Pruned hierarchical Random Forest framework for digital soil mapping: Evaluation using NEON soil properties
•A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertaintie...
Saved in:
Published in | Geoderma Vol. 459; p. 117392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertainties in soil property estimates.
Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates. |
---|---|
AbstractList | •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores over 0.7 at multiple taxonomic levels for soil classification.•This approach provided narrower prediction intervals and reduced the uncertainties in soil property estimates.
Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates. Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing uncertainties in soil property and soil class maps improves their reliability. Here, we present a pruned Hierarchical Random Forest (pHRF) framework to map soil taxa and properties over the National Ecological Observatory Network (NEON) sites in the Contiguous United States (CONUS). The pHRF method reduces uncertainties in predictions compared to POLARIS v1, providing smaller prediction intervals for the distributions of soil properties. In addition, pHRF addresses two data imbalance issues in soil survey data—uneven spatial distribution of georeferenced soil observations, and secondly underrepresentation of certain soil taxa. Unlike traditional hierarchical soil classification, pHRF conditions the probabilities of finer taxonomic levels based on their parent levels and removes implausible predictions (identified as errors) using field-validated soil taxa, improving prediction intervals. To address the categorical imbalance, soil taxa belonging to minority parent soil taxa are predicted with their own models, without being overlooked compared to using a single model on all soil taxa. For spatial imbalance, each model dynamically adapts its spatial coverage, incorporating more neighboring soil data in areas where georeferenced soil observations are sparse. In data-scarce areas, field-validated soil taxa are resampled to improve the representation of soil variation. The pHRF-derived soil classification showed out-of-bag scores above 0.7 at different taxonomic levels. The probabilistic map of soil series was then used to estimate soil properties, by linking them to a harmonized soil properties database. When evaluated against independent NEON measurements, pHRF performed better than POLARIS v1 for root zone properties (0–60 cm), particularly for sand, clay, and organic matter content. Specifically, pHRF reduced RMSE by 1.15 (sand%), 1.32 (clay%), and 0.21 (log-scaled organic matter%) while improving correlations. For pH, both models showed a reasonable fit (RMSE: ∼0.70, correlation: 0.85). This approach presents a development in refining soil properties mapping, especially in its effectiveness in reducing uncertainties. Future work will focus on reducing uncertainties and correcting biases in soil property estimates. |
ArticleNumber | 117392 |
Author | Hartemink, Alfred E. Chaney, Nathaniel W. Xu, Chengcheng Huang, Jingyi |
Author_xml | – sequence: 1 givenname: Chengcheng orcidid: 0000-0002-2134-4449 surname: Xu fullname: Xu, Chengcheng email: chengcheng.xu@duke.edu organization: Department of Civil and Environmental Engineering, Duke University, Durham, NC 27705, USA – sequence: 2 givenname: Jingyi orcidid: 0000-0002-1209-9699 surname: Huang fullname: Huang, Jingyi organization: Department of Soil and Environmental Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Alfred E. orcidid: 0000-0002-5797-6798 surname: Hartemink fullname: Hartemink, Alfred E. organization: Department of Soil and Environmental Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 4 givenname: Nathaniel W. surname: Chaney fullname: Chaney, Nathaniel W. organization: Department of Civil and Environmental Engineering, Duke University, Durham, NC 27705, USA |
BookMark | eNqFkN1K9DAQhoMouP7cguQGuibpttl6pMj6A6IiehwmyWTN2jYl6frx3b3RqqeeTJjhnYfJc0B2-9AjISeczTnj9elmvsZgMXYwF0xUc85l2YgdMuNLKYpaVM0umbGcLCSr-T45SGmTW8kEm5G3x7jt0dJXjxGiefUGWvoEvQ0dvQoR00hdhA7_hfhGXYjU-rUfcyYF39IOhsH36zO6eod2C6MPPd2mPKH3q4f7KTPEMGAcPaYjsuegTXj8_R6Sl6vV8-VNcfdwfXt5cVeYUlZjwY3mBmt0yBrmNFheOdS1Nq5CaKyoSqGZyQUcx9I6rl3ZaCy1E1Y0jS4Pye3EtQE2aoi-g_hfBfDqaxDiWkE-yLSoJF8A1EujKyYWCymXfFEtBcu4WrhG8syqJ5aJIaWI7pfHmfrUrzbqR7_61K8m_XnxfFrE_NP3bFcl47E3aH1EM-ZT_F-ID4A2lec |
Cites_doi | 10.1029/2022WR032336 10.5194/soil-6-371-2020 10.1038/nature13855 10.1007/978-3-319-63439-5_3 10.1029/2022JG006981 10.1029/2018WR022797 10.5194/soil-7-217-2021 10.5194/hess-25-1827-2021 10.1097/01.ss.0000080335.10341.23 10.1002/saj2.20769 10.1016/j.rse.2011.09.025 10.1126/science.1183899 10.1016/j.geoderma.2023.116360 10.1016/j.geoderma.2015.11.014 10.1613/jair.953 10.3390/agronomy12061338 10.1080/00224561.1991.12456622 10.1111/ejss.12893 10.1016/j.geoderma.2023.116579 10.1016/j.agee.2011.07.022 10.1016/j.geoderma.2014.05.013 10.1016/j.geoderma.2015.08.009 10.1038/s43247-021-00180-0 10.1007/s11104-010-0425-z 10.5194/essd-16-4735-2024 10.1016/j.cageo.2005.12.009 10.2136/sssaj2011.0025 10.1016/j.geoderma.2019.113913 10.1016/j.geoderma.2016.06.006 10.1016/j.geoderma.2024.117052 10.1016/j.geoderma.2023.116585 10.1016/j.geoderma.2016.03.025 10.3390/rs11121504 10.1016/j.geoderma.2013.09.024 10.2136/sssaj2000.643974x 10.1080/17538947.2013.786146 10.5194/soil-8-559-2022 10.3390/rs70708830 10.1007/978-3-319-63439-5_14 10.1016/S0016-7061(03)00223-4 10.3133/ds9 10.1016/j.geoderma.2010.12.018 10.1111/sum.12694 10.2136/vzj2015.09.0131 10.1016/j.geoderma.2017.01.002 10.1111/j.1365-2389.2011.01364.x 10.5194/soil-6-269-2020 10.1371/journal.pone.0169748 10.1139/cjss-2020-0078 10.1111/ejss.12790 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.geoderma.2025.117392 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_714aa68cb502447781458209be62f971 10_1016_j_geoderma_2025_117392 S0016706125002307 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSH SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c375t-1cb1ce6efe090fbad15feb6bcf5ea9d2532b0c32baf1e3df1bf39be3bf2d299b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 14 00:03:18 EDT 2025 Sat Jul 19 17:10:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertainty reduction Soil properties estimation Pruned Hierarchical Random Forest (pHRF) Soil covariates Digital soil mapping POLARIS |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-1cb1ce6efe090fbad15feb6bcf5ea9d2532b0c32baf1e3df1bf39be3bf2d299b3 |
ORCID | 0000-0002-1209-9699 0000-0002-5797-6798 0000-0002-2134-4449 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706125002307 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_714aa68cb502447781458209be62f971 crossref_primary_10_1016_j_geoderma_2025_117392 elsevier_sciencedirect_doi_10_1016_j_geoderma_2025_117392 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Phillips, J.D., Duval, J.S., Ambroziak, R.A., 1993. National geophysical data grids; gamma-ray, gravity, magnetic, and topographic data for the conterminous United States. US Geological Survey. Brejda, Moorman, Smith, Karlen, Allan, Dao (b0040) 2000; 64 Miller, Park, McCormack, Talbot (b0175) 1979 Heuvelink, G.B.M., 2018. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 439–461. https://doi.org/10.1007/978-3-319-63439-5_14. Xu, Torres-Rojas, Vergopolan, Chaney (b0335) 2023; 59 Ma, Minasny, Malone, Mcbratney (b0160) 2019; 70 Vergopolan, Xiong, Estes, Wanders, Chaney, Wood, Konar, Caylor, Beck, Gatti, Evans, Sheffield (b0315) 2021; 25 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2023. Soil Survey Geographic (SSURGO) Database for the CONUS. Schmidinger, Heuvelink (b0265) 2023; 437 Taghizadeh-Mehrjardi, Schmidt, Eftekhari, Behrens, Jamshidi, Davatgar, Toomanian, Scholten (b0300) 2020; 71 Huang, Hartemink, Zhang (b0145) 2019; 11 Brus, D. j., Kempen, B., Heuvelink, G. b. m., 2011. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x. Chaney, Minasny, Herman, Nauman, Brungard, Morgan, McBratney, Wood, Yimam (b0060) 2019 Wiesmeier, Barthold, Blank, Kögel-Knabner (b0330) 2011; 340 Odeh, Todd, Triantafilis (b0225) 2003; 168 Minasny, McBratney (b0185) 2006; 32 Chawla, Bowyer, Hall, Kegelmeyer (b0070) 2002; 16 Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O’Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (b0180) 2017; 292 Easher, T.H., Saurette, D., Chappell, E., Lopez, F. de J.M., Gasser, M.-O., Gillespie, A., Heck, R.J., Heung, B., Biswas, A., 2023. Sampling and classifier modification to DSMART for disaggregating soil polygon maps. Geoderma 431, 116360. https://doi.org/10.1016/j.geoderma.2023.116360. Chaney, Wood, McBratney, Hempel, Nauman, Brungard, Odgers (b0065) 2016 Bonetti, Wei, Or (b0030) 2021; 2 McBratney, Mendonça Santos, Minasny (b0165) 2003 Arrouays, McKenzie, Hempel, de Forges, McBratney (b0015) 2014 Piikki, Wetterlind, Söderström, Stenberg (b0245) 2021; 37 McBratney, Alex.B., Minasny, B., Mikheeva, I., Moyce, M., Bishop, T.F.A., 2018. Statistical Distributions of Soil Properties, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 59–86. https://doi.org/10.1007/978-3-319-63439-5_3. Sentinel (b0275) 2021; 1 Brady, Weil, Weil (b0035) 2008 Nussbaum, Zimmermann, Walthert, Baltensweiler (b0220) 2023; 437 Adhikari, Hartemink (b0005) 2016; 262 Bardgett, van der Putten (b0020) 2014; 515 Pflugmacher, D., Cohen, W.B., E. Kennedy, R., 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ., Landsat Legacy Special Issue 122, 146–165. https://doi.org/10.1016/j.rse.2011.09.025. Hu, Hartemink, Desai, Townsend, Abramoff, Zhu, Sihi, Huang (b0140) 2023; 128 Møller, Beucher, Pouladi, Greve (b0190) 2020; 6 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2024. The National Soil Information System. Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0130) 2016; 265 Brungard, Boettinger, Duniway, Wills, Edwards (b0045) 2015; 239 Soil Survey Staff (b0285) 2025 Mulder, de Bruin, Schaepman, Mayr (b0195) 2011; 162 Ellili-Bargaoui, Malone, Michot, Minasny, Vincent, Walter, Lemercier (b0090) 2020; 6 Schmidt, Behrens, Daumann, Ramirez-Lopez, Werban, Dietrich, Scholten (b0270) 2014; 232–234 National Cooperative Soil Survey, 2024. The National Cooperative Soil Survey Characterization Database. Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0250) 2021; 7 Furze, Arp (b0105) 2020; 101 Wadoux, Brus, Heuvelink (b0325) 2019; 355 Gebbers, Adamchuk (b0110) 2010; 327 Sexton, Song, Feng, Noojipady, Anand, Huang, Kim, Collins, Channan, DiMiceli, Townshend (b0280) 2013; 6 USGS, 2024. Watershed Boundary Dataset, Eight-Digit Hydrologic Units (Watersheds) of the Eight Digit Sub-Basins. Rahmani, Ackerson, Schulze, Adhikari, Libohova (b0255) 2022; 12 Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, vzj2015.09.0131. https://doi.org/10.2136/vzj2015.09.0131. Lilburne, Helfenstein, Heuvelink, Eger (b0150) 2024; 450 Long, Degloria, Galbraith (b0155) 1991; 46 Bui, Hancock, Wilkinson (b0055) 2011; 144 Hengl, De Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (b0125) 2017 Guanter, Kaufmann, Segl, Foerster, Rogass, Chabrillat, Kuester, Hollstein, Rossner, Chlebek, Straif, Fischer, Schrader, Storch, Heiden, Mueller, Bachmann, Mühle, Müller, Habermeyer, Ohndorf, Hill, Buddenbaum, Hostert, Van der Linden, Leitão, Rabe, Doerffer, Krasemann, Xi, Mauser, Hank, Locherer, Rast, Staenz, Sang (b0120) 2015; 7 Croft, Kuhn, Anderson (b0075) 2012; 94 Rossiter, Poggio, Beaudette, Libohova (b0260) 2022; 8 Odgers, Sun, McBratney, Minasny, Clifford (b0230) 2014 Batjes, Calisto, de Sousa (b0025) 2024; 16 Grunwald, Thompson, Boettinger (b0115) 2011; 75 Vincent, Lemercier, Berthier, Walter (b0320) 2018; 311 Nauman, Kienast-Brown, Roecker, Brungard, White, Philippe, Thompson (b0210) 2024; 88 Brady (10.1016/j.geoderma.2025.117392_b0035) 2008 Odgers (10.1016/j.geoderma.2025.117392_b0230) 2014 10.1016/j.geoderma.2025.117392_b0240 10.1016/j.geoderma.2025.117392_b0085 Wiesmeier (10.1016/j.geoderma.2025.117392_b0330) 2011; 340 10.1016/j.geoderma.2025.117392_b0200 Miller (10.1016/j.geoderma.2025.117392_b0175) 1979 Minasny (10.1016/j.geoderma.2025.117392_b0185) 2006; 32 Schmidinger (10.1016/j.geoderma.2025.117392_b0265) 2023; 437 Xu (10.1016/j.geoderma.2025.117392_b0335) 2023; 59 Sexton (10.1016/j.geoderma.2025.117392_b0280) 2013; 6 Brejda (10.1016/j.geoderma.2025.117392_b0040) 2000; 64 Batjes (10.1016/j.geoderma.2025.117392_b0025) 2024; 16 Soil Survey Staff (10.1016/j.geoderma.2025.117392_b0285) 2025 Vergopolan (10.1016/j.geoderma.2025.117392_b0315) 2021; 25 Bardgett (10.1016/j.geoderma.2025.117392_b0020) 2014; 515 Schmidt (10.1016/j.geoderma.2025.117392_b0270) 2014; 232–234 10.1016/j.geoderma.2025.117392_b0310 Lilburne (10.1016/j.geoderma.2025.117392_b0150) 2024; 450 10.1016/j.geoderma.2025.117392_b0235 Minasny (10.1016/j.geoderma.2025.117392_b0180) 2017; 292 Wadoux (10.1016/j.geoderma.2025.117392_b0325) 2019; 355 Hengl (10.1016/j.geoderma.2025.117392_b0125) 2017 Chaney (10.1016/j.geoderma.2025.117392_b0065) 2016 Odeh (10.1016/j.geoderma.2025.117392_b0225) 2003; 168 Bui (10.1016/j.geoderma.2025.117392_b0055) 2011; 144 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2025.117392_b0300) 2020; 71 Piikki (10.1016/j.geoderma.2025.117392_b0245) 2021; 37 Nussbaum (10.1016/j.geoderma.2025.117392_b0220) 2023; 437 Grunwald (10.1016/j.geoderma.2025.117392_b0115) 2011; 75 Long (10.1016/j.geoderma.2025.117392_b0155) 1991; 46 Arrouays (10.1016/j.geoderma.2025.117392_b0015) 2014 Ellili-Bargaoui (10.1016/j.geoderma.2025.117392_b0090) 2020; 6 Rahmani (10.1016/j.geoderma.2025.117392_b0255) 2022; 12 Hu (10.1016/j.geoderma.2025.117392_b0140) 2023; 128 Bonetti (10.1016/j.geoderma.2025.117392_b0030) 2021; 2 10.1016/j.geoderma.2025.117392_b0305 McBratney (10.1016/j.geoderma.2025.117392_b0165) 2003 Huang (10.1016/j.geoderma.2025.117392_b0145) 2019; 11 Poggio (10.1016/j.geoderma.2025.117392_b0250) 2021; 7 Nauman (10.1016/j.geoderma.2025.117392_b0210) 2024; 88 10.1016/j.geoderma.2025.117392_b0170 10.1016/j.geoderma.2025.117392_b0290 10.1016/j.geoderma.2025.117392_b0050 Ma (10.1016/j.geoderma.2025.117392_b0160) 2019; 70 Furze (10.1016/j.geoderma.2025.117392_b0105) 2020; 101 Møller (10.1016/j.geoderma.2025.117392_b0190) 2020; 6 10.1016/j.geoderma.2025.117392_b0295 Vincent (10.1016/j.geoderma.2025.117392_b0320) 2018; 311 Mulder (10.1016/j.geoderma.2025.117392_b0195) 2011; 162 Adhikari (10.1016/j.geoderma.2025.117392_b0005) 2016; 262 Sentinel (10.1016/j.geoderma.2025.117392_b0275) 2021; 1 Gebbers (10.1016/j.geoderma.2025.117392_b0110) 2010; 327 10.1016/j.geoderma.2025.117392_b0135 Brungard (10.1016/j.geoderma.2025.117392_b0045) 2015; 239 Guanter (10.1016/j.geoderma.2025.117392_b0120) 2015; 7 Heung (10.1016/j.geoderma.2025.117392_b0130) 2016; 265 Chaney (10.1016/j.geoderma.2025.117392_b0060) 2019 Chawla (10.1016/j.geoderma.2025.117392_b0070) 2002; 16 Rossiter (10.1016/j.geoderma.2025.117392_b0260) 2022; 8 Croft (10.1016/j.geoderma.2025.117392_b0075) 2012; 94 |
References_xml | – volume: 11 start-page: 1504 year: 2019 ident: b0145 article-title: Climate and land-use change effects on soil Carbon stocks over 150 Years in Wisconsin, USA publication-title: Remote Sens. – volume: 12 start-page: 1338 year: 2022 ident: b0255 article-title: Digital mapping of soil organic matter and cation exchange capacity in a low relief landscape using LiDAR data publication-title: Agronomy – volume: 7 start-page: 8830 year: 2015 end-page: 8857 ident: b0120 article-title: The EnMAP spaceborne imaging spectroscopy Mission for Earth observation publication-title: Remote Sens. – volume: 71 start-page: 352 year: 2020 end-page: 368 ident: b0300 article-title: Synthetic resampling strategies and machine learning for digital soil mapping in Iran publication-title: Eur. J. Soil Sci. – volume: 8 start-page: 559 year: 2022 end-page: 586 ident: b0260 article-title: How well does digital soil mapping represent soil geography? an investigation from the USA publication-title: SOIL – year: 2008 ident: b0035 article-title: The nature and properties of soils – year: 2025 ident: b0285 article-title: Gridded soil survey geographic (gSSURGO) – reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2023. Soil Survey Geographic (SSURGO) Database for the CONUS. – volume: 144 start-page: 136 year: 2011 end-page: 149 ident: b0055 article-title: ‘Tolerable’ hillslope soil erosion rates in Australia: linking science and policy publication-title: Agric. Ecosyst. Environ. – volume: 88 start-page: 2046 year: 2024 end-page: 2065 ident: b0210 article-title: Soil landscapes of the United States (SOLUS): developing predictive soil property maps of the conterminous United States using hybrid training sets publication-title: Soil Sci. Soc. Am. J. – volume: 6 start-page: 371 year: 2020 end-page: 388 ident: b0090 article-title: Comparing three approaches of spatial disaggregation of legacy soil maps based on the disaggregation and harmonisation of soil map units through resampled classification trees (DSMART) algorithm publication-title: SOIL – reference: Phillips, J.D., Duval, J.S., Ambroziak, R.A., 1993. National geophysical data grids; gamma-ray, gravity, magnetic, and topographic data for the conterminous United States. US Geological Survey. – volume: 128 year: 2023 ident: b0140 article-title: A continental-scale estimate of soil organic Carbon change at NEON sites and their environmental and edaphic controls publication-title: J. Geophys. res Biogeosciences – volume: 327 start-page: 828 year: 2010 end-page: 831 ident: b0110 article-title: Precision agriculture and food security publication-title: Science – reference: Brus, D. j., Kempen, B., Heuvelink, G. b. m., 2011. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x. – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: b0130 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – volume: 292 start-page: 59 year: 2017 end-page: 86 ident: b0180 article-title: Soil carbon 4 per mille publication-title: Geoderma – volume: 232–234 start-page: 243 year: 2014 end-page: 256 ident: b0270 article-title: A comparison of calibration sampling schemes at the field scale publication-title: Geoderma – volume: 162 start-page: 1 year: 2011 end-page: 19 ident: b0195 article-title: The use of remote sensing in soil and terrain mapping — a review publication-title: Geoderma – volume: 16 year: 2002 ident: b0070 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – reference: Heuvelink, G.B.M., 2018. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 439–461. https://doi.org/10.1007/978-3-319-63439-5_14. – reference: McBratney, Alex.B., Minasny, B., Mikheeva, I., Moyce, M., Bishop, T.F.A., 2018. Statistical Distributions of Soil Properties, in: McBratney, Alex.B., Minasny, B., Stockmann, U. (Eds.), Pedometrics. Springer International Publishing, Cham, pp. 59–86. https://doi.org/10.1007/978-3-319-63439-5_3. – reference: National Cooperative Soil Survey, 2024. The National Cooperative Soil Survey Characterization Database. – volume: 7 start-page: 217 year: 2021 end-page: 240 ident: b0250 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: SOIL – volume: 355 year: 2019 ident: b0325 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma – volume: 515 start-page: 505 year: 2014 end-page: 511 ident: b0020 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – year: 2003 ident: b0165 article-title: On digital soil mapping publication-title: Geoderma – year: 1979 ident: b0175 article-title: Soil surveys: review of data-collection methodologies, confidence limits, and uses – volume: 450 year: 2024 ident: b0150 article-title: Interpreting and evaluating digital soil mapping prediction uncertainty: a case study using texture from SoilGrids publication-title: Geoderma – volume: 239 year: 2015 ident: b0045 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 6 start-page: 427 year: 2013 end-page: 448 ident: b0280 article-title: Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error publication-title: Int. J. Digit. Earth – volume: 75 start-page: 1201 year: 2011 end-page: 1213 ident: b0115 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. – volume: 101 start-page: 222 year: 2020 end-page: 247 ident: b0105 article-title: Amalgamation and harmonization of soil survey reports into a multi-purpose database publication-title: Can. J. Soil Sci. – year: 2014 ident: b0015 article-title: GlobalSoilMap: basis of the global spatial soil information system – volume: 1 year: 2021 ident: b0275 article-title: 2.:(processed by ESA), MSI level-2A BOA reflectance product publication-title: Collection – volume: 59 year: 2023 ident: b0335 article-title: The benefits of using state-of-the-art digital soil properties maps to improve the modeling of soil moisture in land surface models publication-title: Water Resour. Res. – year: 2019 ident: b0060 article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States publication-title: Water Resour. Res. – reference: Pflugmacher, D., Cohen, W.B., E. Kennedy, R., 2012. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ., Landsat Legacy Special Issue 122, 146–165. https://doi.org/10.1016/j.rse.2011.09.025. – volume: 437 year: 2023 ident: b0220 article-title: Benefits of hierarchical predictions for digital soil mapping—An approach to map bimodal soil pH publication-title: Geoderma – year: 2017 ident: b0125 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS ONE – reference: Easher, T.H., Saurette, D., Chappell, E., Lopez, F. de J.M., Gasser, M.-O., Gillespie, A., Heck, R.J., Heung, B., Biswas, A., 2023. Sampling and classifier modification to DSMART for disaggregating soil polygon maps. Geoderma 431, 116360. https://doi.org/10.1016/j.geoderma.2023.116360. – volume: 262 start-page: 101 year: 2016 end-page: 111 ident: b0005 article-title: Linking soils to ecosystem services — a global review publication-title: Geoderma – volume: 70 year: 2019 ident: b0160 article-title: Pedology and digital soil mapping (DSM) publication-title: Eur. J. Soil Sci. – volume: 25 start-page: 1827 year: 2021 end-page: 1847 ident: b0315 article-title: Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields publication-title: Hydrol. Earth Syst. Sci. – volume: 64 start-page: 974 year: 2000 end-page: 982 ident: b0040 article-title: Distribution and Variability of Surface soil properties at a regional scale publication-title: Soil Sci. Soc. Am. J. – volume: 2 start-page: 1 year: 2021 end-page: 10 ident: b0030 article-title: A framework for quantifying hydrologic effects of soil structure across scales publication-title: Commun. Earth Environ. – reference: Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, vzj2015.09.0131. https://doi.org/10.2136/vzj2015.09.0131. – volume: 311 start-page: 130 year: 2018 end-page: 142 ident: b0320 article-title: Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships publication-title: Geoderma – volume: 16 start-page: 4735 year: 2024 end-page: 4765 ident: b0025 article-title: Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023) publication-title: Earth Syst. Sci. Data – volume: 94 start-page: 64 year: 2012 end-page: 74 ident: b0075 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: CATENA, Soil Erosion and the Global Carbon Cycle – volume: 168 start-page: 501 year: 2003 ident: b0225 article-title: Spatial prediction of soil particle-size fractions as compositional data publication-title: Soil Sci. – volume: 437 year: 2023 ident: b0265 article-title: Validation of uncertainty predictions in digital soil mapping publication-title: Geoderma – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: b0185 article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – volume: 46 start-page: 293 year: 1991 end-page: 297 ident: b0155 article-title: Use of the global positioning system in soil survey publication-title: J. Soil Water Conserv. – reference: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2024. The National Soil Information System. – year: 2014 ident: b0230 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma – volume: 37 start-page: 7 year: 2021 end-page: 21 ident: b0245 article-title: Perspectives on validation in digital soil mapping of continuous attributes—A review publication-title: Soil Use Manag. – volume: 6 start-page: 269 year: 2020 end-page: 289 ident: b0190 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL – reference: USGS, 2024. Watershed Boundary Dataset, Eight-Digit Hydrologic Units (Watersheds) of the Eight Digit Sub-Basins. – year: 2016 ident: b0065 article-title: POLARIS: a 30-meter probabilistic soil series map of the contiguous United States publication-title: Geoderma – volume: 340 start-page: 7 year: 2011 end-page: 24 ident: b0330 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil – volume: 59 year: 2023 ident: 10.1016/j.geoderma.2025.117392_b0335 article-title: The benefits of using state-of-the-art digital soil properties maps to improve the modeling of soil moisture in land surface models publication-title: Water Resour. Res. doi: 10.1029/2022WR032336 – volume: 239 year: 2015 ident: 10.1016/j.geoderma.2025.117392_b0045 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 6 start-page: 371 year: 2020 ident: 10.1016/j.geoderma.2025.117392_b0090 article-title: Comparing three approaches of spatial disaggregation of legacy soil maps based on the disaggregation and harmonisation of soil map units through resampled classification trees (DSMART) algorithm publication-title: SOIL doi: 10.5194/soil-6-371-2020 – volume: 1 year: 2021 ident: 10.1016/j.geoderma.2025.117392_b0275 article-title: 2.:(processed by ESA), MSI level-2A BOA reflectance product publication-title: Collection – volume: 515 start-page: 505 year: 2014 ident: 10.1016/j.geoderma.2025.117392_b0020 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature doi: 10.1038/nature13855 – year: 2014 ident: 10.1016/j.geoderma.2025.117392_b0015 – ident: 10.1016/j.geoderma.2025.117392_b0170 doi: 10.1007/978-3-319-63439-5_3 – year: 2008 ident: 10.1016/j.geoderma.2025.117392_b0035 – volume: 128 year: 2023 ident: 10.1016/j.geoderma.2025.117392_b0140 article-title: A continental-scale estimate of soil organic Carbon change at NEON sites and their environmental and edaphic controls publication-title: J. Geophys. res Biogeosciences doi: 10.1029/2022JG006981 – year: 2019 ident: 10.1016/j.geoderma.2025.117392_b0060 article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States publication-title: Water Resour. Res. doi: 10.1029/2018WR022797 – year: 1979 ident: 10.1016/j.geoderma.2025.117392_b0175 – volume: 7 start-page: 217 year: 2021 ident: 10.1016/j.geoderma.2025.117392_b0250 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: SOIL doi: 10.5194/soil-7-217-2021 – volume: 25 start-page: 1827 year: 2021 ident: 10.1016/j.geoderma.2025.117392_b0315 article-title: Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-1827-2021 – volume: 168 start-page: 501 year: 2003 ident: 10.1016/j.geoderma.2025.117392_b0225 article-title: Spatial prediction of soil particle-size fractions as compositional data publication-title: Soil Sci. doi: 10.1097/01.ss.0000080335.10341.23 – volume: 88 start-page: 2046 year: 2024 ident: 10.1016/j.geoderma.2025.117392_b0210 article-title: Soil landscapes of the United States (SOLUS): developing predictive soil property maps of the conterminous United States using hybrid training sets publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20769 – ident: 10.1016/j.geoderma.2025.117392_b0235 doi: 10.1016/j.rse.2011.09.025 – volume: 327 start-page: 828 year: 2010 ident: 10.1016/j.geoderma.2025.117392_b0110 article-title: Precision agriculture and food security publication-title: Science doi: 10.1126/science.1183899 – ident: 10.1016/j.geoderma.2025.117392_b0085 doi: 10.1016/j.geoderma.2023.116360 – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2025.117392_b0130 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 16 year: 2002 ident: 10.1016/j.geoderma.2025.117392_b0070 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 12 start-page: 1338 year: 2022 ident: 10.1016/j.geoderma.2025.117392_b0255 article-title: Digital mapping of soil organic matter and cation exchange capacity in a low relief landscape using LiDAR data publication-title: Agronomy doi: 10.3390/agronomy12061338 – year: 2025 ident: 10.1016/j.geoderma.2025.117392_b0285 – volume: 46 start-page: 293 issue: 4 year: 1991 ident: 10.1016/j.geoderma.2025.117392_b0155 article-title: Use of the global positioning system in soil survey publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.1991.12456622 – volume: 71 start-page: 352 year: 2020 ident: 10.1016/j.geoderma.2025.117392_b0300 article-title: Synthetic resampling strategies and machine learning for digital soil mapping in Iran publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12893 – volume: 94 start-page: 64 year: 2012 ident: 10.1016/j.geoderma.2025.117392_b0075 article-title: On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems publication-title: CATENA, Soil Erosion and the Global Carbon Cycle – volume: 437 year: 2023 ident: 10.1016/j.geoderma.2025.117392_b0220 article-title: Benefits of hierarchical predictions for digital soil mapping—An approach to map bimodal soil pH publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116579 – volume: 144 start-page: 136 year: 2011 ident: 10.1016/j.geoderma.2025.117392_b0055 article-title: ‘Tolerable’ hillslope soil erosion rates in Australia: linking science and policy publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.07.022 – volume: 232–234 start-page: 243 year: 2014 ident: 10.1016/j.geoderma.2025.117392_b0270 article-title: A comparison of calibration sampling schemes at the field scale publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.013 – ident: 10.1016/j.geoderma.2025.117392_b0295 – volume: 262 start-page: 101 year: 2016 ident: 10.1016/j.geoderma.2025.117392_b0005 article-title: Linking soils to ecosystem services — a global review publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.009 – volume: 2 start-page: 1 year: 2021 ident: 10.1016/j.geoderma.2025.117392_b0030 article-title: A framework for quantifying hydrologic effects of soil structure across scales publication-title: Commun. Earth Environ. doi: 10.1038/s43247-021-00180-0 – volume: 340 start-page: 7 year: 2011 ident: 10.1016/j.geoderma.2025.117392_b0330 article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem publication-title: Plant Soil doi: 10.1007/s11104-010-0425-z – volume: 16 start-page: 4735 year: 2024 ident: 10.1016/j.geoderma.2025.117392_b0025 article-title: Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023) publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-16-4735-2024 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geoderma.2025.117392_b0185 article-title: A conditioned latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 75 start-page: 1201 year: 2011 ident: 10.1016/j.geoderma.2025.117392_b0115 article-title: Digital soil mapping and modeling at continental scales: finding solutions for global issues publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0025 – volume: 355 year: 2019 ident: 10.1016/j.geoderma.2025.117392_b0325 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113913 – volume: 311 start-page: 130 year: 2018 ident: 10.1016/j.geoderma.2025.117392_b0320 article-title: Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.006 – volume: 450 year: 2024 ident: 10.1016/j.geoderma.2025.117392_b0150 article-title: Interpreting and evaluating digital soil mapping prediction uncertainty: a case study using texture from SoilGrids publication-title: Geoderma doi: 10.1016/j.geoderma.2024.117052 – volume: 437 year: 2023 ident: 10.1016/j.geoderma.2025.117392_b0265 article-title: Validation of uncertainty predictions in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116585 – year: 2016 ident: 10.1016/j.geoderma.2025.117392_b0065 article-title: POLARIS: a 30-meter probabilistic soil series map of the contiguous United States publication-title: Geoderma doi: 10.1016/j.geoderma.2016.03.025 – ident: 10.1016/j.geoderma.2025.117392_b0200 – ident: 10.1016/j.geoderma.2025.117392_b0305 – volume: 11 start-page: 1504 year: 2019 ident: 10.1016/j.geoderma.2025.117392_b0145 article-title: Climate and land-use change effects on soil Carbon stocks over 150 Years in Wisconsin, USA publication-title: Remote Sens. doi: 10.3390/rs11121504 – year: 2014 ident: 10.1016/j.geoderma.2025.117392_b0230 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.024 – volume: 64 start-page: 974 year: 2000 ident: 10.1016/j.geoderma.2025.117392_b0040 article-title: Distribution and Variability of Surface soil properties at a regional scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.643974x – volume: 6 start-page: 427 year: 2013 ident: 10.1016/j.geoderma.2025.117392_b0280 article-title: Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2013.786146 – ident: 10.1016/j.geoderma.2025.117392_b0290 – volume: 8 start-page: 559 year: 2022 ident: 10.1016/j.geoderma.2025.117392_b0260 article-title: How well does digital soil mapping represent soil geography? an investigation from the USA publication-title: SOIL doi: 10.5194/soil-8-559-2022 – volume: 7 start-page: 8830 year: 2015 ident: 10.1016/j.geoderma.2025.117392_b0120 article-title: The EnMAP spaceborne imaging spectroscopy Mission for Earth observation publication-title: Remote Sens. doi: 10.3390/rs70708830 – ident: 10.1016/j.geoderma.2025.117392_b0135 doi: 10.1007/978-3-319-63439-5_14 – year: 2003 ident: 10.1016/j.geoderma.2025.117392_b0165 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – ident: 10.1016/j.geoderma.2025.117392_b0240 doi: 10.3133/ds9 – volume: 162 start-page: 1 year: 2011 ident: 10.1016/j.geoderma.2025.117392_b0195 article-title: The use of remote sensing in soil and terrain mapping — a review publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – volume: 37 start-page: 7 year: 2021 ident: 10.1016/j.geoderma.2025.117392_b0245 article-title: Perspectives on validation in digital soil mapping of continuous attributes—A review publication-title: Soil Use Manag. doi: 10.1111/sum.12694 – ident: 10.1016/j.geoderma.2025.117392_b0310 doi: 10.2136/vzj2015.09.0131 – volume: 292 start-page: 59 year: 2017 ident: 10.1016/j.geoderma.2025.117392_b0180 article-title: Soil carbon 4 per mille publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – ident: 10.1016/j.geoderma.2025.117392_b0050 doi: 10.1111/j.1365-2389.2011.01364.x – volume: 6 start-page: 269 year: 2020 ident: 10.1016/j.geoderma.2025.117392_b0190 article-title: Oblique geographic coordinates as covariates for digital soil mapping publication-title: SOIL doi: 10.5194/soil-6-269-2020 – year: 2017 ident: 10.1016/j.geoderma.2025.117392_b0125 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0169748 – volume: 101 start-page: 222 year: 2020 ident: 10.1016/j.geoderma.2025.117392_b0105 article-title: Amalgamation and harmonization of soil survey reports into a multi-purpose database publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2020-0078 – volume: 70 year: 2019 ident: 10.1016/j.geoderma.2025.117392_b0160 article-title: Pedology and digital soil mapping (DSM) publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12790 |
SSID | ssj0017020 |
Score | 2.460039 |
Snippet | •A pruned Hierarchical Random Forest (pHRF) method was developed to address data imbalance issues in soil surveys.•The pHRF method showed out-of-bag scores... Soil data and soil maps are crucial for Earth system modeling, water management, agricultural production, and climate change studies, and reducing... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 117392 |
SubjectTerms | Digital soil mapping POLARIS Pruned Hierarchical Random Forest (pHRF) Soil covariates Soil properties estimation Uncertainty reduction |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uA1NLubTRpvVVpEsIpY6C3s7CO02rT08f_dyaPUUy9eAgnLMnwT8s1mZr4h5MFIlkAqecCU40GUdG0AWruAC4i6CkKpHfY7vw3jl1H0OpbjnVFfWBNWyQNXwHUSFikVdzVIzyZRggpN0rNWCjbmLi27x_0daw5Tdf4g8VHQTj_w1HsDR4uVSkNcYqZSpPwPFZWK_TuMtMMygxNyXIeHtFeZdUoObHFGjnr5spbIsOfk-2O58d9GikOsyzSAR5l-qsLMZxQHba7W1DUVV9SHpNRMcpwMQlfzyQ-dKRRkyB9pfyvzTbH2PafD_vuwWrPAH_RLVFq9IKNB_-v5JahHJgRaJHIdMA1M29g6G6ahA2WYdBZi0E5alRouBYdQ-4tyzArjGDjhoRTguPHEBOKStIp5Ya8ITYxgYCNjJKgo0RIi5TzbmzhM8RATt0mnQS9bVMoYWVMyNs0avDPEO6vwbpMnBHm7GpWtywfe31nt72yfv9skbVyU1UFCRf5-q8keA67_w4AbcohbViW7t6S1Xm7snQ9M1nBfvoO_etri9Q priority: 102 providerName: Directory of Open Access Journals |
Title | Pruned hierarchical Random Forest framework for digital soil mapping: Evaluation using NEON soil properties |
URI | https://dx.doi.org/10.1016/j.geoderma.2025.117392 https://doaj.org/article/714aa68cb502447781458209be62f971 |
Volume | 459 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWywUOiKcoj8oHrqHxu-FWVl0VEAUhVtpb5PEjyi7bVtnuld-Ox0mq7okDl0ix7Mj6bM18jme-IeS9V8xApXjBbOSFNPNQgHOx4ALk3EKpXMR8529rvbqQXy7V5Qk5G3NhMKxysP29Tc_WemiZDWjOdm2LOb5Mm-yhM5HGjHIpDe7yD38OYR7MlIM0I9MF9j7KEr5Ka4QFx7L-EFd4fykqfs9BZR3_Iz915HvOn5DHA2mki35eT8lJ2DwjjxZNNwhnhOfk-kd3lywmxdLW-XIgYU9_2o3f3lAsv3m7p3GMw6KJqFLfNlgvhN5u29_0xqJMQ_ORLg_i3xQj4hu6Xn5f9312-Nu-Q_3VF-TifPnrbFUMhRQKJ4zaF8wBc0GHGMqqjGA9UzGABhdVsJXnSnAoXXrYyILwkUEUFQQBkfvkrkC8JKeb7Sa8ItR4wSBI7xVYaZwCaWPiAF6XFR5t9ITMRvTqXa-XUY-BZFf1iHeNeNc93hPyCUE-9Ea969yw7Zp6WPDaMGmtnjtQiVNIgzpdKnGXNEnNY2XYhFTjEtX3tk_6VPuPCbz-j7FvyEN86-N335LTfXcX3iWWsodp3oZT8mDx-etqPc1n_b8eA-rJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPd8vIBjmFjO7Y3SBwKbLWl7YJQK_Vm_IxS2t1VdivEhT_FH8STOKvtiQPqJQfHsazPk5mxZuYbhF47TqQpOc2IDjQr5MhnxtqQUWaKkTY5twHqnY-nYnJafD7jZ1voT18LA2mVSfd3Or3V1mlkmNAcLuoaanyJkK2Fbh1pmTIrD_2vn_Hetnx_8Cke8htK98cnHydZai2QWSb5KiPWEOuFDz4v82C0Izx4I4wN3OvSUc6oyW186EA8c4GYwErjmQnURQVuWFz3FrpdRHUBbRPe_l7nlRCZJy5IIjLY3kZZ8nkUCuhw1hIeUQ4BU1bSaxaxbRywYRg3jN3-A3Q_eal4rwPiIdrys0fo3l7VJKYO_xj9-NpcRRWNoZd2G42Ih42_6ZmbX2Lo97lc4dAnfuHoGWNXV9CgBC_n9QW-1MALUb3D4zXbOIYU_ApPx1-m3ZwFxAkaIHx9gk5vBN6naHs2n_kdhKVjxPjCOW50IS03hQ7R6XAiL-EuJQZo2KOnFh1Bh-oz185Vj7cCvFWH9wB9AJDXs4Fgux2YN5VKEqYkKbQWI2t4dGIKCcRgPDpLcZOChlKSASr7I1LX5DUuVf9jA7v_8e0rdGdycnykjg6mh8_QXXjTJQ8_R9ur5sq_iC7SyrxsRRKj7zf9D_wFFPMpnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pruned+hierarchical+Random+Forest+framework+for+digital+soil+mapping%3A+Evaluation+using+NEON+soil+properties&rft.jtitle=Geoderma&rft.au=Xu%2C+Chengcheng&rft.au=Huang%2C+Jingyi&rft.au=Hartemink%2C+Alfred+E.&rft.au=Chaney%2C+Nathaniel+W.&rft.date=2025-07-01&rft.issn=0016-7061&rft.volume=459&rft.spage=117392&rft_id=info:doi/10.1016%2Fj.geoderma.2025.117392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2025_117392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |