EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared...
Saved in:
Published in | Medical & biological engineering & computing Vol. 58; no. 7; pp. 1515 - 1528 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0140-0118 1741-0444 1741-0444 |
DOI | 10.1007/s11517-020-02176-y |
Cover
Loading…
Abstract | Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired
t
test showed that the classification results of PSD and the transfer learning algorithm were significantly different (
p
= 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (
p
= 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI).
Graphical abstract |
---|---|
AbstractList | Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired
t
test showed that the classification results of PSD and the transfer learning algorithm were significantly different (
p
= 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (
p
= 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI).
Graphical abstract Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract.Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract. Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract. |
Author | Xie, Yunlong Zheng, Minmin Yang, Banghua |
Author_xml | – sequence: 1 givenname: Minmin surname: Zheng fullname: Zheng, Minmin organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, School of Mechanical and Electrical Engineering, Putian University – sequence: 2 givenname: Banghua surname: Yang fullname: Yang, Banghua email: yangbanghua@126.com organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University – sequence: 3 givenname: Yunlong surname: Xie fullname: Xie, Yunlong organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32394192$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu3CAQhlGVKtmkeYEeKqRecnHLYDD2sYq2aaVIveRuYQy7rGxIGXzwC_S5S3eTVMohBzTS8P0w8_-X5CzEYAn5COwLMKa-IoAEVTHOygHVVOs7sgEloGJCiDOyYSDKFUB7QS4RD6xQkotzclHzuhPQ8Q35s93eUTNpRO-80dnHQLVJEZGiLc0YkOowvvSW4WBNRpr3KS67Pc1JB3Q20cnqFHzYUR_oHHNM1M96Z9NaDRrtSIekfahmbfY-2AJlm5w2luKK2c4fyHunJ7TXT_WKPHzfPtz-qO5_3f28_XZfmVrJXEHXMlYL53ijBsGVlI1znazlINQArJWG63bslOJaatealgtuuWx4J03djPUVuTk9-5ji78Vi7mePxk6TDjYu2HPBoGUSeFfQz6_QQ1xSKMMVCgTUwDkv1KcnahlmO_aPqWyd1v7Z4ALwE3D0L1n3ggDr_6XYn1LsS4r9McV-LaL2lcj4fMym2O2nt6X1SYrln1D8_z_2G6q_1tiyOA |
CitedBy_id | crossref_primary_10_1007_s11517_022_02626_9 crossref_primary_10_3390_s21155105 crossref_primary_10_1016_j_smhl_2022_100339 crossref_primary_10_1080_10255842_2024_2404541 crossref_primary_10_3390_mi13060927 crossref_primary_10_1080_2326263X_2021_1943955 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_3389_fnins_2021_733546 crossref_primary_10_1007_s00521_020_05323_6 crossref_primary_10_1109_TETCI_2024_3359097 crossref_primary_10_1109_TNSRE_2022_3191869 crossref_primary_10_1016_j_bspc_2021_102803 crossref_primary_10_1016_j_matt_2024_05_023 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_1177_09544119231187287 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_1007_s11517_021_02449_0 crossref_primary_10_1142_S0218001422500410 crossref_primary_10_3724_SP_J_1329_2023_06001 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1016_j_eswa_2021_116016 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_3390_math10091588 crossref_primary_10_1016_j_artmed_2021_102039 crossref_primary_10_1038_s41597_022_01647_1 crossref_primary_10_1063_5_0054912 crossref_primary_10_1007_s13042_022_01668_7 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1016_j_bbrc_2021_07_064 crossref_primary_10_1016_j_clinph_2022_04_010 |
Cites_doi | 10.1109/TKDE.2009.191 10.3969/j.issn.0258-8021.2013.05.019 10.1016/j.neunet.2009.06.003 10.1016/j.eij.2015.06.002 10.1109/10.64464 10.1016/S0378-3758(00)00115-4 10.1111/j.1469-8986.2006.00456.x 10.1016/j.eswa.2010.06.065 10.1016/S1388-2457(99)00141-8 10.1088/1741-2560/12/6/066009 10.1113/jphysiol.2006.125633 10.1023/a:1022353731579 10.1109/TBME.2005.851521 10.1016/j.eswa.2011.07.106 10.1016/j.eswa.2012.01.110 10.1016/S1388-2457(02)00057-3 10.1016/j.neucom.2014.09.078 10.1109/TBME.2010.2082539 10.1109/tnsre.2006.875555 10.1088/1741-2552/ab598f 10.1016/j.visres.2012.03.014 10.1007/BF01129656 10.1097/wco.0b013e328315ee2d 10.1016/S0167-8760(02)00031-4 10.1016/j.mayocp.2011.12.008 10.1088/1741-2560/4/2/R03 10.1053/apmr.2001.26621 10.1016/S1388-2457(98)00038-8 10.1109/TBME.2018.2799661 10.1016/j.bspc.2014.02.002 10.1186/s40537-016-0043-6 10.1007/BF01067978 10.3785/j.issn.1008-973X.2012.02.025 10.1109/MCI.2015.2501545 10.1023/A:1005553931564 10.1109/TBME.2019.2958641 10.1049/PBCE114E 10.1109/IEMBS.2009.5332383 10.1007/978-3-642-15561-1_16 10.1109/CVPR.2015.7299009 10.1109/CVPR.2011.5995702 10.1109/ICDM.2017.150 10.1109/ICIST.2015.7288989 10.1145/1102351.1102415 10.1109/ICCV.2011.6126344 10.1016/S1872-2075(07)60067-3 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2020 International Federation for Medical and Biological Engineering 2020. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2020 – notice: International Federation for Medical and Biological Engineering 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-020-02176-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ProQuest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 1528 |
ExternalDocumentID | 32394192 10_1007_s11517_020_02176_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976133 – fundername: National Key R&D Program of China grantid: 2018YFC1312900 – fundername: 111 Project grantid: D18003 |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-1980034ff267b427556ff9535b47b1085c2a8d9772a5af8c8242e256295c36d3 |
IEDL.DBID | U2A |
ISSN | 0140-0118 1741-0444 |
IngestDate | Thu Jul 10 19:26:26 EDT 2025 Fri Jul 25 19:09:15 EDT 2025 Wed Feb 19 02:28:41 EST 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Fri Feb 21 02:31:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | BCI Motor imagery test Transfer learning Paired Euclidean distance Paired t test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-1980034ff267b427556ff9535b47b1085c2a8d9772a5af8c8242e256295c36d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 32394192 |
PQID | 2414131222 |
PQPubID | 54161 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2401805129 proquest_journals_2414131222 pubmed_primary_32394192 crossref_primary_10_1007_s11517_020_02176_y crossref_citationtrail_10_1007_s11517_020_02176_y springer_journals_10_1007_s11517_020_02176_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200700 2020-07-00 2020-Jul 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Böttger, Herrmann, Cramon (CR22) 2002; 45 Chen, Wang (CR7) 2018; 36 CR39 CR36 Pan, Yang (CR47) 2010; 22 CR31 Buttfield, Ferrez, Millan (CR41) 2006; 14 Keirn, Aunon (CR40) 1990; 37 Akin, Kiymik (CR32) 2000; 24 Subasi, Ismail Gursoy (CR43) 2010; 37 Li, Xiao, Chen (CR33) 2009; 7 Pfurtscheller, Silva (CR9) 1999; 110 Cho, Ahn, Kim, Chan Jun (CR29) 2015; 12 Abdulkader, Atia, Mostafa (CR11) 2015; 16 Kübler, Neumann, Kaiser, Kotchoubey, Hinterberger, Birbaumer (CR3) 2001; 82 CR48 Müller-Gerking, Pfurtscheller, Flyvbjerg (CR35) 1999; 110 CR45 Shimodaira (CR55) 2000; 90 Koles, Lazar, Zhou (CR34) 1990; 2 CR44 Kuba, Kremlacek, Langrova, Kubova, Szanyi, Vit (CR24) 2012; 62 Gao, Zhang, Gao, Yang (CR42) 2006; 30 Wolpaw, Birbaumer, McFarland (CR1) 2002; 113 Birbaumer, Murguialday, Cohen (CR5) 2008; 21 Shi, Shen, Wang (CR13) 2012; 46 Bashashati, Fatourechi, Ward, Birch (CR38) 2007; 4 Ben-David, Blitzer, Crammer, Pereira (CR49) 2007; 1 CR19 Xu, Xiao, Wang (CR8) 2018; 65 Jayaram, Alamgir, Altun, Schölkopf, Grosse-Wentrup (CR30) 2015; 11 Fuchs, Birbaumer, Lutzenberger (CR6) 2003; 28 CR54 CR53 CR51 Zhao, Guo, Geng (CR14) 2013; 92 Hsu (CR12) 2012; 39 Huang, Smola, Gretton, Borgwardt, Scholkopf (CR52) 2006; 2 Hortal, Planelles, Costa (CR17) 2015; 151 Pei, Yang (CR18) 2018; 37 Bulayeva, Pavlova, Guseynov (CR23) 1993; 23 Lemm, Blankertz, Curio, Muller (CR37) 2005; 52 Weiss, Khoshgoftaar, Wang (CR46) 2016; 3 Birbaumer (CR4) 2006; 43 Blasco, Iáñez, Ubeda (CR15) 2012; 39 Shih, Krusienski, Wolpaw (CR2) 2012; 87 CR26 CR25 Wang, Xu, Wang (CR20) 2020; 17 Chen, Fang, Zheng (CR16) 2014; 11 CR21 Birbaumer, Cohen (CR10) 2007; 579 Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (CR28) 2009; 22 Lotte, Guan (CR27) 2011; 58 Bergamo, Torresani (CR50) 2010; 2 A Buttfield (2176_CR41) 2006; 14 A Bashashati (2176_CR38) 2007; 4 S Gao (2176_CR42) 2006; 30 N Birbaumer (2176_CR5) 2008; 21 SJ Pan (2176_CR47) 2010; 22 N Birbaumer (2176_CR4) 2006; 43 H Shimodaira (2176_CR55) 2000; 90 ZJ Koles (2176_CR34) 1990; 2 2176_CR48 2176_CR44 A Bergamo (2176_CR50) 2010; 2 2176_CR45 2176_CR31 J Müller-Gerking (2176_CR35) 1999; 110 E Hortal (2176_CR17) 2015; 151 SN Abdulkader (2176_CR11) 2015; 16 D Böttger (2176_CR22) 2002; 45 H Cho (2176_CR29) 2015; 12 V Jayaram (2176_CR30) 2015; 11 A Subasi (2176_CR43) 2010; 37 A Kübler (2176_CR3) 2001; 82 M Xu (2176_CR8) 2018; 65 J Huang (2176_CR52) 2006; 2 F Lotte (2176_CR27) 2011; 58 K Weiss (2176_CR46) 2016; 3 2176_CR39 G Pfurtscheller (2176_CR9) 1999; 110 2176_CR36 2176_CR21 M Akin (2176_CR32) 2000; 24 S Ben-David (2176_CR49) 2007; 1 S Fazli (2176_CR28) 2009; 22 KB Bulayeva (2176_CR23) 1993; 23 M Kuba (2176_CR24) 2012; 62 S Lemm (2176_CR37) 2005; 52 2176_CR26 WY Hsu (2176_CR12) 2012; 39 YF Pei (2176_CR18) 2018; 37 ZA Keirn (2176_CR40) 1990; 37 M Chen (2176_CR16) 2014; 11 2176_CR25 2176_CR53 2176_CR54 L Li (2176_CR33) 2009; 7 2176_CR51 JR Wolpaw (2176_CR1) 2002; 113 XG Chen (2176_CR7) 2018; 36 T Fuchs (2176_CR6) 2003; 28 L Zhao (2176_CR14) 2013; 92 N Birbaumer (2176_CR10) 2007; 579 2176_CR19 JLS Blasco (2176_CR15) 2012; 39 K Wang (2176_CR20) 2020; 17 JJ Shih (2176_CR2) 2012; 87 JH Shi (2176_CR13) 2012; 46 |
References_xml | – ident: CR45 – volume: 22 start-page: 1345 issue: 10 year: 2010 end-page: 1359 ident: CR47 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 36 start-page: 22 issue: 12 year: 2018 end-page: 30 ident: CR7 article-title: Research progress of non - invasive brain machine interface based on EEG publication-title: Sci Technol Rev – ident: CR39 – ident: CR51 – volume: 92 start-page: 65 issue: 92 year: 2013 end-page: 81 ident: CR14 article-title: Research on multi-class motor imagery eeg signal processing publication-title: Chin J Biomed Eng doi: 10.3969/j.issn.0258-8021.2013.05.019 – volume: 22 start-page: 1305 issue: 9 year: 2009 end-page: 1312 ident: CR28 article-title: Subject-independent mental state classification in single trials publication-title: Neural Netw doi: 10.1016/j.neunet.2009.06.003 – volume: 16 start-page: 213 issue: 2 year: 2015 end-page: 230 ident: CR11 article-title: Brain computer interfacing: applications and challenges publication-title: Egypt Inf J doi: 10.1016/j.eij.2015.06.002 – volume: 37 start-page: 1209 issue: 12 year: 1990 end-page: 1214 ident: CR40 article-title: A new mode of communication between man and his surroundings publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.64464 – volume: 90 start-page: 227 issue: 2 year: 2000 end-page: 244 ident: CR55 article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function publication-title: J Statist Plann Inference doi: 10.1016/S0378-3758(00)00115-4 – volume: 43 start-page: 517 issue: 6 year: 2006 end-page: 532 ident: CR4 article-title: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control publication-title: Psycho-physiology doi: 10.1111/j.1469-8986.2006.00456.x – volume: 37 start-page: 8659 issue: 12 year: 2010 end-page: 8666 ident: CR43 article-title: EEG signal classification using PCA, ICA, LDA and support vector machines publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2010.06.065 – ident: CR54 – volume: 110 start-page: 1842 issue: 11 year: 1999 end-page: 1857 ident: CR9 article-title: Event-related eeg/meg synchronization and desynchronization publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – ident: CR25 – volume: 2 start-page: 181 year: 2010 end-page: 189 ident: CR50 article-title: Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach publication-title: Proc NIPS – ident: CR21 – ident: CR19 – volume: 12 issue: 6 year: 2015 ident: CR29 article-title: Increasing session-to-session transfer in a brain–computer interface with on-site background noise acquisition publication-title: J Neural Eng doi: 10.1088/1741-2560/12/6/066009 – volume: 579 start-page: 621 issue: 3 year: 2007 end-page: 636 ident: CR10 article-title: Brain-computer interfaces: communication and restoration of movement in paralysis publication-title: J Physiol (Oxford) doi: 10.1113/jphysiol.2006.125633 – volume: 28 start-page: 1 issue: 1 year: 2003 end-page: 12 ident: CR6 article-title: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate publication-title: Appl Psychophysiol Biofeedback doi: 10.1023/a:1022353731579 – volume: 52 start-page: 1541 issue: 9 year: 2005 end-page: 1548 ident: CR37 article-title: Spatio-spectral filters for improving the classification of single trial eeg publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.851521 – volume: 39 start-page: 1055 issue: 1 year: 2012 end-page: 1061 ident: CR12 article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery eeg classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.106 – volume: 39 start-page: 7908 issue: 9 year: 2012 end-page: 7918 ident: CR15 article-title: Visual evoked potential-based brain-machine interface applications to assist disabled people publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.01.110 – ident: CR36 – volume: 113 start-page: 67 issue: 7 year: 2002 end-page: 91 ident: CR1 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 151 start-page: 116 year: 2015 end-page: 121 ident: CR17 article-title: SVM-based brain–machine interface for controlling a robot arm through four mental tasks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.078 – ident: CR26 – volume: 58 start-page: 355 issue: 2 year: 2011 end-page: 362 ident: CR27 article-title: Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2082539 – volume: 14 start-page: 164 issue: 2 year: 2006 end-page: 168 ident: CR41 article-title: Towards a robust bci: error potentials and online learning publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/tnsre.2006.875555 – volume: 7 start-page: 175 issue: 2 year: 2009 end-page: 179 ident: CR33 article-title: Differences of EEG between eyes-open and eyes-closed states based on autoregressive method publication-title: J Electron Sci Technol China – volume: 17 start-page: 016033 year: 2020 ident: CR20 article-title: Enhance decoding of pre-movement EEG patterns for brain–computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2552/ab598f – volume: 62 start-page: 9 issue: none year: 2012 end-page: 16 ident: CR24 article-title: Aging effect in pattern, motion and cognitive visual evoked potentials publication-title: Vis Res doi: 10.1016/j.visres.2012.03.014 – ident: CR53 – volume: 2 start-page: 275 issue: 4 year: 1990 end-page: 284 ident: CR34 article-title: Spatial patterns underlying population differences in the background eeg publication-title: Brain Topogr doi: 10.1007/BF01129656 – volume: 21 start-page: 634 issue: 6 year: 2008 end-page: 638 ident: CR5 article-title: Brain-computer interface in paralysis publication-title: Curr Opin Neurol doi: 10.1097/wco.0b013e328315ee2d – volume: 37 start-page: 208 issue: 02 year: 2018 end-page: 214 ident: CR18 article-title: Research progress of EEG algorithm of motor imagery publication-title: Beijing Biomed Eng – volume: 45 start-page: 245 issue: 3 year: 2002 end-page: 251 ident: CR22 article-title: Amplitude differences of evoked alpha and gamma oscillations in two different age groups publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(02)00031-4 – volume: 87 start-page: 268 issue: 3 year: 2012 end-page: 279 ident: CR2 article-title: Brain-computer interfaces in medicine publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2011.12.008 – volume: 4 start-page: R32 issue: 2 year: 2007 end-page: R57 ident: CR38 article-title: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals publication-title: J Neural Eng doi: 10.1088/1741-2560/4/2/R03 – volume: 82 start-page: 1533 issue: 11 year: 2001 end-page: 1539 ident: CR3 article-title: Brain-computer communication: self- regulation of slow cortical potentials for verbal communication publication-title: Arch Phys Med Rehabil doi: 10.1053/apmr.2001.26621 – volume: 110 start-page: 787 issue: 5 year: 1999 end-page: 798 ident: CR35 article-title: Designing optimal spatial filters for single-trial eeg classification in a movement task publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(98)00038-8 – ident: CR44 – volume: 65 start-page: 1166 issue: 5 year: 2018 end-page: 1175 ident: CR8 article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2799661 – ident: CR48 – volume: 11 start-page: 10 issue: 1 year: 2014 end-page: 16 ident: CR16 article-title: Phase space reconstruction for improving the classification of single trial EEG publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.02.002 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: CR46 article-title: A survey of transfer learning publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – volume: 23 start-page: 443 issue: 5 year: 1993 end-page: 447 ident: CR23 article-title: Visual evoked potentials: phenotypic and genotypic variability publication-title: Behav Genet doi: 10.1007/BF01067978 – ident: CR31 – volume: 1 start-page: 137 issue: 2 year: 2007 end-page: 144 ident: CR49 article-title: Analysis of representations for domain adaptation publication-title: Proc NIPS – volume: 2 start-page: 601 year: 2006 end-page: 608 ident: CR52 article-title: Correcting sample selection bias by unlabeled data publication-title: In Proc NIPS – volume: 46 start-page: 338 issue: 2 year: 2012 end-page: 344 ident: CR13 article-title: Feature extraction and classification of four-class motor imagery eeg data publication-title: J Zhejiang Univ (Eng Sci) doi: 10.3785/j.issn.1008-973X.2012.02.025 – volume: 11 start-page: 20 issue: 1 year: 2015 end-page: 31 ident: CR30 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2015.2501545 – volume: 24 start-page: 247 issue: 4 year: 2000 end-page: 256 ident: CR32 article-title: Application of periodogram and ar spectral analysis to eeg signals publication-title: J Med Syst doi: 10.1023/A:1005553931564 – volume: 30 start-page: 79 issue: 2 year: 2006 ident: CR42 article-title: Neural engineering and neural prostheses publication-title: Chin J Med Instrum – ident: 2176_CR19 doi: 10.1109/TBME.2019.2958641 – ident: 2176_CR21 doi: 10.1049/PBCE114E – ident: 2176_CR36 doi: 10.1109/IEMBS.2009.5332383 – volume: 30 start-page: 79 issue: 2 year: 2006 ident: 2176_CR42 publication-title: Chin J Med Instrum – ident: 2176_CR54 doi: 10.1007/978-3-642-15561-1_16 – volume: 1 start-page: 137 issue: 2 year: 2007 ident: 2176_CR49 publication-title: Proc NIPS – volume: 2 start-page: 601 year: 2006 ident: 2176_CR52 publication-title: In Proc NIPS – volume: 62 start-page: 9 issue: none year: 2012 ident: 2176_CR24 publication-title: Vis Res doi: 10.1016/j.visres.2012.03.014 – volume: 46 start-page: 338 issue: 2 year: 2012 ident: 2176_CR13 publication-title: J Zhejiang Univ (Eng Sci) doi: 10.3785/j.issn.1008-973X.2012.02.025 – volume: 7 start-page: 175 issue: 2 year: 2009 ident: 2176_CR33 publication-title: J Electron Sci Technol China – volume: 52 start-page: 1541 issue: 9 year: 2005 ident: 2176_CR37 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.851521 – volume: 65 start-page: 1166 issue: 5 year: 2018 ident: 2176_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2799661 – ident: 2176_CR26 doi: 10.1109/CVPR.2015.7299009 – ident: 2176_CR53 doi: 10.1109/CVPR.2011.5995702 – volume: 113 start-page: 67 issue: 7 year: 2002 ident: 2176_CR1 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 43 start-page: 517 issue: 6 year: 2006 ident: 2176_CR4 publication-title: Psycho-physiology doi: 10.1111/j.1469-8986.2006.00456.x – volume: 151 start-page: 116 year: 2015 ident: 2176_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.078 – volume: 37 start-page: 208 issue: 02 year: 2018 ident: 2176_CR18 publication-title: Beijing Biomed Eng – volume: 11 start-page: 10 issue: 1 year: 2014 ident: 2176_CR16 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.02.002 – volume: 4 start-page: R32 issue: 2 year: 2007 ident: 2176_CR38 publication-title: J Neural Eng doi: 10.1088/1741-2560/4/2/R03 – volume: 23 start-page: 443 issue: 5 year: 1993 ident: 2176_CR23 publication-title: Behav Genet doi: 10.1007/BF01067978 – volume: 90 start-page: 227 issue: 2 year: 2000 ident: 2176_CR55 publication-title: J Statist Plann Inference doi: 10.1016/S0378-3758(00)00115-4 – ident: 2176_CR45 doi: 10.1109/ICDM.2017.150 – volume: 28 start-page: 1 issue: 1 year: 2003 ident: 2176_CR6 publication-title: Appl Psychophysiol Biofeedback doi: 10.1023/a:1022353731579 – volume: 39 start-page: 1055 issue: 1 year: 2012 ident: 2176_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.106 – volume: 11 start-page: 20 issue: 1 year: 2015 ident: 2176_CR30 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2015.2501545 – ident: 2176_CR31 – volume: 2 start-page: 181 year: 2010 ident: 2176_CR50 publication-title: Proc NIPS – volume: 92 start-page: 65 issue: 92 year: 2013 ident: 2176_CR14 publication-title: Chin J Biomed Eng doi: 10.3969/j.issn.0258-8021.2013.05.019 – volume: 39 start-page: 7908 issue: 9 year: 2012 ident: 2176_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.01.110 – volume: 37 start-page: 8659 issue: 12 year: 2010 ident: 2176_CR43 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2010.06.065 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 2176_CR46 publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – volume: 21 start-page: 634 issue: 6 year: 2008 ident: 2176_CR5 publication-title: Curr Opin Neurol doi: 10.1097/wco.0b013e328315ee2d – ident: 2176_CR25 doi: 10.1109/ICIST.2015.7288989 – volume: 82 start-page: 1533 issue: 11 year: 2001 ident: 2176_CR3 publication-title: Arch Phys Med Rehabil doi: 10.1053/apmr.2001.26621 – volume: 2 start-page: 275 issue: 4 year: 1990 ident: 2176_CR34 publication-title: Brain Topogr doi: 10.1007/BF01129656 – volume: 87 start-page: 268 issue: 3 year: 2012 ident: 2176_CR2 publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2011.12.008 – volume: 36 start-page: 22 issue: 12 year: 2018 ident: 2176_CR7 publication-title: Sci Technol Rev – volume: 110 start-page: 787 issue: 5 year: 1999 ident: 2176_CR35 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(98)00038-8 – ident: 2176_CR48 doi: 10.1145/1102351.1102415 – volume: 45 start-page: 245 issue: 3 year: 2002 ident: 2176_CR22 publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(02)00031-4 – volume: 579 start-page: 621 issue: 3 year: 2007 ident: 2176_CR10 publication-title: J Physiol (Oxford) doi: 10.1113/jphysiol.2006.125633 – volume: 17 start-page: 016033 year: 2020 ident: 2176_CR20 publication-title: J Neural Eng doi: 10.1088/1741-2552/ab598f – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 2176_CR47 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: 2176_CR44 – ident: 2176_CR51 doi: 10.1109/ICCV.2011.6126344 – volume: 14 start-page: 164 issue: 2 year: 2006 ident: 2176_CR41 publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/tnsre.2006.875555 – volume: 22 start-page: 1305 issue: 9 year: 2009 ident: 2176_CR28 publication-title: Neural Netw doi: 10.1016/j.neunet.2009.06.003 – volume: 37 start-page: 1209 issue: 12 year: 1990 ident: 2176_CR40 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.64464 – volume: 16 start-page: 213 issue: 2 year: 2015 ident: 2176_CR11 publication-title: Egypt Inf J doi: 10.1016/j.eij.2015.06.002 – volume: 24 start-page: 247 issue: 4 year: 2000 ident: 2176_CR32 publication-title: J Med Syst doi: 10.1023/A:1005553931564 – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 2176_CR27 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2082539 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 2176_CR9 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – volume: 12 issue: 6 year: 2015 ident: 2176_CR29 publication-title: J Neural Eng doi: 10.1088/1741-2560/12/6/066009 – ident: 2176_CR39 doi: 10.1016/S1872-2075(07)60067-3 |
SSID | ssj0021524 |
Score | 2.4176729 |
Snippet | Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1515 |
SubjectTerms | Accuracy Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Brain-Computer Interfaces Classification Competition Computer Applications Datasets EEG Electroencephalography Electroencephalography - instrumentation Electroencephalography - methods Euclidean geometry Female Hand Healthy Volunteers Human Physiology Human-computer interface Humans Image classification Imagery, Psychotherapy - methods Imaging Implants Learning algorithms Machine Learning Male Man-machine interfaces Mental task performance Motor skill learning Original Article Radiology Signal Processing, Computer-Assisted Support Vector Machine Transfer learning Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SDZRcSpO-nG6KCr0loms9bO-phLBpCCSnFPZmJFkKgcS7Xe8e9g_0d0cjyzZlaa7yQ0Ij6fukGX0D8D3PpGRGc2omrqBi6hwteGqpnKBaGLNF6kKA7F12_VvczOU8Hrg1MayyWxPDQl0tDJ6R__BI49fb1MPZz-Ufilmj0LsaU2jswwFKl-HmK58PGy6PTaIPYfRMOl6aaa_OeajLKW6ekJVndPsvMO2wzR1PaQCgq3fwNjJHctGa-gj2bH0Mb26jb_w9_J3NfhGDZBijf0KHExXqIk0rvtEQVVd92UbjEUxDYqYesg4U1q5ITCTxQB5r4g25WJHHZ1S62FKEvIpozCpBn0MUpiWoN7FyyljSikJ_gPur2f3lNY1ZFqjhuVzTdFqgSI1zLMu1YLmUmXNTyaUWuca7CYapovI0kSmpXGEKD-rWEyU2lYZnFf8Io3pR289AhFY2rbiomMiEUazIUpdqJ335RHNmE0i7Hi5NVCDHRBhP5aCdjFYpvVXKYJVym8BZ_82y1d949e1xZ7gyzsWmHEZOAt_6x34WoWtE1XaxwXdQyAzJTwKfWoP31XHMHu-JcALn3QgYfv7_tpy83pYvcMjC6MPI3zGM1quNPfX8Zq2_hkH8Arcf9Ys priority: 102 providerName: ProQuest |
Title | EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system |
URI | https://link.springer.com/article/10.1007/s11517-020-02176-y https://www.ncbi.nlm.nih.gov/pubmed/32394192 https://www.proquest.com/docview/2414131222 https://www.proquest.com/docview/2401805129 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8OxBfxG-r5xLBNw1s89FmH1fp7qF4iNzB-lSSNJGDu65sdx_2H_DvNpOmXeRU8KWFNk1KZtL5pTPzG4A3ZSEls4ZTO_WKipn3VPHcUTlFtjDmVO5jgOx5cXYpPq7kKiWFdUO0--CSjF_qQ7JbME4lxe0O4uiC7o_gRIa9O-r1JZuP26xgkcQYuBjwc0qV-XMfv5ujWxjzln80mp3FA7if8CKZ9wJ-CHdc-wjufk4e8cfws6qWxCIExpifOM1Ex7FI11NudES3zXhtZ_DHS0dSfR6yjcDVbUgqH_GdXLUkiG-9IVc3yG-xp2joGmKwlgS9ibGXjiDLxMZr60hPBf0ELhbVxYczmmorUMtLuaX5TCE1jfesKI1gpZSF9zPJpRGlwYwEy7RqAjhkWmqvrAqm3AV4xGbS8qLhT-G4XbfuORBhtMsbLhomCmE1U0Xuc-NluD41nLkM8mGGa5t4x7H8xXV9YExGqdRBKnWUSr3P4O34zI-edeOfrU8HwdVpBXZ1QCbBPucB_mTwerwd1g46RHTr1jtsg_RlCHkyeNYLfByOY834AH8zeDdowKHzv7_Li_9r_hLusaiNGP97Csfbzc69CihnayZwVK7KcFSL5QRO5stvn6pwfl-df_k6iQr_C6bh-A8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEvqLwDBYwEJ7C68SPJHlCFYLdb-jgtUm9R7NioEs22m11V-wf6b_iPzDiPFarorVfHsS3P2PONPf4G4EOaaC2skdwOfMbV0HueydhxPSC2MOGy2IcA2ZNk8lP9ONWnG_CnewtDYZXdnhg26nJm6Yx8Fy0N7rcxmrO9i0tOWaPodrVLodGoxaFbXaHLVn85-I7y_SjEeDT9NuFtVgFuZaoXHL1sImXxXiSpUSLVOvF-qKU2KjUUi29FkZUIi0ShC5_ZDI2YQ2AghtrKpJTY7D24r6QcUgRhNt7v_Ts0haqPmETg3r7RaV7qoWVNOflq5AQkfPWvHbwBbm9czAZ7N96GRy1QZV8bzXoMG656Ag-O26v4p3A9Gu0zS9ibgo2CfFkR-mJ1w_VRs6Iq-7KloROfmrWJgdgiIGY3Z23eil_srGKoN7M5OzsnYo0VJwtbMkNJLPh5CPp0jOgt5r6wjjUc1M9gehfT_xw2q1nlXgJTpnBxKVUpVKJsIbIk9rHxGssHRgoXQdzNcG5bwnPKu_E7X1M1k1RylEoepJKvIvjU_3PR0H3cWnunE1zeLv06XytqBO_7z7ho6SamqNxsSXWIN42wVgQvGoH33UlKVo-4O4LPnQasG___WF7dPpZ38HAyPT7Kjw5ODl_DlgiaSEHHO7C5mC_dG4RWC_M2KDSD_I4X0F-gKi9q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG9SChgJTmB140fiPSCE6G5bChWHIvUWxY6NKtFsu9kV2j_Af-LfMeM8Vqiit16dpzxjzzf2-PsAXueZ1sJZyd0oGK7GIXAjU8_1iNjChDdpiAWyx9nBd_X5VJ9uwJ_-LAyVVfZzYpyoq5mjNfJdjDQ436YYznZDVxbxbW_64eKSk4IU7bT2chqtixz51S9M35r3h3to6zdCTCcnnw54pzDAncz1gmPGTQQtIYgst0rkWmchjLXUVuWW6vKdKE2FEEmUugzGGQxoHkGCGGsns0ria2_B7VyaEYknmOn-kOthWFRD9SSC-O68TntqD6Nszilvo4Qg46t_Y-IVoHtlkzbGvuk9uNuBVvax9bL7sOHrB7D1tduWfwi_J5N95giHU-FRtDUr47dY0_J-NKysq6FtaWn1p2GdSBBbRPTs56zTsPjBzmqGPjSbs7NzItlYcYq2FbMkaMHPYwGoZ0R1MQ-l86zlo34EJzfR_Y9hs57V_ikwZUufVlJVQmXKlcJkaUht0Ng-slL4BNK-hwvXkZ-TBsfPYk3bTFYp0CpFtEqxSuDt8MxFS_1x7d07veGKbhpoirXTJvBquIwDmHZlytrPlnQPcagR7krgSWvw4XOShOsRgyfwrveA9cv__y_b1__LS9jCoVN8OTw-egZ3RHREqj_egc3FfOmfI8pa2BfRnxkUNzx-_gLVXjOX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+classification+across+sessions+and+across+subjects+through+transfer+learning+in+motor+imagery-based+brain-machine+interface+system&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zheng%2C+Minmin&rft.au=Yang%2C+Banghua&rft.au=Xie%2C+Yunlong&rft.date=2020-07-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=58&rft.issue=7&rft.spage=1515&rft_id=info:doi/10.1007%2Fs11517-020-02176-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |