A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1
Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB 1 ). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence inten...
Saved in:
Published in | Journal of fluorescence Vol. 33; no. 4; pp. 1641 - 1650 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB
1
). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB
1
-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB
1
, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB
1
was 0.03 ng/mL. The recoveries of OTA and AFB
1
were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process. |
---|---|
AbstractList | Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process.Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process. Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process. Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB ). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB -Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB , the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB was 0.03 ng/mL. The recoveries of OTA and AFB were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process. Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB 1 ). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB 1 -Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB 1 , the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB 1 was 0.03 ng/mL. The recoveries of OTA and AFB 1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process. |
Author | Zhao, Luyang Liu, Yong Liang, Xiujun Jin, Huali Wei, Min |
Author_xml | – sequence: 1 givenname: Luyang surname: Zhao fullname: Zhao, Luyang organization: College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology – sequence: 2 givenname: Xiujun surname: Liang fullname: Liang, Xiujun organization: College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology – sequence: 3 givenname: Yong surname: Liu fullname: Liu, Yong organization: College of Chemistry and Chemical Engineering, Henan University – sequence: 4 givenname: Min surname: Wei fullname: Wei, Min email: wei_min80@163.com organization: College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology – sequence: 5 givenname: Huali surname: Jin fullname: Jin, Huali organization: College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36806047$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URNuFF-CALHHhEhjHju0c0y4FpKo9AGfLSSaQymsvtoPgypPjJQtIPfTksfR94_H85-TEB4-EPGfwmgGoN4mBbpsK6roCDopVzSNyxhrFK9G24qTU0PAKGmhPyXlKdwDQaqGfkFMuNUgQ6oz86uhN-I6OXrklREwD-ky7fbYJfQqRXpRipMHT7WJd5WyPrty3N0WzPqQclyEvEelU2I_zbnHZegxLolvMOOS5mGGit8PXaHP4MXvaUetH2k3ueL9gT8njybqEz47nhny-evvp8n11ffvuw2V3XQ1cNbliXPV2lBOXI1MgUHJUA4JsUepaSDEx5MJqNWk-9KrtbY1S9BJ7besiSL4hr9a--xi-LZiy2c3lv86tE5taKd0qUbe8oC_voXdhib5MZ2otQAqpymo35MWRWvodjmYf552NP83f7RagXoEhhpQiTv8QBuYQoVkjNCVC8ydCc-iq70nDnO1hkzna2T2s8lVN5R3_BeP_sR-wfgNMd68F |
CitedBy_id | crossref_primary_10_1007_s10895_024_03668_y crossref_primary_10_1016_j_snb_2024_136425 crossref_primary_10_1016_j_cej_2025_159481 crossref_primary_10_1016_j_foodcont_2025_111200 crossref_primary_10_1016_j_snb_2025_137471 crossref_primary_10_3390_molecules28237889 |
Cites_doi | 10.1016/j.foodchem.2022.132265 10.1016/j.bios.2021.113537 10.1016/j.bios.2015.04.003 10.1016/j.snb.2018.04.150 10.1016/j.snb.2016.05.112 10.1016/j.snb.2017.10.083 10.1016/j.foodchem.2018.10.130 10.1016/j.talanta.2019.120131 10.1021/ac201057w 10.1016/j.bios.2019.111814 10.1016/j.foodchem.2020.128122 10.1016/j.bios.2010.12.036 10.1016/j.foodchem.2022.133983 10.1007/s12161-020-01875-4 10.1016/j.bios.2018.02.053 10.1021/acsami.8b01431 10.1021/jf4036029 10.1016/j.foodcont.2019.01.014 10.1016/j.talanta.2019.120599 10.1007/s12161-013-9723-4 10.1016/j.snb.2018.05.048 10.3920/wmj2018.2398 10.1016/j.talanta.2018.11.013 10.1016/j.foodchem.2020.128521 10.1007/s00216-021-03723-8 10.1016/j.electacta.2017.05.089 10.1016/j.snb.2020.128356 10.1016/j.aca.2015.05.041 10.1039/c4ay02290d 10.1016/j.scitotenv.2013.09.062 10.1016/j.aca.2022.339566 10.1039/c9an02447f 10.1016/j.bios.2010.09.032 10.1021/jf202614h 10.1039/d0cc00882f 10.1016/j.foodchem.2020.127827 10.1088/1361-6528/aaa3a3 10.1007/s00604-019-4089-y 10.1016/j.trac.2021.116325 10.3390/chemosensors8030087 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s10895-022-03071-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-4994 |
EndPage | 1650 |
ExternalDocumentID | 36806047 10_1007_s10895_022_03071_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Innovative Funds Plan of Henan University of Technology grantid: 2021ZKCJ13; 2021ZKCJ13 – fundername: the Key Scientific and Technological Project of Henan Province grantid: 212102310001 – fundername: Special Project for Collaborative Innovation of Zhengzhou grantid: 21ZZXTCX15 – fundername: the Innovative Funds Plan of Henan University of Technology grantid: 2021ZKCJ13 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7X Z7Y Z83 Z87 Z88 Z8O Z8P Z8Q Z8R Z8W Z91 Z92 ZMTXR ZOVNA ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c375t-137bad6f36d1704e63e7ce069e682464f1e34a87f83cb79ba2e64b6eb8a217063 |
IEDL.DBID | U2A |
ISSN | 1053-0509 1573-4994 |
IngestDate | Fri Jul 11 09:40:13 EDT 2025 Fri Jul 25 11:07:10 EDT 2025 Sat Aug 02 01:41:10 EDT 2025 Tue Jul 01 01:39:10 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Fri Feb 21 02:42:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Simultaneous detection Dual-labeled DNA nanostructure Aptasensor DNA strand replacement reaction |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-137bad6f36d1704e63e7ce069e682464f1e34a87f83cb79ba2e64b6eb8a217063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 36806047 |
PQID | 2840646705 |
PQPubID | 2043853 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2778974293 proquest_journals_2840646705 pubmed_primary_36806047 crossref_primary_10_1007_s10895_022_03071_5 crossref_citationtrail_10_1007_s10895_022_03071_5 springer_journals_10_1007_s10895_022_03071_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands |
PublicationTitle | Journal of fluorescence |
PublicationTitleAbbrev | J Fluoresc |
PublicationTitleAlternate | J Fluoresc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Huang, Chen, Zhang, Zhu, Liu, Wang, Wang, Hu, Suo, Wang (CR32) 2018; 269 Xue, Selvaraj, Zhao, Dong, Liu, Liu, Li (CR7) 2014; 7 Wang, Yan, Li, Wang, Ji, Sun (CR11) 2013; 61 Khoshbin, Abnous, Taghdisi, Verdian, Sameiyan, Ramezani, Alibolandi (CR8) 2022 Wu, Ma, Zhao, Chen, Deng (CR34) 2019; 277 Song, Ding, Pu, Zhang, Sun, Yin, Wei, Liu (CR25) 2021 Wei, Zhao, Xie (CR40) 2020 Sun, Zhao, Xie, Liu (CR5) 2021 CR17 Liu, Li, Cai, Deng, Ding, Liu, Zhu, Wang, Liu, Liang, Zheng, Li (CR33) 2018; 10 Van Pamel, Verbeken, Vlaemynck, De Boever, Daeseleire (CR4) 2011; 59 CR37 Guo, Hou, Waterhouse, Hou, Ai, Li (CR39) 2019 Kolpin, Schenzel, Meyer, Phillips, Hubbard, Scott, Bucheli (CR3) 2014; 470 Goud, Catanante, Hayat, Satyanarayana, Gobi, Marty (CR35) 2016; 235 Suo, Liang, Jin, He, Wei (CR19) 2021; 413 Iliuk, Hu, Tao (CR14) 2011; 83 Lerdsri, Chananchana, Upan, Sridara, Jakmunee (CR38) 2020 Huang, He, Li (CR20) 2018; 109 Zhao, Tian, Shen, Liu, Shi, Wang, Yang (CR10) 2019; 195 Yin, Liu, Wang, Deng, Lin, Gao (CR26) 2018; 256 Bader, Cockroft (CR27) 2020; 56 Zhu, Kou, Xu, Han, Yang, Huang, Chen, Chi, Lin (CR28) 2018; 270 Sun, Zhao, Xie, Liu (CR1) 2019; 100 Gong, Zhou, Li, Chai, Xiang, Yuan (CR21) 2015; 71 Xiong, Wang, Xie, Li, Yun, Yang (CR22) 2021 CR9 Khoshbin, Moeenfard, Abnous, Taghdisi (CR16) 2023 Seok, Byun, Shim, Kim (CR12) 2015; 886 CR24 Zhu, Liu, Li, Shen, Ma, Liu, You (CR13) 2020 Goud, Hayat, Catanante, Satyanarayana, Gobi, Marty (CR36) 2017; 244 Han, Fang, Sha, Jalalah, Al-Assiri, Harraz, Cao (CR23) 2021 Liu, Cao, Zhao, Wang, Fang, Wang (CR6) 2021; 14 Lai, Guo, Wu, Chen, Cai, Wu, Wang, Song, Tang (CR31) 2020; 145 Bonel, Vidal, Duato, Castillo (CR29) 2011; 26 Tittlemier, Cramer, Dall'Asta, Iha, Lattanzio, Malone, Maragos, Solfrizzo, Stranska-Zachariasova, Stroka (CR2) 2019; 12 Ren, Pang, Ma, Liang, Wei, Suo, He, Liu (CR18) 2022 Yang, Wang, Marty, Yang (CR15) 2011; 26 Wang, Hu, Pei, Sun, Wang, Song, Yin, Deng, Li, Zhang (CR30) 2015; 7 C Liu (3071_CR6) 2021; 14 J Lerdsri (3071_CR38) 2020 DW Kolpin (3071_CR3) 2014; 470 M Guo (3071_CR39) 2019 Z Khoshbin (3071_CR16) 2023 F Zhao (3071_CR10) 2019; 195 X Gong (3071_CR21) 2015; 71 X Song (3071_CR25) 2021 E Van Pamel (3071_CR4) 2011; 59 R Huang (3071_CR20) 2018; 109 AB Iliuk (3071_CR14) 2011; 83 B Han (3071_CR23) 2021 M Wei (3071_CR40) 2020 SA Tittlemier (3071_CR2) 2019; 12 X Xue (3071_CR7) 2014; 7 K Wu (3071_CR34) 2019; 277 3071_CR37 3071_CR17 Y Wang (3071_CR30) 2015; 7 C Yang (3071_CR15) 2011; 26 Y-K Wang (3071_CR11) 2013; 61 R Liu (3071_CR33) 2018; 10 KY Goud (3071_CR35) 2016; 235 KY Goud (3071_CR36) 2017; 244 L Bonel (3071_CR29) 2011; 26 3071_CR9 Y Seok (3071_CR12) 2015; 886 W Ren (3071_CR18) 2022 A Bader (3071_CR27) 2020; 56 S Sun (3071_CR5) 2021 X Zhu (3071_CR28) 2018; 270 3071_CR24 Z Khoshbin (3071_CR8) 2022 S Sun (3071_CR1) 2019; 100 Z Xiong (3071_CR22) 2021 W Lai (3071_CR31) 2020; 145 C Zhu (3071_CR13) 2020 L Huang (3071_CR32) 2018; 269 Z Suo (3071_CR19) 2021; 413 J Yin (3071_CR26) 2018; 256 |
References_xml | – year: 2022 ident: CR8 article-title: An ultra-sensitive dual-responsive aptasensor with combination of liquid crystal and intercalating dye molecules: A food toxin case study publication-title: Food Chem doi: 10.1016/j.foodchem.2022.132265 – year: 2021 ident: CR25 article-title: Application of the Dimeric G-Quadruplex and toehold-mediated strand displacement reaction for fluorescence biosensing of ochratoxin A publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2021.113537 – volume: 71 start-page: 98 year: 2015 end-page: 102 ident: CR21 article-title: RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells publication-title: Biosen Bioelectron doi: 10.1016/j.bios.2015.04.003 – ident: CR37 – volume: 269 start-page: 79 year: 2018 end-page: 87 ident: CR32 article-title: ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample publication-title: Sens Actuators B doi: 10.1016/j.snb.2018.04.150 – volume: 235 start-page: 466 year: 2016 end-page: 473 ident: CR35 article-title: Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages publication-title: Sens Actuators B doi: 10.1016/j.snb.2016.05.112 – volume: 256 start-page: 573 year: 2018 end-page: 579 ident: CR26 article-title: Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification publication-title: Sens Actuators B doi: 10.1016/j.snb.2017.10.083 – volume: 277 start-page: 273 year: 2019 end-page: 278 ident: CR34 article-title: Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification publication-title: Food Chem doi: 10.1016/j.foodchem.2018.10.130 – year: 2019 ident: CR39 article-title: A simple aptamer-based fluorescent aflatoxin B1 sensor using humic acid as quencher publication-title: Talanta doi: 10.1016/j.talanta.2019.120131 – volume: 83 start-page: 4440 issue: 12 year: 2011 end-page: 4452 ident: CR14 article-title: Aptamer in Bioanalytical Applications publication-title: Anal Chem doi: 10.1021/ac201057w – year: 2020 ident: CR13 article-title: Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2019.111814 – year: 2021 ident: CR22 article-title: Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine publication-title: Food Chem doi: 10.1016/j.foodchem.2020.128122 – volume: 26 start-page: 3254 issue: 7 year: 2011 end-page: 3259 ident: CR29 article-title: An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.12.036 – year: 2023 ident: CR16 article-title: Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control publication-title: Food Chem doi: 10.1016/j.foodchem.2022.133983 – volume: 14 start-page: 331 issue: 2 year: 2021 end-page: 343 ident: CR6 article-title: A Novel Multi-purpose MIP for SPE-HPLC and QCM Detection of Carbaryl Residues in Foods publication-title: Food Anal Methods doi: 10.1007/s12161-020-01875-4 – volume: 109 start-page: 27 year: 2018 end-page: 34 ident: CR20 article-title: Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers publication-title: Biosen Bioelectron doi: 10.1016/j.bios.2018.02.053 – volume: 10 start-page: 14447 issue: 17 year: 2018 end-page: 14453 ident: CR33 article-title: TiO2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b01431 – volume: 61 start-page: 10948 issue: 46 year: 2013 end-page: 10953 ident: CR11 article-title: Simultaneous Quantitative Determination of Multiple Mycotoxins in Cereal and Feedstuff Samples by a Suspension Array Immunoassay publication-title: Journal of Agricultural and Food Chem doi: 10.1021/jf4036029 – volume: 100 start-page: 183 year: 2019 end-page: 188 ident: CR1 article-title: Photocatalytic degradation of aflatoxin B by activated carbon supported TiO catalyst publication-title: Food Control doi: 10.1016/j.foodcont.2019.01.014 – year: 2020 ident: CR40 article-title: A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection publication-title: Talanta doi: 10.1016/j.talanta.2019.120599 – volume: 7 start-page: 690 issue: 3 year: 2014 end-page: 696 ident: CR7 article-title: Simultaneous Determination of Aflatoxins and Ochratoxin A in Bee Pollen by Low-Temperature Fat Precipitation and Immunoaffinity Column Cleanup Coupled with LC-MS/MS publication-title: Food Anal Methods doi: 10.1007/s12161-013-9723-4 – volume: 270 start-page: 263 year: 2018 end-page: 269 ident: CR28 article-title: Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet publication-title: Sens Actuators B doi: 10.1016/j.snb.2018.05.048 – volume: 12 start-page: 3 issue: 1 year: 2019 end-page: 29 ident: CR2 article-title: Developments in mycotoxin analysis: an update for 2017–2018 publication-title: World Mycotoxin J doi: 10.3920/wmj2018.2398 – volume: 195 start-page: 55 year: 2019 end-page: 61 ident: CR10 article-title: A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1 publication-title: Talanta doi: 10.1016/j.talanta.2018.11.013 – ident: CR17 – year: 2021 ident: CR5 article-title: Reduction of aflatoxin B by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil publication-title: Food Chem doi: 10.1016/j.foodchem.2020.128521 – volume: 413 start-page: 7587 issue: 30 year: 2021 end-page: 7595 ident: CR19 article-title: A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB publication-title: Anal Bioanal Chem doi: 10.1007/s00216-021-03723-8 – ident: CR9 – volume: 244 start-page: 96 year: 2017 end-page: 103 ident: CR36 article-title: An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.05.089 – year: 2020 ident: CR38 article-title: Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles publication-title: Sens Actuators B doi: 10.1016/j.snb.2020.128356 – volume: 886 start-page: 182 year: 2015 end-page: 187 ident: CR12 article-title: A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme publication-title: Anal Chim Acta doi: 10.1016/j.aca.2015.05.041 – volume: 7 start-page: 1849 issue: 5 year: 2015 end-page: 1854 ident: CR30 article-title: Selection of phage-displayed minotopes of ochratoxin A and its detection in cereal by ELISA publication-title: Anal Methods doi: 10.1039/c4ay02290d – volume: 470 start-page: 669 year: 2014 end-page: 676 ident: CR3 article-title: Mycotoxins: Diffuse and point source contributions of natural contaminants of emerging concern to streams publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.09.062 – year: 2022 ident: CR18 article-title: A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2022.339566 – volume: 145 start-page: 2420 issue: 6 year: 2020 end-page: 2424 ident: CR31 article-title: A novel colorimetric immunoassay based on enzyme-regulated instant generation of Turnbull's blue for the sensitive determination of ochratoxin A publication-title: Analyst doi: 10.1039/c9an02447f – volume: 26 start-page: 2724 issue: 5 year: 2011 end-page: 2727 ident: CR15 article-title: Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.09.032 – volume: 59 start-page: 9747 issue: 18 year: 2011 end-page: 9755 ident: CR4 article-title: Ultrahigh-Performance Liquid Chromatographic-Tandem Mass Spectrometric Multimycotoxin Method for Quantitating 26 Mycotoxins in Maize Silage publication-title: J Agric Food Chem doi: 10.1021/jf202614h – ident: CR24 – volume: 56 start-page: 5135 issue: 38 year: 2020 end-page: 5138 ident: CR27 article-title: Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices publication-title: Chem Commun doi: 10.1039/d0cc00882f – year: 2021 ident: CR23 article-title: Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A publication-title: Food Chem doi: 10.1016/j.foodchem.2020.127827 – volume: 26 start-page: 2724 issue: 5 year: 2011 ident: 3071_CR15 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.09.032 – volume: 195 start-page: 55 year: 2019 ident: 3071_CR10 publication-title: Talanta doi: 10.1016/j.talanta.2018.11.013 – volume: 59 start-page: 9747 issue: 18 year: 2011 ident: 3071_CR4 publication-title: J Agric Food Chem doi: 10.1021/jf202614h – year: 2020 ident: 3071_CR40 publication-title: Talanta doi: 10.1016/j.talanta.2019.120599 – volume: 7 start-page: 1849 issue: 5 year: 2015 ident: 3071_CR30 publication-title: Anal Methods doi: 10.1039/c4ay02290d – ident: 3071_CR24 doi: 10.1088/1361-6528/aaa3a3 – volume: 277 start-page: 273 year: 2019 ident: 3071_CR34 publication-title: Food Chem doi: 10.1016/j.foodchem.2018.10.130 – volume: 100 start-page: 183 year: 2019 ident: 3071_CR1 publication-title: Food Control doi: 10.1016/j.foodcont.2019.01.014 – year: 2022 ident: 3071_CR18 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2022.339566 – ident: 3071_CR17 doi: 10.1007/s00604-019-4089-y – year: 2022 ident: 3071_CR8 publication-title: Food Chem doi: 10.1016/j.foodchem.2022.132265 – volume: 235 start-page: 466 year: 2016 ident: 3071_CR35 publication-title: Sens Actuators B doi: 10.1016/j.snb.2016.05.112 – volume: 83 start-page: 4440 issue: 12 year: 2011 ident: 3071_CR14 publication-title: Anal Chem doi: 10.1021/ac201057w – year: 2021 ident: 3071_CR25 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2021.113537 – year: 2019 ident: 3071_CR39 publication-title: Talanta doi: 10.1016/j.talanta.2019.120131 – volume: 269 start-page: 79 year: 2018 ident: 3071_CR32 publication-title: Sens Actuators B doi: 10.1016/j.snb.2018.04.150 – year: 2020 ident: 3071_CR38 publication-title: Sens Actuators B doi: 10.1016/j.snb.2020.128356 – volume: 145 start-page: 2420 issue: 6 year: 2020 ident: 3071_CR31 publication-title: Analyst doi: 10.1039/c9an02447f – volume: 244 start-page: 96 year: 2017 ident: 3071_CR36 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.05.089 – year: 2021 ident: 3071_CR5 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.128521 – volume: 270 start-page: 263 year: 2018 ident: 3071_CR28 publication-title: Sens Actuators B doi: 10.1016/j.snb.2018.05.048 – volume: 886 start-page: 182 year: 2015 ident: 3071_CR12 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2015.05.041 – volume: 256 start-page: 573 year: 2018 ident: 3071_CR26 publication-title: Sens Actuators B doi: 10.1016/j.snb.2017.10.083 – volume: 10 start-page: 14447 issue: 17 year: 2018 ident: 3071_CR33 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b01431 – volume: 26 start-page: 3254 issue: 7 year: 2011 ident: 3071_CR29 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.12.036 – ident: 3071_CR9 doi: 10.1016/j.trac.2021.116325 – year: 2020 ident: 3071_CR13 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2019.111814 – volume: 71 start-page: 98 year: 2015 ident: 3071_CR21 publication-title: Biosen Bioelectron doi: 10.1016/j.bios.2015.04.003 – year: 2021 ident: 3071_CR23 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.127827 – volume: 7 start-page: 690 issue: 3 year: 2014 ident: 3071_CR7 publication-title: Food Anal Methods doi: 10.1007/s12161-013-9723-4 – year: 2023 ident: 3071_CR16 publication-title: Food Chem doi: 10.1016/j.foodchem.2022.133983 – volume: 12 start-page: 3 issue: 1 year: 2019 ident: 3071_CR2 publication-title: World Mycotoxin J doi: 10.3920/wmj2018.2398 – volume: 109 start-page: 27 year: 2018 ident: 3071_CR20 publication-title: Biosen Bioelectron doi: 10.1016/j.bios.2018.02.053 – ident: 3071_CR37 doi: 10.3390/chemosensors8030087 – volume: 470 start-page: 669 year: 2014 ident: 3071_CR3 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.09.062 – year: 2021 ident: 3071_CR22 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.128122 – volume: 56 start-page: 5135 issue: 38 year: 2020 ident: 3071_CR27 publication-title: Chem Commun doi: 10.1039/d0cc00882f – volume: 14 start-page: 331 issue: 2 year: 2021 ident: 3071_CR6 publication-title: Food Anal Methods doi: 10.1007/s12161-020-01875-4 – volume: 61 start-page: 10948 issue: 46 year: 2013 ident: 3071_CR11 publication-title: Journal of Agricultural and Food Chem doi: 10.1021/jf4036029 – volume: 413 start-page: 7587 issue: 30 year: 2021 ident: 3071_CR19 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-021-03723-8 |
SSID | ssj0009848 |
Score | 2.3929663 |
Snippet | Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1641 |
SubjectTerms | Aflatoxin B1 - chemistry Aflatoxins Analytical Chemistry Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedicine Biophysics Biotechnology DNA - chemistry Energy transfer Fluorescence Fluorescent Dyes - chemistry Limit of Detection Nanostructure Nanostructures |
Title | A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1 |
URI | https://link.springer.com/article/10.1007/s10895-022-03071-5 https://www.ncbi.nlm.nih.gov/pubmed/36806047 https://www.proquest.com/docview/2840646705 https://www.proquest.com/docview/2778974293 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK0QvqJTXQqmMxA0iJfEzx7TbpQKxHGClcopsx1ErRU612a167i9nnMduUQGJW6LYTuTPzow133wD8J7T0spQ0CSVlY5YKXHPqdhFViWUG01LykLu8Ne5OFuwz-f8fEgKa0e2-xiS7P7Ud5LdVJdNnEZhYSYRfwi7HM_ugci1SPOt1K5ifQIcD8y0OBtSZf48xu_m6J6PeS8-2pmd2T48GfxFkvcAP4UHzh_A45OxTNsBPOo4nLZ9Brc5mTfXriazet0se5kmkl-t0E75tlmSY7woSePJdK3rCNFHi1OS6Ry7ad_0QrLrpSPoxpLvl4FpqL1r1i2ZulVH2PKkqcg3exEi8zeXnuRE-5LkVT3cHyfPYTE7_XFyFg0lFiJLJQ-F6KXRpaioKBEw5gR10rpYZE6olAlWJQ7BUrJS1BqZGZ06wYxwRuk0CO_QF7DjG-9eAVG6SlKheWZjzVyaKfREjJFOJZXQRqgJJONMF3bQHw9lMOpiq5wc0CkQnaJDp-AT-LDpc9Wrb_yz9eEIYDHsxLZA84tel5AxPn63eYwYhcBIP41FKqXCcxV6PhN42QO_eR0VKugLyQl8HFfCdvC_f8vr_2v-BvZCHfueB3wIOwi5e4vezsocwW7-6eeX06Nukf8C8lH0iw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCMproYCR4ASREjuxnQOHtMtqS9vlQFfqLdiOIypFTrXZ5XHlt_BDGeexCyogcegtkR8Z-RtnPsvzAHiRsMIIX9CEilIFcSFwz8nQBkZGLNGKFSz2scMnMz6dx-_OkrMt-DHEwrTe7sOVZPun_iXYTbbRxDTwihkFgyvlkf32BQ9qzZvDMaL6ktLJ29ODadDXEggME4mvuC60KnjJeIGSxZYzK4wNeWq5pDGPy8iiVFKUkhktUq2o5bHmVktFfYYZhvNeg-tIPqTfO3OabVL7yrgLuEu8J1yY9qE5f5b5d_N3idNeuo9tzdzkNtzq-SnJOoW6A1vW7cLOwVAWbhdutD6jprkL3zMyqz_bikyqVb3o0kKR7GKJdtE19YLs40NBakfGK1UFqG1o4QoynuEw5eouce1qYQnSZvLh3Hs2KmfrVUPGdtk6iDlSl-S9-eQ9Ab6eO5IR5QqSlVX_vh_dg_mVwHAftl3t7EMgUpUR5SpJTahiS1OJzEdrYWVUcqW5HEE0rHRu-nznvuxGlW8yNXt0ckQnb9HJkxG8Wo-56LJ9_LP33gBg3u_8JkdzjyyPixCbn6-bESN_EdMtY06FkHiOQ6Y1ggcd8OvPMS59PiMxgteDJmwm_7ssj_6v-zPYmZ6eHOfHh7Ojx3CTInPrfJD3YBvht0-QaS3101bRCXy86p31E44eL40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOW1UMBIcIKoie3YzoFD2mXVUliQYKXegp04olLkrDa7PK78In4i4zx2QQUkDr0l8iMjf-PMWJ75BuBJzIpc-oImVJY64IXEPadCG-QqYrHRrGDc5w6_mYrDGX91Ep9swY8hF6aNdh-uJLucBs_S5JZ786Lc-yXxTbWZxTTwShoFQ1jlsf32BQ9tzYujMSL8lNLJyw8Hh0FfVyDImYx99XVpdCFKJgqUklvBrMxtKBIrFOWCl5FFCZUsFcuNTIymVnAjrFGaerYZhvNegIvcZx_jDprRdEPzq3iXfBf7qLgw6dN0_izz76bwjH975m62NXmT63Ct91VJ2inXDdiybgeuHAwl4nbgUhs_mjc34XtKpvVnW5FJtaoXHUUUSedLtJGuqRdkHx8KUjsyXukqQM1Da1eQ8RSHaVd3JLarhSXoQpP3pz7KUTtbrxoytss2WMyRuiRv808-KuDrqSMp0a4gaVn17_vRLZidCwy3YdvVzt4FonQZUaHjJA81tzRR6AUZI62KSqGNUCOIhpXO8p773JfgqLINa7NHJ0N0shadLB7Bs_WYecf88c_euwOAWf8XaDI0_ejxCRli8-N1M2LkL2W6ZcyolArPdOh1jeBOB_z6c0woz20kR_B80ITN5H-X5d7_dX8El9-NJ9nro-nxfbhK0YnrwpF3YRvRtw_Q6Vqah62eE_h43hvrJ0E0M8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fluorescent+Aptasensor+Based+on+Dual-labeled+DNA+Nanostructure+for+Simultaneous+Detection+of+Ochratoxin+A+and+Aflatoxin+B1&rft.jtitle=Journal+of+fluorescence&rft.au=Zhao%2C+Luyang&rft.au=Liang%2C+Xiujun&rft.au=Liu%2C+Yong&rft.au=Wei%2C+Min&rft.date=2023-07-01&rft.eissn=1573-4994&rft.volume=33&rft.issue=4&rft.spage=1641&rft_id=info:doi/10.1007%2Fs10895-022-03071-5&rft_id=info%3Apmid%2F36806047&rft.externalDocID=36806047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-0509&client=summon |