Insulin resistance and cardiometabolic indexes: comparison of concordance in working-age subjects with overweight and obesity
Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance. Methods The evaluation of IR...
Saved in:
Published in | Endocrine Vol. 77; no. 2; pp. 231 - 241 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance.
Methods
The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).
Results
The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.
Conclusion
With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk.
Graphical abstract |
---|---|
AbstractList | The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance.
The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).
The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.
With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract. Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance. Methods The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years). Results The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used. Conclusion With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance.PURPOSEThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance.The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).METHODSThe evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.RESULTSThe prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract.CONCLUSIONWith a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract. PurposeThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance.MethodsThe evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).ResultsThe prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.ConclusionWith a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. |
Author | Di Piazza, Salvina Tomaino, Laura Tirelli, Amedea Silvia Gaggini, Melania Turolo, Stefano Bamonti, Fabrizia Vigna, Luisella Vassalle, Cristina Moroncini, Gianluca Chatzianagnostou, Kyriazoula |
Author_xml | – sequence: 1 givenname: Luisella surname: Vigna fullname: Vigna, Luisella organization: Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico. Occupational Health Unit, Obesity and Work Center, EASO Collaborating Center for Obesity Management – sequence: 2 givenname: Amedea Silvia surname: Tirelli fullname: Tirelli, Amedea Silvia organization: Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico. Clinical Chemistry and Microbiology Bacteriology and Virology Units – sequence: 3 givenname: Melania surname: Gaggini fullname: Gaggini, Melania organization: Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR – sequence: 4 givenname: Salvina surname: Di Piazza fullname: Di Piazza, Salvina organization: Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico. Occupational Health Unit, Obesity and Work Center, EASO Collaborating Center for Obesity Management – sequence: 5 givenname: Laura surname: Tomaino fullname: Tomaino, Laura organization: Emergency Medicine Residency Program, Marche Polytechnic University – sequence: 6 givenname: Stefano surname: Turolo fullname: Turolo, Stefano organization: Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico. UOC Pediatric Nephrology, Dialysis and Transplantation – sequence: 7 givenname: Gianluca surname: Moroncini fullname: Moroncini, Gianluca organization: Clinica Medica, Azienda Ospedali Riuniti, Department of Internal Medicine, Azienda ospedaliera Universitaria Ospedali Riuniti – sequence: 8 givenname: Kyriazoula surname: Chatzianagnostou fullname: Chatzianagnostou, Kyriazoula organization: Fondazione G. Monasterio CNR-Regione Toscana – sequence: 9 givenname: Fabrizia surname: Bamonti fullname: Bamonti, Fabrizia organization: Former Associate Professor of Clinical Biochemistry, Board Certify in Clinical Chemistry and Biochemistry, Università degli Studi di Milano – sequence: 10 givenname: Cristina orcidid: 0000-0003-3438-6450 surname: Vassalle fullname: Vassalle, Cristina email: cristina.vassalle@ftgm.it organization: Fondazione G. Monasterio CNR-Regione Toscana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35665880$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7wByiQJRqaAduz47HpUMQjUiQaqC3bc2fjZcZefD0sKfLf4-yGh1Kksi1_59yrc07JUUwRCHnJ2VvOWP8OuWCCNUyIhrVM9Y16Qk541-mG1f-j_-7H5BRxwyopZP-MHLedlJ1S7ITcXERcphBpBgxYbPRAbRyot3kIaYZiXZqCpyEO8BvwPfVp3tocMEWaxvqKPuVhL6smu5R_hLhu7BooLm4DviDdhXJF0y_IOwjrq7K3T66OK9fPydPRTggv7s8z8v3Tx2_nX5rLr58vzj9cNr7tu9Jw4Zx2MGo5SuuktoOTFvSqU8MIAFqyUYtRaiG8Xwk58N6qVvcCvIdWcdGekTcH321OPxfAYuaAHqbJRkgLmprKqqbDujv09QN0k5Yc63aV0h3jom9lpV7dU4ubYTDbHGabr82fYCsgDoDPCTHD-BfhzNy1Zw7tmdqJ2bdnVBWpByIfii0hxZJtmB6Xtgcp1jlxDfnf2o-obgFzjrBS |
CitedBy_id | crossref_primary_10_3390_nu15245122 crossref_primary_10_3390_ijms24010075 crossref_primary_10_2174_1573404820666230301115706 crossref_primary_10_1186_s12872_024_03853_8 crossref_primary_10_3390_antiox11112163 crossref_primary_10_3390_molecules29071545 crossref_primary_10_3390_metabo13060679 crossref_primary_10_1016_j_jad_2024_12_081 |
Cites_doi | 10.2147/vhrm.s6269 10.2337/dc11-0447 10.1093/humrep/dex308 10.1016/j.mayocp.2018.08.007 10.3109/09513590.2011.652720 10.5507/bp.2019.021 10.2337/dc14-3008 10.1186/s12944-019-1080-x 10.1053/meta.2001.23286 10.1007/s00125-019-4939-5 10.1177/1358863X12450094 10.1111/eci.13207 10.1016/j.clnu.2004.02.006 10.1161/CIRCULATIONAHA.113.003008 10.1097/JOM.0b013e318246f1f4 10.2217/bmm-2017-0072 10.1007/s00392-006-0377-8 10.1016/j.atherosclerosis.2015.06.057 10.1007/s00125-012-2496-2 10.1210/jcem.85.7.6661 10.1016/S0140-6736(21)00684-X 10.1016/j.fertnstert.2011.11.045 10.1007/s00125-011-2313-3 10.1016/j.maturitas.2021.10.001 10.1210/jc.2010-0288 10.1038/s41598-017-15460-z 10.2337/diab.30.5.387 10.1016/S0168-8227(99)00116-3 10.1038/s41598-019-46187-8 10.1152/ajpendo.00645.2007 10.1371/journal.pone.0090430 10.1016/j.jacc.2020.10.008 10.2337/diacare.16.1.157 10.1016/j.amjcard.2005.03.085 10.1186/1471-2288-11-158 10.1161/01.CIR.67.4.730 10.2337/diabetes.53.7.1905 10.1016/S0009-9120(01)00263-6 10.1089/met.2008.0034 10.1177/2047487318810560 10.1152/ajpendo.1979.237.3.e214 10.4161/15592294.2014.982445 10.1155/2020/2091341 10.1007/s40292-019-00330-8 10.1155/2014/730827 10.1159/000199452 10.1007/BF00280883 10.1016/j.vph.2012.05.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION NPM K9. NAPCQ 7X8 |
DOI | 10.1007/s12020-022-03087-8 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1559-0100 |
EndPage | 241 |
ExternalDocumentID | 35665880 10_1007_s12020_022_03087_8 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40E 53G 5GY 5VS 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUDM ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GRRUI H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IMOTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P P9S PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 YLTOR Z7U Z82 Z83 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ZXP ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c375t-12bb9bef96f6ab69adb6ae9458dfeee960f92f6922cc426d17a83972ecce38123 |
IEDL.DBID | U2A |
ISSN | 1559-0100 1355-008X |
IngestDate | Fri Jul 11 03:51:25 EDT 2025 Fri Jul 25 09:58:26 EDT 2025 Thu Apr 03 07:08:23 EDT 2025 Tue Jul 01 02:25:20 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Fri Feb 21 02:45:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Cardiometabolic indexes Cardiometabolic risk Insulin resistance indexes Working-age subjects Occupational medicine |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-12bb9bef96f6ab69adb6ae9458dfeee960f92f6922cc426d17a83972ecce38123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3438-6450 |
PMID | 35665880 |
PQID | 2695012736 |
PQPubID | 2043848 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2674002052 proquest_journals_2695012736 pubmed_primary_35665880 crossref_primary_10_1007_s12020_022_03087_8 crossref_citationtrail_10_1007_s12020_022_03087_8 springer_journals_10_1007_s12020_022_03087_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | International Journal of Basic and Clinical Endocrinology |
PublicationTitle | Endocrine |
PublicationTitleAbbrev | Endocrine |
PublicationTitleAlternate | Endocrine |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | O. Castañer, X. Pintó, I. Subirana, A.J. Amor, E. Ros, Á. Hernáez, M.Á. Martínez-González, D. Corella, J. Salas-Salvadó, R. Estruch et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 76 (2020). https://doi.org/10.1016/j.jacc.2020.10.008. M. D’Adamo, L. Perego, M. Cardellini, M.A. Marini, S. Frontoni, F. Andreozzi, A. Sciacqua, D. Lauro, P. Sbraccia, M. Federici et al. The -866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated with insulin resistance and increased risk of type 2 diabetes. Diabetes 53 (2004) https://doi.org/10.2337/diabetes.53.7.1905. R.N. Thota, K.A. Abbott, J.J.A. Ferguson, M. Veysey, M. Lucock, S. Niblett, K. King, M.L. Garg, InsuTAG: a novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-15460-z. F. Lucatello, L. Vigna, M. Carugno, A.S. Tirelli, P.A. Bertazzi, L. Riboldi, Comparison of indexes for assessing insulin resistance for the health surveillance among workers [Confronto tra indici per la valutazione dell’insulino-resistenza nella sorveglianza sanitaria dei lavoratori]. G. Ital. Med. Lav. Ergon. 34 (2012). R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. Gastrointest. Physiol. 6 (1979). https://doi.org/10.1152/ajpendo.1979.237.3.e214. B. Vogel, M. Acevedo, Y. Appelman, C.N. Bairey Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S.P. Lam, A.H.E.M. Maas, A.S. Mihailidou, A. Olszanecka, J.E. Poole, C. Saldarriaga, J. Saw, J., Zühlke, R. Mehran, The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 19 (2021). https://doi.org/10.1016/S0140-6736(21)00684-X. C. Capurso, A. Capurso. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 57 (2012). https://doi.org/10.1016/j.vph.2012.05.003. W. Masson, M. Lobo, D. Siniawski, G. Molinero, M. Huerín, J.P. Nogueira, Impact of lipid-lowering therapy on mortality according to the baseline non-HDL cholesterol level: a meta-analysis. High Blood Press. Cardiovasc. Prev. 26 (2019). https://doi.org/10.1007/s40292-019-00330-8. W.P. Castelli, R.D. Abbott, P.M. McNamara, Summary estimates of cholesterol used to predict coronary heart disease. Circulation 67 (1983). https://doi.org/10.1161/01.CIR.67.4.730. N. Ahn, S.E. Baumeister, U. Amann, W. Rathmann, A. Peters, C. Huth, B. Thorand, C. Meisinger, Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-46187-8. J. Millán, X. Pintó, A. Muñoz, M. Zúñiga, J. Rubiés-Prat, L.F. Pallardo, L. Masana, A. Mangas, A. Hernández-Mijares, P. González-Santos, J.F. Ascaso, J. Pedro-Botet, Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 5 (2009). https://doi.org/10.2147/vhrm.s6269. T. McLaughlin, G. Reaven, F. Abbasi, C. Lamendola, M. Saad, D. Waters, J. Simon, R.M. Krauss. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 96 (2005). https://doi.org/10.1016/j.amjcard.2005.03.085. A.G. Huebschmann, R.R. Huxley, W.M. Kohrt, P. Zeitler, J.G. Regensteiner, J.E.B. Reusch, Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62 (2019). https://doi.org/10.1007/s00125-019-4939-5. M.C. Amato, C. Giordano, Visceral adiposity index: an indicator of adipose tissue dysfunction. Int. J. Endocrinol. (2014). https://doi.org/10.1155/2014/730827. M.K. Breyer, A. Ofenheimer, J. Altziebler, S. Hartl, O.C. Burghuber, M. Studnicka, D. Purin, C. Heinzle, H. Drexel, F.M.E. Franssen et al. Marked differences in prediabetes- and diabetes-associated comorbidities between men and women—Epidemiological results from a general population-based cohort aged 6-80 years—The LEAD (Lung, hEart, sociAl, boDy) study. Eur. J. Clin. Investig. 50 (2020). https://doi.org/10.1111/eci.13207. A. Katz, S.S. Nambi, K. Mather, A.D. Baron, D.A. Follmann, G. Sullivan, M.J. Quon, Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85 (2000). https://doi.org/10.1210/jcem.85.7.6661. M.S. Zhou, I.H. Schulman, Q. Zeng, Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc. Med. 17 (2012). https://doi.org/10.1177/1358863X12450094. VassalleCSciarrinoRBianchiSBattagliaDMercuriAMaffeiSSex-related differences in association of oxidative stress status with coronary artery diseaseFertil. Steril.20129724144191:CAS:528:DC%2BC38XhsVeru7k%3D10.1016/j.fertnstert.2011.11.04522196713 A. Borai, C. Livingstone, I. Kaddam, G. Ferns. Selection of the appropriate method for the assessment of insulin resistance. BMC Med. Res. Methodol. 11 (2011). https://doi.org/10.1186/1471-2288-11-158. H. King, M. Rewers, Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16 (1993). https://doi.org/10.2337/diacare.16.1.157. J.P. Moriarty, M.E. Branda, K.D. Olsen, N.D. Shah, B.J. Borah, A.E. Wagie, J.S. Egginton, J.M. Naessens, The effects of incremental costs of smoking and obesity on health care costs among adults: a 7-year longitudinal study. J. Occup. Environ. Med. 54 (2012). https://doi.org/10.1097/JOM.0b013e318246f1f4. M. Dobiásová AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 52 (2006). F. Guerrero-Romero, L.E. Simental-Mendía, M. González-Ortiz, E. Martínez-Abundis, M.G. Ramos-Zavala, S.O. Hernández-González, O. Jacques-Camarena, M. Rodríguez-Morán, The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95 (2010). https://doi.org/10.1210/jc.2010-0288. PaulSThomasGMajeedAKhuntiKKleinKWomen develop type 2 diabetes at a higher body mass index than menDiabetologia201255155671:STN:280:DC%2BC38vjsFGrtg%3D%3D10.1007/s00125-012-2496-2 R. Muniyappa, S. Lee, H. Chen, M.J. Quon, Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am. J. Physiol. - Endocrinol. Metab. 294 (2008). https://doi.org/10.1152/ajpendo.00645.2007. J. Dierkes, A. Jeckel, A. Ambrosch, S. Westphal, C. Luley, H. Boeing, Factors explaining the difference of total homocysteine between men and women in the European investigation into cancer and nutrition potsdam study. Metabolism. 50 (2001) https://doi.org/10.1053/meta.2001.23286. G. Riccardi, R. Giacco, A.A. Rivellese, Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23 (2004). https://doi.org/10.1016/j.clnu.2004.02.006. N. Sattar, Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract. Res. Clin. Endocrinol. Metab. 27 (2013). https://doi.org/10.1007/s00125-012-2496-2. SciomerSMoscucciFMaffeiSGallinaSMattioliAVPrevention of cardiovascular risk factors in women: The lifestyle paradox and stereotypes we need to defeatEur. J. Prev. Cardiol.20192666096101:STN:280:DC%2BB3cvksFemsQ%3D%3D10.1177/204748731881056030373379 E. Al Shawaf, E. Al-Ozairi, F. Al-Asfar, A. Mohammad, S. Al-Beloushi, S. Devarajan, F. Al-Mulla, J. Abubaker, H. Arefanian, Atherogenic index of plasma (AIP) a tool to assess changes in cardiovascular disease risk post laparoscopic sleeve gastrectomy. J. Diabetes Res. 2020 (2020). https://doi.org/10.1155/2020/2091341. S. Placzkowska, L. Pawlik-Sobecka, I. Kokot, A. Piwowar, Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomed. Pap. 163 (2019). https://doi.org/10.5507/bp.2019.021. L.E. Simental-Mendía, M. Rodríguez-Morán, F. Guerrero-Romero, The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6 (2008). https://doi.org/10.1089/met.2008.0034. R.H. Eckel, S.E. Kahn, E. Ferrannini, A.B. Goldfine, D.M. Nathan, M.W. Schwartz, R.J., S.R. Smith, Obesity and type 2 diabetes: what Can be unified and what needs to be individualized? Diabetes Care 34 (2011). https://doi.org/10.2337/dc11-0447. LindholmMEMarabitaFGomez-CabreroDRundqvistHEkströmTJTegnérJSundbergCJAn integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after trainingEpigenetics2014915576910.4161/15592294.2014.982445 D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner. Homeostasis model assessment: insulin resis tance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 (1985). https://doi.org/10.1007/BF00280883. A. Varbo, M. Benn, A. Tybjærg-Hansen, B.G. Nordestgaard, Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128 (2013). https://doi.org/10.1161/CIRCULATIONAHA.113.003008. R. Quispe, R.J. Manalac, K.F. Faridi, M.J. Blaha, P.P. Toth, K.R. Kulkarni, K. Nasir, S.S. Virani, M. Banach, R.S. Blumenthal et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis 242 (2015). https://doi.org/10.1016/j.atherosclerosis.2015.06.057. L. Vigna, C. Vassalle, A.S. Tirelli, F. Gori, L. Tomaino, L. Sabatino, F. Bamonti, Gender-related association between uric acid, homocysteine, γ-glutamyltransferase, inflammatory biomarkers and metabolic synd 3087_CR40 3087_CR41 C Vassalle (3087_CR42) 2012; 28 S Paul (3087_CR34) 2012; 55 3087_CR46 3087_CR47 3087_CR48 3087_CR49 3087_CR30 3087_CR39 3087_CR1 3087_CR35 3087_CR36 3087_CR37 3087_CR38 3087_CR31 3087_CR32 3087_CR33 S Sciomer (3087_CR45) 2019; 26 C Vassalle (3087_CR43) 2012; 97 3087_CR3 3087_CR2 3087_CR5 3087_CR4 3087_CR7 3087_CR6 3087_CR9 3087_CR8 M Amiri (3087_CR44) 2022; 155 3087_CR28 3087_CR29 3087_CR24 3087_CR25 3087_CR26 3087_CR27 3087_CR20 3087_CR21 3087_CR22 3087_CR23 3087_CR51 ME Lindholm (3087_CR50) 2014; 9 3087_CR17 3087_CR18 3087_CR19 3087_CR13 3087_CR14 3087_CR15 3087_CR16 3087_CR10 3087_CR11 3087_CR12 |
References_xml | – reference: A. Varbo, M. Benn, A. Tybjærg-Hansen, B.G. Nordestgaard, Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128 (2013). https://doi.org/10.1161/CIRCULATIONAHA.113.003008. – reference: M. Dobiášová, J. Frohlich, The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 34 (2001). https://doi.org/10.1016/S0009-9120(01)00263-6. – reference: VassalleCSciarrinoRBianchiSBattagliaDMercuriAMaffeiSSex-related differences in association of oxidative stress status with coronary artery diseaseFertil. Steril.20129724144191:CAS:528:DC%2BC38XhsVeru7k%3D10.1016/j.fertnstert.2011.11.04522196713 – reference: AmiriMKarabegovićIvan WestingACVerkaarAJCFBeigrezaeiSLaraMBramerWMVoortmanTWhole-diet interventions and cardiovascular risk factors in postmenopausal women: a systematic review of controlled clinical trialsMaturitas2022155405310.1016/j.maturitas.2021.10.00134876248 – reference: F. Tosi, E. Bonora, P. Moghetti, Insulin resistance in a large cohort of women with polycystic ovary syndrome: a comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum. Reprod. 32 (2017) https://doi.org/10.1093/humrep/dex308. – reference: B. Vogel, M. Acevedo, Y. Appelman, C.N. Bairey Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S.P. Lam, A.H.E.M. Maas, A.S. Mihailidou, A. Olszanecka, J.E. Poole, C. Saldarriaga, J. Saw, J., Zühlke, R. Mehran, The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 19 (2021). https://doi.org/10.1016/S0140-6736(21)00684-X. – reference: R. Quispe, R.J. Manalac, K.F. Faridi, M.J. Blaha, P.P. Toth, K.R. Kulkarni, K. Nasir, S.S. Virani, M. Banach, R.S. Blumenthal et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis 242 (2015). https://doi.org/10.1016/j.atherosclerosis.2015.06.057. – reference: J. Dierkes, A. Jeckel, A. Ambrosch, S. Westphal, C. Luley, H. Boeing, Factors explaining the difference of total homocysteine between men and women in the European investigation into cancer and nutrition potsdam study. Metabolism. 50 (2001) https://doi.org/10.1053/meta.2001.23286. – reference: SciomerSMoscucciFMaffeiSGallinaSMattioliAVPrevention of cardiovascular risk factors in women: The lifestyle paradox and stereotypes we need to defeatEur. J. Prev. Cardiol.20192666096101:STN:280:DC%2BB3cvksFemsQ%3D%3D10.1177/204748731881056030373379 – reference: S. Placzkowska, L. Pawlik-Sobecka, I. Kokot, A. Piwowar, Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomed. Pap. 163 (2019). https://doi.org/10.5507/bp.2019.021. – reference: G. Riccardi, R. Giacco, A.A. Rivellese, Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23 (2004). https://doi.org/10.1016/j.clnu.2004.02.006. – reference: N. Ahn, S.E. Baumeister, U. Amann, W. Rathmann, A. Peters, C. Huth, B. Thorand, C. Meisinger, Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-46187-8. – reference: A.G. Huebschmann, R.R. Huxley, W.M. Kohrt, P. Zeitler, J.G. Regensteiner, J.E.B. Reusch, Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62 (2019). https://doi.org/10.1007/s00125-019-4939-5. – reference: X. Su, Y. Kong, D. Peng, Evidence for changing lipid management strategy to focus on non-high density lipoprotein cholesterol. Lipids Health Dis. 18 (2019). https://doi.org/10.1186/s12944-019-1080-x. – reference: M.S. Greenfield, L. Doberne, F. Kraemer, T. Tobey, G. Reaven. Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes. 30 (1981). https://doi.org/10.2337/diab.30.5.387. – reference: J. Logue, J. J. Walker, H.M. Colhoun, G.P. Leese, R.S. Lindsay, J.A. McKnight, A.D. Morris, D.W. Pearson, J.R. Petrie, S. Philip et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia 54 (2011). https://doi.org/10.1007/s00125-011-2313-3. – reference: VassalleCSimonciniTChedrauiPPérez-LópezFRWhy sex matters: the biological mechanisms of cardiovascular diseaseGynecol. Endocrinol.201228974675110.3109/09513590.2011.65272022329808 – reference: H. King, M. Rewers, Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16 (1993). https://doi.org/10.2337/diacare.16.1.157. – reference: J.P. Moriarty, M.E. Branda, K.D. Olsen, N.D. Shah, B.J. Borah, A.E. Wagie, J.S. Egginton, J.M. Naessens, The effects of incremental costs of smoking and obesity on health care costs among adults: a 7-year longitudinal study. J. Occup. Environ. Med. 54 (2012). https://doi.org/10.1097/JOM.0b013e318246f1f4. – reference: W. Masson, M. Lobo, D. Siniawski, G. Molinero, M. Huerín, J.P. Nogueira, Impact of lipid-lowering therapy on mortality according to the baseline non-HDL cholesterol level: a meta-analysis. High Blood Press. Cardiovasc. Prev. 26 (2019). https://doi.org/10.1007/s40292-019-00330-8. – reference: S.H. Lee, H.S. Kwon, Y.M. Park, H.S. Ha, S.H. Jeong, H.K. Yang, J.H. Lee, H.W. Yim, M. Il Kang; W.C. Lee et al. Predicting the development of diabetes using the product of triglycerides and glucose: the chungju metabolic disease cohort (CMC) study. PLoS ONE 9 (2014). https://doi.org/10.1371/journal.pone.0090430. – reference: R.N. Thota, K.A. Abbott, J.J.A. Ferguson, M. Veysey, M. Lucock, S. Niblett, K. King, M.L. Garg, InsuTAG: a novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-15460-z. – reference: W.P. Castelli, R.D. Abbott, P.M. McNamara, Summary estimates of cholesterol used to predict coronary heart disease. Circulation 67 (1983). https://doi.org/10.1161/01.CIR.67.4.730. – reference: PaulSThomasGMajeedAKhuntiKKleinKWomen develop type 2 diabetes at a higher body mass index than menDiabetologia201255155671:STN:280:DC%2BC38vjsFGrtg%3D%3D10.1007/s00125-012-2496-2 – reference: A. Borai, C. Livingstone, I. Kaddam, G. Ferns. Selection of the appropriate method for the assessment of insulin resistance. BMC Med. Res. Methodol. 11 (2011). https://doi.org/10.1186/1471-2288-11-158. – reference: R. Muniyappa, S. Lee, H. Chen, M.J. Quon, Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am. J. Physiol. - Endocrinol. Metab. 294 (2008). https://doi.org/10.1152/ajpendo.00645.2007. – reference: L.E. Simental-Mendía, M. Rodríguez-Morán, F. Guerrero-Romero, The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6 (2008). https://doi.org/10.1089/met.2008.0034. – reference: M.K. Breyer, A. Ofenheimer, J. Altziebler, S. Hartl, O.C. Burghuber, M. Studnicka, D. Purin, C. Heinzle, H. Drexel, F.M.E. Franssen et al. Marked differences in prediabetes- and diabetes-associated comorbidities between men and women—Epidemiological results from a general population-based cohort aged 6-80 years—The LEAD (Lung, hEart, sociAl, boDy) study. Eur. J. Clin. Investig. 50 (2020). https://doi.org/10.1111/eci.13207. – reference: T. McLaughlin, G. Reaven, F. Abbasi, C. Lamendola, M. Saad, D. Waters, J. Simon, R.M. Krauss. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 96 (2005). https://doi.org/10.1016/j.amjcard.2005.03.085. – reference: O. Castañer, X. Pintó, I. Subirana, A.J. Amor, E. Ros, Á. Hernáez, M.Á. Martínez-González, D. Corella, J. Salas-Salvadó, R. Estruch et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 76 (2020). https://doi.org/10.1016/j.jacc.2020.10.008. – reference: N. Sattar, Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract. Res. Clin. Endocrinol. Metab. 27 (2013). https://doi.org/10.1007/s00125-012-2496-2. – reference: LindholmMEMarabitaFGomez-CabreroDRundqvistHEkströmTJTegnérJSundbergCJAn integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after trainingEpigenetics2014915576910.4161/15592294.2014.982445 – reference: D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner. Homeostasis model assessment: insulin resis tance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 (1985). https://doi.org/10.1007/BF00280883. – reference: R.H. Eckel, S.E. Kahn, E. Ferrannini, A.B. Goldfine, D.M. Nathan, M.W. Schwartz, R.J., S.R. Smith, Obesity and type 2 diabetes: what Can be unified and what needs to be individualized? Diabetes Care 34 (2011). https://doi.org/10.2337/dc11-0447. – reference: S. Pitla, B. Nagalla, Gender-related differences in the relationship between plasma homocysteine, anthropometric and conventional biochemical coronary heart disease risk factors in middle-aged indians. Ann. Nutr. Metab. 54 (2009). https://doi.org/10.1159/000199452. – reference: F. Guerrero-Romero, L.E. Simental-Mendía, M. González-Ortiz, E. Martínez-Abundis, M.G. Ramos-Zavala, S.O. Hernández-González, O. Jacques-Camarena, M. Rodríguez-Morán, The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95 (2010). https://doi.org/10.1210/jc.2010-0288. – reference: M. Gutt, C.L. Davis, S.B. Spitzer, M.M. Llabre, M. Kumar, E.M. Czarnecki, N. Schneiderman, J.S. Skyler, J.B. Marks, Validation of the insulin sensitivity index (ISI0,120): Comparison with other measures. Diabetes Res. Clin. Pract. 47 (2000). https://doi.org/10.1016/S0168-8227(99)00116-3. – reference: A. Katz, S.S. Nambi, K. Mather, A.D. Baron, D.A. Follmann, G. Sullivan, M.J. Quon, Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85 (2000). https://doi.org/10.1210/jcem.85.7.6661. – reference: V. Regitz-Zagrosek, E. Lehmkuhl, M.O. Weickert, Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin. Res. Cardiol. 95 (2006) https://doi.org/10.1007/s00392-006-0377-8. – reference: F. Lucatello, L. Vigna, M. Carugno, A.S. Tirelli, P.A. Bertazzi, L. Riboldi, Comparison of indexes for assessing insulin resistance for the health surveillance among workers [Confronto tra indici per la valutazione dell’insulino-resistenza nella sorveglianza sanitaria dei lavoratori]. G. Ital. Med. Lav. Ergon. 34 (2012). – reference: R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. Gastrointest. Physiol. 6 (1979). https://doi.org/10.1152/ajpendo.1979.237.3.e214. – reference: E. Al Shawaf, E. Al-Ozairi, F. Al-Asfar, A. Mohammad, S. Al-Beloushi, S. Devarajan, F. Al-Mulla, J. Abubaker, H. Arefanian, Atherogenic index of plasma (AIP) a tool to assess changes in cardiovascular disease risk post laparoscopic sleeve gastrectomy. J. Diabetes Res. 2020 (2020). https://doi.org/10.1155/2020/2091341. – reference: M.S. Zhou, I.H. Schulman, Q. Zeng, Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc. Med. 17 (2012). https://doi.org/10.1177/1358863X12450094. – reference: M. D’Adamo, L. Perego, M. Cardellini, M.A. Marini, S. Frontoni, F. Andreozzi, A. Sciacqua, D. Lauro, P. Sbraccia, M. Federici et al. The -866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated with insulin resistance and increased risk of type 2 diabetes. Diabetes 53 (2004) https://doi.org/10.2337/diabetes.53.7.1905. – reference: A. Al-Salameh, P. Chanson, S. Bucher, V. Ringa L. Becquemont. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo Clin. Proc. 94(2) (2019). https://doi.org/10.1016/j.mayocp.2018.08.007. – reference: M.C. Amato, C. Giordano, Visceral adiposity index: an indicator of adipose tissue dysfunction. Int. J. Endocrinol. (2014). https://doi.org/10.1155/2014/730827. – reference: L. Vigna, C. Vassalle, A.S. Tirelli, F. Gori, L. Tomaino, L. Sabatino, F. Bamonti, Gender-related association between uric acid, homocysteine, γ-glutamyltransferase, inflammatory biomarkers and metabolic syndrome in subjects affected by obesity. Biomark. Med. 11 (2017). https://doi.org/10.2217/bmm-2017-0072. – reference: C. Capurso, A. Capurso. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 57 (2012). https://doi.org/10.1016/j.vph.2012.05.003. – reference: V. Grossmannm, V.H. Schmitt, T. Zeller, M. Panova-Noeva, A. Schulz, D. Laubert-Reh, C. Juenger, R.B. Schnabel, T.G.J. Abt, R. Laskowski, J. Wiltink, E. Schulz, S. Blankenberg, K.J. Lackner, T. Münzel, PWild, P.S. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care 38 (2015). https://doi.org/10.2337/dc14-3008. – reference: M. Dobiásová AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 52 (2006). – reference: J. Millán, X. Pintó, A. Muñoz, M. Zúñiga, J. Rubiés-Prat, L.F. Pallardo, L. Masana, A. Mangas, A. Hernández-Mijares, P. González-Santos, J.F. Ascaso, J. Pedro-Botet, Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 5 (2009). https://doi.org/10.2147/vhrm.s6269. – ident: 3087_CR24 doi: 10.2147/vhrm.s6269 – ident: 3087_CR1 doi: 10.2337/dc11-0447 – ident: 3087_CR8 doi: 10.1093/humrep/dex308 – ident: 3087_CR15 – ident: 3087_CR37 doi: 10.1016/j.mayocp.2018.08.007 – volume: 28 start-page: 746 issue: 9 year: 2012 ident: 3087_CR42 publication-title: Gynecol. Endocrinol. doi: 10.3109/09513590.2011.652720 – ident: 3087_CR51 doi: 10.5507/bp.2019.021 – ident: 3087_CR38 doi: 10.2337/dc14-3008 – ident: 3087_CR14 doi: 10.1186/s12944-019-1080-x – ident: 3087_CR39 doi: 10.1053/meta.2001.23286 – ident: 3087_CR32 doi: 10.1007/s00125-019-4939-5 – ident: 3087_CR49 doi: 10.1177/1358863X12450094 – ident: 3087_CR36 doi: 10.1111/eci.13207 – ident: 3087_CR48 doi: 10.1016/j.clnu.2004.02.006 – ident: 3087_CR26 doi: 10.1161/CIRCULATIONAHA.113.003008 – ident: 3087_CR2 doi: 10.1097/JOM.0b013e318246f1f4 – ident: 3087_CR17 doi: 10.2217/bmm-2017-0072 – ident: 3087_CR31 doi: 10.1007/s00392-006-0377-8 – ident: 3087_CR10 doi: 10.1016/j.atherosclerosis.2015.06.057 – ident: 3087_CR35 doi: 10.1007/s00125-012-2496-2 – ident: 3087_CR6 doi: 10.1210/jcem.85.7.6661 – ident: 3087_CR22 – ident: 3087_CR41 doi: 10.1016/S0140-6736(21)00684-X – volume: 97 start-page: 414 issue: 2 year: 2012 ident: 3087_CR43 publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2011.11.045 – ident: 3087_CR33 doi: 10.1007/s00125-011-2313-3 – volume: 155 start-page: 40 year: 2022 ident: 3087_CR44 publication-title: Maturitas doi: 10.1016/j.maturitas.2021.10.001 – ident: 3087_CR21 doi: 10.1210/jc.2010-0288 – ident: 3087_CR12 doi: 10.1038/s41598-017-15460-z – ident: 3087_CR3 doi: 10.2337/diab.30.5.387 – ident: 3087_CR7 doi: 10.1016/S0168-8227(99)00116-3 – ident: 3087_CR23 doi: 10.1038/s41598-019-46187-8 – ident: 3087_CR19 doi: 10.1152/ajpendo.00645.2007 – ident: 3087_CR11 doi: 10.1371/journal.pone.0090430 – ident: 3087_CR27 doi: 10.1016/j.jacc.2020.10.008 – ident: 3087_CR30 doi: 10.2337/diacare.16.1.157 – ident: 3087_CR9 doi: 10.1016/j.amjcard.2005.03.085 – ident: 3087_CR18 doi: 10.1186/1471-2288-11-158 – ident: 3087_CR13 doi: 10.1161/01.CIR.67.4.730 – ident: 3087_CR46 doi: 10.2337/diabetes.53.7.1905 – ident: 3087_CR28 doi: 10.1016/S0009-9120(01)00263-6 – ident: 3087_CR20 doi: 10.1089/met.2008.0034 – volume: 26 start-page: 609 issue: 6 year: 2019 ident: 3087_CR45 publication-title: Eur. J. Prev. Cardiol. doi: 10.1177/2047487318810560 – ident: 3087_CR4 doi: 10.1152/ajpendo.1979.237.3.e214 – volume: 55 start-page: 1556 year: 2012 ident: 3087_CR34 publication-title: Diabetologia doi: 10.1007/s00125-012-2496-2 – volume: 9 start-page: 1557 year: 2014 ident: 3087_CR50 publication-title: Epigenetics doi: 10.4161/15592294.2014.982445 – ident: 3087_CR29 doi: 10.1155/2020/2091341 – ident: 3087_CR25 doi: 10.1007/s40292-019-00330-8 – ident: 3087_CR16 doi: 10.1155/2014/730827 – ident: 3087_CR40 doi: 10.1159/000199452 – ident: 3087_CR5 doi: 10.1007/BF00280883 – ident: 3087_CR47 doi: 10.1016/j.vph.2012.05.003 |
SSID | ssj0022267 |
Score | 2.3815513 |
Snippet | Purpose
The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or... The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in... PurposeThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 231 |
SubjectTerms | Aging Blood pressure Body weight Diabetes Endocrinology Fibrinogen Homocysteine Humanities and Social Sciences Insulin Insulin resistance Internal Medicine Medicine Medicine & Public Health multidisciplinary Obesity Original Article Overweight Science Uric acid Workers |
Title | Insulin resistance and cardiometabolic indexes: comparison of concordance in working-age subjects with overweight and obesity |
URI | https://link.springer.com/article/10.1007/s12020-022-03087-8 https://www.ncbi.nlm.nih.gov/pubmed/35665880 https://www.proquest.com/docview/2695012736 https://www.proquest.com/docview/2674002052 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7sKiz7Iq7uZbwRQXxZA9O0aSe-jeKsu6JPDuhTaW4gaLvYGcQH_7vnpJdB3BV8KqVJmvY7Sc79AOxFKou8TSRXw9hyOgK4yoaO20RpERUuFpJih88v0tNp8udKXrVBYXXn7d6ZJMNOvQh2EyTqkPd5SGPHRx9hWZLsjlQ8FeNezEKGImvDY_7d7-UR9IqvfGUTDUfNZBVWWh6RjRtQv8AHV67B-rhE-fjuke2z4LUZ1OFr8Om8NY6vw9Pvxq-coQRNXCHCyYrSMhNcTu_cDPG-vTEsJEh09SEzfQ1CVnm8o5SWNnTDQR4aLTrH_YbVc03qmpqR1pZVwZeahPowfNWUFvgK08nJ5fEpb6srcBNncsYjobXSzqvUp4VOVWF1WjiVyJH1zjmUbLwSPlVCGIMY2igrkJnKBGLu8JgX8TdYKqvS_QBWyNSrzCptrEo8SiAjE1OIrMflbaRLBxB1Pzw3bepxqoBxmy-SJhNIOYKUB5Dy0QB-9n3-Nok33my91eGYt4uwznEGkizrMU5gt3-My4dsIkXpqjm1yRJimaUYwPcG__51MbK6-C3DARx0BLEY_P9z2Xhf8034LAJxklPhFizN7uduGxmdmd6B5fHk6OiCrr-uz052Ap0_A9z--SI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS9xAFH9UC60XabXVVVunUHppBzaTTJLxtoiyVteTC95C5guENRGzS-mh_3vfm3wsxbbgMWRmMslvJvN73wCfI5VF3iaSq3FsOR0BXGVjx22itIhKFwtJscOz63Q6T77fytsuKKzpvd17k2T4U6-D3QSJOuR9HtLY8XwDXiIZyMmRay4mg5iFhCLrwmP-3u_PI-gJr3xiEw1Hzfkb2O44Ipu0oL6FF67agd1JhfLx_U_2hQWvzaAO34FXs844vgu_Llq_coYSNLFChJOVlWUmuJzeuyXivbgzLCRIdM0JM0MNQlZ7vKKUljZ0w0F-tFp0jv8b1qw0qWsaRlpbVgdfahLqw_B1W1rgHczPz25Op7yrrsBNnMklj4TWSjuvUp-WOlWl1WnpVCJz651zKNl4JXyqhDAGMbRRViKZygRi7vCYF_F72Kzqyu0DK2XqVWaVNlYlHiWQ3MQUIutxexvp0hFE_QcvTJd6nCpgLIp10mQCqUCQigBSkY_g69DnoU288d_WRz2ORbcJmwJnIMmyHuMEPg23cfuQTaSsXL2iNllClFmKEey1-A-Pi5Hq4ruMR_CtXxDrwf89l4PnNT-G19Ob2VVxdXF9eQhbIixUcjA8gs3l48p9QNKz1B_DGv8NJpr5BQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS9xAFH-0W5BexI-2rq52CqWXdnAzySQ73hZ10bZKD13wFjJfIKyJuFnEg_-7702y2RbbQo8hM5NJfm_yvt8D-BipLPI2kVwNY8uJBXCVDR23idIiKlwsJOUOX1ymZ9Pk65W8-iWLP0S7L12STU4DVWkq68Nb6w9XiW-C1B6KRA8l7fjoJbzC33FEdD0V407lQuEia1Nl_jzvd3b0TMZ85h8NbGeyAeutvMjGDcCb8MKVW7A9LlFXvnlgn1iI4Aym8S1Yu2gd5dvweN7EmDPUpklCRGhZUVpmQvjpjasR-9m1YaFYopsfMdP1I2SVxysqb2nDNFzkvrGoc_z3sPlCk-lmzsiCy6oQV00Kfli-atoMvIHp5PTn8RlvOy1wE2ey5pHQWmnnVerTQqeqsDotnErkyHrnHGo5XgmfKiGMQTxtlBUoWGUC8XfI8kX8FnplVbodYIVMvcqs0saqxKM2MjIxpct6POpGurQP0fKD56YtQ07dMGb5qoAygZQjSHkAKR_14XM357YpwvHP0YMljnl7IOc57kCSlz3GDXzobuNRIv9IUbpqQWOyhMRnKfrwrsG_e1yMYi--y7APX5YEsVr873vZ_b_h72Htx8kk_35--W0PXotApxRrOIBefbdw-yj_1PogkPgTSxH9QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin+resistance+and+cardiometabolic+indexes%3A+comparison+of+concordance+in+working-age+subjects+with+overweight+and+obesity&rft.jtitle=Endocrine&rft.au=Vigna%2C+Luisella&rft.au=Tirelli%2C+Amedea+Silvia&rft.au=Gaggini%2C+Melania&rft.au=Di+Piazza%2C+Salvina&rft.date=2022-08-01&rft.pub=Springer+US&rft.eissn=1559-0100&rft.volume=77&rft.issue=2&rft.spage=231&rft.epage=241&rft_id=info:doi/10.1007%2Fs12020-022-03087-8&rft.externalDocID=10_1007_s12020_022_03087_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-0100&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-0100&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-0100&client=summon |