EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system

Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 58; no. 7; pp. 1515 - 1528
Main Authors Zheng, Minmin, Yang, Banghua, Xie, Yunlong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-020-02176-y

Cover

Loading…
Abstract Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different ( p  = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different ( p  = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract
AbstractList Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different ( p  = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different ( p  = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract
Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI).
Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract.Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract.
Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectrum of EEG data related to motor imagery, the shared features across sessions or across subjects, namely, the mean and variance of model parameters, are extracted. Then, select the data sets that were most relevant to the new data set according to Euclidean distance to update the shared features. Finally, utilize the shared features and subject/session-specific features jointly to generate a new model. We evaluated our algorithm by analyzing the motor imagery EEG data from 10 healthy participants and a public data set from BCI competition IV. The classification accuracy of the proposed transfer learning is higher than that of traditional machine learning algorithms. The results of the paired t test showed that the classification results of PSD and the transfer learning algorithm were significantly different (p = 2.0946e-9), and the classification results of CSP and the transfer learning algorithm were significantly different (p = 1.9122e-6). The test accuracy of data set 2a of BCI competition IV was 85.7% ± 5.4%, which was higher than that of related traditional machine learning algorithms. Preliminary results suggested that the proposed algorithm can be effectively applied to the classification of motor imagery EEG signals across sessions and across subjects and the performance is better than that of the traditional machine learning algorithms. It can be promising to be applied to the field of brain-computer interface (BCI). Graphical abstract.
Author Xie, Yunlong
Zheng, Minmin
Yang, Banghua
Author_xml – sequence: 1
  givenname: Minmin
  surname: Zheng
  fullname: Zheng, Minmin
  organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, School of Mechanical and Electrical Engineering, Putian University
– sequence: 2
  givenname: Banghua
  surname: Yang
  fullname: Yang, Banghua
  email: yangbanghua@126.com
  organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University
– sequence: 3
  givenname: Yunlong
  surname: Xie
  fullname: Xie, Yunlong
  organization: School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32394192$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu3CAQhlGVKtmkeYEeKqRecnHLYDD2sYq2aaVIveRuYQy7rGxIGXzwC_S5S3eTVMohBzTS8P0w8_-X5CzEYAn5COwLMKa-IoAEVTHOygHVVOs7sgEloGJCiDOyYSDKFUB7QS4RD6xQkotzclHzuhPQ8Q35s93eUTNpRO-80dnHQLVJEZGiLc0YkOowvvSW4WBNRpr3KS67Pc1JB3Q20cnqFHzYUR_oHHNM1M96Z9NaDRrtSIekfahmbfY-2AJlm5w2luKK2c4fyHunJ7TXT_WKPHzfPtz-qO5_3f28_XZfmVrJXEHXMlYL53ijBsGVlI1znazlINQArJWG63bslOJaatealgtuuWx4J03djPUVuTk9-5ji78Vi7mePxk6TDjYu2HPBoGUSeFfQz6_QQ1xSKMMVCgTUwDkv1KcnahlmO_aPqWyd1v7Z4ALwE3D0L1n3ggDr_6XYn1LsS4r9McV-LaL2lcj4fMym2O2nt6X1SYrln1D8_z_2G6q_1tiyOA
CitedBy_id crossref_primary_10_1007_s11517_022_02626_9
crossref_primary_10_3390_s21155105
crossref_primary_10_1016_j_smhl_2022_100339
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_3390_mi13060927
crossref_primary_10_1080_2326263X_2021_1943955
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1007_s00521_020_05323_6
crossref_primary_10_1109_TETCI_2024_3359097
crossref_primary_10_1109_TNSRE_2022_3191869
crossref_primary_10_1016_j_bspc_2021_102803
crossref_primary_10_1016_j_matt_2024_05_023
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_1177_09544119231187287
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_1007_s11517_021_02449_0
crossref_primary_10_1142_S0218001422500410
crossref_primary_10_3724_SP_J_1329_2023_06001
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1016_j_eswa_2021_116016
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_3390_math10091588
crossref_primary_10_1016_j_artmed_2021_102039
crossref_primary_10_1038_s41597_022_01647_1
crossref_primary_10_1063_5_0054912
crossref_primary_10_1007_s13042_022_01668_7
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_1016_j_bbrc_2021_07_064
crossref_primary_10_1016_j_clinph_2022_04_010
Cites_doi 10.1109/TKDE.2009.191
10.3969/j.issn.0258-8021.2013.05.019
10.1016/j.neunet.2009.06.003
10.1016/j.eij.2015.06.002
10.1109/10.64464
10.1016/S0378-3758(00)00115-4
10.1111/j.1469-8986.2006.00456.x
10.1016/j.eswa.2010.06.065
10.1016/S1388-2457(99)00141-8
10.1088/1741-2560/12/6/066009
10.1113/jphysiol.2006.125633
10.1023/a:1022353731579
10.1109/TBME.2005.851521
10.1016/j.eswa.2011.07.106
10.1016/j.eswa.2012.01.110
10.1016/S1388-2457(02)00057-3
10.1016/j.neucom.2014.09.078
10.1109/TBME.2010.2082539
10.1109/tnsre.2006.875555
10.1088/1741-2552/ab598f
10.1016/j.visres.2012.03.014
10.1007/BF01129656
10.1097/wco.0b013e328315ee2d
10.1016/S0167-8760(02)00031-4
10.1016/j.mayocp.2011.12.008
10.1088/1741-2560/4/2/R03
10.1053/apmr.2001.26621
10.1016/S1388-2457(98)00038-8
10.1109/TBME.2018.2799661
10.1016/j.bspc.2014.02.002
10.1186/s40537-016-0043-6
10.1007/BF01067978
10.3785/j.issn.1008-973X.2012.02.025
10.1109/MCI.2015.2501545
10.1023/A:1005553931564
10.1109/TBME.2019.2958641
10.1049/PBCE114E
10.1109/IEMBS.2009.5332383
10.1007/978-3-642-15561-1_16
10.1109/CVPR.2015.7299009
10.1109/CVPR.2011.5995702
10.1109/ICDM.2017.150
10.1109/ICIST.2015.7288989
10.1145/1102351.1102415
10.1109/ICCV.2011.6126344
10.1016/S1872-2075(07)60067-3
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2020
International Federation for Medical and Biological Engineering 2020.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2020
– notice: International Federation for Medical and Biological Engineering 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-020-02176-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ProQuest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1528
ExternalDocumentID 32394192
10_1007_s11517_020_02176_y
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976133
– fundername: National Key R&D Program of China
  grantid: 2018YFC1312900
– fundername: 111 Project
  grantid: D18003
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-1980034ff267b427556ff9535b47b1085c2a8d9772a5af8c8242e256295c36d3
IEDL.DBID U2A
ISSN 0140-0118
1741-0444
IngestDate Thu Jul 10 19:26:26 EDT 2025
Fri Jul 25 19:09:15 EDT 2025
Wed Feb 19 02:28:41 EST 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Fri Feb 21 02:31:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords BCI
Motor imagery
test
Transfer learning
Paired
Euclidean distance
Paired t test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1980034ff267b427556ff9535b47b1085c2a8d9772a5af8c8242e256295c36d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32394192
PQID 2414131222
PQPubID 54161
PageCount 14
ParticipantIDs proquest_miscellaneous_2401805129
proquest_journals_2414131222
pubmed_primary_32394192
crossref_primary_10_1007_s11517_020_02176_y
crossref_citationtrail_10_1007_s11517_020_02176_y
springer_journals_10_1007_s11517_020_02176_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Böttger, Herrmann, Cramon (CR22) 2002; 45
Chen, Wang (CR7) 2018; 36
CR39
CR36
Pan, Yang (CR47) 2010; 22
CR31
Buttfield, Ferrez, Millan (CR41) 2006; 14
Keirn, Aunon (CR40) 1990; 37
Akin, Kiymik (CR32) 2000; 24
Subasi, Ismail Gursoy (CR43) 2010; 37
Li, Xiao, Chen (CR33) 2009; 7
Pfurtscheller, Silva (CR9) 1999; 110
Cho, Ahn, Kim, Chan Jun (CR29) 2015; 12
Abdulkader, Atia, Mostafa (CR11) 2015; 16
Kübler, Neumann, Kaiser, Kotchoubey, Hinterberger, Birbaumer (CR3) 2001; 82
CR48
Müller-Gerking, Pfurtscheller, Flyvbjerg (CR35) 1999; 110
CR45
Shimodaira (CR55) 2000; 90
Koles, Lazar, Zhou (CR34) 1990; 2
CR44
Kuba, Kremlacek, Langrova, Kubova, Szanyi, Vit (CR24) 2012; 62
Gao, Zhang, Gao, Yang (CR42) 2006; 30
Wolpaw, Birbaumer, McFarland (CR1) 2002; 113
Birbaumer, Murguialday, Cohen (CR5) 2008; 21
Shi, Shen, Wang (CR13) 2012; 46
Bashashati, Fatourechi, Ward, Birch (CR38) 2007; 4
Ben-David, Blitzer, Crammer, Pereira (CR49) 2007; 1
CR19
Xu, Xiao, Wang (CR8) 2018; 65
Jayaram, Alamgir, Altun, Schölkopf, Grosse-Wentrup (CR30) 2015; 11
Fuchs, Birbaumer, Lutzenberger (CR6) 2003; 28
CR54
CR53
CR51
Zhao, Guo, Geng (CR14) 2013; 92
Hsu (CR12) 2012; 39
Huang, Smola, Gretton, Borgwardt, Scholkopf (CR52) 2006; 2
Hortal, Planelles, Costa (CR17) 2015; 151
Pei, Yang (CR18) 2018; 37
Bulayeva, Pavlova, Guseynov (CR23) 1993; 23
Lemm, Blankertz, Curio, Muller (CR37) 2005; 52
Weiss, Khoshgoftaar, Wang (CR46) 2016; 3
Birbaumer (CR4) 2006; 43
Blasco, Iáñez, Ubeda (CR15) 2012; 39
Shih, Krusienski, Wolpaw (CR2) 2012; 87
CR26
CR25
Wang, Xu, Wang (CR20) 2020; 17
Chen, Fang, Zheng (CR16) 2014; 11
CR21
Birbaumer, Cohen (CR10) 2007; 579
Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (CR28) 2009; 22
Lotte, Guan (CR27) 2011; 58
Bergamo, Torresani (CR50) 2010; 2
A Buttfield (2176_CR41) 2006; 14
A Bashashati (2176_CR38) 2007; 4
S Gao (2176_CR42) 2006; 30
N Birbaumer (2176_CR5) 2008; 21
SJ Pan (2176_CR47) 2010; 22
N Birbaumer (2176_CR4) 2006; 43
H Shimodaira (2176_CR55) 2000; 90
ZJ Koles (2176_CR34) 1990; 2
2176_CR48
2176_CR44
A Bergamo (2176_CR50) 2010; 2
2176_CR45
2176_CR31
J Müller-Gerking (2176_CR35) 1999; 110
E Hortal (2176_CR17) 2015; 151
SN Abdulkader (2176_CR11) 2015; 16
D Böttger (2176_CR22) 2002; 45
H Cho (2176_CR29) 2015; 12
V Jayaram (2176_CR30) 2015; 11
A Subasi (2176_CR43) 2010; 37
A Kübler (2176_CR3) 2001; 82
M Xu (2176_CR8) 2018; 65
J Huang (2176_CR52) 2006; 2
F Lotte (2176_CR27) 2011; 58
K Weiss (2176_CR46) 2016; 3
2176_CR39
G Pfurtscheller (2176_CR9) 1999; 110
2176_CR36
2176_CR21
M Akin (2176_CR32) 2000; 24
S Ben-David (2176_CR49) 2007; 1
S Fazli (2176_CR28) 2009; 22
KB Bulayeva (2176_CR23) 1993; 23
M Kuba (2176_CR24) 2012; 62
S Lemm (2176_CR37) 2005; 52
2176_CR26
WY Hsu (2176_CR12) 2012; 39
YF Pei (2176_CR18) 2018; 37
ZA Keirn (2176_CR40) 1990; 37
M Chen (2176_CR16) 2014; 11
2176_CR25
2176_CR53
2176_CR54
L Li (2176_CR33) 2009; 7
2176_CR51
JR Wolpaw (2176_CR1) 2002; 113
XG Chen (2176_CR7) 2018; 36
T Fuchs (2176_CR6) 2003; 28
L Zhao (2176_CR14) 2013; 92
N Birbaumer (2176_CR10) 2007; 579
2176_CR19
JLS Blasco (2176_CR15) 2012; 39
K Wang (2176_CR20) 2020; 17
JJ Shih (2176_CR2) 2012; 87
JH Shi (2176_CR13) 2012; 46
References_xml – ident: CR45
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  ident: CR47
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 36
  start-page: 22
  issue: 12
  year: 2018
  end-page: 30
  ident: CR7
  article-title: Research progress of non - invasive brain machine interface based on EEG
  publication-title: Sci Technol Rev
– ident: CR39
– ident: CR51
– volume: 92
  start-page: 65
  issue: 92
  year: 2013
  end-page: 81
  ident: CR14
  article-title: Research on multi-class motor imagery eeg signal processing
  publication-title: Chin J Biomed Eng
  doi: 10.3969/j.issn.0258-8021.2013.05.019
– volume: 22
  start-page: 1305
  issue: 9
  year: 2009
  end-page: 1312
  ident: CR28
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.06.003
– volume: 16
  start-page: 213
  issue: 2
  year: 2015
  end-page: 230
  ident: CR11
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egypt Inf J
  doi: 10.1016/j.eij.2015.06.002
– volume: 37
  start-page: 1209
  issue: 12
  year: 1990
  end-page: 1214
  ident: CR40
  article-title: A new mode of communication between man and his surroundings
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.64464
– volume: 90
  start-page: 227
  issue: 2
  year: 2000
  end-page: 244
  ident: CR55
  article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function
  publication-title: J Statist Plann Inference
  doi: 10.1016/S0378-3758(00)00115-4
– volume: 43
  start-page: 517
  issue: 6
  year: 2006
  end-page: 532
  ident: CR4
  article-title: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control
  publication-title: Psycho-physiology
  doi: 10.1111/j.1469-8986.2006.00456.x
– volume: 37
  start-page: 8659
  issue: 12
  year: 2010
  end-page: 8666
  ident: CR43
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2010.06.065
– ident: CR54
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  end-page: 1857
  ident: CR9
  article-title: Event-related eeg/meg synchronization and desynchronization
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– ident: CR25
– volume: 2
  start-page: 181
  year: 2010
  end-page: 189
  ident: CR50
  article-title: Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach
  publication-title: Proc NIPS
– ident: CR21
– ident: CR19
– volume: 12
  issue: 6
  year: 2015
  ident: CR29
  article-title: Increasing session-to-session transfer in a brain–computer interface with on-site background noise acquisition
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/6/066009
– volume: 579
  start-page: 621
  issue: 3
  year: 2007
  end-page: 636
  ident: CR10
  article-title: Brain-computer interfaces: communication and restoration of movement in paralysis
  publication-title: J Physiol (Oxford)
  doi: 10.1113/jphysiol.2006.125633
– volume: 28
  start-page: 1
  issue: 1
  year: 2003
  end-page: 12
  ident: CR6
  article-title: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate
  publication-title: Appl Psychophysiol Biofeedback
  doi: 10.1023/a:1022353731579
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  end-page: 1548
  ident: CR37
  article-title: Spatio-spectral filters for improving the classification of single trial eeg
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.851521
– volume: 39
  start-page: 1055
  issue: 1
  year: 2012
  end-page: 1061
  ident: CR12
  article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery eeg classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.106
– volume: 39
  start-page: 7908
  issue: 9
  year: 2012
  end-page: 7918
  ident: CR15
  article-title: Visual evoked potential-based brain-machine interface applications to assist disabled people
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.110
– ident: CR36
– volume: 113
  start-page: 67
  issue: 7
  year: 2002
  end-page: 91
  ident: CR1
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 151
  start-page: 116
  year: 2015
  end-page: 121
  ident: CR17
  article-title: SVM-based brain–machine interface for controlling a robot arm through four mental tasks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.078
– ident: CR26
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  end-page: 362
  ident: CR27
  article-title: Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2082539
– volume: 14
  start-page: 164
  issue: 2
  year: 2006
  end-page: 168
  ident: CR41
  article-title: Towards a robust bci: error potentials and online learning
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/tnsre.2006.875555
– volume: 7
  start-page: 175
  issue: 2
  year: 2009
  end-page: 179
  ident: CR33
  article-title: Differences of EEG between eyes-open and eyes-closed states based on autoregressive method
  publication-title: J Electron Sci Technol China
– volume: 17
  start-page: 016033
  year: 2020
  ident: CR20
  article-title: Enhance decoding of pre-movement EEG patterns for brain–computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab598f
– volume: 62
  start-page: 9
  issue: none
  year: 2012
  end-page: 16
  ident: CR24
  article-title: Aging effect in pattern, motion and cognitive visual evoked potentials
  publication-title: Vis Res
  doi: 10.1016/j.visres.2012.03.014
– ident: CR53
– volume: 2
  start-page: 275
  issue: 4
  year: 1990
  end-page: 284
  ident: CR34
  article-title: Spatial patterns underlying population differences in the background eeg
  publication-title: Brain Topogr
  doi: 10.1007/BF01129656
– volume: 21
  start-page: 634
  issue: 6
  year: 2008
  end-page: 638
  ident: CR5
  article-title: Brain-computer interface in paralysis
  publication-title: Curr Opin Neurol
  doi: 10.1097/wco.0b013e328315ee2d
– volume: 37
  start-page: 208
  issue: 02
  year: 2018
  end-page: 214
  ident: CR18
  article-title: Research progress of EEG algorithm of motor imagery
  publication-title: Beijing Biomed Eng
– volume: 45
  start-page: 245
  issue: 3
  year: 2002
  end-page: 251
  ident: CR22
  article-title: Amplitude differences of evoked alpha and gamma oscillations in two different age groups
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(02)00031-4
– volume: 87
  start-page: 268
  issue: 3
  year: 2012
  end-page: 279
  ident: CR2
  article-title: Brain-computer interfaces in medicine
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2011.12.008
– volume: 4
  start-page: R32
  issue: 2
  year: 2007
  end-page: R57
  ident: CR38
  article-title: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/4/2/R03
– volume: 82
  start-page: 1533
  issue: 11
  year: 2001
  end-page: 1539
  ident: CR3
  article-title: Brain-computer communication: self- regulation of slow cortical potentials for verbal communication
  publication-title: Arch Phys Med Rehabil
  doi: 10.1053/apmr.2001.26621
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  end-page: 798
  ident: CR35
  article-title: Designing optimal spatial filters for single-trial eeg classification in a movement task
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– ident: CR44
– volume: 65
  start-page: 1166
  issue: 5
  year: 2018
  end-page: 1175
  ident: CR8
  article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2799661
– ident: CR48
– volume: 11
  start-page: 10
  issue: 1
  year: 2014
  end-page: 16
  ident: CR16
  article-title: Phase space reconstruction for improving the classification of single trial EEG
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.02.002
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: CR46
  article-title: A survey of transfer learning
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 23
  start-page: 443
  issue: 5
  year: 1993
  end-page: 447
  ident: CR23
  article-title: Visual evoked potentials: phenotypic and genotypic variability
  publication-title: Behav Genet
  doi: 10.1007/BF01067978
– ident: CR31
– volume: 1
  start-page: 137
  issue: 2
  year: 2007
  end-page: 144
  ident: CR49
  article-title: Analysis of representations for domain adaptation
  publication-title: Proc NIPS
– volume: 2
  start-page: 601
  year: 2006
  end-page: 608
  ident: CR52
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: In Proc NIPS
– volume: 46
  start-page: 338
  issue: 2
  year: 2012
  end-page: 344
  ident: CR13
  article-title: Feature extraction and classification of four-class motor imagery eeg data
  publication-title: J Zhejiang Univ (Eng Sci)
  doi: 10.3785/j.issn.1008-973X.2012.02.025
– volume: 11
  start-page: 20
  issue: 1
  year: 2015
  end-page: 31
  ident: CR30
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2015.2501545
– volume: 24
  start-page: 247
  issue: 4
  year: 2000
  end-page: 256
  ident: CR32
  article-title: Application of periodogram and ar spectral analysis to eeg signals
  publication-title: J Med Syst
  doi: 10.1023/A:1005553931564
– volume: 30
  start-page: 79
  issue: 2
  year: 2006
  ident: CR42
  article-title: Neural engineering and neural prostheses
  publication-title: Chin J Med Instrum
– ident: 2176_CR19
  doi: 10.1109/TBME.2019.2958641
– ident: 2176_CR21
  doi: 10.1049/PBCE114E
– ident: 2176_CR36
  doi: 10.1109/IEMBS.2009.5332383
– volume: 30
  start-page: 79
  issue: 2
  year: 2006
  ident: 2176_CR42
  publication-title: Chin J Med Instrum
– ident: 2176_CR54
  doi: 10.1007/978-3-642-15561-1_16
– volume: 1
  start-page: 137
  issue: 2
  year: 2007
  ident: 2176_CR49
  publication-title: Proc NIPS
– volume: 2
  start-page: 601
  year: 2006
  ident: 2176_CR52
  publication-title: In Proc NIPS
– volume: 62
  start-page: 9
  issue: none
  year: 2012
  ident: 2176_CR24
  publication-title: Vis Res
  doi: 10.1016/j.visres.2012.03.014
– volume: 46
  start-page: 338
  issue: 2
  year: 2012
  ident: 2176_CR13
  publication-title: J Zhejiang Univ (Eng Sci)
  doi: 10.3785/j.issn.1008-973X.2012.02.025
– volume: 7
  start-page: 175
  issue: 2
  year: 2009
  ident: 2176_CR33
  publication-title: J Electron Sci Technol China
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  ident: 2176_CR37
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.851521
– volume: 65
  start-page: 1166
  issue: 5
  year: 2018
  ident: 2176_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2799661
– ident: 2176_CR26
  doi: 10.1109/CVPR.2015.7299009
– ident: 2176_CR53
  doi: 10.1109/CVPR.2011.5995702
– volume: 113
  start-page: 67
  issue: 7
  year: 2002
  ident: 2176_CR1
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 43
  start-page: 517
  issue: 6
  year: 2006
  ident: 2176_CR4
  publication-title: Psycho-physiology
  doi: 10.1111/j.1469-8986.2006.00456.x
– volume: 151
  start-page: 116
  year: 2015
  ident: 2176_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.078
– volume: 37
  start-page: 208
  issue: 02
  year: 2018
  ident: 2176_CR18
  publication-title: Beijing Biomed Eng
– volume: 11
  start-page: 10
  issue: 1
  year: 2014
  ident: 2176_CR16
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.02.002
– volume: 4
  start-page: R32
  issue: 2
  year: 2007
  ident: 2176_CR38
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/4/2/R03
– volume: 23
  start-page: 443
  issue: 5
  year: 1993
  ident: 2176_CR23
  publication-title: Behav Genet
  doi: 10.1007/BF01067978
– volume: 90
  start-page: 227
  issue: 2
  year: 2000
  ident: 2176_CR55
  publication-title: J Statist Plann Inference
  doi: 10.1016/S0378-3758(00)00115-4
– ident: 2176_CR45
  doi: 10.1109/ICDM.2017.150
– volume: 28
  start-page: 1
  issue: 1
  year: 2003
  ident: 2176_CR6
  publication-title: Appl Psychophysiol Biofeedback
  doi: 10.1023/a:1022353731579
– volume: 39
  start-page: 1055
  issue: 1
  year: 2012
  ident: 2176_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.106
– volume: 11
  start-page: 20
  issue: 1
  year: 2015
  ident: 2176_CR30
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2015.2501545
– ident: 2176_CR31
– volume: 2
  start-page: 181
  year: 2010
  ident: 2176_CR50
  publication-title: Proc NIPS
– volume: 92
  start-page: 65
  issue: 92
  year: 2013
  ident: 2176_CR14
  publication-title: Chin J Biomed Eng
  doi: 10.3969/j.issn.0258-8021.2013.05.019
– volume: 39
  start-page: 7908
  issue: 9
  year: 2012
  ident: 2176_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.110
– volume: 37
  start-page: 8659
  issue: 12
  year: 2010
  ident: 2176_CR43
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2010.06.065
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 2176_CR46
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 21
  start-page: 634
  issue: 6
  year: 2008
  ident: 2176_CR5
  publication-title: Curr Opin Neurol
  doi: 10.1097/wco.0b013e328315ee2d
– ident: 2176_CR25
  doi: 10.1109/ICIST.2015.7288989
– volume: 82
  start-page: 1533
  issue: 11
  year: 2001
  ident: 2176_CR3
  publication-title: Arch Phys Med Rehabil
  doi: 10.1053/apmr.2001.26621
– volume: 2
  start-page: 275
  issue: 4
  year: 1990
  ident: 2176_CR34
  publication-title: Brain Topogr
  doi: 10.1007/BF01129656
– volume: 87
  start-page: 268
  issue: 3
  year: 2012
  ident: 2176_CR2
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2011.12.008
– volume: 36
  start-page: 22
  issue: 12
  year: 2018
  ident: 2176_CR7
  publication-title: Sci Technol Rev
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  ident: 2176_CR35
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– ident: 2176_CR48
  doi: 10.1145/1102351.1102415
– volume: 45
  start-page: 245
  issue: 3
  year: 2002
  ident: 2176_CR22
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(02)00031-4
– volume: 579
  start-page: 621
  issue: 3
  year: 2007
  ident: 2176_CR10
  publication-title: J Physiol (Oxford)
  doi: 10.1113/jphysiol.2006.125633
– volume: 17
  start-page: 016033
  year: 2020
  ident: 2176_CR20
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab598f
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 2176_CR47
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 2176_CR44
– ident: 2176_CR51
  doi: 10.1109/ICCV.2011.6126344
– volume: 14
  start-page: 164
  issue: 2
  year: 2006
  ident: 2176_CR41
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/tnsre.2006.875555
– volume: 22
  start-page: 1305
  issue: 9
  year: 2009
  ident: 2176_CR28
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.06.003
– volume: 37
  start-page: 1209
  issue: 12
  year: 1990
  ident: 2176_CR40
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.64464
– volume: 16
  start-page: 213
  issue: 2
  year: 2015
  ident: 2176_CR11
  publication-title: Egypt Inf J
  doi: 10.1016/j.eij.2015.06.002
– volume: 24
  start-page: 247
  issue: 4
  year: 2000
  ident: 2176_CR32
  publication-title: J Med Syst
  doi: 10.1023/A:1005553931564
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 2176_CR27
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2082539
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 2176_CR9
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 12
  issue: 6
  year: 2015
  ident: 2176_CR29
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/6/066009
– ident: 2176_CR39
  doi: 10.1016/S1872-2075(07)60067-3
SSID ssj0021524
Score 2.4176729
Snippet Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1515
SubjectTerms Accuracy
Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Brain-Computer Interfaces
Classification
Competition
Computer Applications
Datasets
EEG
Electroencephalography
Electroencephalography - instrumentation
Electroencephalography - methods
Euclidean geometry
Female
Hand
Healthy Volunteers
Human Physiology
Human-computer interface
Humans
Image classification
Imagery, Psychotherapy - methods
Imaging
Implants
Learning algorithms
Machine Learning
Male
Man-machine interfaces
Mental task performance
Motor skill learning
Original Article
Radiology
Signal Processing, Computer-Assisted
Support Vector Machine
Transfer learning
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SDZRcSpO-nG6KCr0loms9bO-phLBpCCSnFPZmJFkKgcS7Xe8e9g_0d0cjyzZlaa7yQ0Ij6fukGX0D8D3PpGRGc2omrqBi6hwteGqpnKBaGLNF6kKA7F12_VvczOU8Hrg1MayyWxPDQl0tDJ6R__BI49fb1MPZz-Ufilmj0LsaU2jswwFKl-HmK58PGy6PTaIPYfRMOl6aaa_OeajLKW6ekJVndPsvMO2wzR1PaQCgq3fwNjJHctGa-gj2bH0Mb26jb_w9_J3NfhGDZBijf0KHExXqIk0rvtEQVVd92UbjEUxDYqYesg4U1q5ITCTxQB5r4g25WJHHZ1S62FKEvIpozCpBn0MUpiWoN7FyyljSikJ_gPur2f3lNY1ZFqjhuVzTdFqgSI1zLMu1YLmUmXNTyaUWuca7CYapovI0kSmpXGEKD-rWEyU2lYZnFf8Io3pR289AhFY2rbiomMiEUazIUpdqJ335RHNmE0i7Hi5NVCDHRBhP5aCdjFYpvVXKYJVym8BZ_82y1d949e1xZ7gyzsWmHEZOAt_6x34WoWtE1XaxwXdQyAzJTwKfWoP31XHMHu-JcALn3QgYfv7_tpy83pYvcMjC6MPI3zGM1quNPfX8Zq2_hkH8Arcf9Ys
  priority: 102
  providerName: ProQuest
Title EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
URI https://link.springer.com/article/10.1007/s11517-020-02176-y
https://www.ncbi.nlm.nih.gov/pubmed/32394192
https://www.proquest.com/docview/2414131222
https://www.proquest.com/docview/2401805129
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8OxBfxG-r5xLBNw1s89FmH1fp7qF4iNzB-lSSNJGDu65sdx_2H_DvNpOmXeRU8KWFNk1KZtL5pTPzG4A3ZSEls4ZTO_WKipn3VPHcUTlFtjDmVO5jgOx5cXYpPq7kKiWFdUO0--CSjF_qQ7JbME4lxe0O4uiC7o_gRIa9O-r1JZuP26xgkcQYuBjwc0qV-XMfv5ujWxjzln80mp3FA7if8CKZ9wJ-CHdc-wjufk4e8cfws6qWxCIExpifOM1Ex7FI11NudES3zXhtZ_DHS0dSfR6yjcDVbUgqH_GdXLUkiG-9IVc3yG-xp2joGmKwlgS9ibGXjiDLxMZr60hPBf0ELhbVxYczmmorUMtLuaX5TCE1jfesKI1gpZSF9zPJpRGlwYwEy7RqAjhkWmqvrAqm3AV4xGbS8qLhT-G4XbfuORBhtMsbLhomCmE1U0Xuc-NluD41nLkM8mGGa5t4x7H8xXV9YExGqdRBKnWUSr3P4O34zI-edeOfrU8HwdVpBXZ1QCbBPucB_mTwerwd1g46RHTr1jtsg_RlCHkyeNYLfByOY834AH8zeDdowKHzv7_Li_9r_hLusaiNGP97Csfbzc69CihnayZwVK7KcFSL5QRO5stvn6pwfl-df_k6iQr_C6bh-A8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEvqLwDBYwEJ7C68SPJHlCFYLdb-jgtUm9R7NioEs22m11V-wf6b_iPzDiPFarorVfHsS3P2PONPf4G4EOaaC2skdwOfMbV0HueydhxPSC2MOGy2IcA2ZNk8lP9ONWnG_CnewtDYZXdnhg26nJm6Yx8Fy0N7rcxmrO9i0tOWaPodrVLodGoxaFbXaHLVn85-I7y_SjEeDT9NuFtVgFuZaoXHL1sImXxXiSpUSLVOvF-qKU2KjUUi29FkZUIi0ShC5_ZDI2YQ2AghtrKpJTY7D24r6QcUgRhNt7v_Ts0haqPmETg3r7RaV7qoWVNOflq5AQkfPWvHbwBbm9czAZ7N96GRy1QZV8bzXoMG656Ag-O26v4p3A9Gu0zS9ibgo2CfFkR-mJ1w_VRs6Iq-7KloROfmrWJgdgiIGY3Z23eil_srGKoN7M5OzsnYo0VJwtbMkNJLPh5CPp0jOgt5r6wjjUc1M9gehfT_xw2q1nlXgJTpnBxKVUpVKJsIbIk9rHxGssHRgoXQdzNcG5bwnPKu_E7X1M1k1RylEoepJKvIvjU_3PR0H3cWnunE1zeLv06XytqBO_7z7ho6SamqNxsSXWIN42wVgQvGoH33UlKVo-4O4LPnQasG___WF7dPpZ38HAyPT7Kjw5ODl_DlgiaSEHHO7C5mC_dG4RWC_M2KDSD_I4X0F-gKi9q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG9SChgJTmB140fiPSCE6G5bChWHIvUWxY6NKtFsu9kV2j_Af-LfMeM8Vqiit16dpzxjzzf2-PsAXueZ1sJZyd0oGK7GIXAjU8_1iNjChDdpiAWyx9nBd_X5VJ9uwJ_-LAyVVfZzYpyoq5mjNfJdjDQ436YYznZDVxbxbW_64eKSk4IU7bT2chqtixz51S9M35r3h3to6zdCTCcnnw54pzDAncz1gmPGTQQtIYgst0rkWmchjLXUVuWW6vKdKE2FEEmUugzGGQxoHkGCGGsns0ria2_B7VyaEYknmOn-kOthWFRD9SSC-O68TntqD6Nszilvo4Qg46t_Y-IVoHtlkzbGvuk9uNuBVvax9bL7sOHrB7D1tduWfwi_J5N95giHU-FRtDUr47dY0_J-NKysq6FtaWn1p2GdSBBbRPTs56zTsPjBzmqGPjSbs7NzItlYcYq2FbMkaMHPYwGoZ0R1MQ-l86zlo34EJzfR_Y9hs57V_ikwZUufVlJVQmXKlcJkaUht0Ng-slL4BNK-hwvXkZ-TBsfPYk3bTFYp0CpFtEqxSuDt8MxFS_1x7d07veGKbhpoirXTJvBquIwDmHZlytrPlnQPcagR7krgSWvw4XOShOsRgyfwrveA9cv__y_b1__LS9jCoVN8OTw-egZ3RHREqj_egc3FfOmfI8pa2BfRnxkUNzx-_gLVXjOX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+classification+across+sessions+and+across+subjects+through+transfer+learning+in+motor+imagery-based+brain-machine+interface+system&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zheng%2C+Minmin&rft.au=Yang%2C+Banghua&rft.au=Xie%2C+Yunlong&rft.date=2020-07-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=58&rft.issue=7&rft.spage=1515&rft_id=info:doi/10.1007%2Fs11517-020-02176-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon