Validation of the 2HELPS2B Seizure Risk Score in Acute Brain Injury Patients

Background and Objective Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)—collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, mean...

Full description

Saved in:
Bibliographic Details
Published inNeurocritical care Vol. 33; no. 3; pp. 701 - 707
Main Authors Moffet, Eric W., Subramaniam, Thanujaa, Hirsch, Lawrence J., Gilmore, Emily J., Lee, Jong Woo, Rodriguez-Ruiz, Andres A., Haider, Hiba A., Dhakar, Monica B., Jadeja, Neville, Osman, Gamaledin, Gaspard, Nicolas, Struck, Aaron F.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Objective Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)—collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors. Methods We queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals. Results A total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 ( p  = 0.015) and pre-cEEG acute clinical seizure ( p  < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60–0.71], EEG factors AUC = 0.82 [95% CI 0.77–0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80–0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76–0.85]. The 2HELPS2B AUC did not differ from EEG factors ( p  = 0.51), or EEG and clinical factors combined ( p  = 0.23), but was superior to clinical factors alone ( p  < 0.001). Conclusions Accurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electro-cerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.
AbstractList Background and Objective Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)—collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors. Methods We queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals. Results A total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 ( p  = 0.015) and pre-cEEG acute clinical seizure ( p  < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60–0.71], EEG factors AUC = 0.82 [95% CI 0.77–0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80–0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76–0.85]. The 2HELPS2B AUC did not differ from EEG factors ( p  = 0.51), or EEG and clinical factors combined ( p  = 0.23), but was superior to clinical factors alone ( p  < 0.001). Conclusions Accurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electro-cerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.
BACKGROUND AND OBJECTIVESeizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)-collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors. METHODSWe queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals. RESULTSA total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 (p = 0.015) and pre-cEEG acute clinical seizure (p < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60-0.71], EEG factors AUC = 0.82 [95% CI 0.77-0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80-0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76-0.85]. The 2HELPS2B AUC did not differ from EEG factors (p = 0.51), or EEG and clinical factors combined (p = 0.23), but was superior to clinical factors alone (p < 0.001). CONCLUSIONSAccurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electro-cerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.
Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)-collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors. We queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals. A total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 (p = 0.015) and pre-cEEG acute clinical seizure (p < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60-0.71], EEG factors AUC = 0.82 [95% CI 0.77-0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80-0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76-0.85]. The 2HELPS2B AUC did not differ from EEG factors (p = 0.51), or EEG and clinical factors combined (p = 0.23), but was superior to clinical factors alone (p < 0.001). Accurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electro-cerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.
Author Moffet, Eric W.
Haider, Hiba A.
Jadeja, Neville
Gaspard, Nicolas
Subramaniam, Thanujaa
Struck, Aaron F.
Rodriguez-Ruiz, Andres A.
Dhakar, Monica B.
Lee, Jong Woo
Hirsch, Lawrence J.
Gilmore, Emily J.
Osman, Gamaledin
Author_xml – sequence: 1
  givenname: Eric W.
  orcidid: 0000-0002-4168-7596
  surname: Moffet
  fullname: Moffet, Eric W.
  organization: Department of Neurology, University of Wisconsin School of Medicine and Public Health, Department of Neurology, Northwestern University Feinberg School of Medicine
– sequence: 2
  givenname: Thanujaa
  surname: Subramaniam
  fullname: Subramaniam, Thanujaa
  organization: Department of Neurology, University of Wisconsin School of Medicine and Public Health
– sequence: 3
  givenname: Lawrence J.
  surname: Hirsch
  fullname: Hirsch, Lawrence J.
  organization: Department of Neurology, Yale University School of Medicine
– sequence: 4
  givenname: Emily J.
  surname: Gilmore
  fullname: Gilmore, Emily J.
  organization: Department of Neurology, Yale University School of Medicine
– sequence: 5
  givenname: Jong Woo
  surname: Lee
  fullname: Lee, Jong Woo
  organization: Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 6
  givenname: Andres A.
  surname: Rodriguez-Ruiz
  fullname: Rodriguez-Ruiz, Andres A.
  organization: Department of Neurology, Emory University School of Medicine
– sequence: 7
  givenname: Hiba A.
  surname: Haider
  fullname: Haider, Hiba A.
  organization: Department of Neurology, Emory University School of Medicine
– sequence: 8
  givenname: Monica B.
  surname: Dhakar
  fullname: Dhakar, Monica B.
  organization: Department of Neurology, Emory University School of Medicine
– sequence: 9
  givenname: Neville
  surname: Jadeja
  fullname: Jadeja, Neville
  organization: Department of Neurology, UMass Memorial Medical Center
– sequence: 10
  givenname: Gamaledin
  surname: Osman
  fullname: Osman, Gamaledin
  organization: Department of Neurology, Henry Ford Hospital
– sequence: 11
  givenname: Nicolas
  surname: Gaspard
  fullname: Gaspard, Nicolas
  organization: Department of Neurology, Yale University School of Medicine, Département de Neurologie, Université Libre de Bruxelles, Hôspital Erasme
– sequence: 12
  givenname: Aaron F.
  surname: Struck
  fullname: Struck, Aaron F.
  email: afstruck@wisc.edu
  organization: Department of Neurology, University of Wisconsin School of Medicine and Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32107733$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1KAzEUhYMoWqsv4EICbtyMJrkzyWTZitpCQbHqNqTTOzq1zdRkBqpPb2r9ARdukgM559zcb59su9ohIUecnXHG1Hnggok8YYIljGnQyWqLdHiWyYRpybfXOuWJ1AB7ZD-EGWNCaZXtkj0QnCkF0CGjRzuvprapakfrkjbPSMXgcnQ7Fn06xuq99UjvqvBCx0UdZeVor2gbpH1vox66Wevf6G3Mo2vCAdkp7Tzg4dfdJQ9Xl_cXg2R0cz286I2SAlTWJJzLskilBTkRMpcpK9NSTrHUSljI0E7SjJcAKDlDnQvLM64kQCbENO5qBXTJ6aZ36evXFkNjFlUocD63Dus2GAFx6Vzl8eySkz_WWd16F39nhOY6zQEiiC4RG1fh6xA8lmbpq4X1b4Yzs2ZtNqxNnG8-WZtVDB1_VbeTBU5_It9wowE2hhCf3BP639n_1H4Apf2IXA
CitedBy_id crossref_primary_10_1016_j_ncl_2022_03_015
crossref_primary_10_1097_WNP_0000000000000894
crossref_primary_10_1007_s12028_021_01418_7
crossref_primary_10_1016_j_neucli_2021_01_006
crossref_primary_10_3389_fneur_2022_951286
crossref_primary_10_1007_s11910_023_01318_7
crossref_primary_10_1016_j_ncl_2021_01_009
crossref_primary_10_1111_ene_15154
crossref_primary_10_1007_s40265_021_01502_4
crossref_primary_10_1016_j_mcpro_2022_100452
crossref_primary_10_1016_j_neurol_2022_12_008
crossref_primary_10_1212_CON_0000000000001278
crossref_primary_10_1155_2022_5416726
crossref_primary_10_1001_jamaneurol_2021_2249
crossref_primary_10_1212_WNL_0000000000209621
crossref_primary_10_1186_s42466_020_00096_8
Cites_doi 10.1212/WNL.0000000000006903
10.1002/acn3.50817
10.1212/WNL.47.1.83
10.1212/WNL.0b013e3182703fbc
10.1001/jamaneurol.2019.4656
10.1002/ana.24166
10.1097/WNP.0000000000000475
10.1212/WNL.0000000000002281
10.1002/ana.24985
10.1097/WNP.0000000000000311
10.3171/jns.1999.91.5.0750
10.1097/01.WNP.0000154919.54202.E0
10.1007/s12028-016-0245-y
10.1212/01.WNL.0000125184.88797.62
10.1016/j.seizure.2016.11.017
10.1097/WNP.0000000000000268
10.1056/NEJM199801013380104
10.1001/jamaneurol.2016.4990
10.1097/CCM.0b013e3181a00604
10.1097/00006123-200211000-00006
10.1016/j.clinph.2014.05.037
10.1001/jamaneurol.2017.2459
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020
Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1007/s12028-020-00939-x
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest One Academic Eastern Edition
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection (Proquest)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1556-0961
EndPage 707
ExternalDocumentID 10_1007_s12028_020_00939_x
32107733
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: American Epilepsy Society
  funderid: http://dx.doi.org/10.13039/100001454
– fundername: Epilepsy Foundation
  funderid: http://dx.doi.org/10.13039/100001605
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACCUX
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFJLC
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
T13
TEORI
TSG
TT1
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7U
Z82
Z87
ZMTXR
ZOVNA
7RV
7X7
8FI
8FJ
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABUWG
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
BENPR
CCPQU
CGR
CUY
CVF
ECM
EIF
FYUFA
H13
HMCUK
NAPCQ
NPM
SJYHP
UKHRP
AAYXX
CITATION
3V.
7XB
8FK
K9.
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c375t-116fc46a36b268640f4f6def972a35eab451f33e610e982a1517633522d020a23
IEDL.DBID 7X7
ISSN 1541-6933
IngestDate Fri Oct 25 00:57:21 EDT 2024
Wed Nov 06 08:28:22 EST 2024
Thu Sep 12 20:12:25 EDT 2024
Wed Oct 16 00:43:49 EDT 2024
Sat Dec 16 12:00:06 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Critical care EEG
Seizure
Acute brain injury
2HELPS2B
Continuous EEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-116fc46a36b268640f4f6def972a35eab451f33e610e982a1517633522d020a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4168-7596
PMID 32107733
PQID 2919483377
PQPubID 6623258
PageCount 7
ParticipantIDs proquest_miscellaneous_2369387869
proquest_journals_2919483377
crossref_primary_10_1007_s12028_020_00939_x
pubmed_primary_32107733
springer_journals_10_1007_s12028_020_00939_x
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Neurocritical care
PublicationTitleAbbrev Neurocrit Care
PublicationTitleAlternate Neurocrit Care
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Newey, Kinzy, Punia, Hantus (CR14) 2018; 35
Claassen, Mayer, Kowalski, Emerson, Hirsch (CR7) 2004; 62
Vespa (CR8) 2005; 22
Struck, Ustun, Ruiz (CR12) 2017; 74
Rodriguez Ruiz, Vlachy, Lee (CR15) 2017; 74
Young, Jordan, Doig (CR20) 1996; 47
Dennis, Claassen, Hirsch, Emerson, Connolly, Mayer (CR2) 2002; 51
Won, Konczalla, Dubinski (CR9) 2017; 45
Pollandt, Ouyang, Bleck, Busl (CR6) 2017; 34
De Marchis, Pugin, Meyers (CR3) 2016; 86
(CR21) 2013
Annegers, Hauser, Coan, Rocca (CR10) 1998; 338
Maciel, Gilmore (CR5) 2016; 33
Struck, Osman, Rampal (CR13) 2017; 82
Vespa, Nuwer, Nenov (CR1) 1999; 91
Westover, Shafi, Bianchi (CR11) 2015; 126
Shafi, Westover, Cole, Kilbride, Hoch, Cash (CR22) 2012; 79
Oddo, Carrera, Claassen, Mayer, Hirsch (CR23) 2009; 37
Struck, Westover, Hall, Deck, Cole, Rosenthal (CR17) 2016; 24
Claassen, Albers, Schmidt (CR4) 2014; 75
Subramaniam, Jain, Hall (CR16) 2019; 92
Struck, Fesharaki, Schmitt (CR19) 2020
Struck, Rodriguez-Ruiz, Osman (CR18) 2019; 6
P Vespa (939_CR8) 2005; 22
CB Maciel (939_CR5) 2016; 33
J Claassen (939_CR4) 2014; 75
S Pollandt (939_CR6) 2017; 34
MM Shafi (939_CR22) 2012; 79
PM Vespa (939_CR1) 1999; 91
SY Won (939_CR9) 2017; 45
JF Annegers (939_CR10) 1998; 338
A Rodriguez Ruiz (939_CR15) 2017; 74
LJ Dennis (939_CR2) 2002; 51
RDCR T (939_CR21) 2013
T Subramaniam (939_CR16) 2019; 92
GB Young (939_CR20) 1996; 47
AF Struck (939_CR12) 2017; 74
AF Struck (939_CR17) 2016; 24
MB Westover (939_CR11) 2015; 126
AF Struck (939_CR13) 2017; 82
AF Struck (939_CR18) 2019; 6
GM De Marchis (939_CR3) 2016; 86
CR Newey (939_CR14) 2018; 35
M Oddo (939_CR23) 2009; 37
J Claassen (939_CR7) 2004; 62
AF Struck (939_CR19) 2020
References_xml – volume: 92
  start-page: e670
  year: 2019
  end-page: e674
  ident: CR16
  article-title: Lateralized periodic discharges frequency correlates with glucose metabolism
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006903
  contributor:
    fullname: Hall
– volume: 6
  start-page: 1239
  year: 2019
  end-page: 1247
  ident: CR18
  article-title: Comparison of machine learning models for seizure prediction in hospitalized patients
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.50817
  contributor:
    fullname: Osman
– volume: 47
  start-page: 83
  year: 1996
  end-page: 89
  ident: CR20
  article-title: An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality
  publication-title: Neurology
  doi: 10.1212/WNL.47.1.83
  contributor:
    fullname: Doig
– volume: 79
  start-page: 1796
  year: 2012
  end-page: 1801
  ident: CR22
  article-title: Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182703fbc
  contributor:
    fullname: Cash
– year: 2020
  ident: CR19
  article-title: Assessment of the validity of the 2HELPS2B score for inpatient seizure risk prediction
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2019.4656
  contributor:
    fullname: Schmitt
– volume: 75
  start-page: 771
  year: 2014
  end-page: 781
  ident: CR4
  article-title: Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome
  publication-title: Ann Neurol
  doi: 10.1002/ana.24166
  contributor:
    fullname: Schmidt
– volume: 35
  start-page: 325
  year: 2018
  end-page: 331
  ident: CR14
  article-title: Continuous electroencephalography in the critically ill: clinical and continuous electroencephalography markers for targeted monitoring
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000475
  contributor:
    fullname: Hantus
– volume: 86
  start-page: 253
  year: 2016
  end-page: 260
  ident: CR3
  article-title: Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002281
  contributor:
    fullname: Meyers
– volume: 82
  start-page: 177
  year: 2017
  end-page: 185
  ident: CR13
  article-title: Time-dependent risk of seizures in critically ill patients on continuous electroencephalogram
  publication-title: Ann Neurol
  doi: 10.1002/ana.24985
  contributor:
    fullname: Rampal
– volume: 34
  start-page: 55
  year: 2017
  end-page: 60
  ident: CR6
  article-title: Seizures and epileptiform discharges in patients with acute subdural hematoma
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000311
  contributor:
    fullname: Busl
– volume: 91
  start-page: 750
  year: 1999
  end-page: 760
  ident: CR1
  article-title: Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring
  publication-title: J Neurosurg
  doi: 10.3171/jns.1999.91.5.0750
  contributor:
    fullname: Nenov
– volume: 22
  start-page: 99
  year: 2005
  end-page: 106
  ident: CR8
  article-title: Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect”
  publication-title: J Clin Neurophysiol
  doi: 10.1097/01.WNP.0000154919.54202.E0
  contributor:
    fullname: Vespa
– volume: 24
  start-page: 324
  year: 2016
  end-page: 331
  ident: CR17
  article-title: Metabolic correlates of the ictal-interictal continuum: FDG-PET during continuous EEG
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-016-0245-y
  contributor:
    fullname: Rosenthal
– volume: 62
  start-page: 1743
  year: 2004
  end-page: 1748
  ident: CR7
  article-title: Detection of electrographic seizures with continuous EEG monitoring in critically ill patients
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000125184.88797.62
  contributor:
    fullname: Hirsch
– volume: 45
  start-page: 28
  year: 2017
  end-page: 35
  ident: CR9
  article-title: A systematic review of epileptic seizures in adults with subdural haematomas
  publication-title: Seizure
  doi: 10.1016/j.seizure.2016.11.017
  contributor:
    fullname: Dubinski
– volume: 33
  start-page: 183
  year: 2016
  end-page: 195
  ident: CR5
  article-title: Seizures and epileptiform patterns in SAH and their relation to outcomes
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000268
  contributor:
    fullname: Gilmore
– volume: 338
  start-page: 20
  year: 1998
  end-page: 24
  ident: CR10
  article-title: A population-based study of seizures after traumatic brain injuries
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199801013380104
  contributor:
    fullname: Rocca
– year: 2013
  ident: CR21
  publication-title: A language and environment for statistical computing
– volume: 74
  start-page: 181
  year: 2017
  end-page: 188
  ident: CR15
  article-title: Association of periodic and rhythmic electroencephalographic patterns with seizures in critically ill patients
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2016.4990
  contributor:
    fullname: Lee
– volume: 37
  start-page: 2051
  year: 2009
  end-page: 2056
  ident: CR23
  article-title: Continuous electroencephalography in the medical intensive care unit
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181a00604
  contributor:
    fullname: Hirsch
– volume: 51
  start-page: 1136
  year: 2002
  end-page: 1143
  ident: CR2
  article-title: Nonconvulsive status epilepticus after subarachnoid hemorrhage
  publication-title: Neurosurgery
  doi: 10.1097/00006123-200211000-00006
  contributor:
    fullname: Mayer
– volume: 126
  start-page: 463
  year: 2015
  end-page: 471
  ident: CR11
  article-title: The probability of seizures during EEG monitoring in critically ill adults
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.05.037
  contributor:
    fullname: Bianchi
– volume: 74
  start-page: 1419
  year: 2017
  end-page: 1424
  ident: CR12
  article-title: Association of an electroencephalography-based risk score with seizure probability in hospitalized patients
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2017.2459
  contributor:
    fullname: Ruiz
– volume: 6
  start-page: 1239
  year: 2019
  ident: 939_CR18
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.50817
  contributor:
    fullname: AF Struck
– volume: 74
  start-page: 1419
  year: 2017
  ident: 939_CR12
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2017.2459
  contributor:
    fullname: AF Struck
– volume: 37
  start-page: 2051
  year: 2009
  ident: 939_CR23
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181a00604
  contributor:
    fullname: M Oddo
– volume: 82
  start-page: 177
  year: 2017
  ident: 939_CR13
  publication-title: Ann Neurol
  doi: 10.1002/ana.24985
  contributor:
    fullname: AF Struck
– year: 2020
  ident: 939_CR19
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2019.4656
  contributor:
    fullname: AF Struck
– volume: 75
  start-page: 771
  year: 2014
  ident: 939_CR4
  publication-title: Ann Neurol
  doi: 10.1002/ana.24166
  contributor:
    fullname: J Claassen
– volume: 62
  start-page: 1743
  year: 2004
  ident: 939_CR7
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000125184.88797.62
  contributor:
    fullname: J Claassen
– volume: 86
  start-page: 253
  year: 2016
  ident: 939_CR3
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002281
  contributor:
    fullname: GM De Marchis
– volume-title: A language and environment for statistical computing
  year: 2013
  ident: 939_CR21
  contributor:
    fullname: RDCR T
– volume: 22
  start-page: 99
  year: 2005
  ident: 939_CR8
  publication-title: J Clin Neurophysiol
  doi: 10.1097/01.WNP.0000154919.54202.E0
  contributor:
    fullname: P Vespa
– volume: 35
  start-page: 325
  year: 2018
  ident: 939_CR14
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000475
  contributor:
    fullname: CR Newey
– volume: 33
  start-page: 183
  year: 2016
  ident: 939_CR5
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000268
  contributor:
    fullname: CB Maciel
– volume: 51
  start-page: 1136
  year: 2002
  ident: 939_CR2
  publication-title: Neurosurgery
  doi: 10.1097/00006123-200211000-00006
  contributor:
    fullname: LJ Dennis
– volume: 74
  start-page: 181
  year: 2017
  ident: 939_CR15
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2016.4990
  contributor:
    fullname: A Rodriguez Ruiz
– volume: 34
  start-page: 55
  year: 2017
  ident: 939_CR6
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000311
  contributor:
    fullname: S Pollandt
– volume: 91
  start-page: 750
  year: 1999
  ident: 939_CR1
  publication-title: J Neurosurg
  doi: 10.3171/jns.1999.91.5.0750
  contributor:
    fullname: PM Vespa
– volume: 79
  start-page: 1796
  year: 2012
  ident: 939_CR22
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182703fbc
  contributor:
    fullname: MM Shafi
– volume: 45
  start-page: 28
  year: 2017
  ident: 939_CR9
  publication-title: Seizure
  doi: 10.1016/j.seizure.2016.11.017
  contributor:
    fullname: SY Won
– volume: 338
  start-page: 20
  year: 1998
  ident: 939_CR10
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199801013380104
  contributor:
    fullname: JF Annegers
– volume: 24
  start-page: 324
  year: 2016
  ident: 939_CR17
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-016-0245-y
  contributor:
    fullname: AF Struck
– volume: 92
  start-page: e670
  year: 2019
  ident: 939_CR16
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006903
  contributor:
    fullname: T Subramaniam
– volume: 126
  start-page: 463
  year: 2015
  ident: 939_CR11
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.05.037
  contributor:
    fullname: MB Westover
– volume: 47
  start-page: 83
  year: 1996
  ident: 939_CR20
  publication-title: Neurology
  doi: 10.1212/WNL.47.1.83
  contributor:
    fullname: GB Young
SSID ssj0027975
Score 2.4121342
Snippet Background and Objective Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and...
Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal...
Background and ObjectiveSeizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and...
BACKGROUND AND OBJECTIVESeizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 701
SubjectTerms Brain Injuries - complications
Brain Injuries - diagnosis
Brain research
Coma
Consortia
Convulsions & seizures
Critical care
Critical Care Medicine
Datasets
Electroencephalography
Epilepsy
Hemorrhage
Hospitalization
Humans
Intensive
Internal Medicine
Medicine
Medicine & Public Health
Monitoring, Physiologic
Neurology
Original Work
Patients
Regression analysis
Risk Factors
Seizures - diagnosis
Seizures - etiology
Traumatic brain injury
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXwRv61OieCbFtYkzcfjJhtTNhnOyd5KmqYwhU72AeJf76XtVmT64EOfGq7l7nL3C5f7HUI32rA40YDcNGfCZzJhviRW-rEAdKCSRmKk6x3uP_HuiD2Ow3HVx51fdl9VJPNAXfW6kZxMmbhGaEWVD8BxO3R0aODEI9KsTlkqZ9cFaBD4HI7rZafM7zJ-ZqMNiLlRHs2zTmcf7ZVwETcL-x6gLZsdop1-WRA_Qr1XwNHFWCQ8TTGgOUy67d5gSFp4aCdfy5nFz5P5Ox46uko8yXDTLBcWt9xkCPyQvYFK8aDgVp0fo1Gn_XLf9csBCb6hIlz4QcBTw7imPCZcctZIWcoTmypBNA2tjlkYpJRagEhWSaIhu0M4cZArAR1oQk9QLZtm9gxhIYyUBgKfMQlLKZEJPMwK0hAK5HEP3a4UFX0UPBhRxXjs1BqByChXa_TpofpKl1G5J-YRUYFiklIhPHS9fg3e7EoUOrPTJayhYDIpJFceOi1ssP6c6zYSglIP3a2MUgn_-1_O_7f8Au0S5yD5jZU6qi1mS3sJuGMRX-V-9g3MXsp-
  priority: 102
  providerName: Springer Nature
Title Validation of the 2HELPS2B Seizure Risk Score in Acute Brain Injury Patients
URI https://link.springer.com/article/10.1007/s12028-020-00939-x
https://www.ncbi.nlm.nih.gov/pubmed/32107733
https://www.proquest.com/docview/2919483377
https://search.proquest.com/docview/2369387869
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WFkZfyj7a1W1XVOjbKhpLij6eRjLSZf0iNMvInowsyZANnLRJoOyv38l2mo2yPRiDZc7iTr77nU53B3Bqnci9ReRmpVBUaC-oZkHTXCE6ML7lnY65wze3sj8Sl-P2uNlwmzfHKlc6sVLUfuriHvk5M-hua86V-ji7p7FrVIyuNi00NmArZS0Zj3Sp8R8Ol6kK7SJKSKlEz71JmqlT51hVm5nFvGrDDX382zA9Q5vPIqWVAbp4BTsNciSdWtSv4UUo38DLmyY2_hauvyGkrjskkWlBENgR1u9dD4asS4Zh8mv5EMjdZP6TDGPlSjIpScctF4F0Y5MI8qX8gdwlg7rM6nwXRhe9r5_6tOmVQB1X7QVNU1k4IS2XOZNailYhCulDYRSzvB1sLtppwXlAtBSMZhYNPWqWiL488sAyvgeb5bQM-0CUclo71IHOeVFwpj1eIijWUgbpyQQ-rBiVzeqSGNm6-HFka4Yks4qt2WMCRyteZs3vMc_Wwkzg5GkYF3aMVtgyTJf4DkeRaaWlSeBdLYOnz8XEI6U4T-BsJZQ18X_P5eD_czmEbRYXRHVY5Qg2Fw_L8B4hxyI_rtbVMWx1Pn-_6uG927sd3OHTEev8Bpa_0bA
link.rule.ids 315,783,787,12068,21400,27936,27937,31731,31732,33756,33757,41093,41535,42162,42604,43322,43817,52123,52246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB88Be9eDj_uzj2_IvjmBdskzceTqChVWxGr0rclm2ShJ2w924L41zvZ3VpFzod92iUbZpKZ32QyvwHYtU5k3iJys1IoKrQXVLOgaaYQHRjf8E7H2uHupWzfivN-q18fuI3qa5VTm1gaaj908Yx8nxkMtzXnSh08_KOxa1TMrtYtNL7AQuThih0MVP9NwGVKol1ECU0qMXKvi2aq0jlWcjOzWFdtuKFP7x3TB7T5IVNaOqDTJfheI0dyWKl6GeZCsQKL3To3vgqdO4TUVYckMswJAjvC2iedqx47Ir0weJ48BnI9GN2TXmSuJIOCHLrJOJCj2CSCnBV_UbrkqqJZHf2A29OTm-M2rXslUMdVa0ybTZk7IS2XGZNaikYuculDbhSzvBVsJlrNnPOAaCkYzSw6erQsEX15lIFl_CfMF8MirAFRymnt0AY650XOmfb4iKBYQxkcTyawNxVU-lBRYqQz8uMo1hSHTEuxpk8JbExlmdbbY5TOlJnAzutrXNgxW2GLMJzgNxxVppWWJoFflQ5efxcLj5TiPIE_U6XMBv__XH5_Ppdt-Nq-6XbSztnlxTp8Y3FxlBdXNmB-_DgJmwg_xtlWucZeAHyi0IA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6hVKq48C5dKGAkbrBt1nb8OKaQkNK0ighF5bTy2l4pVNpUza6E-usZ76MBSg9VD3taa_wYPz5r5vsM8M5YnjmDyM0ILmOuHI8V9SrOJKID7frOqsAdPjoWkxP-5XRw-geLv85270KSDachqDQV5d65y_fWxDdaKyvTwIrWTMeIIjd4UEbqwcbw84_D0frSpWuxXUQKSSzw9t4SZ_5v5e_D6RrivBYtrQ-h8UMwXfOb3JOz3arMdu3lP8qOd-nfI3jQIlQybKbUY7jniyewedTG4J_C9DtC9-YlJrLMCQJIQiej6WxO98ncLy6rC0--LlZnZB4UMsmiIENblZ7sh8coyEHxE71IZo2c6-oZnIxH3z5O4vZNhtgyOSjjJBG55cIwkVGhBO_nPBfO51pSwwbeZHyQ5Ix5RGVeK2oQUOAOFlCew94YyragVywLvw1ESquUxb3WWsdzRpXDj3tJ-1KjPRHB-84Z6XkjvZGuRZbDAKVoMq0HKP0VwU7nr7RdhquU6kRzxZiUEby9-o0LKERFTOGXFZZhOC2UVEJH8Lzx81V1geAkJWMRfOh8tjZ-c1te3K74G9icfRqn04Pjw5dwnwav1_kyO9ArLyr_ClFPmb1uJ_Zv6hDz8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+2HELPS2B+Seizure+Risk+Score+in+Acute+Brain+Injury+Patients&rft.jtitle=Neurocritical+care&rft.au=Moffet%2C+Eric+W&rft.au=Subramaniam%2C+Thanujaa&rft.au=Hirsch%2C+Lawrence+J&rft.au=Gilmore%2C+Emily+J&rft.date=2020-12-01&rft.eissn=1556-0961&rft.volume=33&rft.issue=3&rft.spage=701&rft_id=info:doi/10.1007%2Fs12028-020-00939-x&rft_id=info%3Apmid%2F32107733&rft.externalDocID=32107733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-6933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-6933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-6933&client=summon