A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties
This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory...
Saved in:
Published in | Annals of biomedical engineering Vol. 49; no. 9; pp. 2311 - 2322 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below
3
.
38
∘
for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched
in vivo
literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations. |
---|---|
AbstractList | This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below
3
.
38
∘
for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched
in vivo
literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations. This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below 3.38∘ for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations. This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below [Formula: see text] for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations. This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below [Formula: see text] for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations.This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical properties of the intervertebral joints. The approach enforces dynamic consistency in the entire skeletal system over the entire time-trajectory while personalizing spinal stiffness. 3D reflective markers mounted on ten vertebrae during spine motions were measured in ten healthy volunteers. Biplanar X-rays were taken during neutral stance of the subjects wearing the markers. Calculated spine kinematics were compared to those calculated using inverse kinematics (IK) and IK with imposed generic kinematic constraints. Calculated spine kinematics compared well with standing X-rays, with average root mean square differences of the vertebral body center positions below 10.1 mm and below [Formula: see text] for joint orientation angles. For flexion/extension and lateral bending, the lumbar rotation distribution patterns, as well as the ranges of rotations matched in vivo literature data. The approach outperforms state-of-art IK and IK with constraints methods. Calculated ratios reflect reduced spinal stiffness in low-resistance zone and increased stiffness in high-resistance zone. The patterns of calibrated stiffness were consistent with previously reported experimentally determined patterns. This approach will further our insight into spinal mechanics by increasing the physiological representativeness of spinal motion simulations. |
Author | Scheys, Lennart Wang, Wei Falisse, Antoine Jonkers, Ilse Wang, Dongmei Overbergh, Thomas Moke, Lieven Severijns, Pieter De Groote, Friedl |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-1227-6202 surname: Wang fullname: Wang, Wei organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Department of Movement Sciences, KU Leuven, The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences – sequence: 2 givenname: Dongmei surname: Wang fullname: Wang, Dongmei email: dmwang@sjtu.edu.cn organization: School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Antoine surname: Falisse fullname: Falisse, Antoine organization: Department of Movement Sciences, KU Leuven – sequence: 4 givenname: Pieter surname: Severijns fullname: Severijns, Pieter organization: Department of Development and Regeneration, Institute for Orthopaedic Research and Training, KU Leuven – sequence: 5 givenname: Thomas surname: Overbergh fullname: Overbergh, Thomas organization: Department of Development and Regeneration, Institute for Orthopaedic Research and Training, KU Leuven – sequence: 6 givenname: Lieven surname: Moke fullname: Moke, Lieven organization: Department of Development and Regeneration, Institute for Orthopaedic Research and Training, KU Leuven – sequence: 7 givenname: Lennart surname: Scheys fullname: Scheys, Lennart organization: Department of Development and Regeneration, Institute for Orthopaedic Research and Training, KU Leuven – sequence: 8 givenname: Friedl surname: De Groote fullname: De Groote, Friedl organization: Department of Movement Sciences, KU Leuven – sequence: 9 givenname: Ilse surname: Jonkers fullname: Jonkers, Ilse organization: Department of Movement Sciences, KU Leuven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33851322$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLcLf4ADssSFS8AfSWwfV8tHK4qKtCCOluOMu14ldrATpPLrcbutkHroYTyS9byvZuY9QychBkDoNSXvKSHiQ6ak5qoijJYSoq74M7SijeCVamV7glaEKFK1qq1P0VnOB0Iolbx5gU45lw3ljK3QssEfb4IZvcVX0-xH_9fMPga8maYUjd1jFxPexeGPD9d4N_kA-Gt5xkLZjH_t_QB4awbfpfJziyzdAexc7Saw3hXXb2D3JnhrBvw9xQnS7CG_RM-dGTK8uu9r9PPzpx_b8-ry6svFdnNZWS6auaKiAUcFldZK0de0bwkYxbmxrKctU1IK2xnHuw5AMspNzawzTPZOCcdUx9fo3dG3LPN7gTzr0WcLw2ACxCVr1lAmmBSCFvTtI_QQlxTKdIUStWKqIaRQb-6ppRuh11Pyo0k3-uGgBZBHwKaYcwKnrZ_vTjon4wdNib7NTh-z0yU7fZddcVgj9kj64P6kiB9FucDhGtL_sZ9Q_QPJY6wM |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1372088 crossref_primary_10_1109_JBHI_2024_3419591 crossref_primary_10_1016_j_jbiomech_2024_112302 crossref_primary_10_1007_s10409_022_22140_x crossref_primary_10_1016_j_medengphy_2022_103916 crossref_primary_10_3389_fbioe_2023_1209472 crossref_primary_10_3389_fbioe_2024_1304334 crossref_primary_10_1016_j_mechmachtheory_2024_105848 crossref_primary_10_3390_app12083954 crossref_primary_10_1109_TBME_2021_3133583 crossref_primary_10_3389_fbioe_2024_1386874 |
Cites_doi | 10.1007/s10439-016-1591-9 10.1007/s10237-011-0290-6 10.1007/s00586-010-1635-z 10.1097/00007632-200109010-00008 10.1007/s00586-014-3195-0 10.1186/1471-2474-12-38 10.1098/rsif.2019.0402 10.1371/journal.pone.0095426 10.1371/journal.pone.0177823 10.1007/s00586-009-0936-6 10.1177/0309364615579319 10.1016/j.gaitpost.2008.05.005 10.1007/s10439-019-02252-x 10.1016/j.jbiomech.2020.109946 10.1007/BF02351011 10.1016/j.jbiomech.2017.09.024 10.1177/0954411919872400 10.1007/s00586-017-5155-y 10.1097/00007632-198903000-00014 10.1016/j.jbiomech.2019.109437 10.1016/j.spinee.2020.02.004 10.1115/1.4030408 10.1016/j.jbiomech.2018.12.043 10.1097/00007632-199406000-00011 10.1109/TBME.2016.2630009 10.1115/1.4029258 10.1097/00007632-199108000-00014 10.1016/j.jbiomech.2015.10.010 10.1097/00007632-198503000-00014 10.1007/s11517-008-0318-y |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2021. corrected publication 2021 2021. Biomedical Engineering Society. Biomedical Engineering Society 2021. corrected publication 2021. |
Copyright_xml | – notice: Biomedical Engineering Society 2021. corrected publication 2021 – notice: 2021. Biomedical Engineering Society. – notice: Biomedical Engineering Society 2021. corrected publication 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1007/s10439-021-02774-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 2322 |
ExternalDocumentID | 33851322 10_1007_s10439_021_02774_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201706230047 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: KU Leuven Internal Funds grantid: C24/17/095 – ASESP-P – fundername: internal UZ Leuven Academic research funding – fundername: Research Foundation Flanders grantid: 1S35416N; SB/1S56017N – fundername: National Key Research and Development Program of China grantid: 2019YFB1312501 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: Medtronic educational chair for spinal deformity research – fundername: Research Foundation Flanders grantid: SB/1S56017N – fundername: National Key Research and Development Program of China grantid: 2019YFB1312501 – fundername: China Scholarship Council grantid: 201706230047 – fundername: Research Foundation Flanders grantid: 1S35416N – fundername: KU Leuven Internal Funds grantid: C24/17/095 - ASESP-P – fundername: National Key Research and Development Program of China grantid: SQ2019YFB130349-01 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 |
ID | FETCH-LOGICAL-c375t-175ef1718cc87d41d60ea933ac2d1629887cbaf3bbee8213a42cfa28df97f29b3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Tue Aug 05 11:21:09 EDT 2025 Fri Jul 25 19:07:12 EDT 2025 Thu Apr 03 07:05:06 EDT 2025 Tue Jul 01 00:38:19 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 21 02:48:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Kinematics redundancy Parameter estimation Force-dependent optimization Spine Spinal stiffness |
Language | English |
License | 2021. Biomedical Engineering Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-175ef1718cc87d41d60ea933ac2d1629887cbaf3bbee8213a42cfa28df97f29b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1227-6202 |
PMID | 33851322 |
PQID | 2574929500 |
PQPubID | 54090 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2512728771 proquest_journals_2574929500 pubmed_primary_33851322 crossref_citationtrail_10_1007_s10439_021_02774_3 crossref_primary_10_1007_s10439_021_02774_3 springer_journals_10_1007_s10439_021_02774_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 2021-Sep 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Christophy, Faruk Senan, Lotz, O’Reilly (CR3) 2012; 11 Shojaei, Arjmand, Meakin, Bazrgari (CR23) 2018; 70 Falisse, Rossom, Jonkers, De Groote (CR7) 2017; 64 Overbergh, Severijns, Beaucage-Gauvreau, Jonkers, Moke, Scheys (CR18) 2020; 110 Ma, Yang, Griffith, Leung, Lee (CR13) 2008; 46 Ignasiak, Dendorfer, Ferguson (CR10) 2016; 49 Petit, Aubin, Labelle (CR20) 2004; 42 Widmer, Fornaciari, Senteler, Roth, Snedeker, Farshad (CR28) 2019; 47 Eskandari, Arjmand, Shirazi-Adl, Farahmand (CR6) 2019; 84 Hayes, Howard, Gruel, Kopta (CR9) 1989; 14 Wilke, Herkommer, Werner, Liebsch (CR29) 2017; 12 Zemp, List, Gulay, Elsig, Naxera, Taylor, Lorenzetti (CR30) 2014; 9 Needham, Naemi, Healy, Chockalingam (CR17) 2016; 40 Wang, Wang, De Groote, Scheys, Jonkers (CR26) 2019; 98 Mimura, Panjabi, Oxland, Crisco, Yamamoto, Vasavada (CR15) 1994; 19 Wang, Wang, Wesseling, Xue, Li (CR27) 2019; 233 Takayanagi, Takahashi, Yamagata, Moriya, Kitahara, Tamaki (CR25) 2001; 26 Smit, van Tunen, van der Veen, Kingma, van Dieen (CR24) 2011; 12 De Groote, Kinney, Rao, Fregly (CR4) 2016; 44 Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot, Andersen (CR14) 2015; 137 Rozumalski, Schwartz, Wervey, Swanson, Dykes, Novacheck (CR21) 2008; 28 Bruno, Bouxsein, Anderson (CR2) 2015; 137 Dvorak, Panjabi, Novotny, Chang, Grob (CR5) 1991; 16 Pearcy, Shepherd (CR19) 1985; 10 Falisse, Serrancoli, Dembia, Gillis, Jonkers, De Groote (CR8) 2019; 16 Kettler, Rohlmann, Ring, Mack, Wilke (CR11) 2011; 20 Nagel, Zitnay, Barocas, Nuckley (CR16) 2014; 23 Li, Wang, Passias, Xia, Li, Wood (CR12) 2009; 18 Breen, Breen (CR1) 2018; 27 Severijns, Overbergh, Thauvoye, Baudewijns, Monari, Moke, Desloovere, Scheys (CR22) 2020; 20 MA Hayes (2774_CR9) 1989; 14 J Widmer (2774_CR28) 2019; 47 A Rozumalski (2774_CR21) 2008; 28 A Kettler (2774_CR11) 2011; 20 P Severijns (2774_CR22) 2020; 20 W Wang (2774_CR26) 2019; 98 R Zemp (2774_CR30) 2014; 9 T Overbergh (2774_CR18) 2020; 110 AG Bruno (2774_CR2) 2015; 137 HJ Wilke (2774_CR29) 2017; 12 Y Petit (2774_CR20) 2004; 42 W Wang (2774_CR27) 2019; 233 M Mimura (2774_CR15) 1994; 19 HT Ma (2774_CR13) 2008; 46 TH Smit (2774_CR24) 2011; 12 F De Groote (2774_CR4) 2016; 44 A Falisse (2774_CR7) 2017; 64 R Needham (2774_CR17) 2016; 40 J Dvorak (2774_CR5) 1991; 16 TM Nagel (2774_CR16) 2014; 23 MA Marra (2774_CR14) 2015; 137 I Shojaei (2774_CR23) 2018; 70 AH Eskandari (2774_CR6) 2019; 84 A Breen (2774_CR1) 2018; 27 G Li (2774_CR12) 2009; 18 K Takayanagi (2774_CR25) 2001; 26 M Christophy (2774_CR3) 2012; 11 A Falisse (2774_CR8) 2019; 16 D Ignasiak (2774_CR10) 2016; 49 M Pearcy (2774_CR19) 1985; 10 34014422 - Ann Biomed Eng. 2021 May 17 |
References_xml | – volume: 44 start-page: 2922 year: 2016 end-page: 2936 ident: CR4 article-title: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1591-9 – volume: 11 start-page: 19 year: 2012 end-page: 34 ident: CR3 article-title: A musculoskeletal model for the lumbar spine publication-title: Biomech. Model Mechanobiol. doi: 10.1007/s10237-011-0290-6 – volume: 20 start-page: 578 year: 2011 end-page: 584 ident: CR11 article-title: Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database publication-title: Eur. Spine J. doi: 10.1007/s00586-010-1635-z – volume: 26 start-page: 1858 year: 2001 end-page: 1865 ident: CR25 article-title: Using cineradiography for continuous dynamic-motion analysis of the lumbar spine publication-title: Spine doi: 10.1097/00007632-200109010-00008 – volume: 23 start-page: 754 year: 2014 end-page: 761 ident: CR16 article-title: Quantification of continuous in vivo flexion-extension kinematics and intervertebral strains publication-title: Eur. Spine J. doi: 10.1007/s00586-014-3195-0 – volume: 12 start-page: 38 year: 2011 ident: CR24 article-title: Quantifying intervertebral disc mechanics: a new definition of the neutral zone publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-12-38 – volume: 16 start-page: 20190402 year: 2019 ident: CR8 article-title: Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0402 – volume: 9 year: 2014 ident: CR30 article-title: Soft tissue artefacts of the human back: comparison of the sagittal curvature of the spine measured using skin markers and an open upright MRI publication-title: PLoS ONE doi: 10.1371/journal.pone.0095426 – volume: 12 year: 2017 ident: CR29 article-title: In vitro analysis of the segmental flexibility of the thoracic spine publication-title: PLoS ONE doi: 10.1371/journal.pone.0177823 – volume: 18 start-page: 1013 year: 2009 end-page: 1021 ident: CR12 article-title: Segmental in vivo vertebral motion during functional human lumbar spine activities publication-title: Eur. Spine J. doi: 10.1007/s00586-009-0936-6 – volume: 40 start-page: 624 year: 2016 end-page: 635 ident: CR17 article-title: Multi-segment kinematic model to assess three-dimensional movement of the spine and back during gait publication-title: Prosthet. Orthot. Int. doi: 10.1177/0309364615579319 – volume: 28 start-page: 378 year: 2008 end-page: 384 ident: CR21 article-title: The in vivo three-dimensional motion of the human lumbar spine during gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.05.005 – volume: 47 start-page: 1491 year: 2019 end-page: 1522 ident: CR28 article-title: Kinematics of the spine under healthy and degenerative conditions: a systematic review publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02252-x – volume: 110 year: 2020 ident: CR18 article-title: Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109946 – volume: 42 start-page: 55 year: 2004 end-page: 60 ident: CR20 article-title: Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351011 – volume: 70 start-page: 82 year: 2018 end-page: 87 ident: CR23 article-title: A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.024 – volume: 233 start-page: 1113 issue: 11 year: 2019 end-page: 1121 ident: CR27 article-title: Comparison of modelling and tracking methods for analysing elbow and forearm kinematics publication-title: Proc. Inst. Mech. Eng. Part H doi: 10.1177/0954411919872400 – volume: 27 start-page: 145 year: 2018 end-page: 153 ident: CR1 article-title: Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy publication-title: Eur. Spine J. doi: 10.1007/s00586-017-5155-y – volume: 14 start-page: 327 year: 1989 end-page: 331 ident: CR9 article-title: Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals publication-title: Spine doi: 10.1097/00007632-198903000-00014 – volume: 98 year: 2019 ident: CR26 article-title: Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109437 – volume: 20 start-page: 934 year: 2020 end-page: 946 ident: CR22 article-title: A subject-specific method to measure dynamic spinal alignment in adult spinal deformity publication-title: Spine J. doi: 10.1016/j.spinee.2020.02.004 – volume: 137 year: 2015 ident: CR2 article-title: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and Rib cage publication-title: J. Biomech. Eng. doi: 10.1115/1.4030408 – volume: 84 start-page: 161 year: 2019 end-page: 171 ident: CR6 article-title: Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.12.043 – volume: 19 start-page: 1371 year: 1994 end-page: 1380 ident: CR15 article-title: Disc degeneration affects the multidirectional flexibility of the lumbar spine publication-title: Spine doi: 10.1097/00007632-199406000-00011 – volume: 64 start-page: 2253 year: 2017 end-page: 2262 ident: CR7 article-title: EMG-driven optimal estimation of subject-SPECIFIC hill model muscle-tendon parameters of the knee joint actuators publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2630009 – volume: 137 year: 2015 ident: CR14 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. doi: 10.1115/1.4029258 – volume: 16 start-page: 943 year: 1991 end-page: 950 ident: CR5 article-title: Clinical validation of functional flexion-extension roentgenograms of the lumbar spine publication-title: Spine doi: 10.1097/00007632-199108000-00014 – volume: 49 start-page: 959 year: 2016 end-page: 966 ident: CR10 article-title: Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.10.010 – volume: 10 start-page: 175 year: 1985 end-page: 177 ident: CR19 article-title: Is there instability in spondylolisthesis? publication-title: Spine doi: 10.1097/00007632-198503000-00014 – volume: 46 start-page: 333 year: 2008 end-page: 340 ident: CR13 article-title: A new method for determining lumbar spine motion using Bayesian belief network publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0318-y – volume: 233 start-page: 1113 issue: 11 year: 2019 ident: 2774_CR27 publication-title: Proc. Inst. Mech. Eng. Part H doi: 10.1177/0954411919872400 – volume: 46 start-page: 333 year: 2008 ident: 2774_CR13 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0318-y – volume: 137 year: 2015 ident: 2774_CR2 publication-title: J. Biomech. Eng. doi: 10.1115/1.4030408 – volume: 10 start-page: 175 year: 1985 ident: 2774_CR19 publication-title: Spine doi: 10.1097/00007632-198503000-00014 – volume: 26 start-page: 1858 year: 2001 ident: 2774_CR25 publication-title: Spine doi: 10.1097/00007632-200109010-00008 – volume: 16 start-page: 20190402 year: 2019 ident: 2774_CR8 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0402 – volume: 27 start-page: 145 year: 2018 ident: 2774_CR1 publication-title: Eur. Spine J. doi: 10.1007/s00586-017-5155-y – volume: 42 start-page: 55 year: 2004 ident: 2774_CR20 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351011 – volume: 11 start-page: 19 year: 2012 ident: 2774_CR3 publication-title: Biomech. Model Mechanobiol. doi: 10.1007/s10237-011-0290-6 – volume: 110 year: 2020 ident: 2774_CR18 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109946 – volume: 98 year: 2019 ident: 2774_CR26 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109437 – volume: 16 start-page: 943 year: 1991 ident: 2774_CR5 publication-title: Spine doi: 10.1097/00007632-199108000-00014 – volume: 14 start-page: 327 year: 1989 ident: 2774_CR9 publication-title: Spine doi: 10.1097/00007632-198903000-00014 – volume: 12 start-page: 38 year: 2011 ident: 2774_CR24 publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-12-38 – volume: 84 start-page: 161 year: 2019 ident: 2774_CR6 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.12.043 – volume: 47 start-page: 1491 year: 2019 ident: 2774_CR28 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02252-x – volume: 64 start-page: 2253 year: 2017 ident: 2774_CR7 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2630009 – volume: 12 year: 2017 ident: 2774_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0177823 – volume: 9 year: 2014 ident: 2774_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0095426 – volume: 49 start-page: 959 year: 2016 ident: 2774_CR10 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.10.010 – volume: 137 year: 2015 ident: 2774_CR14 publication-title: J. Biomech. Eng. doi: 10.1115/1.4029258 – volume: 20 start-page: 578 year: 2011 ident: 2774_CR11 publication-title: Eur. Spine J. doi: 10.1007/s00586-010-1635-z – volume: 20 start-page: 934 year: 2020 ident: 2774_CR22 publication-title: Spine J. doi: 10.1016/j.spinee.2020.02.004 – volume: 28 start-page: 378 year: 2008 ident: 2774_CR21 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.05.005 – volume: 70 start-page: 82 year: 2018 ident: 2774_CR23 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.024 – volume: 18 start-page: 1013 year: 2009 ident: 2774_CR12 publication-title: Eur. Spine J. doi: 10.1007/s00586-009-0936-6 – volume: 40 start-page: 624 year: 2016 ident: 2774_CR17 publication-title: Prosthet. Orthot. Int. doi: 10.1177/0309364615579319 – volume: 23 start-page: 754 year: 2014 ident: 2774_CR16 publication-title: Eur. Spine J. doi: 10.1007/s00586-014-3195-0 – volume: 44 start-page: 2922 year: 2016 ident: 2774_CR4 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1591-9 – volume: 19 start-page: 1371 year: 1994 ident: 2774_CR15 publication-title: Spine doi: 10.1097/00007632-199406000-00011 – reference: 34014422 - Ann Biomed Eng. 2021 May 17;: |
SSID | ssj0011835 |
Score | 2.4103813 |
Snippet | This study aims to propose a new optimization framework for solving spine kinematics based on skin-mounted markers and estimate subject-specific mechanical... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2311 |
SubjectTerms | Aged Biochemistry Biological and Medical Physics Biomechanical Phenomena Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Female Humans Image Processing, Computer-Assisted Inverse kinematics Kinematics Male Markers Mathematical analysis Mechanical properties Middle Aged Motion simulation Movement - physiology Optimization Original Article Patient-Specific Modeling Radiography Skeletal system Spine Spine (lumbar) Spine - diagnostic imaging Spine - physiology Stiffness Vertebrae X-rays |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6iIFXtoQLaQsoiV-LWWoq3LMcRixAIqASjcotsx1YPdAYxM_-_7yXOQEWpxCWX2M7yPb_FbwM4MEXMK2sKbqPLuUaFmlsVFPeWMh1dbivXRVtcFqdjfXZrblNS2GyIdh9ckh2nfpLshsKTU0gB-R01V29gzZDtjlQ8lqOl7wCJtO9bUKNhVBc6pcr8e42_xdEzHfOZf7QTOyfr8CHpi2zUA7wBK2GyCe-fVBHchLcXyT_-ERYjdtS3mGdXyAt-pyRLNkqVwxmqqOx6ekenCOz6Huewc7x0ZVtn7OcvZBGMsrUc0QUNWTg6p-Fdl_qIq14EyhQmYNkPOsZ_oHqsn2B8cnxzeMpTYwXuVWnmHFWGEAVKJe-rstWiLfJga6Wsl60oZI2MxzsblXMhVFIoq6WPVlZtrMsoa6c-w-pkOgnbwEqhWymskS3qfg7tXR2tdnn0LncmtiEDMfzfxqeq49T84q55rJdMmDSISdNh0qgMvi3n3Pc1N_47eneArUn7b9YgI9Ko-Jk8z-Dr8jbuHHKH2EmYLmiMkCUajKXIYKuHe_k4_BBDdnoG3wf8Hxd_-V2-vG74DryTHS1SyNourM4fFmEPdZy52-9I-g8b6_Fd priority: 102 providerName: Springer Nature |
Title | A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties |
URI | https://link.springer.com/article/10.1007/s10439-021-02774-3 https://www.ncbi.nlm.nih.gov/pubmed/33851322 https://www.proquest.com/docview/2574929500 https://www.proquest.com/docview/2512728771 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw9Ak2CcEBwYARGJORuIGFYztfJ5RCu4lpZWJUlFNkO7Y4jLas7f_nvcRtQRO7xIfYiZP3_L4_AN5keRClyXJughVco0DNjfKKO0OZjlaY0nbRFuP8dKI_T7NpNLgtY1jlhiZ2hLqdO7KRv0fU0sjKMyE-LH5z6hpF3tXYQuMu7FPpMgrpKqZbhQtl577BpqhQRapyHZNmYuocsmJOAQrkxdRc_cuYbkibNzylHQMaPYKHUXJkdQ_qx3DHzw7gwV_1BA_g3nn0lD-Bdc0-9c3m2RekCr9iuiWrYw1xhsIqu5xfkT2BXS5wDTvDS1fAdcm-_0RiwShvyxKG0JS1JYsN7_rVB3zquaecYQIxuyCD_jVVZn0Kk9Hw28dTHlsscKeKbMVRePAhRf7kXFm0Om1z4U2llHGyTXNZIQly1gRlrfelTJXR0gUjyzZURZCVVc9gbzaf-efAilS3MjWZbFEKtKj56mC0FcFZYbPQ-gTSzf9tXKw_Tm0wrppd5WSCSYMwaTqYNCqBt9s1i776xq2zjzZga-JJXDY7vEng9fY2niFyjJiZn69pTioLVB2LNIHDHtzb1-GHZKSxJ_BuA__dw_-_lxe37-Ul3Jcd7lGw2hHsra7X_hVKNyt73KEwXsvRyTHs16PBYEzjyY-zIY6D4fjiK96dyPoP4Vn69Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GkMCcYBwfgKDDASnMAisZ2vA0IVo3R0HUjdtN2C7djaYbRlbYX4U_xG3kucFjSx2y65xHYcv2-_L4CXaebjQqcZ197EXKFCzbV0kltNmY4m1oVpoi0OssGR-nySnmzA7y4XhsIqO57YMOp6aumO_C2ilkJRnsbx-9kPTl2jyLvatdBo0WLofv1Ek23-bm8X4ftKiP7Hww8DHroKcCvzdMFRXjqfIEu2tshrldRZ7DSa9dqKOslEiVRnjfbSGOcKkUithPVaFLUvcy9KI3Hda3BdSVkSRRX9TyuvBZJH2zGhRJOszFRI0gmpeij6OQVEkNdUcfmvILyg3V7wzDYCr38HbgdNlfVa1LoLG26yDbf-ql-4DTdGwTN_D5Y9tts2t2dfkAt9D-mdrBdqljNUjtl4ekb3F2w8wzlsiI-mYOycHZ8ic2KUJ2YII2nI0tANER_PXBM1yEaOcpQJpdhXciCcUyXY-3B0JYf_ADYn04l7BCxPVC0SnYoatU6DlrbyWpnYWxOb1NcugqQ738qGeufUduOsWldqJphUCJOqgUklI3i9mjNrq31cOnqnA1sVKH9erfE0gher10iz5IjREzdd0phE5Giq5kkED1twrz6HP5LSDUEEbzr4rxf__14eX76X53BzcDjar_b3DoZPYEs0eEiBcjuwuThfuqeoWS3MswadGXy7avr5A_1_Mmc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GkMaWIHNMbHAgOMBCewFjvO12FCFaXaKBuTykRvwXZscRhtWVsh_hq_jvcSpwVN7LZLLrEdx-_D7_sBvEwzHxc6zbj2JuYKBWquE5dwqynT0cS6ME20xWl2dK4-jNPxBvzucmEorLLjiQ2jrqeWbOQHiFoKr_I0jg98CIs46w_ezn5w6iBFntaunUaLIkP36yeqb_PD4z7C-pWUg_ef3x3x0GGA2yRPFxzvTucFsmdri7xWos5ip1HF11bWIpMlUqA12ifGOFdIkWglrdeyqH2Ze1maBNe9BbfzJBVEY_l4peyh3N4294xLVM_KTIWEnZC2h2IAp-AI8qAqnvx7KV6RdK94aZvLb7ADd4PUynotmt2DDTfZhe2_ahnuwtZJ8NLfh2WP9dtG9-wTcqTvIdWT9UL9coaCMhtNL8iWwUYznMOG-GiKx87Zl2_IqBjljBnCThqyNGQt4qOZayII2YmjfGVCL3ZGzoRLqgr7AM5v5PAfwuZkOnF7wHKhail0KmuUQA1q3cprZWJvTWxSX7sIRHe-lQ21z6kFx0W1rtpMMKkQJlUDkyqJ4PVqzqyt_HHt6P0ObFXgAvNqjbMRvFi9Rvolp4yeuOmSxgiZo9qaiwgeteBefQ5_JCVrQQRvOvivF___Xh5fv5fnsIWUU308Ph0-gTuyQUOKmduHzcXl0j1FIWthnjXYzODrTZPPHzUXNpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Optimization+Approach+for+Solving+Spine+Kinematics+While+Calibrating+Subject-Specific+Mechanical+Properties&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Wang%2C+Wei&rft.au=Wang%2C+Dongmei&rft.au=Falisse%2C+Antoine&rft.au=Severijns%2C+Pieter&rft.date=2021-09-01&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=49&rft.issue=9&rft.spage=2311&rft.epage=2322&rft_id=info:doi/10.1007%2Fs10439-021-02774-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10439_021_02774_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |