Revealing static and dynamic biomarkers from postprandial metabolomics data through coupled matrix and tensor factorizations

Introduction Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes:...

Full description

Saved in:
Bibliographic Details
Published inMetabolomics Vol. 20; no. 4; p. 86
Main Authors Li, Lu, Yan, Shi, Horner, David, Rasmussen, Morten A., Smilde, Age K., Acar, Evrim
Format Journal Article
LanguageEnglish
Published New York Springer US 27.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects , metabolites , and time . The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications. Objectives Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health. Methods We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data ( subjects by metabolites by time ) is coupled with the fasting data ( subjects by metabolites ) in the subjects mode. Results The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state. Conclusion The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications—when markers are present in both fasting and dynamic states.
AbstractList Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications.INTRODUCTIONLongitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications.Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health.OBJECTIVESThrough joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health.We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode.METHODSWe jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode.The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state.RESULTSThe proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state.The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications-when markers are present in both fasting and dynamic states.CONCLUSIONThe CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications-when markers are present in both fasting and dynamic states.
IntroductionLongitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications.ObjectivesThrough joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health.MethodsWe jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode.ResultsThe proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state.ConclusionThe CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications—when markers are present in both fasting and dynamic states.
Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications. Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health. We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode. The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state. The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications-when markers are present in both fasting and dynamic states.
Introduction Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects , metabolites , and time . The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications. Objectives Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health. Methods We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data ( subjects by metabolites by time ) is coupled with the fasting data ( subjects by metabolites ) in the subjects mode. Results The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state. Conclusion The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications—when markers are present in both fasting and dynamic states.
ArticleNumber 86
Author Rasmussen, Morten A.
Acar, Evrim
Smilde, Age K.
Horner, David
Li, Lu
Yan, Shi
Author_xml – sequence: 1
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  email: lu@simula.no
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
– sequence: 2
  givenname: Shi
  surname: Yan
  fullname: Yan, Shi
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
– sequence: 3
  givenname: David
  surname: Horner
  fullname: Horner, David
  organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen
– sequence: 4
  givenname: Morten A.
  surname: Rasmussen
  fullname: Rasmussen, Morten A.
  organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Department of Food Science, University of Copenhagen
– sequence: 5
  givenname: Age K.
  surname: Smilde
  fullname: Smilde, Age K.
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Swammerdam Institute for Life Sciences, University of Amsterdam
– sequence: 6
  givenname: Evrim
  surname: Acar
  fullname: Acar, Evrim
  email: evrim@simula.no
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39066850$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_wB1ggS2zYBOw4sZ0lqnhJlZAQrK2xM7l1SexgOxVF_HjMveWhLrqwPIvvzOOcU3IUYkBCnnL2kjOmXmXOBZMNa7v6eKub4QE54b0SjdADO_qvPianOV8x1nWDYo_IsRiYlLpnJ-TnJ7xGmH3Y0VygeEchjHS8CbDU2vq4QPqKKdMpxYWuMZc1VcLDTBcsYOMcK5jpCAVouUxx211SF7d1xpEuUJL_vu9YMOSY6ASuxOR_1Ekx5Mfk4QRzxie3_xn58vbN5_P3zcXHdx_OX180Tqi-NNzCABw7kHocnJpsJ9tWaRh0PUEzdDhMugcrbNdqjYo5Z90kmVS9ktZ24oy8OPRdU_y2YS5m8dnhPEPAuGUjmO6lFoqrij6_g17FLYW63Z7iUrNeVurZLbXZBUezJl99ujF_fK1AewBcijknnP4inJnf4ZlDeKaGZ_bhmaGK9B2R82XvVEng5_ul4iDNdU7YYfq39j2qX_3FsBs
CitedBy_id crossref_primary_10_3390_metabo15010002
Cites_doi 10.1007/s11306-014-0673-7
10.1016/j.cell.2015.11.001
10.3390/metabo10050185
10.1186/1476-511X-10-181
10.1002/sapm192761164
10.1016/j.amjcard.2007.03.107
10.1007/s12263-015-0459-1
10.1002/cem.773
10.1007/s11306-024-02109-y
10.1038/s41591-020-0934-0
10.1186/s12859-024-05686-w
10.2337/dc11-1593
10.1038/s41598-022-20714-6
10.1371/journal.pcbi.1011221
10.1007/s11306-011-0320-5
10.1109/MSP.2022.3163870
10.1016/S1081-1206(10)61398-1
10.1109/JSTSP.2020.3045848
10.1007/s11306-008-0136-0
10.1016/0024-3795(77)90069-6
10.1016/j.molmet.2018.05.008
10.2174/1573401052953203
10.1371/journal.pone.0281594
10.1109/TKDE.2008.112
10.1016/j.plipres.2013.06.001
10.1002/0470012110
10.1021/acs.analchem.8b02863
10.1016/j.tjnut.2023.03.016
10.1007/BF02310791
10.1007/s11306-020-01759-y
10.3389/fnins.2019.00416
10.1093/bioinformatics/bti476
10.1186/1471-2105-15-239
10.1002/widm.1197
10.1002/cem.3232
10.15252/msb.202110243
10.1137/07070111X
10.1137/140956853
10.1109/ICASSP49357.2023.10094562
10.2172/989350
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s11306-024-02128-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1573-3890
ExternalDocumentID 39066850
10_1007_s11306_024_02128_9
Genre Journal Article
GrantInformation_xml – fundername: Research Council of Norway
  grantid: 300489; 300489; 300489; 300489; 300489; 300489
– fundername: Research Council of Norway
  grantid: 300489
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67N
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
LMP
M4Y
M7P
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z82
Z83
Z87
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BPHCQ
BVXVI
CCPQU
DWQXO
EBD
FYUFA
GNUQQ
K9.
LK8
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
TUS
UKHRP
7X8
ID FETCH-LOGICAL-c375t-1ba9a1e4a68d9c7fb462278a9885080ece9f85ab3b4288e70ccbcf6067576bb43
IEDL.DBID U2A
ISSN 1573-3890
1573-3882
IngestDate Fri Jul 11 12:04:19 EDT 2025
Sat Aug 23 12:45:43 EDT 2025
Mon Jul 21 06:01:17 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Fri Feb 21 02:38:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Postprandial metabolomics data
Data fusion
Coupled matrix and tensor factorizations
Tensor factorizations
Dynamic biomarkers
Language English
License 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1ba9a1e4a68d9c7fb462278a9885080ece9f85ab3b4288e70ccbcf6067576bb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39066850
PQID 3085168056
PQPubID 326279
ParticipantIDs proquest_miscellaneous_3085683717
proquest_journals_3085168056
pubmed_primary_39066850
crossref_primary_10_1007_s11306_024_02128_9
crossref_citationtrail_10_1007_s11306_024_02128_9
springer_journals_10_1007_s11306_024_02128_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-27
PublicationDateYYYYMMDD 2024-07-27
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-27
  day: 27
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Metabolomics
PublicationTitleAbbrev Metabolomics
PublicationTitleAlternate Metabolomics
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Yan, Bakker (CR21) 2024; 25
Palmisano, Zhu, Eckel (CR26) 2018; 15
Bisgaard (CR7) 2004; 93
Zeevi, Korem, Zmora (CR44) 2015; 163
Yan, Li, Horner (CR43) 2024; 20
Kruskal (CR20) 1977; 18
Smilde, Bro, Geladi (CR33) 2004
Tan, Murphy, Alpay (CR38) 2021; 17
CR11
Loh, Sun, Allen (CR22) 2022; 12
CR32
Berry, Valdes, Drew (CR6) 2020; 26
Harte, Varma, Tripathi (CR16) 2012; 35
Smilde, Jansen, Hoefsloot (CR34) 2005; 21
Talukdar, Zwilling, Barbey (CR37) 2023; 153
Hunyadi, Dupont, Paesschen (CR18) 2017; 7
Hitchcock (CR17) 1927; 6
Zivkovic, Wiest, Nguyen (CR45) 2009; 5
Martin, Govaerts (CR23) 2020; 34
Pellis, van Erk, van Ommen (CR28) 2012; 8
Acar, Schenker, Levin-Schwartz (CR4) 2019; 13
CR2
Schenker, Cohen, Acar (CR31) 2021; 15
Papalexakis, Faloutsos, Sidiropoulos (CR27) 2016; 8
Wojczynski, Glasser, Oberman (CR40) 2011; 10
Acar, Yener (CR1) 2009; 21
Acar, Papalexakis, Gürdeniz (CR3) 2014; 15
Wünsch, Acar, Koch (CR42) 2018; 90
Poppitt (CR29) 2005; 1
Kolda, Bader (CR19) 2009; 51
Vis, Westerhuis, Jacobs (CR39) 2015; 11
Wopereis, Stroeve, Stafleu (CR41) 2017; 12
Bro, Smilde (CR9) 2003; 17
Adali, Kantar, Akhonda (CR5) 2022; 39
Carroll, Chang (CR10) 1970; 35
Erdos, Westerhuis, Adriaens (CR12) 2023; 19
Botham, Wheeler-Jones (CR8) 2013; 52
Sørensen, De Lathauwer (CR35) 2015; 36
Fujita, Karasawa, Ki (CR13) 2023; 18
Müllner, Röhnisch, Von Brömssen (CR24) 2021; 17
Stroeve, van Wietmarschen, Kremer (CR36) 2015; 10
Harshman, De Sarbo, Law, Snyder, Hattie, McDonald (CR15) 1984
Saito, Hattori, Andou (CR30) 2020; 10
Harshman (CR14) 1970; 16
O’Keefe, Bell (CR25) 2007; 100
JB Kruskal (2128_CR20) 1977; 18
T Adali (2128_CR5) 2022; 39
R Bro (2128_CR9) 2003; 17
MK Wojczynski (2128_CR40) 2011; 10
JH O’Keefe (2128_CR25) 2007; 100
S Fujita (2128_CR13) 2023; 18
L Pellis (2128_CR28) 2012; 8
2128_CR32
SE Berry (2128_CR6) 2020; 26
2128_CR11
H Bisgaard (2128_CR7) 2004; 93
FL Hitchcock (2128_CR17) 1927; 6
JHM Stroeve (2128_CR36) 2015; 10
L Li (2128_CR21) 2024; 25
M Martin (2128_CR23) 2020; 34
E Müllner (2128_CR24) 2021; 17
E Acar (2128_CR4) 2019; 13
TG Kolda (2128_CR19) 2009; 51
T Talukdar (2128_CR37) 2023; 153
K Saito (2128_CR30) 2020; 10
DJ Vis (2128_CR39) 2015; 11
S Wopereis (2128_CR41) 2017; 12
B Erdos (2128_CR12) 2023; 19
AK Smilde (2128_CR34) 2005; 21
M Sørensen (2128_CR35) 2015; 36
ZC Tan (2128_CR38) 2021; 17
E Acar (2128_CR3) 2014; 15
AM Zivkovic (2128_CR45) 2009; 5
AL Harte (2128_CR16) 2012; 35
B Hunyadi (2128_CR18) 2017; 7
SD Poppitt (2128_CR29) 2005; 1
RA Harshman (2128_CR15) 1984
X Loh (2128_CR22) 2022; 12
A Smilde (2128_CR33) 2004
S Yan (2128_CR43) 2024; 20
D Zeevi (2128_CR44) 2015; 163
E Acar (2128_CR1) 2009; 21
2128_CR2
BT Palmisano (2128_CR26) 2018; 15
UJ Wünsch (2128_CR42) 2018; 90
RA Harshman (2128_CR14) 1970; 16
C Schenker (2128_CR31) 2021; 15
KM Botham (2128_CR8) 2013; 52
JD Carroll (2128_CR10) 1970; 35
EE Papalexakis (2128_CR27) 2016; 8
References_xml – volume: 11
  start-page: 50
  issue: 1
  year: 2015
  end-page: 63
  ident: CR39
  article-title: Analyzing metabolomics-based challenge tests
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0673-7
– volume: 163
  start-page: 1079
  issue: 5
  year: 2015
  end-page: 1094
  ident: CR44
  article-title: Personalized nutrition by prediction of glycemic responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– volume: 8
  start-page: Article 16
  issue: 2
  year: 2016
  ident: CR27
  article-title: Tensors for data mining and data fusion: Models, applications, and scalable algorithms
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 10
  start-page: 185
  issue: 5
  year: 2020
  ident: CR30
  article-title: Characterization of postprandial effects on CSF metabolomics: A pilot study with parallel comparison to plasma
  publication-title: Metabolites
  doi: 10.3390/metabo10050185
– volume: 10
  start-page: 181
  issue: 1
  year: 2011
  ident: CR40
  article-title: High-fat meal effect on LDL, HDL, and VLDL particle size and number in the genetics of lipid-lowering drugs and diet network (GOLDN): An interventional study
  publication-title: Lipids in Health and Disease
  doi: 10.1186/1476-511X-10-181
– ident: CR2
– volume: 6
  start-page: 164
  issue: 1
  year: 1927
  end-page: 189
  ident: CR17
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: Journal of Mathematics and Physics
  doi: 10.1002/sapm192761164
– volume: 100
  start-page: 899
  issue: 5
  year: 2007
  end-page: 904
  ident: CR25
  article-title: Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor
  publication-title: The American Journal of Cardiology
  doi: 10.1016/j.amjcard.2007.03.107
– volume: 10
  start-page: 1
  issue: 3
  year: 2015
  end-page: 21
  ident: CR36
  article-title: Phenotypic flexibility as a measure of health: The optimal nutritional stress response test
  publication-title: Genes & Nutrition
  doi: 10.1007/s12263-015-0459-1
– volume: 17
  start-page: 16
  issue: 1
  year: 2003
  end-page: 33
  ident: CR9
  article-title: Centering and scaling in component analysis
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.773
– volume: 20
  start-page: 50
  issue: 3
  year: 2024
  ident: CR43
  article-title: Characterizing human postprandial metabolic response using multiway data analysis
  publication-title: Metabolomics
  doi: 10.1007/s11306-024-02109-y
– volume: 26
  start-page: 964
  issue: 6
  year: 2020
  end-page: 973
  ident: CR6
  article-title: Human postprandial responses to food and potential for precision nutrition
  publication-title: Nature Medicine
  doi: 10.1038/s41591-020-0934-0
– volume: 25
  start-page: 94
  issue: 1
  year: 2024
  ident: CR21
  article-title: Analyzing postprandial metabolomics data using multiway models: A simulation study
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-024-05686-w
– volume: 35
  start-page: 375
  issue: 2
  year: 2012
  end-page: 382
  ident: CR16
  article-title: High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1593
– volume: 12
  start-page: 16890
  issue: 1
  year: 2022
  ident: CR22
  article-title: Gender differences in fasting and postprandial metabolic traits predictive of subclinical atherosclerosis in an asymptomatic chinese population
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-20714-6
– volume: 19
  issue: 6
  year: 2023
  ident: CR12
  article-title: Analysis of high-dimensional metabolomics data with complex temporal dynamics using RM-ASCA+
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1011221
– volume: 8
  start-page: 347
  year: 2012
  end-page: 359
  ident: CR28
  article-title: Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0320-5
– start-page: 602
  year: 1984
  end-page: 642
  ident: CR15
  article-title: An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques
  publication-title: Research methods for multimode data analysis
– volume: 39
  start-page: 8
  issue: 4
  year: 2022
  end-page: 24
  ident: CR5
  article-title: Reproducibility in matrix and tensor decompositions: Focus on model match, interpretability, and uniqueness
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2022.3163870
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  ident: CR14
  article-title: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis
  publication-title: UCLA Working Papers in Phonetics
– volume: 93
  start-page: 381
  issue: 4
  year: 2004
  end-page: 389
  ident: CR7
  article-title: The Copenhagen prospective study on asthma in childhood (COPSAC): Design, rationale, and baseline data from a longitudinal birth cohort study
  publication-title: Annals of Allergy, Asthma & Immunology
  doi: 10.1016/S1081-1206(10)61398-1
– volume: 15
  start-page: 506
  issue: 3
  year: 2021
  end-page: 521
  ident: CR31
  article-title: A flexible optimization framework for regularized matrix-tensor factorizations with linear couplings
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2020.3045848
– volume: 5
  start-page: 209
  year: 2009
  end-page: 218
  ident: CR45
  article-title: Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0136-0
– volume: 18
  start-page: 95
  issue: 2
  year: 1977
  end-page: 138
  ident: CR20
  article-title: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(77)90069-6
– volume: 15
  start-page: 45
  year: 2018
  end-page: 55
  ident: CR26
  article-title: Sex differences in lipid and lipoprotein metabolism
  publication-title: Molecular Metabolism
  doi: 10.1016/j.molmet.2018.05.008
– volume: 1
  start-page: 23
  issue: 1
  year: 2005
  end-page: 34
  ident: CR29
  article-title: Postprandial lipaemia, haemostasis, inflammatory response and other emerging risk factors for cardiovascular disease: The influence of fatty meals
  publication-title: Current Nutrition & Food Science
  doi: 10.2174/1573401052953203
– volume: 18
  issue: 2
  year: 2023
  ident: CR13
  article-title: Features extracted using tensor decomposition reflect the biological features of the temporal patterns of human blood multimodal metabolome
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0281594
– volume: 21
  start-page: 6
  issue: 1
  year: 2009
  end-page: 20
  ident: CR1
  article-title: Unsupervised multiway data analysis: A literature survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.112
– volume: 52
  start-page: 446
  issue: 4
  year: 2013
  end-page: 464
  ident: CR8
  article-title: Postprandial lipoproteins and the molecular regulation of vascular homeostasis
  publication-title: Progress in Lipid Research
  doi: 10.1016/j.plipres.2013.06.001
– year: 2004
  ident: CR33
  publication-title: Multi-Way Analysis: Applications in the Chemical Sciences
  doi: 10.1002/0470012110
– volume: 90
  start-page: 14188
  issue: 24
  year: 2018
  end-page: 14197
  ident: CR42
  article-title: The molecular fingerprint of fluorescent natural organic matter offers insight into biogeochemical sources and diagenetic state
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.8b02863
– ident: CR11
– volume: 153
  start-page: 1338
  issue: 5
  year: 2023
  end-page: 1346
  ident: CR37
  article-title: Integrating nutrient biomarkers, cognitive function, and structural MRI data to build multivariate phenotypes of healthy aging
  publication-title: The Journal of Nutrition
  doi: 10.1016/j.tjnut.2023.03.016
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  end-page: 319
  ident: CR10
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  ident: CR24
  article-title: Metabolomics analysis reveals altered metabolites in lean compared with obese adolescents and additional metabolic shifts associated with hyperinsulinaemia and insulin resistance in obese adolescents: A cross-sectional study
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-01759-y
– ident: CR32
– volume: 13
  start-page: 416
  year: 2019
  ident: CR4
  article-title: Unraveling diagnostic biomarkers of schizophrenia through structure-revealing fusion of multi-modal neuroimaging data
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.00416
– volume: 21
  start-page: 3043
  issue: 13
  year: 2005
  end-page: 3048
  ident: CR34
  article-title: ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti476
– volume: 12
  start-page: 1
  issue: 21
  year: 2017
  end-page: 14
  ident: CR41
  article-title: Multi-parameter comparison of a standardized mixed meal tolerance test in healthy and type 2 diabetic subjects: The PhenFlex challenge
  publication-title: Genes & Nutrition
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  end-page: 17
  ident: CR3
  article-title: Structure-revealing data fusion
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-239
– volume: 7
  year: 2017
  ident: CR18
  article-title: Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1197
– volume: 34
  issue: 6
  year: 2020
  ident: CR23
  article-title: LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimensional designed data
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.3232
– volume: 17
  year: 2021
  ident: CR38
  article-title: Tensor-structured decomposition improves systems serology analysis
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.202110243
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  ident: CR19
  article-title: Tensor decompositions and applications
  publication-title: SIAM Review
  doi: 10.1137/07070111X
– volume: 36
  start-page: 496
  issue: 2
  year: 2015
  end-page: 522
  ident: CR35
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-( , ,1) terms–part I: Uniqueness
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/140956853
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 2128_CR19
  publication-title: SIAM Review
  doi: 10.1137/07070111X
– volume: 13
  start-page: 416
  year: 2019
  ident: 2128_CR4
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.00416
– volume: 26
  start-page: 964
  issue: 6
  year: 2020
  ident: 2128_CR6
  publication-title: Nature Medicine
  doi: 10.1038/s41591-020-0934-0
– volume: 93
  start-page: 381
  issue: 4
  year: 2004
  ident: 2128_CR7
  publication-title: Annals of Allergy, Asthma & Immunology
  doi: 10.1016/S1081-1206(10)61398-1
– volume: 12
  start-page: 1
  issue: 21
  year: 2017
  ident: 2128_CR41
  publication-title: Genes & Nutrition
– ident: 2128_CR32
  doi: 10.1109/ICASSP49357.2023.10094562
– volume: 153
  start-page: 1338
  issue: 5
  year: 2023
  ident: 2128_CR37
  publication-title: The Journal of Nutrition
  doi: 10.1016/j.tjnut.2023.03.016
– volume: 15
  start-page: 45
  year: 2018
  ident: 2128_CR26
  publication-title: Molecular Metabolism
  doi: 10.1016/j.molmet.2018.05.008
– volume: 1
  start-page: 23
  issue: 1
  year: 2005
  ident: 2128_CR29
  publication-title: Current Nutrition & Food Science
  doi: 10.2174/1573401052953203
– volume: 34
  issue: 6
  year: 2020
  ident: 2128_CR23
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.3232
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 2128_CR10
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 11
  start-page: 50
  issue: 1
  year: 2015
  ident: 2128_CR39
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0673-7
– ident: 2128_CR11
  doi: 10.2172/989350
– volume: 10
  start-page: 185
  issue: 5
  year: 2020
  ident: 2128_CR30
  publication-title: Metabolites
  doi: 10.3390/metabo10050185
– volume: 21
  start-page: 6
  issue: 1
  year: 2009
  ident: 2128_CR1
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.112
– volume: 36
  start-page: 496
  issue: 2
  year: 2015
  ident: 2128_CR35
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/140956853
– volume: 5
  start-page: 209
  year: 2009
  ident: 2128_CR45
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0136-0
– volume: 39
  start-page: 8
  issue: 4
  year: 2022
  ident: 2128_CR5
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2022.3163870
– volume: 6
  start-page: 164
  issue: 1
  year: 1927
  ident: 2128_CR17
  publication-title: Journal of Mathematics and Physics
  doi: 10.1002/sapm192761164
– start-page: 602
  volume-title: Research methods for multimode data analysis
  year: 1984
  ident: 2128_CR15
– volume: 16
  start-page: 1
  year: 1970
  ident: 2128_CR14
  publication-title: UCLA Working Papers in Phonetics
– volume: 100
  start-page: 899
  issue: 5
  year: 2007
  ident: 2128_CR25
  publication-title: The American Journal of Cardiology
  doi: 10.1016/j.amjcard.2007.03.107
– volume: 17
  start-page: 16
  issue: 1
  year: 2003
  ident: 2128_CR9
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.773
– volume: 20
  start-page: 50
  issue: 3
  year: 2024
  ident: 2128_CR43
  publication-title: Metabolomics
  doi: 10.1007/s11306-024-02109-y
– ident: 2128_CR2
– volume: 52
  start-page: 446
  issue: 4
  year: 2013
  ident: 2128_CR8
  publication-title: Progress in Lipid Research
  doi: 10.1016/j.plipres.2013.06.001
– volume: 10
  start-page: 181
  issue: 1
  year: 2011
  ident: 2128_CR40
  publication-title: Lipids in Health and Disease
  doi: 10.1186/1476-511X-10-181
– volume: 21
  start-page: 3043
  issue: 13
  year: 2005
  ident: 2128_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti476
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 2128_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-239
– volume: 7
  year: 2017
  ident: 2128_CR18
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1197
– volume: 25
  start-page: 94
  issue: 1
  year: 2024
  ident: 2128_CR21
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-024-05686-w
– volume: 18
  issue: 2
  year: 2023
  ident: 2128_CR13
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0281594
– volume: 17
  year: 2021
  ident: 2128_CR38
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.202110243
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 2128_CR24
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-01759-y
– volume: 12
  start-page: 16890
  issue: 1
  year: 2022
  ident: 2128_CR22
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-20714-6
– volume-title: Multi-Way Analysis: Applications in the Chemical Sciences
  year: 2004
  ident: 2128_CR33
  doi: 10.1002/0470012110
– volume: 18
  start-page: 95
  issue: 2
  year: 1977
  ident: 2128_CR20
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(77)90069-6
– volume: 90
  start-page: 14188
  issue: 24
  year: 2018
  ident: 2128_CR42
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.8b02863
– volume: 8
  start-page: 347
  year: 2012
  ident: 2128_CR28
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0320-5
– volume: 10
  start-page: 1
  issue: 3
  year: 2015
  ident: 2128_CR36
  publication-title: Genes & Nutrition
  doi: 10.1007/s12263-015-0459-1
– volume: 35
  start-page: 375
  issue: 2
  year: 2012
  ident: 2128_CR16
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1593
– volume: 8
  start-page: Article 16
  issue: 2
  year: 2016
  ident: 2128_CR27
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 163
  start-page: 1079
  issue: 5
  year: 2015
  ident: 2128_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– volume: 19
  issue: 6
  year: 2023
  ident: 2128_CR12
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1011221
– volume: 15
  start-page: 506
  issue: 3
  year: 2021
  ident: 2128_CR31
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2020.3045848
SSID ssj0044970
Score 2.3776166
Snippet Introduction Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and...
Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases....
IntroductionLongitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Adult
Biochemistry
Biomarkers
Biomarkers - blood
Biomarkers - metabolism
Biomedical and Life Sciences
Biomedicine
Body mass index
Cell Biology
Developmental Biology
Fasting
Fasting - metabolism
Female
Humans
Life Sciences
Male
Metabolism
Metabolites
Metabolomics
Metabolomics - methods
Middle Aged
Molecular Medicine
Original Article
Phenotypes
Postprandial Period
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVpcumltEk_3KZBhdJLK2pbsmSdSigJIdAcQgN7M5IsQ2HXdtbe0kB-fGdkeZcSmrPlsfCMpDejeTOEfMyLspG5zZlLawzdGMmsTRXzVoP2PRadQjbyjyt5cSMuF8UiBtyGmFY574lho647hzHyrxyxgSzhvP7W3zLsGoW3q7GFxhNygKXLMKVLLbYOlxA6NIvLCsUZBygZSTMTdQ42b0y_FQyLnMOi__dgeoA2H9yUhgPo_Dl5FpEjPZ1U_YLs-faQHJ224DWv7ugnGnI5Q5D8iNxf-9-AAEEORcbQL0dNW9N66j5PkXKPWTnrgSK7hPbdMPZr5LeA_JUfwS6WSFYeKOaP0tjKh7pu0y99TVdY1f9PkIjp792aTk17ZkbnS3Jzfvbz-wWLfRaY46oYWWaNNpkXRpa1dqqxQiJB1uiyBPiWeud1UxbGcgu-SulV6px1jURfQ0lrBX9F9tuu9W8I1Y300gNKEAo8R55qZ72QPDdGcCdFkZBs_smVi0XIsRfGstqVT0bFVKCYKiim0gn5vH2nn0pwPDr6eNZdFZfjUO2MJyEfto9hIeHtiGl9t5nGSHDXM5WQ15POt5_jGpAZ_IyEfJmNYCf8_3N5-_hc3pGneTBAxXJ1TPbH9ca_B4gz2pNgx38Bhdr3ew
  priority: 102
  providerName: ProQuest
Title Revealing static and dynamic biomarkers from postprandial metabolomics data through coupled matrix and tensor factorizations
URI https://link.springer.com/article/10.1007/s11306-024-02128-9
https://www.ncbi.nlm.nih.gov/pubmed/39066850
https://www.proquest.com/docview/3085168056
https://www.proquest.com/docview/3085683717
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68dKXsbbr5rUNKoy9dAbHliXrMS3pykrLKA1kT0aSZRgkdoidscL--N35I6G0HezJD5bORneSfifd7w7gUxgnuQhN6Nsgo6MbLXxjAuk7o1D7jpJOERv59k5cT_i3aTztSGFVH-3eX0k2K_WG7IbLLQXMcp_SkuM03YbdmHx3tOJJOOrXX86VDDp6zMv9nm5Bz3DlszvRZqu5egtvOozIRq1S92HLFQdwOCrQP54_ss-sidpsjsMP4c-9-4VYD-Uw4gb9tEwXGcvaOvOMyPUUf7OsGPFI2KKs6sWSmCwof-5qtIAZ0ZIrRpGirCvaw2y5WsxcxuaUv_93I5EC3csla8vz9NzNdzC5Gj9cXvtdRQXfRjKu_aHRSg8d1yLJlJW54YKosFolCQK1wFmn8iTWJjLolSROBtYamwvyKqQwhkdHsFOUhfsATOXCCYd4gEv0EaNAWeO4iEKteWQFjz0Y9oOc2i7dOFW9mKWbRMmkmBQVkzaKSZUH5-s-izbZxj9bn_S6S7uJV6URQUiRIKzz4Gz9GqcM3YPowpWrto1Ax3woPXjf6nz9uUghBsPB8OBLbwQb4a__y8f_a34Me2FjkNIP5Qns1MuVO0VwU5sBbMupHMDu6OuPmzE-L8Z33-8HjYX_BeXY9oo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEuCCgfgQJGAi4QkY0dJz4gVKDVlrYrVLVSb6ntOBLSbhI2WaASv4nfyEw-doUqeut5s5MoMxm_sefNA3gZRkkuQxP6Nsho60ZL35gg9p1R6H1HQ6eIjXw0lZNT8eUsOtuAPwMXhtoqh5zYJuqstLRH_o4TNpAJrtcfqu8-qUbR6eogodGFxYG7-IklW_1-_zP691UY7u2efJr4vaqAb3kcNf7YaKXHTmiZZMrGuRGS6KBaJQmClcBZp_Ik0oYbROaJiwNrjc0lIetYGiM42r0Bm4JjKTOCzY-706_HQ-4XQrXydOMo5j5H8NrTdDqyHi4X1PArfBqrjmnm36XwEr69dDbbLnl7d-B2j1XZThdcd2HDFfdga6fAOn1-wV6ztnu03Zbfgt_H7gdiTrTDiKP0zTJdZCzr9O4ZkfypD2hRM-KzsKqsm2pBjBq0P3cNRuKM6NE1o45V1osHMVsuq5nL2Jx0BH61FqnhvlywTiZo4JDeh9Nr8cEDGBVl4R4BU7l00iEuETHWqjxQ1jgheai14FaKyIPx8JJT2489J_WNWboe2EyOSdExaeuYVHnwZvWfqhv6ceXV24Pv0j4B1Ok6XD14sfoZP106j9GFK5fdNTLhWFB78LDz-ep2XCEWxJfhwdshCNbG__8sj69-ludwc3JydJge7k8PnsCtsA3G2A_jbRg1i6V7igCrMc_6qGZwft0f0l-AoTYh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiEuCCgfgQJGAi5gNYkdOzkgVFFWLYUKISrtLdiOIyHtJmE3C1Til_HrmMnHrlBFbz0nmUSZsf3GnjcP4FmcpKWKbcxdWNDWjVHc2lBzbzP0vqemU8RG_niiDk_l-2ky3YI_IxeGyirHObGbqIva0R75niBsoFJcr_fKoSzi08HkTfOdk4IUnbSOchp9iBz7s5-Yvi1fHx2gr5_H8eTdl7eHfFAY4E7opOWRNZmJvDQqLTKnSysVUUNNlqYIXELvfFamibHCIkpPvQ6ds65UhLK1slYKtHsFrmqRRDTG9HSd7EmZdUJ1UaIFFwhjB8JOT9vDhYNKfyWnBus44fy7KJ5DuudOabvFb3ITbgyole33YXYLtnx1G3b2K8zY52fsBevqSLsN-h34_dn_QPSJdhixlb45ZqqCFb3yPSO6P1UELZaMmC2sqZdtsyBuDdqf-xZjckZE6SWj2lU2yAgxV6-amS_YnBQFfnUWqfS-XrBeMGhkk96B00vxwF3YrurK3weWlcorjwhFasxaRZg566USsTFSOCWTAKLxJ-duaIBOOhyzfNO6mRyTo2PyzjF5FsDL9TNN3_7jwrt3R9_lw1SwzDeBG8DT9WUcxHQyYypfr_p7VCowtQ7gXu_z9etEhqgQf0YAr8Yg2Bj__7c8uPhbnsA1HD75h6OT44dwPe5iUfNY78J2u1j5R4i0Wvu4C2kGXy97DP0Fo1k48Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+static+and+dynamic+biomarkers+from+postprandial+metabolomics+data+through+coupled+matrix+and+tensor+factorizations&rft.jtitle=Metabolomics&rft.au=Li%2C+Lu&rft.au=Yan%2C+Shi&rft.au=Horner%2C+David&rft.au=Rasmussen%2C+Morten+A&rft.date=2024-07-27&rft.issn=1573-3890&rft.eissn=1573-3890&rft.volume=20&rft.issue=4&rft.spage=86&rft_id=info:doi/10.1007%2Fs11306-024-02128-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3890&client=summon