Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: a pilot study

Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 18; no. 6; pp. 1629 - 1638
Main Authors Wang, Dan, Reynolds, Leryn, Alberts, Thomas, Vahala, Linda, Hao, Zhili
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-7959
1617-7940
1617-7940
DOI10.1007/s10237-019-01165-x

Cover

Abstract Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ( n = 5 ) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ( p < 0.05 ). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.
AbstractList Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.
Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ( n = 5 ) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ( p < 0.05 ). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.
Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects (\[n=5\]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference (\[p<0.05\]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: − 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; − 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.
Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are too complex for home use. Our objective was to investigate whether model-based analysis of arterial pulse signals allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. The sensor was used to measure an arterial pulse signal. A data-processing algorithm was utilized to process the measured pulse signal to obtain the radius waveform and its first-order and second-order derivatives, and extract their key features. A dynamic system model of the arterial wall and a hemodynamic model of the blood flow were developed to interpret the extracted key features for estimating arterial wall parameters, with no need of calibration. Changes in arterial wall parameters were introduced to healthy subjects ([Formula: see text]) by moderate exercise. The estimated values were compared between pre-exercise and post-exercise for significant difference ([Formula: see text]). The estimated changes in the radius, elasticity and viscosity were consistent with the findings in the literature (between pre-exercise and 1 min post-exercise: - 11% ± 4%, 55% ± 38% and 28% ± 11% at the radial artery; - 7% ± 3%, 36% ± 28% and 16% ± 8% at the carotid artery). The model-based analysis allows tracking changes in arterial wall parameters using a microfluidic-based tactile sensor. This study shows the potential of developing a solution to at-home monitoring of the cardiovascular system for early detection, timely intervention and treatment assessment of CVD.
Author Reynolds, Leryn
Alberts, Thomas
Hao, Zhili
Wang, Dan
Vahala, Linda
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-8264-1586
  surname: Wang
  fullname: Wang, Dan
  email: dwang009@odu.edu
  organization: Department of Mechanical and Aerospace Engineering, Old Dominion University
– sequence: 2
  givenname: Leryn
  surname: Reynolds
  fullname: Reynolds, Leryn
  organization: Department of Human Movement Sciences, Old Dominion University
– sequence: 3
  givenname: Thomas
  surname: Alberts
  fullname: Alberts, Thomas
  organization: Department of Mechanical and Aerospace Engineering, Old Dominion University
– sequence: 4
  givenname: Linda
  surname: Vahala
  fullname: Vahala, Linda
  organization: Department of Electrical and Computer Engineering, Old Dominion University
– sequence: 5
  givenname: Zhili
  surname: Hao
  fullname: Hao, Zhili
  organization: Department of Mechanical and Aerospace Engineering, Old Dominion University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31073807$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlvHCEQRlHkKN7yB3yIkHzxpROW6WbIzbKcRXKUS3xG1XT1BIeBCdUte_59cMaL5IMPCATvlYr6DtleygkZO5HioxTCfCIplDaNkLYu2bXN3Rt2IDtpGmMXYu_p3Np9dkh0I4QSeqnfsX0thdFLYQ5Y-pEHjE0PhAOHBHFLgXgeOZQJS4DIN3Mk5BRW9ZH4mAufCvg_Ia24_w1phcRDesZvIVYHCqyx3tBnDnwTYp44TfOwPWZvx1oG3z_sR-z6y-Wvi2_N1c-v3y_OrxqvTTs1ctFJ7aUfR-97ZS3YxYhi9Lq1CrzohqVV2ILx0OteDGh7aBEXaAc1dJ0CfcTOdnU3Jf-dkSa3DuQxRkiYZ3JKaWlbI0Vb0dMX6E2ey_1nK1U53VkjKvXhgZr7NQ5uU8IaytY9TrICyx3gSyYqODofJphCTnVcITop3H1obheaq6G5_6G5u6qqF-pj9VclvZOowjWF8tz2K9Y_UamrWw
CitedBy_id crossref_primary_10_1109_JSEN_2023_3307877
crossref_primary_10_1115_1_4055390
crossref_primary_10_1016_j_taml_2024_100507
crossref_primary_10_1109_JSEN_2019_2949503
crossref_primary_10_1007_s13239_020_00454_2
Cites_doi 10.1186/1475-925X-10-33
10.1113/jphysiol.2003.040147
10.1139/apnm-2015-0204
10.1109/TBME.2007.900815
10.1034/j.1399-3003.2000.16f20.x
10.1016/j.medengphy.2010.06.010
10.1186/s12938-016-0302-y
10.1113/jphysiol.1961.sp006687
10.1016/j.sna.2017.06.007
10.1007/s10237-016-0836-8
10.1097/HJH.0000000000001645
10.1097/00004872-199917010-00001
10.1016/S0895-7061(02)02962-X
10.1038/hr.2017.32
10.1152/jappl.1963.18.3.557
10.1117/1.JBO.18.2.027004
10.1161/01.hyp.32.2.346
10.1109/JSEN.2017.2704903
10.1038/hr.2012.158
10.1161/01.CIR.80.6.1652
10.1146/annurev-fluid-122109-160730
10.1159/000025721
10.1038/hr.2016.111
10.1093/eurheartj/eht565
10.1186/s12938-019-0660-3
10.1109/JBHI.2017.2672899
10.1007/s40846-015-0086-8
10.1115/IMECE2018-86883
10.23919/ACC.2017.7963052
10.1201/b13568
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TB
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0W
7X8
DOI 10.1007/s10237-019-01165-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 1638
ExternalDocumentID 31073807
10_1007_s10237_019_01165_x
Genre Clinical Trial
Journal Article
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7Y
Z83
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TB
7TK
7XB
8FD
8FK
ABRTQ
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c375t-14613c1cffccb299a94fe0fc3592ac06d892e5a7cab3b0de9ba5ee4e9d2d662a3
IEDL.DBID AGYKE
ISSN 1617-7959
1617-7940
IngestDate Thu Sep 04 22:03:43 EDT 2025
Fri Jul 25 19:03:34 EDT 2025
Thu Apr 03 06:56:29 EDT 2025
Tue Jul 01 00:54:39 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 21 02:34:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Arterial wall radius
Model-based analysis
Arterial radius waveform
Arterial wall viscoelasticity
Tactile sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-14613c1cffccb299a94fe0fc3592ac06d892e5a7cab3b0de9ba5ee4e9d2d662a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-8264-1586
PMID 31073807
PQID 2222336970
PQPubID 54766
PageCount 10
ParticipantIDs proquest_miscellaneous_2231957105
proquest_journals_2222336970
pubmed_primary_31073807
crossref_citationtrail_10_1007_s10237_019_01165_x
crossref_primary_10_1007_s10237_019_01165_x
springer_journals_10_1007_s10237_019_01165_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
2019-Dec
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Dordrecht
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Teng, Zhang (CR24) 2007; 54
Van de Vosse, Stergiopulos (CR25) 2011; 43
Kelly, Hayward, Avolio, O’rourke (CR7) 1989; 80
Visontai, Lenard, Karlocai, Kollai (CR26) 2000; 16
Liu, Cheng, Chen, Sung, Hahn, Mukkamala (CR12) 2017; 5
Melo, Fernhall, Santos, Pinto, Pimenta, Sardinha, Santa-Clara (CR14) 2015; 41
Mutter, Cooke, Saleh, Gomez, Daskalopoulou (CR15) 2017; 40
Nejad, Carey, McMurtry, Hahn (CR16) 2017; 16
Lee (CR8) 2017; 22
CR31
Doonan, Mutter, Egiziano, Gomez, Daskalopoulou (CR3) 2013; 36
Lénárd, Fülöp, Visontai, Jokkel, Reneman, Kollai (CR10) 2000; 37
McEniery, Cockcroft, Roman, Franklin, Wilkinson (CR13) 2014; 35
Spronck (CR22) 2017; 40
Zhou, Xu, Hao, Xiao, Yao, Qi, Yao (CR32) 2019; 18
Greenfield JR, Griggs JR (CR5) 1963; 18
O’Rourke, Mancia (CR17) 1999; 17
Shin, Min (CR21) 2017; 16
Pannier, Avolio, Hoeks, Mancia, Takazawa (CR18) 2002; 15
Hurst, Logue, Schlant, Wenger (CR6) 1978
Leguy, Bosboom, Gelderblom, Hoeks, Van De Vosse (CR9) 2010; 32
Bergel (CR1) 1961; 156
Shi, Lawford, Hose (CR20) 2011; 10
Grabovskis, Marcinkevics, Rubins, Kviesis-Kipge (CR4) 2013; 18
Studinger, Lénárd, Kováts, Kocsis, Kollai (CR23) 2003; 550
Wang, Shen, Mei, Qian, Li, Hao (CR28) 2017; 17
CR29
Wang, Ansari, Slavin, Ward, Najarian, Oldham (CR30) 2017; 263
Lichtenstein, Safar, Mathieu, Poitevin, Levy (CR11) 1998; 32
Pereira, Correia, Cardoso (CR19) 2015; 35
Vlachopoulos, O’Rourke, Nichols (CR27) 2011
Buus, Carlsen, Khatir, Eiskjr, Mulvany, Skov (CR2) 2018; 36
X-F Teng (1165_CR24) 2007; 54
FN Van de Vosse (1165_CR25) 2011; 43
(1165_CR6) 1978
DH Bergel (1165_CR1) 1961; 156
Y Shi (1165_CR20) 2011; 10
NH Buus (1165_CR2) 2018; 36
P Studinger (1165_CR23) 2003; 550
C Vlachopoulos (1165_CR27) 2011
X Melo (1165_CR14) 2015; 41
H Shin (1165_CR21) 2017; 16
O Lichtenstein (1165_CR11) 1998; 32
BM Pannier (1165_CR18) 2002; 15
T Pereira (1165_CR19) 2015; 35
1165_CR29
R Kelly (1165_CR7) 1989; 80
MF O’Rourke (1165_CR17) 1999; 17
CM McEniery (1165_CR13) 2014; 35
AF Mutter (1165_CR15) 2017; 40
JC Greenfield JR (1165_CR5) 1963; 18
JC Lee (1165_CR8) 2017; 22
1165_CR31
J Liu (1165_CR12) 2017; 5
Z Lénárd (1165_CR10) 2000; 37
C Leguy (1165_CR9) 2010; 32
Z Visontai (1165_CR26) 2000; 16
RJ Doonan (1165_CR3) 2013; 36
A Grabovskis (1165_CR4) 2013; 18
B Spronck (1165_CR22) 2017; 40
S Zhou (1165_CR32) 2019; 18
SE Nejad (1165_CR16) 2017; 16
L Wang (1165_CR30) 2017; 263
D Wang (1165_CR28) 2017; 17
References_xml – volume: 10
  start-page: 33
  year: 2011
  ident: CR20
  article-title: Review of zero-D and 1-D models of blood flow in the cardiovascular system
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-10-33
– volume: 550
  start-page: 575
  year: 2003
  end-page: 583
  ident: CR23
  article-title: Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.040147
– year: 2011
  ident: CR27
  publication-title: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles
– volume: 41
  start-page: 266
  year: 2015
  end-page: 276
  ident: CR14
  article-title: The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2015-0204
– volume: 54
  start-page: 1490
  year: 2007
  end-page: 1498
  ident: CR24
  article-title: Theoretical study on the effect of sensor contact force on pulse transit time
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.900815
– volume: 16
  start-page: 1134
  year: 2000
  end-page: 1141
  ident: CR26
  article-title: Assessment of the viscosity of the pulmonary artery wall
  publication-title: Eur Respir J
  doi: 10.1034/j.1399-3003.2000.16f20.x
– volume: 32
  start-page: 957
  year: 2010
  end-page: 967
  ident: CR9
  article-title: Estimation of distributed arterial mechanical properties using a wave propagation model in a reverse way
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.06.010
– volume: 16
  start-page: 10
  year: 2017
  ident: CR21
  article-title: Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-016-0302-y
– ident: CR29
– volume: 156
  start-page: 458
  year: 1961
  end-page: 469
  ident: CR1
  article-title: The dynamic elastic properties of the arterial wall
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1961.sp006687
– volume: 263
  start-page: 198
  year: 2017
  end-page: 208
  ident: CR30
  article-title: Non-invasive vascular resistance monitoring with a piezoelectric sensor and photoplethysmogram
  publication-title: Sens Actuators A Phys
  doi: 10.1016/j.sna.2017.06.007
– volume: 16
  start-page: 549
  year: 2017
  end-page: 560
  ident: CR16
  article-title: Model-based cardiovascular disease diagnosis: a preliminary in-silico study
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-016-0836-8
– volume: 36
  start-page: 815
  year: 2018
  end-page: 823
  ident: CR2
  article-title: Arterial stiffness and peripheral vascular resistance in offspring of hypertensive parents: influence of sex and other confounders
  publication-title: J Hypertens
  doi: 10.1097/HJH.0000000000001645
– volume: 17
  start-page: 1
  year: 1999
  end-page: 4
  ident: CR17
  article-title: Arterial stiffness
  publication-title: J Hypertens
  doi: 10.1097/00004872-199917010-00001
– year: 1978
  ident: CR6
  publication-title: The heart: arteries and veins
– volume: 15
  start-page: 743
  year: 2002
  end-page: 753
  ident: CR18
  article-title: Methods and devices for measuring arterial compliance in humans
  publication-title: Am J Hypertens
  doi: 10.1016/S0895-7061(02)02962-X
– volume: 40
  start-page: 752
  year: 2017
  ident: CR22
  article-title: Patient-specific blood pressure correction technique for arterial stiffness: evaluation in a cohort on anti-angiogenic medication
  publication-title: Hypertens Res
  doi: 10.1038/hr.2017.32
– volume: 18
  start-page: 557
  year: 1963
  end-page: 559
  ident: CR5
  article-title: Relation between pressure and diameter in main pulmonary artery of man
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1963.18.3.557
– volume: 18
  start-page: 027004
  year: 2013
  ident: CR4
  article-title: Effect of probe contact pressure on the photoplethysmographic assessment of conduit artery stiffness
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.18.2.027004
– ident: CR31
– volume: 32
  start-page: 346
  year: 1998
  end-page: 350
  ident: CR11
  article-title: Static and dynamic mechanical properties of the carotid artery from normotensive and hypertensive rats
  publication-title: Hypertension
  doi: 10.1161/01.hyp.32.2.346
– volume: 17
  start-page: 3994
  year: 2017
  end-page: 4004
  ident: CR28
  article-title: Performance investigation of a wearable distributed-deflection sensor in arterial pulse waveform measurement
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2704903
– volume: 36
  start-page: 226
  year: 2013
  ident: CR3
  article-title: Differences in arterial stiffness at rest and after acute exercise between young men and women
  publication-title: Hypertens Res
  doi: 10.1038/hr.2012.158
– volume: 5
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR12
  article-title: Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability
  publication-title: IEEE J Transl Eng Health Med
– volume: 80
  start-page: 1652
  year: 1989
  end-page: 1659
  ident: CR7
  article-title: Noninvasive determination of age-related changes in the human arterial pulse
  publication-title: Circulation
  doi: 10.1161/01.CIR.80.6.1652
– volume: 43
  start-page: 467
  year: 2011
  end-page: 499
  ident: CR25
  article-title: Pulse wave propagation in the arterial tree
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160730
– volume: 37
  start-page: 103
  year: 2000
  end-page: 111
  ident: CR10
  article-title: Static versus dynamic distensibility of the carotid artery in humans
  publication-title: J Vasc Res
  doi: 10.1159/000025721
– volume: 40
  start-page: 146
  year: 2017
  ident: CR15
  article-title: A systematic review on the effect of acute aerobic exercise on arterial stiffness reveals a differential response in the upper and lower arterial segments
  publication-title: Hypertens Res
  doi: 10.1038/hr.2016.111
– volume: 35
  start-page: 1719
  year: 2014
  end-page: 1725
  ident: CR13
  article-title: Central blood pressure: current evidence and clinical importance
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht565
– volume: 18
  start-page: 41
  year: 2019
  ident: CR32
  article-title: A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-019-0660-3
– volume: 22
  start-page: 460
  year: 2017
  end-page: 469
  ident: CR8
  article-title: Investigation of viscoelasticity in the relationship between carotid artery blood pressure and distal pulse volume waveforms
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2672899
– volume: 35
  start-page: 555
  year: 2015
  end-page: 565
  ident: CR19
  article-title: Novel methods for pulse wave velocity measurement
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-015-0086-8
– volume: 10
  start-page: 33
  year: 2011
  ident: 1165_CR20
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-10-33
– volume: 16
  start-page: 10
  year: 2017
  ident: 1165_CR21
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-016-0302-y
– volume: 22
  start-page: 460
  year: 2017
  ident: 1165_CR8
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2672899
– volume: 5
  start-page: 1
  year: 2017
  ident: 1165_CR12
  publication-title: IEEE J Transl Eng Health Med
– volume: 16
  start-page: 1134
  year: 2000
  ident: 1165_CR26
  publication-title: Eur Respir J
  doi: 10.1034/j.1399-3003.2000.16f20.x
– volume: 36
  start-page: 815
  year: 2018
  ident: 1165_CR2
  publication-title: J Hypertens
  doi: 10.1097/HJH.0000000000001645
– volume: 18
  start-page: 027004
  year: 2013
  ident: 1165_CR4
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.18.2.027004
– volume: 40
  start-page: 146
  year: 2017
  ident: 1165_CR15
  publication-title: Hypertens Res
  doi: 10.1038/hr.2016.111
– volume: 156
  start-page: 458
  year: 1961
  ident: 1165_CR1
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1961.sp006687
– volume: 18
  start-page: 557
  year: 1963
  ident: 1165_CR5
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1963.18.3.557
– volume: 37
  start-page: 103
  year: 2000
  ident: 1165_CR10
  publication-title: J Vasc Res
  doi: 10.1159/000025721
– volume: 41
  start-page: 266
  year: 2015
  ident: 1165_CR14
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2015-0204
– volume: 80
  start-page: 1652
  year: 1989
  ident: 1165_CR7
  publication-title: Circulation
  doi: 10.1161/01.CIR.80.6.1652
– volume-title: The heart: arteries and veins
  year: 1978
  ident: 1165_CR6
– volume: 36
  start-page: 226
  year: 2013
  ident: 1165_CR3
  publication-title: Hypertens Res
  doi: 10.1038/hr.2012.158
– volume: 15
  start-page: 743
  year: 2002
  ident: 1165_CR18
  publication-title: Am J Hypertens
  doi: 10.1016/S0895-7061(02)02962-X
– ident: 1165_CR31
  doi: 10.1115/IMECE2018-86883
– volume: 54
  start-page: 1490
  year: 2007
  ident: 1165_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.900815
– volume: 16
  start-page: 549
  year: 2017
  ident: 1165_CR16
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-016-0836-8
– volume: 32
  start-page: 957
  year: 2010
  ident: 1165_CR9
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.06.010
– volume: 32
  start-page: 346
  year: 1998
  ident: 1165_CR11
  publication-title: Hypertension
  doi: 10.1161/01.hyp.32.2.346
– volume: 17
  start-page: 1
  year: 1999
  ident: 1165_CR17
  publication-title: J Hypertens
  doi: 10.1097/00004872-199917010-00001
– volume: 263
  start-page: 198
  year: 2017
  ident: 1165_CR30
  publication-title: Sens Actuators A Phys
  doi: 10.1016/j.sna.2017.06.007
– volume: 35
  start-page: 555
  year: 2015
  ident: 1165_CR19
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-015-0086-8
– volume: 550
  start-page: 575
  year: 2003
  ident: 1165_CR23
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.040147
– volume: 17
  start-page: 3994
  year: 2017
  ident: 1165_CR28
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2704903
– volume: 18
  start-page: 41
  year: 2019
  ident: 1165_CR32
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-019-0660-3
– volume: 40
  start-page: 752
  year: 2017
  ident: 1165_CR22
  publication-title: Hypertens Res
  doi: 10.1038/hr.2017.32
– volume: 43
  start-page: 467
  year: 2011
  ident: 1165_CR25
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160730
– volume: 35
  start-page: 1719
  year: 2014
  ident: 1165_CR13
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht565
– ident: 1165_CR29
  doi: 10.23919/ACC.2017.7963052
– volume-title: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles
  year: 2011
  ident: 1165_CR27
  doi: 10.1201/b13568
SSID ssj0020383
Score 2.2767603
Snippet Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring systems are...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1629
SubjectTerms Adult
Algorithms
Arteries - physiology
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Blood flow
Cardiovascular diseases
Cardiovascular system
Carotid artery
Data processing
Elasticity
Engineering
Exercise
Feature extraction
Female
Heart diseases
Heart Rate - physiology
Hemodynamics
Humans
Information processing
Male
Mathematical models
Microfluidics
Middle Aged
Models, Cardiovascular
Monitoring
Original Paper
Parameter estimation
Pilot Projects
Pulse
Pulse Wave Analysis
Sensors
Signal processing
Signal Processing, Computer-Assisted
Tactile sensors (robotics)
Theoretical and Applied Mechanics
Tracking
Vascular Resistance
Viscoelasticity
Viscosity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_8QPBF_LY6JYJvGmybpl18ERGnCPqksLeSpikIo51bh_rfe9dmGzLcc9M23F1yv-TufgdwEcYWjz55lxOZOI-6RcKVNQUPhJF4oFBSNcnjL6_x03v03Jd9d-E2dmmV0z2x2ajzytAd-XVIjkzEKvFvh5-cukZRdNW10FiF9QA9Ddl5t_c4O3D5LQ0nQXhOPbVd0YwrnQsFJV1StlAQS_791zEtoM2FSGnjgHrbsOWQI7trVb0DK7bchY22l-TPHpTU1WzAySvlTDuqEVYVrEnaRCtjwwm6QUYJG2hyDMEqq0fa0FU5a8t_x-yjnA__0gN8R1PyFjFw3jDNhh-DqmYNI-0-vPce3u6fuGumwI1IZM2pf7cwgSkKYzL0QVpFhfULI6QKtfHjvKtCK3VidCYyP7cq09LayKo8zOM41OIA1sqqtEfACgo1ZlTBm2QUt0UIYxORB4gFlMyi2INgKsnUOKZxangxSOccyST9FKWfNtJPvz24nL0zbHk2lo7uTBWUujU3TucW4sH57DGuFgqB6NJWExqDW45EVCU9OGwVO_sdAt2E6Pc9uJpqev7x_-dyvHwuJ7AZkpU1GTAdWKtHE3uKOKbOzhpj_QWN1ezP
  priority: 102
  providerName: ProQuest
Title Model-based analysis of arterial pulse signals for tracking changes in arterial wall parameters: a pilot study
URI https://link.springer.com/article/10.1007/s10237-019-01165-x
https://www.ncbi.nlm.nih.gov/pubmed/31073807
https://www.proquest.com/docview/2222336970
https://www.proquest.com/docview/2231957105
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BV0hw4LGwEFgqI3EDrxI7jmNuLWp3BaJCiErlFDmOI62o0mqbisevZyaPdmEBaS_JIY6TOOPM58w33wC8FInHpU-RchIT53Faam68K3kkncIFhVGmIY9_mCVn8_jdQi26pLBNz3bvQ5LNl_pSspuQRJMkfk-UKI7I8QD7M-kADkanX95PdgutsJXfJOjOqZZ2lyzz915-d0hXUOaVCGnjeKb3YN7fcss3-XqyrfMT9_MPNcfrPtN9uNshUTZqTecB3PDVIdxqa1P-OIQ7l5QKH0JFNdOWnHxewWwnZMJWJWsooWjDbL1FJ8uIDoIGzRAKs_rCOvoRz9rk4g07r_bNv9klnmOJGkb6nm-YZevz5apmjd7tI5hPJ5_fnvGuVAN3UquaU3Vw6SJXls7l6OGsiUsflk4qI6wLkyI1wiurnc1lHhbe5FZ5H3tTiCJJhJVHMKhWlX8CrKRAZk75wTqnqDACJK9lESHSMCqPkwCi_n1lrtMxp3Iay2yvwEyjmuGoZs2oZt8DeLU7Z92qePy39XFvBlk3ozeZICAlE6PDAF7sDuNcpACLrfxqS23wg6YQs6kAHrfms7scwmhN4v4BvO5NYd_5v-_l6fWaP4Pbgqyp4dscw6C-2PrniJrqfAg39ULjNp2eDnHCTMfj2bCbOLgfT2YfP-HRuRj9AlM6EfA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYoWl7mQb76vhYkNjTFq1NmvaCNCFgoOPrNE0g8dalaSohndob1xPwT_E3YvfjTgiNN56bpJHtxHZs_wywKSKHrk_W5wQmzsN-HnPtbM4DaRU6FFrpOnn8dBgNzsOjC3WxAHddLQylVXZ3Yn1RZ6WlN_IfghSZjHTsb4__ceoaRdHVroVGIxbH7vYaXbbJz8NfyN-vQhzsn-0NeNtVgFsZq4pTI2tpA5vn1qZ4GRsd5s7PrVRaGOtHWV8Lp0xsTSpTP3M6Ncq50OlMZFEkjMR1X8BiSBWtPVjc3R_-_jNz8fwG-JOcBk5dvNsynbZYT0hK86T8pCBS_OahKnxk3z6KzdYq7-AtvGltVbbTCNcSLLhiGV423Stv30FBfdRGnPRgxkwLbsLKnNVpoijXbDxFxcsoRQSFnKF5zKorY-lxnjUFxxN2WcyHX5sRzjGULkaYn1vMsPHlqKxYjYH7Hs6fhdAfoFeUhfsELKfgZko1w3FKkWI0mlwsswCtD63SMPIg6CiZ2BbbnFpsjJI5KjNRP0HqJzX1kxsPvs3mjBtkjydHr3YMStpTPknmMunBxuwznk8KupjClVMag5ecQjtOefCxYezsd2haxwT478H3jtPzxf-_l89P7-ULvBqcnZ4kJ4fD4xV4LUji6vybVehVV1O3hlZUla63osvg73Oflnu5zy2T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hEKg9oPJsYEuNxA0sEjtO1r2t2q7oC3FgJW6R49jSSqvsCrIC_j0zSfaBeEg9x3GizNjzOfPNNwAnInF49Cm6nMTEedz1KdfOeh5Jq_BAoZWuyeP_LpOLQfz7Rt0sVfHXbPdZSrKpaSCVprI6nxT-fKnwTUiiTBLXJ0oURxS5httxRJ4-EL35kStshDgJxHPqqt2Wzbw-x_PQ9AJvvsiV1iGo_wk2W-zIeo2xt2DFlduw3nSTfNyGj0vagjtQUpezEacoVTDTSo-wsWc1iRO9jk2mGBYZETjQBRmCV1bdGku_zllTDnzHhuVi-L0Z4T2GyFykyPmNGTYZjsYVqxVqd2HQ_3n9_YK3zRW4lamqOPXzljay3lubY0wyOvYu9FYqLYwNk6KrhVMmtSaXeVg4nRvlXOx0IYokEUbuwWo5Lt1nYJ5SjzlV9KY55XER0rhUFhFiA63yOAkgmn3XzLbK49QAY5QtNJPJFhnaIqttkT0EcDq_Z9Lobrw7ujMzV9auwbtMEPSRiU7DAI7nl3H1UErElG48pTG4BSlEWSqA_cbM88ch8E1Jjj-As5ndF5O__S4H_zf8K2xc_ehnf39d_jmED4LcsSbLdGC1up26Lwh5qvyo9uoncoD1-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+analysis+of+arterial+pulse+signals+for+tracking+changes+in+arterial+wall+parameters%3A+a+pilot+study&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Wang%2C+Dan&rft.au=Reynolds%2C+Leryn&rft.au=Alberts%2C+Thomas&rft.au=Vahala%2C+Linda&rft.date=2019-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=18&rft.issue=6&rft.spage=1629&rft.epage=1638&rft_id=info:doi/10.1007%2Fs10237-019-01165-x&rft.externalDocID=10_1007_s10237_019_01165_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon