Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite

Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 52; no. 14
Main Authors Yu, Yingxin, Zhang, Youyue, Li, Luo, Zhang, Xinyue, Wang, Denglei, Mao, Zhu, Sun, Ningyu, Zhang, Yanyao, Li, Xinyang, Li, Wancai, Speziale, Sergio, Zhang, Dongzhou, Lin, Jung‐Fu, Yoshino, Takashi
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.07.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Plain Language Summary Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐VS and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle. Key Points The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region
AbstractList Abstract Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes.
Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO 2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐ V S and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO 2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle. The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region
Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Plain Language Summary Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐VS and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle. Key Points The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region
Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes.
Author Zhang, Youyue
Li, Wancai
Mao, Zhu
Yoshino, Takashi
Li, Xinyang
Wang, Denglei
Yu, Yingxin
Li, Luo
Zhang, Xinyue
Speziale, Sergio
Lin, Jung‐Fu
Sun, Ningyu
Zhang, Yanyao
Zhang, Dongzhou
Author_xml – sequence: 1
  givenname: Yingxin
  orcidid: 0000-0003-3894-4341
  surname: Yu
  fullname: Yu, Yingxin
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Youyue
  surname: Zhang
  fullname: Zhang, Youyue
  email: zhang.youyue.rn@ehime-u.ac.jp
  organization: Ehime University
– sequence: 3
  givenname: Luo
  orcidid: 0000-0002-9920-7794
  surname: Li
  fullname: Li, Luo
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Xinyue
  orcidid: 0000-0001-9931-1615
  surname: Zhang
  fullname: Zhang, Xinyue
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Denglei
  surname: Wang
  fullname: Wang, Denglei
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Zhu
  orcidid: 0000-0002-6469-6954
  surname: Mao
  fullname: Mao, Zhu
  email: zhumao@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Ningyu
  surname: Sun
  fullname: Sun, Ningyu
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Yanyao
  orcidid: 0000-0002-3846-1131
  surname: Zhang
  fullname: Zhang, Yanyao
  organization: Stanford University
– sequence: 9
  givenname: Xinyang
  orcidid: 0000-0003-1731-0155
  surname: Li
  fullname: Li, Xinyang
  organization: Jilin University
– sequence: 10
  givenname: Wancai
  surname: Li
  fullname: Li, Wancai
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Sergio
  orcidid: 0000-0002-6811-4309
  surname: Speziale
  fullname: Speziale, Sergio
  organization: GFZ German Research Centre for Geosciences
– sequence: 12
  givenname: Dongzhou
  orcidid: 0000-0002-6679-892X
  surname: Zhang
  fullname: Zhang, Dongzhou
  organization: University of Chicago
– sequence: 13
  givenname: Jung‐Fu
  orcidid: 0000-0002-0163-5329
  surname: Lin
  fullname: Lin, Jung‐Fu
  organization: The University of Texas at Austin
– sequence: 14
  givenname: Takashi
  orcidid: 0000-0002-5422-7396
  surname: Yoshino
  fullname: Yoshino, Takashi
  organization: Okayama University
BookMark eNp9kc1uEzEQxy1UJNLCjQewxAWkBsZr73p9LFGbVtoKRNqz5dizWUebdbCdlt54AA48I0_CJkGIE6f5-s1_ZjSn5GQIAxLymsF7BoX6UEAh5g1jgonqGZkwJcS0BpAnZAKgRr-Q1QtymtIaADhwNiE_7odoHrD3w4rmDuksbLY9fqNXaPIuYqKhPeQX6NPGW7qwJmeMGBP1w6Fy692v7z-b8IiR3poh90jvuhh2q45-7kwao2iG5LMPw17s7UV_Tq_fjS0f0cT92EX2qQsPPuNL8rw1fcJXf-wZub-6vJtdT5tP85vZRTO1XJZqqgosS8k4A7FUshKts6qopcISW-5UWTuzvw5tVXPHrWwdlrUSqEBUQoLjZ-TmqOuCWett9BsTn3QwXh8SIa60idnbHvUSKuXQOCGtEw5wCaZiypYMnbVStaPWm6PWNoavO0xZr8MuDuP6mhdcgKqqQo7U-ZGyMaQUsf07lYHe_07_-7sRL474o-_x6b-snn9pJNSF4r8BT_Od6A
Cites_doi 10.1073/pnas.2211243119
10.1016/j.epsl.2007.08.015
10.1016/s0012‐821x(02)00479‐x
10.1029/2021jb023562
10.1130/ges01476.1
10.1029/2020gl088846
10.1002/2017jb014055
10.1002/2013jb010466
10.1016/j.epsl.2021.117151
10.1007/s00269‐006‐0107‐9
10.5194/egusphere-egu25-6476
10.1186/s40645‐024‐00615‐0
10.1002/2017gl075463
10.1016/s0038‐1098(00)00099‐5
10.1016/j.pepi.2010.08.004
10.1038/s41467‐019‐13720‐2
10.1093/gji/ggz241
10.2138/am-2002-1026
10.3406/bulmi.1982.7582
10.1016/j.epsl.2022.117472
10.1016/j.pepi.2008.10.005
10.1016/s0012‐821x(01)00375‐2
10.1016/j.epsl.2025.119360
10.2138/am‐2019‐6559
10.1126/science.261.5124.1024
10.1016/j.pepi.2023.107034
10.1029/1999jb900419
10.1029/2021jb023170
10.2138/am‐2022‐8458
10.1016/j.epsl.2005.06.035
10.2138/am‐2022‐8546
10.1029/2018jb015835
10.1016/j.pepi.2016.05.004
10.1080/08957950701659593
10.1029/2002jb002384
10.1038/374243a0
10.1093/gji/ggv314
10.1073/pnas.0609013104
10.1007/s00024‐017‐1763‐z
10.1063/1.4768541
10.1016/j.pepi.2008.06.024
10.2138/am‐2003‐2‐307
10.1016/j.pepi.2014.01.013
10.1016/j.epsl.2013.02.015
10.1029/2009jb006709
10.1016/j.epsl.2013.10.042
10.1029/2007jb005263
10.1029/2005gl025106
10.1103/physrevlett.126.025701
10.1029/2000gl011570
10.2138/am.2007.2294
10.1126/science.282.5389.720
10.2138/am‐2018‐6267
10.1063/1.2360884
10.1126/science.283.5409.1888
10.1073/pnas.0706113104
10.1016/j.epsl.2005.04.004
10.1016/j.epsl.2022.117441
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL114146
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f
10_1029_2024GL114146
GRL70829
Genre article
GrantInformation_xml – fundername: Department of Energy
  funderid: DE‐FG02‐94ER14466; DE‐AC02‐06CH11357
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2080000189
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  funderid: 21H04996; 24K17148
– fundername: Argonne National Laboratory
  funderid: Proposal 2022‐GUP‐BM‐80436
– fundername: PETRA III
  funderid: Proposal I‐20230916
– fundername: Division of Earth Sciences
– fundername: National Natural Science Foundation of China
  funderid: 42425202; 42272036; 42241117
– fundername: National Key Research and Development Program of China
  funderid: 2023YFF0803200
– fundername: National Science Foundation
  funderid: EAR‐2333879; EAR‐1661511; EAR‐1634415
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3759-92e55713104b9764fdc92879e5ef3d958da0303ec683d3c7fde5894e9046470d3
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:28:55 EDT 2025
Tue Aug 26 04:12:20 EDT 2025
Wed Aug 20 23:59:15 EDT 2025
Tue Jul 29 10:40:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3759-92e55713104b9764fdc92879e5ef3d958da0303ec683d3c7fde5894e9046470d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5422-7396
0000-0003-3894-4341
0000-0003-1731-0155
0000-0002-3846-1131
0000-0002-6811-4309
0000-0002-6679-892X
0000-0002-6469-6954
0000-0001-9931-1615
0000-0002-0163-5329
0000-0002-9920-7794
OpenAccessLink https://doaj.org/article/b069dead47cd4d0eb0a619c51edcc79f
PQID 3234096627
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f
proquest_journals_3234096627
crossref_primary_10_1029_2024GL114146
wiley_primary_10_1029_2024GL114146_GRL70829
PublicationCentury 2000
PublicationDate 28 July 2025
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 28 July 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_2_4_1
e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_2_2_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
Li J. (e_1_2_9_1_32_1) 2022; 53
e_1_2_9_1_6_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_56_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_2_5_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_3_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_55_1
e_1_2_9_1_19_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_2_3_1
  doi: 10.1073/pnas.2211243119
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.epsl.2007.08.015
– ident: e_1_2_9_1_39_1
  doi: 10.1016/s0012‐821x(02)00479‐x
– ident: e_1_2_9_1_27_1
  doi: 10.1029/2021jb023562
– ident: e_1_2_9_1_14_1
  doi: 10.1130/ges01476.1
– ident: e_1_2_9_1_53_1
  doi: 10.1029/2020gl088846
– ident: e_1_2_9_2_4_1
  doi: 10.1002/2017jb014055
– ident: e_1_2_9_1_12_1
  doi: 10.1002/2013jb010466
– volume: 53
  start-page: 1
  year: 2022
  ident: e_1_2_9_1_32_1
  article-title: Mid‐lower mantle scatterers: Detection methods, research progress and prospect
  publication-title: Reviews of Geophysics and Planetary Physics
– ident: e_1_2_9_1_52_1
  doi: 10.1016/j.epsl.2021.117151
– ident: e_1_2_9_1_5_1
  doi: 10.1007/s00269‐006‐0107‐9
– ident: e_1_2_9_1_51_1
  doi: 10.5194/egusphere-egu25-6476
– ident: e_1_2_9_1_19_1
  doi: 10.1186/s40645‐024‐00615‐0
– ident: e_1_2_9_1_15_1
  doi: 10.1002/2017gl075463
– ident: e_1_2_9_1_17_1
  doi: 10.1016/s0038‐1098(00)00099‐5
– ident: e_1_2_9_1_38_1
  doi: 10.1016/j.pepi.2010.08.004
– ident: e_1_2_9_1_48_1
  doi: 10.1038/s41467‐019‐13720‐2
– ident: e_1_2_9_1_23_1
  doi: 10.1093/gji/ggz241
– ident: e_1_2_9_2_5_1
  doi: 10.2138/am-2002-1026
– ident: e_1_2_9_1_41_1
  doi: 10.3406/bulmi.1982.7582
– ident: e_1_2_9_1_20_1
  doi: 10.1016/j.epsl.2022.117472
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.pepi.2008.10.005
– ident: e_1_2_9_1_40_1
  doi: 10.1016/s0012‐821x(01)00375‐2
– ident: e_1_2_9_1_7_1
  doi: 10.1016/j.epsl.2025.119360
– ident: e_1_2_9_1_35_1
  doi: 10.2138/am‐2019‐6559
– ident: e_1_2_9_1_42_1
  doi: 10.1126/science.261.5124.1024
– ident: e_1_2_9_1_24_1
  doi: 10.1016/j.pepi.2023.107034
– ident: e_1_2_9_1_6_1
  doi: 10.1029/1999jb900419
– ident: e_1_2_9_1_55_1
  doi: 10.1029/2021jb023170
– ident: e_1_2_9_1_54_1
  doi: 10.2138/am‐2022‐8458
– ident: e_1_2_9_1_18_1
  doi: 10.1016/j.epsl.2005.06.035
– ident: e_1_2_9_1_8_1
  doi: 10.2138/am‐2022‐8546
– ident: e_1_2_9_2_2_1
  doi: 10.1029/2018jb015835
– ident: e_1_2_9_1_22_1
  doi: 10.1016/j.pepi.2016.05.004
– ident: e_1_2_9_1_9_1
  doi: 10.1080/08957950701659593
– ident: e_1_2_9_1_37_1
  doi: 10.1029/2002jb002384
– ident: e_1_2_9_1_28_1
  doi: 10.1038/374243a0
– ident: e_1_2_9_1_50_1
  doi: 10.1093/gji/ggv314
– ident: e_1_2_9_1_10_1
  doi: 10.1073/pnas.0609013104
– ident: e_1_2_9_1_16_1
  doi: 10.1007/s00024‐017‐1763‐z
– ident: e_1_2_9_1_26_1
  doi: 10.1063/1.4768541
– ident: e_1_2_9_1_4_1
  doi: 10.1016/j.pepi.2008.06.024
– ident: e_1_2_9_1_2_1
  doi: 10.2138/am‐2003‐2‐307
– ident: e_1_2_9_1_49_1
  doi: 10.1016/j.pepi.2014.01.013
– ident: e_1_2_9_1_36_1
  doi: 10.1016/j.epsl.2013.02.015
– ident: e_1_2_9_1_43_1
  doi: 10.1029/2009jb006709
– ident: e_1_2_9_1_33_1
  doi: 10.1016/j.epsl.2013.10.042
– ident: e_1_2_9_1_44_1
  doi: 10.1029/2007jb005263
– ident: e_1_2_9_1_47_1
  doi: 10.1029/2005gl025106
– ident: e_1_2_9_1_56_1
  doi: 10.1103/physrevlett.126.025701
– ident: e_1_2_9_1_29_1
  doi: 10.1029/2000gl011570
– ident: e_1_2_9_1_30_1
  doi: 10.2138/am.2007.2294
– ident: e_1_2_9_1_3_1
  doi: 10.1126/science.282.5389.720
– ident: e_1_2_9_1_11_1
  doi: 10.2138/am‐2018‐6267
– ident: e_1_2_9_1_46_1
  doi: 10.1063/1.2360884
– ident: e_1_2_9_1_25_1
  doi: 10.1126/science.283.5409.1888
– ident: e_1_2_9_1_31_1
  doi: 10.1073/pnas.0706113104
– ident: e_1_2_9_1_45_1
  doi: 10.1016/j.epsl.2005.04.004
– ident: e_1_2_9_1_21_1
  doi: 10.1016/j.epsl.2022.117441
SSID ssj0003031
Score 2.4807193
Snippet Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within...
Abstract Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms (Al, H)‐bearing stishovite
Aluminum
Concretions
Crusts
Lower mantle
mid‐lower mantle
Oceanic crust
phase transition
Phase transitions
Raman spectroscopy
Silica
Silicon dioxide
small‐scale seismic scatterers
Spectroscopy
Stishovite
Subduction
Subduction (geology)
Subduction zones
Transition pressure
X-ray diffraction
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4aCUuCFjQlpd8YKVFbESa2LF9BAStULtClErcovgFlUqKKCC48QM48Bv5Jcw4oSqXlbhFjp1EnoznG3vmG0J2tLaxBsFGSeE9OCiZiaTxKhKp0zqTsskKTBTu_svafXZ6yS_rDTfMhan4ISYbbqgZYb1GBS_0uCYbQI5M8NpZqwNwHnR9lsxjdi2G9CXsbLISw_JcVcxTLJKJyOrAdxi_Pz36i0kKzP1f4OY0aA1W52SJLNZwkR5U8l0mM65cIT9aoRzvM1yFAE4z_kle-yUWEsLkcgqYjqKeD90TRYj3AC41HfnQ3nOD8c3A0J4JxJoA_uigDHe6A_v-8tbBqmm0C_M9dPSiKuJDz67B1tFg1kKEFz7sz8HwL23vwpBDUBZ8bQ_ZkUaPgGFXSf_k-OKoHdWVFiKTCq4ilTjOwV0F30wDPmHeGgWulHLc-dQqLm2Bk-lMJlObGuGt41Ixp_BgVMQ2XSNz5ah0vwjVzYx7gHFKITeaNoWOi6ZXUmiN5IWyQX5_TnZ-WxFq5OEgPFH5tFAa5BAlMemDNNihYXR3lddales4UxZ0gQljmY0dvAscQsObzhojlG-QzU855rVujvM0ScGpReL7BtkLsv3vh-St847ADOT1b_XeIAsJlgqORZTITTJ3f_fgtgC_3Ovt8JN-AB9_594
  priority: 102
  providerName: Wiley-Blackwell
Title Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL114146
https://www.proquest.com/docview/3234096627
https://doaj.org/article/b069dead47cd4d0eb0a619c51edcc79f
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BIiQuK56isFQ-gASCiNSxY_vYRWwr1KIV3aAVlyh-aSuVdEV3Edz4ARz4jfwSZpwUlQtcuEV5Op6x5_vk8TcAj631uUXDZryJEQlK6TLtoslUEawttR6JhjYKz9-W00q8OZWnO6W-KCeskwfuOu6lzUvj8XeFcl74PNi8Qczv5Ch455SJNPtizNuSqX4Oxom5q5VnRKa5KvuU95wbYvtiMkMakEDvTjBKmv1_AM1duJrizdFN2O-BIht3DbwFV0J7G65PUiHer3iUUjfd5g58r1oqIUTbyhmiOUYjfBW-MAJ3l0im2Tqm84uw3HxcOrZwSVITYR9btunKfOl_fvsxo3ppbI49vQrspCvfw47PMMqxFNBSbhe97Ol49YJNn-EjhzhM6LML0kVaf0b0eheqo9cnr6ZZX2Mhc4WSJjM8SIlEFVmZRWQioncGSZQJMsTCG6l9Q50ZXKkLXzgVfZDaiGBoSVTlvrgHe-26DfeB2VEpIwI4Y0gVzboGTTWKRitrSbZQD-DJtrPr805Ko05L4NzUu0YZwCFZ4vc9JICdTqBb1L1b1P9yiwEcbO1Y96NyUxe8QDpLkvcDeJ5s-9eG1JN3M0V7jx_8jxY9hBucagfnKuP6APYuPl2GRwhoLuwQrnJxPIRr4_fVh2qYPPkXxbP0qw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qrRBsEE8RKDALKoHAwvFrZhYsUqBJqVMhEqOKjfG8IFJwUNMC3fUDuuBP-Ce-hHvHTpRukFh0Z_k58pk79xx75lyAx0qZUCGwQVQ5hwIl04HQTgY8tkplQnSTihYKD_ezQZG8PUgP1uD3Yi1M4w-x_OBGkeHHawpw-iDdug2QSSbK9qSfI5_HYG9nVe7Zkx-o2eYvd18jwFtRtPNm_GoQtGUFAh3zVAYysmmK2gyFiMJknDijJeoGaVPrYiNTYSrs-bHVmYhNrLkzNhUysZL-AvLQxHjfS7BBRArDaKP3ofhYLAd_vLAp0ieTQEQ8a-faY4tfrLb3XBb0xQLOMdxVnuwT3c51uNYyVNZrutQNWLP1Tbjc9xWAT3DLzxnV81twVtRUu4jWszOkkYyGlqn9yYhVHqOKZzPn94_sZP51otlIey9P5JtsUvsjw4n5c_orp0JtbIgQTy0bN3WD2LsvmF6Zz6R-Uhnd7Elv-pwNnuIl24gDPXZEhkyz70ibb0NxISjcgfV6Vtu7wFQ3Sx0yRynJjk3pSoVV10nBlSK_RNGBrcXLLr81Hh6l__ceyXIVlA5sExLLc8h52--YHX4u20AuVZhJg-GXcG0SE1p8FmpQnXat0ZpL14HNBY5lOxzMyziKUUeT134Hnnls_9mQsv8-57To-d5_nf0IrgzGw7zMd_f37sPViCoVhzyIxCasHx0e2wdIn47Uw7bLMvh00VHyFx57JWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qqUBsEE8RKDALKoHAwrE9Hs-CRUpJUppUFalR1Y3xvCBScKqmBbrjA1jwJXwUX8K9YydKN0gsurP8HPnMnXuOPXMuwFOlTKgQ2CAqnUOBkuog004GIrZKpVnWSUpaKDzaSwd58u6QH67B78VamNofYvnBjSLDj9cU4MfGNWYD5JGJqj3pD5HOY6w3kyp37fk3lGzz1zvbiO9mFPXeHrwZBE1VgUDHgstARpZzlGaoQxTm4sQZLVE2SMuti43kmSmx48dWp1lsYi2csTyTiZX0E1CEJsb7XoF1jokwbMF690N-lC_HfrywrtEnkyCLRNpMtccWv1pt74Uk6GsFXCC4qzTZ57neTbjREFTWrXvULViz1W242vcFgM9xy08Z1fM78DOvqHQRLWdnyCIZjSxT-50RqTxDEc9mzu8f28n8y0SzsfZWnkg32aTyR0YT8-fHryHVaWMjRHhq2UFdNojtf8bsynwi9XPK6GbPutOXbPAcL9lCHOixY_Jjmn1F1nwX8ktB4R60qlll7wNTnZQ7JI5Skhub0qUKy46TmVCK7BKzNmwuXnZxXFt4FP7XeySLVVDasEVILM8h422_Y3byqWjiuFBhKg1GXyK0SUxo8VkoQTXvWKO1kK4NGwsci2Y0mBdxFKOMJqv9Nrzw2P6zIUX__VDQmucH_3X2E7i2v90rhjt7uw_hekR1ikMRRNkGtE5PzuwjJE-n6nHTYxl8vOwg-QvshiSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Complex+Features+of+the+Seismic+Scatterers+in+the+Mid%E2%80%90Lower+Mantle+Through+Phase+Transition+of+%28Al%2C+H%29%E2%80%90Bearing+Stishovite&rft.jtitle=Geophysical+research+letters&rft.au=Yingxin+Yu&rft.au=Youyue+Zhang&rft.au=Luo+Li&rft.au=Xinyue+Zhang&rft.date=2025-07-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL114146&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon