Insulin resistance and cardiometabolic indexes: comparison of concordance in working-age subjects with overweight and obesity

Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance. Methods The evaluation of IR...

Full description

Saved in:
Bibliographic Details
Published inEndocrine Vol. 77; no. 2; pp. 231 - 241
Main Authors Vigna, Luisella, Tirelli, Amedea Silvia, Gaggini, Melania, Di Piazza, Salvina, Tomaino, Laura, Turolo, Stefano, Moroncini, Gianluca, Chatzianagnostou, Kyriazoula, Bamonti, Fabrizia, Vassalle, Cristina
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance. Methods The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years). Results The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used. Conclusion With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract
AbstractList The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance. The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years). The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used. With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract.
Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance. Methods The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years). Results The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used. Conclusion With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract
The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance.PURPOSEThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers' health surveillance.The evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).METHODSThe evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).The prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.RESULTSThe prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.With a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract.CONCLUSIONWith a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk. Graphical abstract.
PurposeThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in order to identify a possible efficient, cheap and simple strategy to apply in workers’ health surveillance.MethodsThe evaluation of IR and cardiometabolic risk indexes (HOMA, QUICKI, Ty/HDLC, TyG, insuTAG, Castelli risk indexes 1 and 2, non-HDLC, TRL-C, AIP, and VAI) was performed in a population of 1195 working-age subjects with overweight or obesity (322 males, mean age 49 ± 11 years).ResultsThe prevalence of IR and cardiometabolic risk was higher among males for all indexes. Aging, waist circumference, BMI, blood pressure, glucose, CRP, fibrinogen and uric acid were correlated more frequently with IR/cardiometabolic indexes in women, homocysteine in men. The percentage of the workers identified as insulin resistant (IR+) or at higher cardiometabolic risk greatly vary according to the different index used.ConclusionWith a small group of biomarkers and anthropometric measures (fasting glucose and insulin, lipid profile, BMI and waist circumference) is possible to calculate a number of IR/cardiometabolic indexes, which, likely reflecting different pathophysiological aspects also related to gender, might help in a personalized evaluation of IR and cardiometabolic risk.
Author Di Piazza, Salvina
Tomaino, Laura
Tirelli, Amedea Silvia
Gaggini, Melania
Turolo, Stefano
Bamonti, Fabrizia
Vigna, Luisella
Vassalle, Cristina
Moroncini, Gianluca
Chatzianagnostou, Kyriazoula
Author_xml – sequence: 1
  givenname: Luisella
  surname: Vigna
  fullname: Vigna, Luisella
  organization: Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico. Occupational Health Unit, Obesity and Work Center, EASO Collaborating Center for Obesity Management
– sequence: 2
  givenname: Amedea Silvia
  surname: Tirelli
  fullname: Tirelli, Amedea Silvia
  organization: Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico. Clinical Chemistry and Microbiology Bacteriology and Virology Units
– sequence: 3
  givenname: Melania
  surname: Gaggini
  fullname: Gaggini, Melania
  organization: Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR
– sequence: 4
  givenname: Salvina
  surname: Di Piazza
  fullname: Di Piazza, Salvina
  organization: Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico. Occupational Health Unit, Obesity and Work Center, EASO Collaborating Center for Obesity Management
– sequence: 5
  givenname: Laura
  surname: Tomaino
  fullname: Tomaino, Laura
  organization: Emergency Medicine Residency Program, Marche Polytechnic University
– sequence: 6
  givenname: Stefano
  surname: Turolo
  fullname: Turolo, Stefano
  organization: Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico. UOC Pediatric Nephrology, Dialysis and Transplantation
– sequence: 7
  givenname: Gianluca
  surname: Moroncini
  fullname: Moroncini, Gianluca
  organization: Clinica Medica, Azienda Ospedali Riuniti, Department of Internal Medicine, Azienda ospedaliera Universitaria Ospedali Riuniti
– sequence: 8
  givenname: Kyriazoula
  surname: Chatzianagnostou
  fullname: Chatzianagnostou, Kyriazoula
  organization: Fondazione G. Monasterio CNR-Regione Toscana
– sequence: 9
  givenname: Fabrizia
  surname: Bamonti
  fullname: Bamonti, Fabrizia
  organization: Former Associate Professor of Clinical Biochemistry, Board Certify in Clinical Chemistry and Biochemistry, Università degli Studi di Milano
– sequence: 10
  givenname: Cristina
  orcidid: 0000-0003-3438-6450
  surname: Vassalle
  fullname: Vassalle, Cristina
  email: cristina.vassalle@ftgm.it
  organization: Fondazione G. Monasterio CNR-Regione Toscana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35665880$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB7wByiQJRqaAduz47HpUMQjUiQaqC3bc2fjZcZefD0sKfLf4-yGh1Kksi1_59yrc07JUUwRCHnJ2VvOWP8OuWCCNUyIhrVM9Y16Qk541-mG1f-j_-7H5BRxwyopZP-MHLedlJ1S7ITcXERcphBpBgxYbPRAbRyot3kIaYZiXZqCpyEO8BvwPfVp3tocMEWaxvqKPuVhL6smu5R_hLhu7BooLm4DviDdhXJF0y_IOwjrq7K3T66OK9fPydPRTggv7s8z8v3Tx2_nX5rLr58vzj9cNr7tu9Jw4Zx2MGo5SuuktoOTFvSqU8MIAFqyUYtRaiG8Xwk58N6qVvcCvIdWcdGekTcH321OPxfAYuaAHqbJRkgLmprKqqbDujv09QN0k5Yc63aV0h3jom9lpV7dU4ubYTDbHGabr82fYCsgDoDPCTHD-BfhzNy1Zw7tmdqJ2bdnVBWpByIfii0hxZJtmB6Xtgcp1jlxDfnf2o-obgFzjrBS
CitedBy_id crossref_primary_10_3390_nu15245122
crossref_primary_10_3390_ijms24010075
crossref_primary_10_2174_1573404820666230301115706
crossref_primary_10_1186_s12872_024_03853_8
crossref_primary_10_3390_antiox11112163
crossref_primary_10_3390_molecules29071545
crossref_primary_10_3390_metabo13060679
crossref_primary_10_1016_j_jad_2024_12_081
Cites_doi 10.2147/vhrm.s6269
10.2337/dc11-0447
10.1093/humrep/dex308
10.1016/j.mayocp.2018.08.007
10.3109/09513590.2011.652720
10.5507/bp.2019.021
10.2337/dc14-3008
10.1186/s12944-019-1080-x
10.1053/meta.2001.23286
10.1007/s00125-019-4939-5
10.1177/1358863X12450094
10.1111/eci.13207
10.1016/j.clnu.2004.02.006
10.1161/CIRCULATIONAHA.113.003008
10.1097/JOM.0b013e318246f1f4
10.2217/bmm-2017-0072
10.1007/s00392-006-0377-8
10.1016/j.atherosclerosis.2015.06.057
10.1007/s00125-012-2496-2
10.1210/jcem.85.7.6661
10.1016/S0140-6736(21)00684-X
10.1016/j.fertnstert.2011.11.045
10.1007/s00125-011-2313-3
10.1016/j.maturitas.2021.10.001
10.1210/jc.2010-0288
10.1038/s41598-017-15460-z
10.2337/diab.30.5.387
10.1016/S0168-8227(99)00116-3
10.1038/s41598-019-46187-8
10.1152/ajpendo.00645.2007
10.1371/journal.pone.0090430
10.1016/j.jacc.2020.10.008
10.2337/diacare.16.1.157
10.1016/j.amjcard.2005.03.085
10.1186/1471-2288-11-158
10.1161/01.CIR.67.4.730
10.2337/diabetes.53.7.1905
10.1016/S0009-9120(01)00263-6
10.1089/met.2008.0034
10.1177/2047487318810560
10.1152/ajpendo.1979.237.3.e214
10.4161/15592294.2014.982445
10.1155/2020/2091341
10.1007/s40292-019-00330-8
10.1155/2014/730827
10.1159/000199452
10.1007/BF00280883
10.1016/j.vph.2012.05.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
K9.
NAPCQ
7X8
DOI 10.1007/s12020-022-03087-8
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1559-0100
EndPage 241
ExternalDocumentID 35665880
10_1007_s12020_022_03087_8
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40E
53G
5GY
5VS
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUDM
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GRRUI
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
YLTOR
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
ZXP
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
ABRTQ
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c375t-12bb9bef96f6ab69adb6ae9458dfeee960f92f6922cc426d17a83972ecce38123
IEDL.DBID U2A
ISSN 1559-0100
1355-008X
IngestDate Fri Jul 11 03:51:25 EDT 2025
Fri Jul 25 09:58:26 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Tue Jul 01 02:25:20 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Fri Feb 21 02:45:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cardiometabolic indexes
Cardiometabolic risk
Insulin resistance indexes
Working-age subjects
Occupational medicine
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-12bb9bef96f6ab69adb6ae9458dfeee960f92f6922cc426d17a83972ecce38123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3438-6450
PMID 35665880
PQID 2695012736
PQPubID 2043848
PageCount 11
ParticipantIDs proquest_miscellaneous_2674002052
proquest_journals_2695012736
pubmed_primary_35665880
crossref_primary_10_1007_s12020_022_03087_8
crossref_citationtrail_10_1007_s12020_022_03087_8
springer_journals_10_1007_s12020_022_03087_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle International Journal of Basic and Clinical Endocrinology
PublicationTitle Endocrine
PublicationTitleAbbrev Endocrine
PublicationTitleAlternate Endocrine
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References O. Castañer, X. Pintó, I. Subirana, A.J. Amor, E. Ros, Á. Hernáez, M.Á. Martínez-González, D. Corella, J. Salas-Salvadó, R. Estruch et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 76 (2020). https://doi.org/10.1016/j.jacc.2020.10.008.
M. D’Adamo, L. Perego, M. Cardellini, M.A. Marini, S. Frontoni, F. Andreozzi, A. Sciacqua, D. Lauro, P. Sbraccia, M. Federici et al. The -866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated with insulin resistance and increased risk of type 2 diabetes. Diabetes 53 (2004) https://doi.org/10.2337/diabetes.53.7.1905.
R.N. Thota, K.A. Abbott, J.J.A. Ferguson, M. Veysey, M. Lucock, S. Niblett, K. King, M.L. Garg, InsuTAG: a novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-15460-z.
F. Lucatello, L. Vigna, M. Carugno, A.S. Tirelli, P.A. Bertazzi, L. Riboldi, Comparison of indexes for assessing insulin resistance for the health surveillance among workers [Confronto tra indici per la valutazione dell’insulino-resistenza nella sorveglianza sanitaria dei lavoratori]. G. Ital. Med. Lav. Ergon. 34 (2012).
R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. Gastrointest. Physiol. 6 (1979). https://doi.org/10.1152/ajpendo.1979.237.3.e214.
B. Vogel, M. Acevedo, Y. Appelman, C.N. Bairey Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S.P. Lam, A.H.E.M. Maas, A.S. Mihailidou, A. Olszanecka, J.E. Poole, C. Saldarriaga, J. Saw, J., Zühlke, R. Mehran, The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 19 (2021). https://doi.org/10.1016/S0140-6736(21)00684-X.
C. Capurso, A. Capurso. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 57 (2012). https://doi.org/10.1016/j.vph.2012.05.003.
W. Masson, M. Lobo, D. Siniawski, G. Molinero, M. Huerín, J.P. Nogueira, Impact of lipid-lowering therapy on mortality according to the baseline non-HDL cholesterol level: a meta-analysis. High Blood Press. Cardiovasc. Prev. 26 (2019). https://doi.org/10.1007/s40292-019-00330-8.
W.P. Castelli, R.D. Abbott, P.M. McNamara, Summary estimates of cholesterol used to predict coronary heart disease. Circulation 67 (1983). https://doi.org/10.1161/01.CIR.67.4.730.
N. Ahn, S.E. Baumeister, U. Amann, W. Rathmann, A. Peters, C. Huth, B. Thorand, C. Meisinger, Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-46187-8.
J. Millán, X. Pintó, A. Muñoz, M. Zúñiga, J. Rubiés-Prat, L.F. Pallardo, L. Masana, A. Mangas, A. Hernández-Mijares, P. González-Santos, J.F. Ascaso, J. Pedro-Botet, Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 5 (2009). https://doi.org/10.2147/vhrm.s6269.
T. McLaughlin, G. Reaven, F. Abbasi, C. Lamendola, M. Saad, D. Waters, J. Simon, R.M. Krauss. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 96 (2005). https://doi.org/10.1016/j.amjcard.2005.03.085.
A.G. Huebschmann, R.R. Huxley, W.M. Kohrt, P. Zeitler, J.G. Regensteiner, J.E.B. Reusch, Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62 (2019). https://doi.org/10.1007/s00125-019-4939-5.
M.C. Amato, C. Giordano, Visceral adiposity index: an indicator of adipose tissue dysfunction. Int. J. Endocrinol. (2014). https://doi.org/10.1155/2014/730827.
M.K. Breyer, A. Ofenheimer, J. Altziebler, S. Hartl, O.C. Burghuber, M. Studnicka, D. Purin, C. Heinzle, H. Drexel, F.M.E. Franssen et al. Marked differences in prediabetes- and diabetes-associated comorbidities between men and women—Epidemiological results from a general population-based cohort aged 6-80 years—The LEAD (Lung, hEart, sociAl, boDy) study. Eur. J. Clin. Investig. 50 (2020). https://doi.org/10.1111/eci.13207.
A. Katz, S.S. Nambi, K. Mather, A.D. Baron, D.A. Follmann, G. Sullivan, M.J. Quon, Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85 (2000). https://doi.org/10.1210/jcem.85.7.6661.
M.S. Zhou, I.H. Schulman, Q. Zeng, Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc. Med. 17 (2012). https://doi.org/10.1177/1358863X12450094.
VassalleCSciarrinoRBianchiSBattagliaDMercuriAMaffeiSSex-related differences in association of oxidative stress status with coronary artery diseaseFertil. Steril.20129724144191:CAS:528:DC%2BC38XhsVeru7k%3D10.1016/j.fertnstert.2011.11.04522196713
A. Borai, C. Livingstone, I. Kaddam, G. Ferns. Selection of the appropriate method for the assessment of insulin resistance. BMC Med. Res. Methodol. 11 (2011). https://doi.org/10.1186/1471-2288-11-158.
H. King, M. Rewers, Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16 (1993). https://doi.org/10.2337/diacare.16.1.157.
J.P. Moriarty, M.E. Branda, K.D. Olsen, N.D. Shah, B.J. Borah, A.E. Wagie, J.S. Egginton, J.M. Naessens, The effects of incremental costs of smoking and obesity on health care costs among adults: a 7-year longitudinal study. J. Occup. Environ. Med. 54 (2012). https://doi.org/10.1097/JOM.0b013e318246f1f4.
M. Dobiásová AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 52 (2006).
F. Guerrero-Romero, L.E. Simental-Mendía, M. González-Ortiz, E. Martínez-Abundis, M.G. Ramos-Zavala, S.O. Hernández-González, O. Jacques-Camarena, M. Rodríguez-Morán, The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95 (2010). https://doi.org/10.1210/jc.2010-0288.
PaulSThomasGMajeedAKhuntiKKleinKWomen develop type 2 diabetes at a higher body mass index than menDiabetologia201255155671:STN:280:DC%2BC38vjsFGrtg%3D%3D10.1007/s00125-012-2496-2
R. Muniyappa, S. Lee, H. Chen, M.J. Quon, Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am. J. Physiol. - Endocrinol. Metab. 294 (2008). https://doi.org/10.1152/ajpendo.00645.2007.
J. Dierkes, A. Jeckel, A. Ambrosch, S. Westphal, C. Luley, H. Boeing, Factors explaining the difference of total homocysteine between men and women in the European investigation into cancer and nutrition potsdam study. Metabolism. 50 (2001) https://doi.org/10.1053/meta.2001.23286.
G. Riccardi, R. Giacco, A.A. Rivellese, Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23 (2004). https://doi.org/10.1016/j.clnu.2004.02.006.
N. Sattar, Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract. Res. Clin. Endocrinol. Metab. 27 (2013). https://doi.org/10.1007/s00125-012-2496-2.
SciomerSMoscucciFMaffeiSGallinaSMattioliAVPrevention of cardiovascular risk factors in women: The lifestyle paradox and stereotypes we need to defeatEur. J. Prev. Cardiol.20192666096101:STN:280:DC%2BB3cvksFemsQ%3D%3D10.1177/204748731881056030373379
E. Al Shawaf, E. Al-Ozairi, F. Al-Asfar, A. Mohammad, S. Al-Beloushi, S. Devarajan, F. Al-Mulla, J. Abubaker, H. Arefanian, Atherogenic index of plasma (AIP) a tool to assess changes in cardiovascular disease risk post laparoscopic sleeve gastrectomy. J. Diabetes Res. 2020 (2020). https://doi.org/10.1155/2020/2091341.
S. Placzkowska, L. Pawlik-Sobecka, I. Kokot, A. Piwowar, Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomed. Pap. 163 (2019). https://doi.org/10.5507/bp.2019.021.
L.E. Simental-Mendía, M. Rodríguez-Morán, F. Guerrero-Romero, The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6 (2008). https://doi.org/10.1089/met.2008.0034.
R.H. Eckel, S.E. Kahn, E. Ferrannini, A.B. Goldfine, D.M. Nathan, M.W. Schwartz, R.J., S.R. Smith, Obesity and type 2 diabetes: what Can be unified and what needs to be individualized? Diabetes Care 34 (2011). https://doi.org/10.2337/dc11-0447.
LindholmMEMarabitaFGomez-CabreroDRundqvistHEkströmTJTegnérJSundbergCJAn integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after trainingEpigenetics2014915576910.4161/15592294.2014.982445
D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner. Homeostasis model assessment: insulin resis tance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 (1985). https://doi.org/10.1007/BF00280883.
A. Varbo, M. Benn, A. Tybjærg-Hansen, B.G. Nordestgaard, Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128 (2013). https://doi.org/10.1161/CIRCULATIONAHA.113.003008.
R. Quispe, R.J. Manalac, K.F. Faridi, M.J. Blaha, P.P. Toth, K.R. Kulkarni, K. Nasir, S.S. Virani, M. Banach, R.S. Blumenthal et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis 242 (2015). https://doi.org/10.1016/j.atherosclerosis.2015.06.057.
L. Vigna, C. Vassalle, A.S. Tirelli, F. Gori, L. Tomaino, L. Sabatino, F. Bamonti, Gender-related association between uric acid, homocysteine, γ-glutamyltransferase, inflammatory biomarkers and metabolic synd
3087_CR40
3087_CR41
C Vassalle (3087_CR42) 2012; 28
S Paul (3087_CR34) 2012; 55
3087_CR46
3087_CR47
3087_CR48
3087_CR49
3087_CR30
3087_CR39
3087_CR1
3087_CR35
3087_CR36
3087_CR37
3087_CR38
3087_CR31
3087_CR32
3087_CR33
S Sciomer (3087_CR45) 2019; 26
C Vassalle (3087_CR43) 2012; 97
3087_CR3
3087_CR2
3087_CR5
3087_CR4
3087_CR7
3087_CR6
3087_CR9
3087_CR8
M Amiri (3087_CR44) 2022; 155
3087_CR28
3087_CR29
3087_CR24
3087_CR25
3087_CR26
3087_CR27
3087_CR20
3087_CR21
3087_CR22
3087_CR23
3087_CR51
ME Lindholm (3087_CR50) 2014; 9
3087_CR17
3087_CR18
3087_CR19
3087_CR13
3087_CR14
3087_CR15
3087_CR16
3087_CR10
3087_CR11
3087_CR12
References_xml – reference: A. Varbo, M. Benn, A. Tybjærg-Hansen, B.G. Nordestgaard, Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128 (2013). https://doi.org/10.1161/CIRCULATIONAHA.113.003008.
– reference: M. Dobiášová, J. Frohlich, The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 34 (2001). https://doi.org/10.1016/S0009-9120(01)00263-6.
– reference: VassalleCSciarrinoRBianchiSBattagliaDMercuriAMaffeiSSex-related differences in association of oxidative stress status with coronary artery diseaseFertil. Steril.20129724144191:CAS:528:DC%2BC38XhsVeru7k%3D10.1016/j.fertnstert.2011.11.04522196713
– reference: AmiriMKarabegovićIvan WestingACVerkaarAJCFBeigrezaeiSLaraMBramerWMVoortmanTWhole-diet interventions and cardiovascular risk factors in postmenopausal women: a systematic review of controlled clinical trialsMaturitas2022155405310.1016/j.maturitas.2021.10.00134876248
– reference: F. Tosi, E. Bonora, P. Moghetti, Insulin resistance in a large cohort of women with polycystic ovary syndrome: a comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum. Reprod. 32 (2017) https://doi.org/10.1093/humrep/dex308.
– reference: B. Vogel, M. Acevedo, Y. Appelman, C.N. Bairey Merz, A. Chieffo, G.A. Figtree, M. Guerrero, V. Kunadian, C.S.P. Lam, A.H.E.M. Maas, A.S. Mihailidou, A. Olszanecka, J.E. Poole, C. Saldarriaga, J. Saw, J., Zühlke, R. Mehran, The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 19 (2021). https://doi.org/10.1016/S0140-6736(21)00684-X.
– reference: R. Quispe, R.J. Manalac, K.F. Faridi, M.J. Blaha, P.P. Toth, K.R. Kulkarni, K. Nasir, S.S. Virani, M. Banach, R.S. Blumenthal et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis 242 (2015). https://doi.org/10.1016/j.atherosclerosis.2015.06.057.
– reference: J. Dierkes, A. Jeckel, A. Ambrosch, S. Westphal, C. Luley, H. Boeing, Factors explaining the difference of total homocysteine between men and women in the European investigation into cancer and nutrition potsdam study. Metabolism. 50 (2001) https://doi.org/10.1053/meta.2001.23286.
– reference: SciomerSMoscucciFMaffeiSGallinaSMattioliAVPrevention of cardiovascular risk factors in women: The lifestyle paradox and stereotypes we need to defeatEur. J. Prev. Cardiol.20192666096101:STN:280:DC%2BB3cvksFemsQ%3D%3D10.1177/204748731881056030373379
– reference: S. Placzkowska, L. Pawlik-Sobecka, I. Kokot, A. Piwowar, Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomed. Pap. 163 (2019). https://doi.org/10.5507/bp.2019.021.
– reference: G. Riccardi, R. Giacco, A.A. Rivellese, Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23 (2004). https://doi.org/10.1016/j.clnu.2004.02.006.
– reference: N. Ahn, S.E. Baumeister, U. Amann, W. Rathmann, A. Peters, C. Huth, B. Thorand, C. Meisinger, Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-46187-8.
– reference: A.G. Huebschmann, R.R. Huxley, W.M. Kohrt, P. Zeitler, J.G. Regensteiner, J.E.B. Reusch, Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62 (2019). https://doi.org/10.1007/s00125-019-4939-5.
– reference: X. Su, Y. Kong, D. Peng, Evidence for changing lipid management strategy to focus on non-high density lipoprotein cholesterol. Lipids Health Dis. 18 (2019). https://doi.org/10.1186/s12944-019-1080-x.
– reference: M.S. Greenfield, L. Doberne, F. Kraemer, T. Tobey, G. Reaven. Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes. 30 (1981). https://doi.org/10.2337/diab.30.5.387.
– reference: J. Logue, J. J. Walker, H.M. Colhoun, G.P. Leese, R.S. Lindsay, J.A. McKnight, A.D. Morris, D.W. Pearson, J.R. Petrie, S. Philip et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia 54 (2011). https://doi.org/10.1007/s00125-011-2313-3.
– reference: VassalleCSimonciniTChedrauiPPérez-LópezFRWhy sex matters: the biological mechanisms of cardiovascular diseaseGynecol. Endocrinol.201228974675110.3109/09513590.2011.65272022329808
– reference: H. King, M. Rewers, Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16 (1993). https://doi.org/10.2337/diacare.16.1.157.
– reference: J.P. Moriarty, M.E. Branda, K.D. Olsen, N.D. Shah, B.J. Borah, A.E. Wagie, J.S. Egginton, J.M. Naessens, The effects of incremental costs of smoking and obesity on health care costs among adults: a 7-year longitudinal study. J. Occup. Environ. Med. 54 (2012). https://doi.org/10.1097/JOM.0b013e318246f1f4.
– reference: W. Masson, M. Lobo, D. Siniawski, G. Molinero, M. Huerín, J.P. Nogueira, Impact of lipid-lowering therapy on mortality according to the baseline non-HDL cholesterol level: a meta-analysis. High Blood Press. Cardiovasc. Prev. 26 (2019). https://doi.org/10.1007/s40292-019-00330-8.
– reference: S.H. Lee, H.S. Kwon, Y.M. Park, H.S. Ha, S.H. Jeong, H.K. Yang, J.H. Lee, H.W. Yim, M. Il Kang; W.C. Lee et al. Predicting the development of diabetes using the product of triglycerides and glucose: the chungju metabolic disease cohort (CMC) study. PLoS ONE 9 (2014). https://doi.org/10.1371/journal.pone.0090430.
– reference: R.N. Thota, K.A. Abbott, J.J.A. Ferguson, M. Veysey, M. Lucock, S. Niblett, K. King, M.L. Garg, InsuTAG: a novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-15460-z.
– reference: W.P. Castelli, R.D. Abbott, P.M. McNamara, Summary estimates of cholesterol used to predict coronary heart disease. Circulation 67 (1983). https://doi.org/10.1161/01.CIR.67.4.730.
– reference: PaulSThomasGMajeedAKhuntiKKleinKWomen develop type 2 diabetes at a higher body mass index than menDiabetologia201255155671:STN:280:DC%2BC38vjsFGrtg%3D%3D10.1007/s00125-012-2496-2
– reference: A. Borai, C. Livingstone, I. Kaddam, G. Ferns. Selection of the appropriate method for the assessment of insulin resistance. BMC Med. Res. Methodol. 11 (2011). https://doi.org/10.1186/1471-2288-11-158.
– reference: R. Muniyappa, S. Lee, H. Chen, M.J. Quon, Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am. J. Physiol. - Endocrinol. Metab. 294 (2008). https://doi.org/10.1152/ajpendo.00645.2007.
– reference: L.E. Simental-Mendía, M. Rodríguez-Morán, F. Guerrero-Romero, The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6 (2008). https://doi.org/10.1089/met.2008.0034.
– reference: M.K. Breyer, A. Ofenheimer, J. Altziebler, S. Hartl, O.C. Burghuber, M. Studnicka, D. Purin, C. Heinzle, H. Drexel, F.M.E. Franssen et al. Marked differences in prediabetes- and diabetes-associated comorbidities between men and women—Epidemiological results from a general population-based cohort aged 6-80 years—The LEAD (Lung, hEart, sociAl, boDy) study. Eur. J. Clin. Investig. 50 (2020). https://doi.org/10.1111/eci.13207.
– reference: T. McLaughlin, G. Reaven, F. Abbasi, C. Lamendola, M. Saad, D. Waters, J. Simon, R.M. Krauss. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 96 (2005). https://doi.org/10.1016/j.amjcard.2005.03.085.
– reference: O. Castañer, X. Pintó, I. Subirana, A.J. Amor, E. Ros, Á. Hernáez, M.Á. Martínez-González, D. Corella, J. Salas-Salvadó, R. Estruch et al. Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 76 (2020). https://doi.org/10.1016/j.jacc.2020.10.008.
– reference: N. Sattar, Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract. Res. Clin. Endocrinol. Metab. 27 (2013). https://doi.org/10.1007/s00125-012-2496-2.
– reference: LindholmMEMarabitaFGomez-CabreroDRundqvistHEkströmTJTegnérJSundbergCJAn integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after trainingEpigenetics2014915576910.4161/15592294.2014.982445
– reference: D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner. Homeostasis model assessment: insulin resis tance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 (1985). https://doi.org/10.1007/BF00280883.
– reference: R.H. Eckel, S.E. Kahn, E. Ferrannini, A.B. Goldfine, D.M. Nathan, M.W. Schwartz, R.J., S.R. Smith, Obesity and type 2 diabetes: what Can be unified and what needs to be individualized? Diabetes Care 34 (2011). https://doi.org/10.2337/dc11-0447.
– reference: S. Pitla, B. Nagalla, Gender-related differences in the relationship between plasma homocysteine, anthropometric and conventional biochemical coronary heart disease risk factors in middle-aged indians. Ann. Nutr. Metab. 54 (2009). https://doi.org/10.1159/000199452.
– reference: F. Guerrero-Romero, L.E. Simental-Mendía, M. González-Ortiz, E. Martínez-Abundis, M.G. Ramos-Zavala, S.O. Hernández-González, O. Jacques-Camarena, M. Rodríguez-Morán, The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95 (2010). https://doi.org/10.1210/jc.2010-0288.
– reference: M. Gutt, C.L. Davis, S.B. Spitzer, M.M. Llabre, M. Kumar, E.M. Czarnecki, N. Schneiderman, J.S. Skyler, J.B. Marks, Validation of the insulin sensitivity index (ISI0,120): Comparison with other measures. Diabetes Res. Clin. Pract. 47 (2000). https://doi.org/10.1016/S0168-8227(99)00116-3.
– reference: A. Katz, S.S. Nambi, K. Mather, A.D. Baron, D.A. Follmann, G. Sullivan, M.J. Quon, Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85 (2000). https://doi.org/10.1210/jcem.85.7.6661.
– reference: V. Regitz-Zagrosek, E. Lehmkuhl, M.O. Weickert, Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin. Res. Cardiol. 95 (2006) https://doi.org/10.1007/s00392-006-0377-8.
– reference: F. Lucatello, L. Vigna, M. Carugno, A.S. Tirelli, P.A. Bertazzi, L. Riboldi, Comparison of indexes for assessing insulin resistance for the health surveillance among workers [Confronto tra indici per la valutazione dell’insulino-resistenza nella sorveglianza sanitaria dei lavoratori]. G. Ital. Med. Lav. Ergon. 34 (2012).
– reference: R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. Gastrointest. Physiol. 6 (1979). https://doi.org/10.1152/ajpendo.1979.237.3.e214.
– reference: E. Al Shawaf, E. Al-Ozairi, F. Al-Asfar, A. Mohammad, S. Al-Beloushi, S. Devarajan, F. Al-Mulla, J. Abubaker, H. Arefanian, Atherogenic index of plasma (AIP) a tool to assess changes in cardiovascular disease risk post laparoscopic sleeve gastrectomy. J. Diabetes Res. 2020 (2020). https://doi.org/10.1155/2020/2091341.
– reference: M.S. Zhou, I.H. Schulman, Q. Zeng, Link between the renin-angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc. Med. 17 (2012). https://doi.org/10.1177/1358863X12450094.
– reference: M. D’Adamo, L. Perego, M. Cardellini, M.A. Marini, S. Frontoni, F. Andreozzi, A. Sciacqua, D. Lauro, P. Sbraccia, M. Federici et al. The -866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated with insulin resistance and increased risk of type 2 diabetes. Diabetes 53 (2004) https://doi.org/10.2337/diabetes.53.7.1905.
– reference: A. Al-Salameh, P. Chanson, S. Bucher, V. Ringa L. Becquemont. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo Clin. Proc. 94(2) (2019). https://doi.org/10.1016/j.mayocp.2018.08.007.
– reference: M.C. Amato, C. Giordano, Visceral adiposity index: an indicator of adipose tissue dysfunction. Int. J. Endocrinol. (2014). https://doi.org/10.1155/2014/730827.
– reference: L. Vigna, C. Vassalle, A.S. Tirelli, F. Gori, L. Tomaino, L. Sabatino, F. Bamonti, Gender-related association between uric acid, homocysteine, γ-glutamyltransferase, inflammatory biomarkers and metabolic syndrome in subjects affected by obesity. Biomark. Med. 11 (2017). https://doi.org/10.2217/bmm-2017-0072.
– reference: C. Capurso, A. Capurso. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 57 (2012). https://doi.org/10.1016/j.vph.2012.05.003.
– reference: V. Grossmannm, V.H. Schmitt, T. Zeller, M. Panova-Noeva, A. Schulz, D. Laubert-Reh, C. Juenger, R.B. Schnabel, T.G.J. Abt, R. Laskowski, J. Wiltink, E. Schulz, S. Blankenberg, K.J. Lackner, T. Münzel, PWild, P.S. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care 38 (2015). https://doi.org/10.2337/dc14-3008.
– reference: M. Dobiásová AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 52 (2006).
– reference: J. Millán, X. Pintó, A. Muñoz, M. Zúñiga, J. Rubiés-Prat, L.F. Pallardo, L. Masana, A. Mangas, A. Hernández-Mijares, P. González-Santos, J.F. Ascaso, J. Pedro-Botet, Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 5 (2009). https://doi.org/10.2147/vhrm.s6269.
– ident: 3087_CR24
  doi: 10.2147/vhrm.s6269
– ident: 3087_CR1
  doi: 10.2337/dc11-0447
– ident: 3087_CR8
  doi: 10.1093/humrep/dex308
– ident: 3087_CR15
– ident: 3087_CR37
  doi: 10.1016/j.mayocp.2018.08.007
– volume: 28
  start-page: 746
  issue: 9
  year: 2012
  ident: 3087_CR42
  publication-title: Gynecol. Endocrinol.
  doi: 10.3109/09513590.2011.652720
– ident: 3087_CR51
  doi: 10.5507/bp.2019.021
– ident: 3087_CR38
  doi: 10.2337/dc14-3008
– ident: 3087_CR14
  doi: 10.1186/s12944-019-1080-x
– ident: 3087_CR39
  doi: 10.1053/meta.2001.23286
– ident: 3087_CR32
  doi: 10.1007/s00125-019-4939-5
– ident: 3087_CR49
  doi: 10.1177/1358863X12450094
– ident: 3087_CR36
  doi: 10.1111/eci.13207
– ident: 3087_CR48
  doi: 10.1016/j.clnu.2004.02.006
– ident: 3087_CR26
  doi: 10.1161/CIRCULATIONAHA.113.003008
– ident: 3087_CR2
  doi: 10.1097/JOM.0b013e318246f1f4
– ident: 3087_CR17
  doi: 10.2217/bmm-2017-0072
– ident: 3087_CR31
  doi: 10.1007/s00392-006-0377-8
– ident: 3087_CR10
  doi: 10.1016/j.atherosclerosis.2015.06.057
– ident: 3087_CR35
  doi: 10.1007/s00125-012-2496-2
– ident: 3087_CR6
  doi: 10.1210/jcem.85.7.6661
– ident: 3087_CR22
– ident: 3087_CR41
  doi: 10.1016/S0140-6736(21)00684-X
– volume: 97
  start-page: 414
  issue: 2
  year: 2012
  ident: 3087_CR43
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2011.11.045
– ident: 3087_CR33
  doi: 10.1007/s00125-011-2313-3
– volume: 155
  start-page: 40
  year: 2022
  ident: 3087_CR44
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2021.10.001
– ident: 3087_CR21
  doi: 10.1210/jc.2010-0288
– ident: 3087_CR12
  doi: 10.1038/s41598-017-15460-z
– ident: 3087_CR3
  doi: 10.2337/diab.30.5.387
– ident: 3087_CR7
  doi: 10.1016/S0168-8227(99)00116-3
– ident: 3087_CR23
  doi: 10.1038/s41598-019-46187-8
– ident: 3087_CR19
  doi: 10.1152/ajpendo.00645.2007
– ident: 3087_CR11
  doi: 10.1371/journal.pone.0090430
– ident: 3087_CR27
  doi: 10.1016/j.jacc.2020.10.008
– ident: 3087_CR30
  doi: 10.2337/diacare.16.1.157
– ident: 3087_CR9
  doi: 10.1016/j.amjcard.2005.03.085
– ident: 3087_CR18
  doi: 10.1186/1471-2288-11-158
– ident: 3087_CR13
  doi: 10.1161/01.CIR.67.4.730
– ident: 3087_CR46
  doi: 10.2337/diabetes.53.7.1905
– ident: 3087_CR28
  doi: 10.1016/S0009-9120(01)00263-6
– ident: 3087_CR20
  doi: 10.1089/met.2008.0034
– volume: 26
  start-page: 609
  issue: 6
  year: 2019
  ident: 3087_CR45
  publication-title: Eur. J. Prev. Cardiol.
  doi: 10.1177/2047487318810560
– ident: 3087_CR4
  doi: 10.1152/ajpendo.1979.237.3.e214
– volume: 55
  start-page: 1556
  year: 2012
  ident: 3087_CR34
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2496-2
– volume: 9
  start-page: 1557
  year: 2014
  ident: 3087_CR50
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.982445
– ident: 3087_CR29
  doi: 10.1155/2020/2091341
– ident: 3087_CR25
  doi: 10.1007/s40292-019-00330-8
– ident: 3087_CR16
  doi: 10.1155/2014/730827
– ident: 3087_CR40
  doi: 10.1159/000199452
– ident: 3087_CR5
  doi: 10.1007/BF00280883
– ident: 3087_CR47
  doi: 10.1016/j.vph.2012.05.003
SSID ssj0022267
Score 2.3815513
Snippet Purpose The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or...
The aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity, in...
PurposeThe aim of the study was to evaluate indexes of insulin resistance and cardiometabolic risk in a large population of workers with overweight or obesity,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms Aging
Blood pressure
Body weight
Diabetes
Endocrinology
Fibrinogen
Homocysteine
Humanities and Social Sciences
Insulin
Insulin resistance
Internal Medicine
Medicine
Medicine & Public Health
multidisciplinary
Obesity
Original Article
Overweight
Science
Uric acid
Workers
Title Insulin resistance and cardiometabolic indexes: comparison of concordance in working-age subjects with overweight and obesity
URI https://link.springer.com/article/10.1007/s12020-022-03087-8
https://www.ncbi.nlm.nih.gov/pubmed/35665880
https://www.proquest.com/docview/2695012736
https://www.proquest.com/docview/2674002052
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7sKiz7Iq7uZbwRQXxZA9O0aSe-jeKsu6JPDuhTaW4gaLvYGcQH_7vnpJdB3BV8KqVJmvY7Sc79AOxFKou8TSRXw9hyOgK4yoaO20RpERUuFpJih88v0tNp8udKXrVBYXXn7d6ZJMNOvQh2EyTqkPd5SGPHRx9hWZLsjlQ8FeNezEKGImvDY_7d7-UR9IqvfGUTDUfNZBVWWh6RjRtQv8AHV67B-rhE-fjuke2z4LUZ1OFr8Om8NY6vw9Pvxq-coQRNXCHCyYrSMhNcTu_cDPG-vTEsJEh09SEzfQ1CVnm8o5SWNnTDQR4aLTrH_YbVc03qmpqR1pZVwZeahPowfNWUFvgK08nJ5fEpb6srcBNncsYjobXSzqvUp4VOVWF1WjiVyJH1zjmUbLwSPlVCGIMY2igrkJnKBGLu8JgX8TdYKqvS_QBWyNSrzCptrEo8SiAjE1OIrMflbaRLBxB1Pzw3bepxqoBxmy-SJhNIOYKUB5Dy0QB-9n3-Nok33my91eGYt4uwznEGkizrMU5gt3-My4dsIkXpqjm1yRJimaUYwPcG__51MbK6-C3DARx0BLEY_P9z2Xhf8034LAJxklPhFizN7uduGxmdmd6B5fHk6OiCrr-uz052Ap0_A9z--SI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS9xAFH9UC60XabXVVVunUHppBzaTTJLxtoiyVteTC95C5guENRGzS-mh_3vfm3wsxbbgMWRmMslvJvN73wCfI5VF3iaSq3FsOR0BXGVjx22itIhKFwtJscOz63Q6T77fytsuKKzpvd17k2T4U6-D3QSJOuR9HtLY8XwDXiIZyMmRay4mg5iFhCLrwmP-3u_PI-gJr3xiEw1Hzfkb2O44Ipu0oL6FF67agd1JhfLx_U_2hQWvzaAO34FXs844vgu_Llq_coYSNLFChJOVlWUmuJzeuyXivbgzLCRIdM0JM0MNQlZ7vKKUljZ0w0F-tFp0jv8b1qw0qWsaRlpbVgdfahLqw_B1W1rgHczPz25Op7yrrsBNnMklj4TWSjuvUp-WOlWl1WnpVCJz651zKNl4JXyqhDAGMbRRViKZygRi7vCYF_F72Kzqyu0DK2XqVWaVNlYlHiWQ3MQUIutxexvp0hFE_QcvTJd6nCpgLIp10mQCqUCQigBSkY_g69DnoU288d_WRz2ORbcJmwJnIMmyHuMEPg23cfuQTaSsXL2iNllClFmKEey1-A-Pi5Hq4ruMR_CtXxDrwf89l4PnNT-G19Ob2VVxdXF9eQhbIixUcjA8gs3l48p9QNKz1B_DGv8NJpr5BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS9xAFH-0W5BexI-2rq52CqWXdnAzySQ73hZ10bZKD13wFjJfIKyJuFnEg_-7702y2RbbQo8hM5NJfm_yvt8D-BipLPI2kVwNY8uJBXCVDR23idIiKlwsJOUOX1ymZ9Pk65W8-iWLP0S7L12STU4DVWkq68Nb6w9XiW-C1B6KRA8l7fjoJbzC33FEdD0V407lQuEia1Nl_jzvd3b0TMZ85h8NbGeyAeutvMjGDcCb8MKVW7A9LlFXvnlgn1iI4Aym8S1Yu2gd5dvweN7EmDPUpklCRGhZUVpmQvjpjasR-9m1YaFYopsfMdP1I2SVxysqb2nDNFzkvrGoc_z3sPlCk-lmzsiCy6oQV00Kfli-atoMvIHp5PTn8RlvOy1wE2ey5pHQWmnnVerTQqeqsDotnErkyHrnHGo5XgmfKiGMQTxtlBUoWGUC8XfI8kX8FnplVbodYIVMvcqs0saqxKM2MjIxpct6POpGurQP0fKD56YtQ07dMGb5qoAygZQjSHkAKR_14XM357YpwvHP0YMljnl7IOc57kCSlz3GDXzobuNRIv9IUbpqQWOyhMRnKfrwrsG_e1yMYi--y7APX5YEsVr873vZ_b_h72Htx8kk_35--W0PXotApxRrOIBefbdw-yj_1PogkPgTSxH9QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin+resistance+and+cardiometabolic+indexes%3A+comparison+of+concordance+in+working-age+subjects+with+overweight+and+obesity&rft.jtitle=Endocrine&rft.au=Vigna%2C+Luisella&rft.au=Tirelli%2C+Amedea+Silvia&rft.au=Gaggini%2C+Melania&rft.au=Di+Piazza%2C+Salvina&rft.date=2022-08-01&rft.pub=Springer+US&rft.eissn=1559-0100&rft.volume=77&rft.issue=2&rft.spage=231&rft.epage=241&rft_id=info:doi/10.1007%2Fs12020-022-03087-8&rft.externalDocID=10_1007_s12020_022_03087_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-0100&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-0100&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-0100&client=summon