalSoilMap: basis of the global spatial soil information system
– volume: 1
  year: 2021
  ident: b0275
  article-title: 2.:(processed by ESA), MSI level-2A BOA reflectance product
  publication-title: Collection
– volume: 59
  year: 2023
  ident: b0335
  article-title: The benefits of using state-of-the-art digital soil properties maps to improve the modeling of soil moisture in land surface models
  publication-title: Water Resour. Res.
– year: 2019
  ident: b0060
  article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States
  publication-title: Water Resour. Res.
– reference: Pflugmacher, D., Cohen, W.B., E. Kennedy, R., 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ., Landsat Legacy Special Issue 122, 146–165. https://doi.org/10.1016/j.rse.2011.09.025.
– volume: 437
  year: 2023
  ident: b0220
  article-title: Benefits of hierarchical predictions for digital soil mapping—An approach to map bimodal soil pH
  publication-title: Geoderma
– year: 2017
  ident: b0125
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS ONE
– reference: Easher, T.H., Saurette, D., Chappell, E., Lopez, F. de J.M., Gasser, M.-O., Gillespie, A., Heck, R.J., Heung, B., Biswas, A., 2023. Sampling and classifier modification to DSMART for disaggregating soil polygon maps. Geoderma 431, 116360. https://doi.org/10.1016/j.geoderma.2023.116360.
– volume: 262
  start-page: 101
  year: 2016
  end-page: 111
  ident: b0005
  article-title: Linking soils to ecosystem services — a global review
  publication-title: Geoderma
– volume: 70
  year: 2019
  ident: b0160
  article-title: Pedology and digital soil mapping (DSM)
  publication-title: Eur. J. Soil Sci.
– volume: 25
  start-page: 1827
  year: 2021
  end-page: 1847
  ident: b0315
  article-title: Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 64
  start-page: 974
  year: 2000
  end-page: 982
  ident: b0040
  article-title: Distribution and Variability of Surface soil properties at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0030
  article-title: A framework for quantifying hydrologic effects of soil structure across scales
  publication-title: Commun. Earth Environ.
– reference: Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, vzj2015.09.0131. https://doi.org/10.2136/vzj2015.09.0131.
– volume: 311
  start-page: 130
  year: 2018
  end-page: 142
  ident: b0320
  article-title: Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships
  publication-title: Geoderma
– volume: 16
  start-page: 4735
  year: 2024
  end-page: 4765
  ident: b0025
  article-title: Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
  publication-title: Earth Syst. Sci. Data
– volume: 94
  start-page: 64
  year: 2012
  end-page: 74
  ident: b0075
  article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems
  publication-title: CATENA, Soil Erosion and the Global Carbon Cycle
– volume: 168
  start-page: 501
  year: 2003
  ident: b0225
  article-title: Spatial prediction of soil particle-size fractions as compositional data
  publication-title: Soil Sci.
– volume: 437
  year: 2023
  ident: b0265
  article-title: Validation of uncertainty predictions in digital soil mapping
  publication-title: Geoderma
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: b0185
  article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– volume: 46
  start-page: 293
  year: 1991
  end-page: 297
  ident: b0155
  article-title: Use of the global positioning system in soil survey
  publication-title: J. Soil Water Conserv.
– reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2024. The National Soil Information System.
– year: 2014
  ident: b0230
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
– volume: 37
  start-page: 7
  year: 2021
  end-page: 21
  ident: b0245
  article-title: Perspectives on validation in digital soil mapping of continuous attributes—A review
  publication-title: Soil Use Manag.
– volume: 6
  start-page: 269
  year: 2020
  end-page: 289
  ident: b0190
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
– reference: USGS, 2024. Watershed Boundary Dataset, Eight-Digit Hydrologic Units (Watersheds) of the Eight Digit Sub-Basins.
– year: 2016
  ident: b0065
  article-title: POLARIS: a 30-meter probabilistic soil series map of the contiguous United States
  publication-title: Geoderma
– volume: 340
  start-page: 7
  year: 2011
  end-page: 24
  ident: b0330
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
– volume: 59
  year: 2023
  ident: 10.1016/j.geoderma.2025.117392_b0335
  article-title: The benefits of using state-of-the-art digital soil properties maps to improve the modeling of soil moisture in land surface models
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR032336
– volume: 239
  year: 2015
  ident: 10.1016/j.geoderma.2025.117392_b0045
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 6
  start-page: 371
  year: 2020
  ident: 10.1016/j.geoderma.2025.117392_b0090
  article-title: Comparing three approaches of spatial disaggregation of legacy soil maps based on the disaggregation and harmonisation of soil map units through resampled classification trees (DSMART) algorithm
  publication-title: SOIL
  doi: 10.5194/soil-6-371-2020
– volume: 1
  year: 2021
  ident: 10.1016/j.geoderma.2025.117392_b0275
  article-title: 2.:(processed by ESA), MSI level-2A BOA reflectance product
  publication-title: Collection
– volume: 515
  start-page: 505
  year: 2014
  ident: 10.1016/j.geoderma.2025.117392_b0020
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
  doi: 10.1038/nature13855
– year: 2014
  ident: 10.1016/j.geoderma.2025.117392_b0015
– ident: 10.1016/j.geoderma.2025.117392_b0170
  doi: 10.1007/978-3-319-63439-5_3
– year: 2008
  ident: 10.1016/j.geoderma.2025.117392_b0035
– volume: 128
  year: 2023
  ident: 10.1016/j.geoderma.2025.117392_b0140
  article-title: A continental-scale estimate of soil organic Carbon change at NEON sites and their environmental and edaphic controls
  publication-title: J. Geophys. res Biogeosciences
  doi: 10.1029/2022JG006981
– year: 2019
  ident: 10.1016/j.geoderma.2025.117392_b0060
  article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022797
– year: 1979
  ident: 10.1016/j.geoderma.2025.117392_b0175
– volume: 7
  start-page: 217
  year: 2021
  ident: 10.1016/j.geoderma.2025.117392_b0250
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: SOIL
  doi: 10.5194/soil-7-217-2021
– volume: 25
  start-page: 1827
  year: 2021
  ident: 10.1016/j.geoderma.2025.117392_b0315
  article-title: Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-1827-2021
– volume: 168
  start-page: 501
  year: 2003
  ident: 10.1016/j.geoderma.2025.117392_b0225
  article-title: Spatial prediction of soil particle-size fractions as compositional data
  publication-title: Soil Sci.
  doi: 10.1097/01.ss.0000080335.10341.23
– volume: 88
  start-page: 2046
  year: 2024
  ident: 10.1016/j.geoderma.2025.117392_b0210
  article-title: Soil landscapes of the United States (SOLUS): developing predictive soil property maps of the conterminous United States using hybrid training sets
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20769
– ident: 10.1016/j.geoderma.2025.117392_b0235
  doi: 10.1016/j.rse.2011.09.025
– volume: 327
  start-page: 828
  year: 2010
  ident: 10.1016/j.geoderma.2025.117392_b0110
  article-title: Precision agriculture and food security
  publication-title: Science
  doi: 10.1126/science.1183899
– ident: 10.1016/j.geoderma.2025.117392_b0085
  doi: 10.1016/j.geoderma.2023.116360
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2025.117392_b0130
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 16
  year: 2002
  ident: 10.1016/j.geoderma.2025.117392_b0070
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 12
  start-page: 1338
  year: 2022
  ident: 10.1016/j.geoderma.2025.117392_b0255
  article-title: Digital mapping of soil organic matter and cation exchange capacity in a low relief landscape using LiDAR data
  publication-title: Agronomy
  doi: 10.3390/agronomy12061338
– year: 2025
  ident: 10.1016/j.geoderma.2025.117392_b0285
– volume: 46
  start-page: 293
  issue: 4
  year: 1991
  ident: 10.1016/j.geoderma.2025.117392_b0155
  article-title: Use of the global positioning system in soil survey
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.1991.12456622
– volume: 71
  start-page: 352
  year: 2020
  ident: 10.1016/j.geoderma.2025.117392_b0300
  article-title: Synthetic resampling strategies and machine learning for digital soil mapping in Iran
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12893
– volume: 94
  start-page: 64
  year: 2012
  ident: 10.1016/j.geoderma.2025.117392_b0075
  article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems
  publication-title: CATENA, Soil Erosion and the Global Carbon Cycle
– volume: 437
  year: 2023
  ident: 10.1016/j.geoderma.2025.117392_b0220
  article-title: Benefits of hierarchical predictions for digital soil mapping—An approach to map bimodal soil pH
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116579
– volume: 144
  start-page: 136
  year: 2011
  ident: 10.1016/j.geoderma.2025.117392_b0055
  article-title: ‘Tolerable’ hillslope soil erosion rates in Australia: linking science and policy
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.07.022
– volume: 232–234
  start-page: 243
  year: 2014
  ident: 10.1016/j.geoderma.2025.117392_b0270
  article-title: A comparison of calibration sampling schemes at the field scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.013
– ident: 10.1016/j.geoderma.2025.117392_b0295
– volume: 262
  start-page: 101
  year: 2016
  ident: 10.1016/j.geoderma.2025.117392_b0005
  article-title: Linking soils to ecosystem services — a global review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.009
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.geoderma.2025.117392_b0030
  article-title: A framework for quantifying hydrologic effects of soil structure across scales
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-021-00180-0
– volume: 340
  start-page: 7
  year: 2011
  ident: 10.1016/j.geoderma.2025.117392_b0330
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
– volume: 16
  start-page: 4735
  year: 2024
  ident: 10.1016/j.geoderma.2025.117392_b0025
  article-title: Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-16-4735-2024
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geoderma.2025.117392_b0185
  article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 75
  start-page: 1201
  year: 2011
  ident: 10.1016/j.geoderma.2025.117392_b0115
  article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0025
– volume: 355
  year: 2019
  ident: 10.1016/j.geoderma.2025.117392_b0325
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113913
– volume: 311
  start-page: 130
  year: 2018
  ident: 10.1016/j.geoderma.2025.117392_b0320
  article-title: Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.006
– volume: 450
  year: 2024
  ident: 10.1016/j.geoderma.2025.117392_b0150
  article-title: Interpreting and evaluating digital soil mapping prediction uncertainty: a case study using texture from SoilGrids
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2024.117052
– volume: 437
  year: 2023
  ident: 10.1016/j.geoderma.2025.117392_b0265
  article-title: Validation of uncertainty predictions in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116585
– year: 2016
  ident: 10.1016/j.geoderma.2025.117392_b0065
  article-title: POLARIS: a 30-meter probabilistic soil series map of the contiguous United States
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.03.025
– ident: 10.1016/j.geoderma.2025.117392_b0200
– ident: 10.1016/j.geoderma.2025.117392_b0305
– volume: 11
  start-page: 1504
  year: 2019
  ident: 10.1016/j.geoderma.2025.117392_b0145
  article-title: Climate and land-use change effects on soil Carbon stocks over 150 Years in Wisconsin, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs11121504
– year: 2014
  ident: 10.1016/j.geoderma.2025.117392_b0230
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.024
– volume: 64
  start-page: 974
  year: 2000
  ident: 10.1016/j.geoderma.2025.117392_b0040
  article-title: Distribution and Variability of Surface soil properties at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.643974x
– volume: 6
  start-page: 427
  year: 2013
  ident: 10.1016/j.geoderma.2025.117392_b0280
  article-title: Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2013.786146
– ident: 10.1016/j.geoderma.2025.117392_b0290
– volume: 8
  start-page: 559
  year: 2022
  ident: 10.1016/j.geoderma.2025.117392_b0260
  article-title: How well does digital soil mapping represent soil geography? an investigation from the USA
  publication-title: SOIL
  doi: 10.5194/soil-8-559-2022
– volume: 7
  start-page: 8830
  year: 2015
  ident: 10.1016/j.geoderma.2025.117392_b0120
  article-title: The EnMAP spaceborne imaging spectroscopy Mission for Earth observation
  publication-title: Remote Sens.
  doi: 10.3390/rs70708830
– ident: 10.1016/j.geoderma.2025.117392_b0135
  doi: 10.1007/978-3-319-63439-5_14
– year: 2003
  ident: 10.1016/j.geoderma.2025.117392_b0165
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– ident: 10.1016/j.geoderma.2025.117392_b0240
  doi: 10.3133/ds9
– volume: 162
  start-page: 1
  year: 2011
  ident: 10.1016/j.geoderma.2025.117392_b0195
  article-title: The use of remote sensing in soil and terrain mapping — a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.018
– volume: 37
  start-page: 7
  year: 2021
  ident: 10.1016/j.geoderma.2025.117392_b0245
  article-title: Perspectives on validation in digital soil mapping of continuous attributes—A review
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12694
– ident: 10.1016/j.geoderma.2025.117392_b0310
  doi: 10.2136/vzj2015.09.0131
– volume: 292
  start-page: 59
  year: 2017
  ident: 10.1016/j.geoderma.2025.117392_b0180
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– ident: 10.1016/j.geoderma.2025.117392_b0050
  doi: 10.1111/j.1365-2389.2011.01364.x
– volume: 6
  start-page: 269
  year: 2020
  ident: 10.1016/j.geoderma.2025.117392_b0190
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-6-269-2020
– year: 2017
  ident: 10.1016/j.geoderma.2025.117392_b0125
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 101
  start-page: 222
  year: 2020
  ident: 10.1016/j.geoderma.2025.117392_b0105
  article-title: Amalgamation and harmonization of soil survey reports into a multi-purpose database
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2020-0078
– volume: 70
  year: 2019
  ident: 10.1016/j.geoderma.2025.117392_b0160
  article-title: Pedology and digital soil mapping (DSM)
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12790
SSID ssj0017020
Score 2.460039
Snippet •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores...
Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 117392
SubjectTerms Digital soil mapping
POLARIS
Pruned Hierarchical Random Forest (pHRF)
Soil covariates
Soil properties estimation
Uncertainty reduction
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uA1NLubTRpvVVpEsIpY6C3s7CO02rT08f_dyaPUUy9eAgnLMnwT8s1mZr4h5MFIlkAqecCU40GUdG0AWruAC4i6CkKpHfY7vw3jl1H0OpbjnVFfWBNWyQNXwHUSFikVdzVIzyZRggpN0rNWCjbmLi27x_0daw5Tdf4g8VHQTj_w1HsDR4uVSkNcYqZSpPwPFZWK_TuMtMMygxNyXIeHtFeZdUoObHFGjnr5spbIsOfk-2O58d9GikOsyzSAR5l-qsLMZxQHba7W1DUVV9SHpNRMcpwMQlfzyQ-dKRRkyB9pfyvzTbH2PafD_vuwWrPAH_RLVFq9IKNB_-v5JahHJgRaJHIdMA1M29g6G6ahA2WYdBZi0E5alRouBYdQ-4tyzArjGDjhoRTguPHEBOKStIp5Ya8ITYxgYCNjJKgo0RIi5TzbmzhM8RATt0mnQS9bVMoYWVMyNs0avDPEO6vwbpMnBHm7GpWtywfe31nt72yfv9skbVyU1UFCRf5-q8keA67_w4AbcohbViW7t6S1Xm7snQ9M1nBfvoO_etri9Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Pruned hierarchical Random Forest framework for digital soil mapping: Evaluation using NEON soil properties
URI https://dx.doi.org/10.1016/j.geoderma.2025.117392
https://doaj.org/article/714aa68cb502447781458209be62f971
Volume 459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWywUOiKcoj8oHrqHxu-FWVl0VEAUhVtpb5PEjyi7bVtnuld-Ox0mq7okDl0ix7Mj6bM18jme-IeS9V8xApXjBbOSFNPNQgHOx4ALk3EKpXMR8529rvbqQXy7V5Qk5G3NhMKxysP29Tc_WemiZDWjOdm2LOb5Mm-yhM5HGjHIpDe7yD38OYR7MlIM0I9MF9j7KEr5Ka4QFx7L-EFd4fykqfs9BZR3_Iz915HvOn5DHA2mki35eT8lJ2DwjjxZNNwhnhOfk-kd3lywmxdLW-XIgYU9_2o3f3lAsv3m7p3GMw6KJqFLfNlgvhN5u29_0xqJMQ_ORLg_i3xQj4hu6Xn5f9312-Nu-Q_3VF-TifPnrbFUMhRQKJ4zaF8wBc0GHGMqqjGA9UzGABhdVsJXnSnAoXXrYyILwkUEUFQQBkfvkrkC8JKeb7Sa8ItR4wSBI7xVYaZwCaWPiAF6XFR5t9ITMRvTqXa-XUY-BZFf1iHeNeNc93hPyCUE-9Ea969yw7Zp6WPDaMGmtnjtQiVNIgzpdKnGXNEnNY2XYhFTjEtX3tk_6VPuPCbz-j7FvyEN86-N335LTfXcX3iWWsodp3oZT8mDx-etqPc1n_b8eA-rJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPd8vIBjmFjO7Y3SBwKbLWl7YJQK_Vm_IxS2t1VdivEhT_FH8STOKvtiQPqJQfHsazPk5mxZuYbhF47TqQpOc2IDjQr5MhnxtqQUWaKkTY5twHqnY-nYnJafD7jZ1voT18LA2mVSfd3Or3V1mlkmNAcLuoaanyJkK2Fbh1pmTIrD_2vn_Hetnx_8Cke8htK98cnHydZai2QWSb5KiPWEOuFDz4v82C0Izx4I4wN3OvSUc6oyW186EA8c4GYwErjmQnURQVuWFz3FrpdRHUBbRPe_l7nlRCZJy5IIjLY3kZZ8nkUCuhw1hIeUQ4BU1bSaxaxbRywYRg3jN3-A3Q_eal4rwPiIdrys0fo3l7VJKYO_xj9-NpcRRWNoZd2G42Ih42_6ZmbX2Lo97lc4dAnfuHoGWNXV9CgBC_n9QW-1MALUb3D4zXbOIYU_ApPx1-m3ZwFxAkaIHx9gk5vBN6naHs2n_kdhKVjxPjCOW50IS03hQ7R6XAiL-EuJQZo2KOnFh1Bh-oz185Vj7cCvFWH9wB9AJDXs4Fgux2YN5VKEqYkKbQWI2t4dGIKCcRgPDpLcZOChlKSASr7I1LX5DUuVf9jA7v_8e0rdGdycnykjg6mh8_QXXjTJQ8_R9ur5sq_iC7SyrxsRRKj7zf9D_wFFPMpnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pruned+hierarchical+Random+Forest+framework+for+digital+soil+mapping%3A+Evaluation+using+NEON+soil+properties&rft.jtitle=Geoderma&rft.au=Xu%2C+Chengcheng&rft.au=Huang%2C+Jingyi&rft.au=Hartemink%2C+Alfred+E.&rft.au=Chaney%2C+Nathaniel+W.&rft.date=2025-07-01&rft.issn=0016-7061&rft.volume=459&rft.spage=117392&rft_id=info:doi/10.1016%2Fj.geoderma.2025.117392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2025_117392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon