Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: a pilot study
Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in...
Saved in:
Published in | Biomechanics and modeling in mechanobiology Vol. 18; no. 6; pp. 1629 - 1638 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1617-7959 1617-7940 1617-7940 |
DOI | 10.1007/s10237-019-01165-x |
Cover
Abstract | Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects (
n
=
5
) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference (
p
<
0.05
). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD. |
---|---|
AbstractList | Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD. Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ( n = 5 ) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ( p < 0.05 ). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD. Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects (\[n=5\]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference (\[p<0.05\]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD. Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD. |
Author | Reynolds, Leryn Alberts, Thomas Hao, Zhili Wang, Dan Vahala, Linda |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0002-8264-1586 surname: Wang fullname: Wang, Dan email: dwang009@odu.edu organization: Department of Mechanical and Aerospace Engineering, Old Dominion University – sequence: 2 givenname: Leryn surname: Reynolds fullname: Reynolds, Leryn organization: Department of Human Movement Sciences, Old Dominion University – sequence: 3 givenname: Thomas surname: Alberts fullname: Alberts, Thomas organization: Department of Mechanical and Aerospace Engineering, Old Dominion University – sequence: 4 givenname: Linda surname: Vahala fullname: Vahala, Linda organization: Department of Electrical and Computer Engineering, Old Dominion University – sequence: 5 givenname: Zhili surname: Hao fullname: Hao, Zhili organization: Department of Mechanical and Aerospace Engineering, Old Dominion University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31073807$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlvHCEQRlHkKN7yB3yIkHzxpROW6WbIzbKcRXKUS3xG1XT1BIeBCdUte_59cMaL5IMPCATvlYr6DtleygkZO5HioxTCfCIplDaNkLYu2bXN3Rt2IDtpGmMXYu_p3Np9dkh0I4QSeqnfsX0thdFLYQ5Y-pEHjE0PhAOHBHFLgXgeOZQJS4DIN3Mk5BRW9ZH4mAufCvg_Ia24_w1phcRDesZvIVYHCqyx3tBnDnwTYp44TfOwPWZvx1oG3z_sR-z6y-Wvi2_N1c-v3y_OrxqvTTs1ctFJ7aUfR-97ZS3YxYhi9Lq1CrzohqVV2ILx0OteDGh7aBEXaAc1dJ0CfcTOdnU3Jf-dkSa3DuQxRkiYZ3JKaWlbI0Vb0dMX6E2ey_1nK1U53VkjKvXhgZr7NQ5uU8IaytY9TrICyx3gSyYqODofJphCTnVcITop3H1obheaq6G5_6G5u6qqF-pj9VclvZOowjWF8tz2K9Y_UamrWw |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3307877 crossref_primary_10_1115_1_4055390 crossref_primary_10_1016_j_taml_2024_100507 crossref_primary_10_1109_JSEN_2019_2949503 crossref_primary_10_1007_s13239_020_00454_2 |
Cites_doi | 10.1186/1475-925X-10-33 10.1113/jphysiol.2003.040147 10.1139/apnm-2015-0204 10.1109/TBME.2007.900815 10.1034/j.1399-3003.2000.16f20.x 10.1016/j.medengphy.2010.06.010 10.1186/s12938-016-0302-y 10.1113/jphysiol.1961.sp006687 10.1016/j.sna.2017.06.007 10.1007/s10237-016-0836-8 10.1097/HJH.0000000000001645 10.1097/00004872-199917010-00001 10.1016/S0895-7061(02)02962-X 10.1038/hr.2017.32 10.1152/jappl.1963.18.3.557 10.1117/1.JBO.18.2.027004 10.1161/01.hyp.32.2.346 10.1109/JSEN.2017.2704903 10.1038/hr.2012.158 10.1161/01.CIR.80.6.1652 10.1146/annurev-fluid-122109-160730 10.1159/000025721 10.1038/hr.2016.111 10.1093/eurheartj/eht565 10.1186/s12938-019-0660-3 10.1109/JBHI.2017.2672899 10.1007/s40846-015-0086-8 10.1115/IMECE2018-86883 10.23919/ACC.2017.7963052 10.1201/b13568 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U S0W 7X8 |
DOI | 10.1007/s10237-019-01165-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1617-7940 |
EndPage | 1638 |
ExternalDocumentID | 31073807 10_1007_s10237_019_01165_x |
Genre | Clinical Trial Journal Article |
GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK ABRTQ FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c375t-14613c1cffccb299a94fe0fc3592ac06d892e5a7cab3b0de9ba5ee4e9d2d662a3 |
IEDL.DBID | AGYKE |
ISSN | 1617-7959 1617-7940 |
IngestDate | Thu Sep 04 22:03:43 EDT 2025 Fri Jul 25 19:03:34 EDT 2025 Thu Apr 03 06:56:29 EDT 2025 Tue Jul 01 00:54:39 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 21 02:34:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Arterial wall radius Model-based analysis Arterial radius waveform Arterial wall viscoelasticity Tactile sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-14613c1cffccb299a94fe0fc3592ac06d892e5a7cab3b0de9ba5ee4e9d2d662a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-8264-1586 |
PMID | 31073807 |
PQID | 2222336970 |
PQPubID | 54766 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2231957105 proquest_journals_2222336970 pubmed_primary_31073807 crossref_citationtrail_10_1007_s10237_019_01165_x crossref_primary_10_1007_s10237_019_01165_x springer_journals_10_1007_s10237_019_01165_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 2019-12-00 2019-Dec 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
PublicationTitle | Biomechanics and modeling in mechanobiology |
PublicationTitleAbbrev | Biomech Model Mechanobiol |
PublicationTitleAlternate | Biomech Model Mechanobiol |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Teng, Zhang (CR24) 2007; 54 Van de Vosse, Stergiopulos (CR25) 2011; 43 Kelly, Hayward, Avolio, O’rourke (CR7) 1989; 80 Visontai, Lenard, Karlocai, Kollai (CR26) 2000; 16 Liu, Cheng, Chen, Sung, Hahn, Mukkamala (CR12) 2017; 5 Melo, Fernhall, Santos, Pinto, Pimenta, Sardinha, Santa-Clara (CR14) 2015; 41 Mutter, Cooke, Saleh, Gomez, Daskalopoulou (CR15) 2017; 40 Nejad, Carey, McMurtry, Hahn (CR16) 2017; 16 Lee (CR8) 2017; 22 CR31 Doonan, Mutter, Egiziano, Gomez, Daskalopoulou (CR3) 2013; 36 Lénárd, Fülöp, Visontai, Jokkel, Reneman, Kollai (CR10) 2000; 37 McEniery, Cockcroft, Roman, Franklin, Wilkinson (CR13) 2014; 35 Spronck (CR22) 2017; 40 Zhou, Xu, Hao, Xiao, Yao, Qi, Yao (CR32) 2019; 18 Greenfield JR, Griggs JR (CR5) 1963; 18 O’Rourke, Mancia (CR17) 1999; 17 Shin, Min (CR21) 2017; 16 Pannier, Avolio, Hoeks, Mancia, Takazawa (CR18) 2002; 15 Hurst, Logue, Schlant, Wenger (CR6) 1978 Leguy, Bosboom, Gelderblom, Hoeks, Van De Vosse (CR9) 2010; 32 Bergel (CR1) 1961; 156 Shi, Lawford, Hose (CR20) 2011; 10 Grabovskis, Marcinkevics, Rubins, Kviesis-Kipge (CR4) 2013; 18 Studinger, Lénárd, Kováts, Kocsis, Kollai (CR23) 2003; 550 Wang, Shen, Mei, Qian, Li, Hao (CR28) 2017; 17 CR29 Wang, Ansari, Slavin, Ward, Najarian, Oldham (CR30) 2017; 263 Lichtenstein, Safar, Mathieu, Poitevin, Levy (CR11) 1998; 32 Pereira, Correia, Cardoso (CR19) 2015; 35 Vlachopoulos, O’Rourke, Nichols (CR27) 2011 Buus, Carlsen, Khatir, Eiskjr, Mulvany, Skov (CR2) 2018; 36 X-F Teng (1165_CR24) 2007; 54 FN Van de Vosse (1165_CR25) 2011; 43 (1165_CR6) 1978 DH Bergel (1165_CR1) 1961; 156 Y Shi (1165_CR20) 2011; 10 NH Buus (1165_CR2) 2018; 36 P Studinger (1165_CR23) 2003; 550 C Vlachopoulos (1165_CR27) 2011 X Melo (1165_CR14) 2015; 41 H Shin (1165_CR21) 2017; 16 O Lichtenstein (1165_CR11) 1998; 32 BM Pannier (1165_CR18) 2002; 15 T Pereira (1165_CR19) 2015; 35 1165_CR29 R Kelly (1165_CR7) 1989; 80 MF O’Rourke (1165_CR17) 1999; 17 CM McEniery (1165_CR13) 2014; 35 AF Mutter (1165_CR15) 2017; 40 JC Greenfield JR (1165_CR5) 1963; 18 JC Lee (1165_CR8) 2017; 22 1165_CR31 J Liu (1165_CR12) 2017; 5 Z Lénárd (1165_CR10) 2000; 37 C Leguy (1165_CR9) 2010; 32 Z Visontai (1165_CR26) 2000; 16 RJ Doonan (1165_CR3) 2013; 36 A Grabovskis (1165_CR4) 2013; 18 B Spronck (1165_CR22) 2017; 40 S Zhou (1165_CR32) 2019; 18 SE Nejad (1165_CR16) 2017; 16 L Wang (1165_CR30) 2017; 263 D Wang (1165_CR28) 2017; 17 |
References_xml | – volume: 10 start-page: 33 year: 2011 ident: CR20 article-title: Review of zero-D and 1-D models of blood flow in the cardiovascular system publication-title: Biomed Eng Online doi: 10.1186/1475-925X-10-33 – volume: 550 start-page: 575 year: 2003 end-page: 583 ident: CR23 article-title: Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise publication-title: J Physiol doi: 10.1113/jphysiol.2003.040147 – year: 2011 ident: CR27 publication-title: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles – volume: 41 start-page: 266 year: 2015 end-page: 276 ident: CR14 article-title: The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2015-0204 – volume: 54 start-page: 1490 year: 2007 end-page: 1498 ident: CR24 article-title: Theoretical study on the effect of sensor contact force on pulse transit time publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.900815 – volume: 16 start-page: 1134 year: 2000 end-page: 1141 ident: CR26 article-title: Assessment of the viscosity of the pulmonary artery wall publication-title: Eur Respir J doi: 10.1034/j.1399-3003.2000.16f20.x – volume: 32 start-page: 957 year: 2010 end-page: 967 ident: CR9 article-title: Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.06.010 – volume: 16 start-page: 10 year: 2017 ident: CR21 article-title: Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study publication-title: Biomed Eng Online doi: 10.1186/s12938-016-0302-y – ident: CR29 – volume: 156 start-page: 458 year: 1961 end-page: 469 ident: CR1 article-title: The dynamic elastic properties of the arterial wall publication-title: J Physiol doi: 10.1113/jphysiol.1961.sp006687 – volume: 263 start-page: 198 year: 2017 end-page: 208 ident: CR30 article-title: Non-invasive vascular resistance monitoring with a piezoelectric sensor and photoplethysmogram publication-title: Sens Actuators A Phys doi: 10.1016/j.sna.2017.06.007 – volume: 16 start-page: 549 year: 2017 end-page: 560 ident: CR16 article-title: Model-based cardiovascular disease diagnosis: a preliminary in-silico study publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-016-0836-8 – volume: 36 start-page: 815 year: 2018 end-page: 823 ident: CR2 article-title: Arterial stiffness and peripheral vascular resistance in offspring of hypertensive parents: influence of sex and other confounders publication-title: J Hypertens doi: 10.1097/HJH.0000000000001645 – volume: 17 start-page: 1 year: 1999 end-page: 4 ident: CR17 article-title: Arterial stiffness publication-title: J Hypertens doi: 10.1097/00004872-199917010-00001 – year: 1978 ident: CR6 publication-title: The heart: arteries and veins – volume: 15 start-page: 743 year: 2002 end-page: 753 ident: CR18 article-title: Methods and devices for measuring arterial compliance in humans publication-title: Am J Hypertens doi: 10.1016/S0895-7061(02)02962-X – volume: 40 start-page: 752 year: 2017 ident: CR22 article-title: Patient-specific blood pressure correction technique for arterial stiffness: evaluation in a cohort on anti-angiogenic medication publication-title: Hypertens Res doi: 10.1038/hr.2017.32 – volume: 18 start-page: 557 year: 1963 end-page: 559 ident: CR5 article-title: Relation between pressure and diameter in main pulmonary artery of man publication-title: J Appl Physiol doi: 10.1152/jappl.1963.18.3.557 – volume: 18 start-page: 027004 year: 2013 ident: CR4 article-title: Effect of probe contact pressure on the photoplethysmographic assessment of conduit artery stiffness publication-title: J Biomed Opt doi: 10.1117/1.JBO.18.2.027004 – ident: CR31 – volume: 32 start-page: 346 year: 1998 end-page: 350 ident: CR11 article-title: Static and dynamic mechanical properties of the carotid artery from normotensive and hypertensive rats publication-title: Hypertension doi: 10.1161/01.hyp.32.2.346 – volume: 17 start-page: 3994 year: 2017 end-page: 4004 ident: CR28 article-title: Performance investigation of a wearable distributed-deflection sensor in arterial pulse waveform measurement publication-title: IEEE Sens J doi: 10.1109/JSEN.2017.2704903 – volume: 36 start-page: 226 year: 2013 ident: CR3 article-title: Differences in arterial stiffness at rest and after acute exercise between young men and women publication-title: Hypertens Res doi: 10.1038/hr.2012.158 – volume: 5 start-page: 1 year: 2017 end-page: 10 ident: CR12 article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability publication-title: IEEE J Transl Eng Health Med – volume: 80 start-page: 1652 year: 1989 end-page: 1659 ident: CR7 article-title: Noninvasive determination of age-related changes in the human arterial pulse publication-title: Circulation doi: 10.1161/01.CIR.80.6.1652 – volume: 43 start-page: 467 year: 2011 end-page: 499 ident: CR25 article-title: Pulse wave propagation in the arterial tree publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160730 – volume: 37 start-page: 103 year: 2000 end-page: 111 ident: CR10 article-title: Static versus dynamic distensibility of the carotid artery in humans publication-title: J Vasc Res doi: 10.1159/000025721 – volume: 40 start-page: 146 year: 2017 ident: CR15 article-title: A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments publication-title: Hypertens Res doi: 10.1038/hr.2016.111 – volume: 35 start-page: 1719 year: 2014 end-page: 1725 ident: CR13 article-title: Central blood pressure: current evidence and clinical importance publication-title: Eur Heart J doi: 10.1093/eurheartj/eht565 – volume: 18 start-page: 41 year: 2019 ident: CR32 article-title: A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure publication-title: Biomed Eng Online doi: 10.1186/s12938-019-0660-3 – volume: 22 start-page: 460 year: 2017 end-page: 469 ident: CR8 article-title: Investigation of viscoelasticity in the relationship between carotid artery blood pressure and distal pulse volume waveforms publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2672899 – volume: 35 start-page: 555 year: 2015 end-page: 565 ident: CR19 article-title: Novel methods for pulse wave velocity measurement publication-title: J Med Biol Eng doi: 10.1007/s40846-015-0086-8 – volume: 10 start-page: 33 year: 2011 ident: 1165_CR20 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-10-33 – volume: 16 start-page: 10 year: 2017 ident: 1165_CR21 publication-title: Biomed Eng Online doi: 10.1186/s12938-016-0302-y – volume: 22 start-page: 460 year: 2017 ident: 1165_CR8 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2672899 – volume: 5 start-page: 1 year: 2017 ident: 1165_CR12 publication-title: IEEE J Transl Eng Health Med – volume: 16 start-page: 1134 year: 2000 ident: 1165_CR26 publication-title: Eur Respir J doi: 10.1034/j.1399-3003.2000.16f20.x – volume: 36 start-page: 815 year: 2018 ident: 1165_CR2 publication-title: J Hypertens doi: 10.1097/HJH.0000000000001645 – volume: 18 start-page: 027004 year: 2013 ident: 1165_CR4 publication-title: J Biomed Opt doi: 10.1117/1.JBO.18.2.027004 – volume: 40 start-page: 146 year: 2017 ident: 1165_CR15 publication-title: Hypertens Res doi: 10.1038/hr.2016.111 – volume: 156 start-page: 458 year: 1961 ident: 1165_CR1 publication-title: J Physiol doi: 10.1113/jphysiol.1961.sp006687 – volume: 18 start-page: 557 year: 1963 ident: 1165_CR5 publication-title: J Appl Physiol doi: 10.1152/jappl.1963.18.3.557 – volume: 37 start-page: 103 year: 2000 ident: 1165_CR10 publication-title: J Vasc Res doi: 10.1159/000025721 – volume: 41 start-page: 266 year: 2015 ident: 1165_CR14 publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2015-0204 – volume: 80 start-page: 1652 year: 1989 ident: 1165_CR7 publication-title: Circulation doi: 10.1161/01.CIR.80.6.1652 – volume-title: The heart: arteries and veins year: 1978 ident: 1165_CR6 – volume: 36 start-page: 226 year: 2013 ident: 1165_CR3 publication-title: Hypertens Res doi: 10.1038/hr.2012.158 – volume: 15 start-page: 743 year: 2002 ident: 1165_CR18 publication-title: Am J Hypertens doi: 10.1016/S0895-7061(02)02962-X – ident: 1165_CR31 doi: 10.1115/IMECE2018-86883 – volume: 54 start-page: 1490 year: 2007 ident: 1165_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.900815 – volume: 16 start-page: 549 year: 2017 ident: 1165_CR16 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-016-0836-8 – volume: 32 start-page: 957 year: 2010 ident: 1165_CR9 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.06.010 – volume: 32 start-page: 346 year: 1998 ident: 1165_CR11 publication-title: Hypertension doi: 10.1161/01.hyp.32.2.346 – volume: 17 start-page: 1 year: 1999 ident: 1165_CR17 publication-title: J Hypertens doi: 10.1097/00004872-199917010-00001 – volume: 263 start-page: 198 year: 2017 ident: 1165_CR30 publication-title: Sens Actuators A Phys doi: 10.1016/j.sna.2017.06.007 – volume: 35 start-page: 555 year: 2015 ident: 1165_CR19 publication-title: J Med Biol Eng doi: 10.1007/s40846-015-0086-8 – volume: 550 start-page: 575 year: 2003 ident: 1165_CR23 publication-title: J Physiol doi: 10.1113/jphysiol.2003.040147 – volume: 17 start-page: 3994 year: 2017 ident: 1165_CR28 publication-title: IEEE Sens J doi: 10.1109/JSEN.2017.2704903 – volume: 18 start-page: 41 year: 2019 ident: 1165_CR32 publication-title: Biomed Eng Online doi: 10.1186/s12938-019-0660-3 – volume: 40 start-page: 752 year: 2017 ident: 1165_CR22 publication-title: Hypertens Res doi: 10.1038/hr.2017.32 – volume: 43 start-page: 467 year: 2011 ident: 1165_CR25 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160730 – volume: 35 start-page: 1719 year: 2014 ident: 1165_CR13 publication-title: Eur Heart J doi: 10.1093/eurheartj/eht565 – ident: 1165_CR29 doi: 10.23919/ACC.2017.7963052 – volume-title: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles year: 2011 ident: 1165_CR27 doi: 10.1201/b13568 |
SSID | ssj0020383 |
Score | 2.2767603 |
Snippet | Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1629 |
SubjectTerms | Adult Algorithms Arteries - physiology Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Blood flow Cardiovascular diseases Cardiovascular system Carotid artery Data processing Elasticity Engineering Exercise Feature extraction Female Heart diseases Heart Rate - physiology Hemodynamics Humans Information processing Male Mathematical models Microfluidics Middle Aged Models, Cardiovascular Monitoring Original Paper Parameter estimation Pilot Projects Pulse Pulse Wave Analysis Sensors Signal processing Signal Processing, Computer-Assisted Tactile sensors (robotics) Theoretical and Applied Mechanics Tracking Vascular Resistance Viscoelasticity Viscosity |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_8QPBF_LY6JYJvGmybpl18ERGnCPqksLeSpikIo51bh_rfe9dmGzLcc9M23F1yv-TufgdwEcYWjz55lxOZOI-6RcKVNQUPhJF4oFBSNcnjL6_x03v03Jd9d-E2dmmV0z2x2ajzytAd-XVIjkzEKvFvh5-cukZRdNW10FiF9QA9Ddl5t_c4O3D5LQ0nQXhOPbVd0YwrnQsFJV1StlAQS_791zEtoM2FSGnjgHrbsOWQI7trVb0DK7bchY22l-TPHpTU1WzAySvlTDuqEVYVrEnaRCtjwwm6QUYJG2hyDMEqq0fa0FU5a8t_x-yjnA__0gN8R1PyFjFw3jDNhh-DqmYNI-0-vPce3u6fuGumwI1IZM2pf7cwgSkKYzL0QVpFhfULI6QKtfHjvKtCK3VidCYyP7cq09LayKo8zOM41OIA1sqqtEfACgo1ZlTBm2QUt0UIYxORB4gFlMyi2INgKsnUOKZxangxSOccyST9FKWfNtJPvz24nL0zbHk2lo7uTBWUujU3TucW4sH57DGuFgqB6NJWExqDW45EVCU9OGwVO_sdAt2E6Pc9uJpqev7x_-dyvHwuJ7AZkpU1GTAdWKtHE3uKOKbOzhpj_QWN1ezP priority: 102 providerName: ProQuest |
Title | Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: a pilot study |
URI | https://link.springer.com/article/10.1007/s10237-019-01165-x https://www.ncbi.nlm.nih.gov/pubmed/31073807 https://www.proquest.com/docview/2222336970 https://www.proquest.com/docview/2231957105 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BV0hw4LGwEFgqI3EDrxI7jmNuLWp3BaJCiErlFDmOI62o0mqbisevZyaPdmEBaS_JIY6TOOPM58w33wC8FInHpU-RchIT53Faam68K3kkncIFhVGmIY9_mCVn8_jdQi26pLBNz3bvQ5LNl_pSspuQRJMkfk-UKI7I8QD7M-kADkanX95PdgutsJXfJOjOqZZ2lyzz915-d0hXUOaVCGnjeKb3YN7fcss3-XqyrfMT9_MPNcfrPtN9uNshUTZqTecB3PDVIdxqa1P-OIQ7l5QKH0JFNdOWnHxewWwnZMJWJWsooWjDbL1FJ8uIDoIGzRAKs_rCOvoRz9rk4g07r_bNv9klnmOJGkb6nm-YZevz5apmjd7tI5hPJ5_fnvGuVAN3UquaU3Vw6SJXls7l6OGsiUsflk4qI6wLkyI1wiurnc1lHhbe5FZ5H3tTiCJJhJVHMKhWlX8CrKRAZk75wTqnqDACJK9lESHSMCqPkwCi_n1lrtMxp3Iay2yvwEyjmuGoZs2oZt8DeLU7Z92qePy39XFvBlk3ozeZICAlE6PDAF7sDuNcpACLrfxqS23wg6YQs6kAHrfms7scwmhN4v4BvO5NYd_5v-_l6fWaP4Pbgqyp4dscw6C-2PrniJrqfAg39ULjNp2eDnHCTMfj2bCbOLgfT2YfP-HRuRj9AlM6EfA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYoWl7mQb76vhYkNjTFq1NmvaCNCFgoOPrNE0g8dalaSohndob1xPwT_E3YvfjTgiNN56bpJHtxHZs_wywKSKHrk_W5wQmzsN-HnPtbM4DaRU6FFrpOnn8dBgNzsOjC3WxAHddLQylVXZ3Yn1RZ6WlN_IfghSZjHTsb4__ceoaRdHVroVGIxbH7vYaXbbJz8NfyN-vQhzsn-0NeNtVgFsZq4pTI2tpA5vn1qZ4GRsd5s7PrVRaGOtHWV8Lp0xsTSpTP3M6Ncq50OlMZFEkjMR1X8BiSBWtPVjc3R_-_jNz8fwG-JOcBk5dvNsynbZYT0hK86T8pCBS_OahKnxk3z6KzdYq7-AtvGltVbbTCNcSLLhiGV423Stv30FBfdRGnPRgxkwLbsLKnNVpoijXbDxFxcsoRQSFnKF5zKorY-lxnjUFxxN2WcyHX5sRzjGULkaYn1vMsPHlqKxYjYH7Hs6fhdAfoFeUhfsELKfgZko1w3FKkWI0mlwsswCtD63SMPIg6CiZ2BbbnFpsjJI5KjNRP0HqJzX1kxsPvs3mjBtkjydHr3YMStpTPknmMunBxuwznk8KupjClVMag5ecQjtOefCxYezsd2haxwT478H3jtPzxf-_l89P7-ULvBqcnZ4kJ4fD4xV4LUji6vybVehVV1O3hlZUla63osvg73Oflnu5zy2T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hEKg9oPJsYEuNxA0sEjtO1r2t2q7oC3FgJW6R49jSSqvsCrIC_j0zSfaBeEg9x3GizNjzOfPNNwAnInF49Cm6nMTEedz1KdfOeh5Jq_BAoZWuyeP_LpOLQfz7Rt0sVfHXbPdZSrKpaSCVprI6nxT-fKnwTUiiTBLXJ0oURxS5httxRJ4-EL35kStshDgJxHPqqt2Wzbw-x_PQ9AJvvsiV1iGo_wk2W-zIeo2xt2DFlduw3nSTfNyGj0vagjtQUpezEacoVTDTSo-wsWc1iRO9jk2mGBYZETjQBRmCV1bdGku_zllTDnzHhuVi-L0Z4T2GyFykyPmNGTYZjsYVqxVqd2HQ_3n9_YK3zRW4lamqOPXzljay3lubY0wyOvYu9FYqLYwNk6KrhVMmtSaXeVg4nRvlXOx0IYokEUbuwWo5Lt1nYJ5SjzlV9KY55XER0rhUFhFiA63yOAkgmn3XzLbK49QAY5QtNJPJFhnaIqttkT0EcDq_Z9Lobrw7ujMzV9auwbtMEPSRiU7DAI7nl3H1UErElG48pTG4BSlEWSqA_cbM88ch8E1Jjj-As5ndF5O__S4H_zf8K2xc_ehnf39d_jmED4LcsSbLdGC1up26Lwh5qvyo9uoncoD1-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+analysis+of+arterial+pulse+signals+for+tracking+changes+in+arterial+wall+parameters%3A+a+pilot+study&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Wang%2C+Dan&rft.au=Reynolds%2C+Leryn&rft.au=Alberts%2C+Thomas&rft.au=Vahala%2C+Linda&rft.date=2019-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=18&rft.issue=6&rft.spage=1629&rft.epage=1638&rft_id=info:doi/10.1007%2Fs10237-019-01165-x&rft.externalDocID=10_1007_s10237_019_01165_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |