Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite
Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T...
Saved in:
Published in | Geophysical research letters Vol. 52; no. 14 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.07.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes.
Plain Language Summary
Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐VS and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle.
Key Points
The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions
Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope
Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region |
---|---|
AbstractList | Abstract Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO 2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐ V S and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO 2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle. The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. Plain Language Summary Seismic studies have identified various small‐scale scatterers in the mid‐lower mantle, with low‐VS and complex depth variations between 700 and 1,900 km. Understanding the formation mechanisms of these scatterers is crucial for understanding mantle dynamics and chemical evolution. Previous studies suggest that their formation is linked to the structural phase transition of SiO2 from stishovite to post‐stishovite in subducted oceanic crusts, with variations in Al and H content potentially influencing the transition depth. However, earlier experiments on (Al, H)‐bearing stishovite phase transition were conducted only at high pressures and 300 K, limiting our ability to quantify the relationship between variations in subducted oceanic crust composition and small‐scale scatterers in the lower mantle. In this study, we investigate the phase transition of (Al, H)‐bearing stishovite under simultaneously high pressure and temperature conditions. Our results constrain how variations in Al and H content and temperature affect the transition depth. The obtained experimental results can be used to determine the depth of the post‐stishovite phase transition with varying Al content at different temperatures and provide critical experimental evidence for understanding the formation and corresponding dynamic processes of small‐scale scatterers in the lower mantle. Key Points The phase transition of (Al, H)‐bearing stishovite are comprehensively investigated under simultaneously high P‐T conditions Al and H incorporation into stishovite significantly lowers the transition pressure at 300 K but minimally affects the Clapeyron slope Al content variation from 0 to 0.07 a.p.f.u in SiO2 can explain the depth distribution of seismic scatterers in the circum‐Pacific region Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within subducted oceanic crusts. Here we investigate the phase transition of (Al, H)‐bearing stishovite with four compositions at simultaneously high P‐T conditions combining Raman spectroscopy and X‐ray diffraction. These experimental results reveal that the incorporation of 0.01 a.p.f.u Al into stishovite with H/Al ratio of ∼1/3 lowers the transition pressure by 6.7(3) GPa. However, the Clapeyron slope of this transition is nearly unaffected by changes in the Al content and has a value of 12.2–12.5(3) MPa/K. According to our results, Al content variation ranging from 0 to 0.07 a.p.f.u in SiO2 can reasonably explain the depth distribution from 800 to 1,900 km of the seismic scatterers observed in the circum‐Pacific region. These results deepen our understanding on the complex features of mid‐lower mantle seismic scatterers and corresponding dynamic processes. |
Author | Zhang, Youyue Li, Wancai Mao, Zhu Yoshino, Takashi Li, Xinyang Wang, Denglei Yu, Yingxin Li, Luo Zhang, Xinyue Speziale, Sergio Lin, Jung‐Fu Sun, Ningyu Zhang, Yanyao Zhang, Dongzhou |
Author_xml | – sequence: 1 givenname: Yingxin orcidid: 0000-0003-3894-4341 surname: Yu fullname: Yu, Yingxin organization: University of Science and Technology of China – sequence: 2 givenname: Youyue surname: Zhang fullname: Zhang, Youyue email: zhang.youyue.rn@ehime-u.ac.jp organization: Ehime University – sequence: 3 givenname: Luo orcidid: 0000-0002-9920-7794 surname: Li fullname: Li, Luo organization: University of Science and Technology of China – sequence: 4 givenname: Xinyue orcidid: 0000-0001-9931-1615 surname: Zhang fullname: Zhang, Xinyue organization: University of Science and Technology of China – sequence: 5 givenname: Denglei surname: Wang fullname: Wang, Denglei organization: University of Science and Technology of China – sequence: 6 givenname: Zhu orcidid: 0000-0002-6469-6954 surname: Mao fullname: Mao, Zhu email: zhumao@ustc.edu.cn organization: University of Science and Technology of China – sequence: 7 givenname: Ningyu surname: Sun fullname: Sun, Ningyu organization: University of Science and Technology of China – sequence: 8 givenname: Yanyao orcidid: 0000-0002-3846-1131 surname: Zhang fullname: Zhang, Yanyao organization: Stanford University – sequence: 9 givenname: Xinyang orcidid: 0000-0003-1731-0155 surname: Li fullname: Li, Xinyang organization: Jilin University – sequence: 10 givenname: Wancai surname: Li fullname: Li, Wancai organization: University of Science and Technology of China – sequence: 11 givenname: Sergio orcidid: 0000-0002-6811-4309 surname: Speziale fullname: Speziale, Sergio organization: GFZ German Research Centre for Geosciences – sequence: 12 givenname: Dongzhou orcidid: 0000-0002-6679-892X surname: Zhang fullname: Zhang, Dongzhou organization: University of Chicago – sequence: 13 givenname: Jung‐Fu orcidid: 0000-0002-0163-5329 surname: Lin fullname: Lin, Jung‐Fu organization: The University of Texas at Austin – sequence: 14 givenname: Takashi orcidid: 0000-0002-5422-7396 surname: Yoshino fullname: Yoshino, Takashi organization: Okayama University |
BookMark | eNp9kc1uEzEQxy1UJNLCjQewxAWkBsZr73p9LFGbVtoKRNqz5dizWUebdbCdlt54AA48I0_CJkGIE6f5-s1_ZjSn5GQIAxLymsF7BoX6UEAh5g1jgonqGZkwJcS0BpAnZAKgRr-Q1QtymtIaADhwNiE_7odoHrD3w4rmDuksbLY9fqNXaPIuYqKhPeQX6NPGW7qwJmeMGBP1w6Fy692v7z-b8IiR3poh90jvuhh2q45-7kwao2iG5LMPw17s7UV_Tq_fjS0f0cT92EX2qQsPPuNL8rw1fcJXf-wZub-6vJtdT5tP85vZRTO1XJZqqgosS8k4A7FUshKts6qopcISW-5UWTuzvw5tVXPHrWwdlrUSqEBUQoLjZ-TmqOuCWett9BsTn3QwXh8SIa60idnbHvUSKuXQOCGtEw5wCaZiypYMnbVStaPWm6PWNoavO0xZr8MuDuP6mhdcgKqqQo7U-ZGyMaQUsf07lYHe_07_-7sRL474o-_x6b-snn9pJNSF4r8BT_Od6A |
Cites_doi | 10.1073/pnas.2211243119 10.1016/j.epsl.2007.08.015 10.1016/s0012‐821x(02)00479‐x 10.1029/2021jb023562 10.1130/ges01476.1 10.1029/2020gl088846 10.1002/2017jb014055 10.1002/2013jb010466 10.1016/j.epsl.2021.117151 10.1007/s00269‐006‐0107‐9 10.5194/egusphere-egu25-6476 10.1186/s40645‐024‐00615‐0 10.1002/2017gl075463 10.1016/s0038‐1098(00)00099‐5 10.1016/j.pepi.2010.08.004 10.1038/s41467‐019‐13720‐2 10.1093/gji/ggz241 10.2138/am-2002-1026 10.3406/bulmi.1982.7582 10.1016/j.epsl.2022.117472 10.1016/j.pepi.2008.10.005 10.1016/s0012‐821x(01)00375‐2 10.1016/j.epsl.2025.119360 10.2138/am‐2019‐6559 10.1126/science.261.5124.1024 10.1016/j.pepi.2023.107034 10.1029/1999jb900419 10.1029/2021jb023170 10.2138/am‐2022‐8458 10.1016/j.epsl.2005.06.035 10.2138/am‐2022‐8546 10.1029/2018jb015835 10.1016/j.pepi.2016.05.004 10.1080/08957950701659593 10.1029/2002jb002384 10.1038/374243a0 10.1093/gji/ggv314 10.1073/pnas.0609013104 10.1007/s00024‐017‐1763‐z 10.1063/1.4768541 10.1016/j.pepi.2008.06.024 10.2138/am‐2003‐2‐307 10.1016/j.pepi.2014.01.013 10.1016/j.epsl.2013.02.015 10.1029/2009jb006709 10.1016/j.epsl.2013.10.042 10.1029/2007jb005263 10.1029/2005gl025106 10.1103/physrevlett.126.025701 10.1029/2000gl011570 10.2138/am.2007.2294 10.1126/science.282.5389.720 10.2138/am‐2018‐6267 10.1063/1.2360884 10.1126/science.283.5409.1888 10.1073/pnas.0706113104 10.1016/j.epsl.2005.04.004 10.1016/j.epsl.2022.117441 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL114146 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f 10_1029_2024GL114146 GRL70829 |
Genre | article |
GrantInformation_xml | – fundername: Department of Energy funderid: DE‐FG02‐94ER14466; DE‐AC02‐06CH11357 – fundername: Fundamental Research Funds for the Central Universities funderid: WK2080000189 – fundername: Ministry of Education, Culture, Sports, Science and Technology funderid: 21H04996; 24K17148 – fundername: Argonne National Laboratory funderid: Proposal 2022‐GUP‐BM‐80436 – fundername: PETRA III funderid: Proposal I‐20230916 – fundername: Division of Earth Sciences – fundername: National Natural Science Foundation of China funderid: 42425202; 42272036; 42241117 – fundername: National Key Research and Development Program of China funderid: 2023YFF0803200 – fundername: National Science Foundation funderid: EAR‐2333879; EAR‐1661511; EAR‐1634415 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3759-92e55713104b9764fdc92879e5ef3d958da0303ec683d3c7fde5894e9046470d3 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:28:55 EDT 2025 Tue Aug 26 04:12:20 EDT 2025 Wed Aug 20 23:59:15 EDT 2025 Tue Jul 29 10:40:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3759-92e55713104b9764fdc92879e5ef3d958da0303ec683d3c7fde5894e9046470d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5422-7396 0000-0003-3894-4341 0000-0003-1731-0155 0000-0002-3846-1131 0000-0002-6811-4309 0000-0002-6679-892X 0000-0002-6469-6954 0000-0001-9931-1615 0000-0002-0163-5329 0000-0002-9920-7794 |
OpenAccessLink | https://doaj.org/article/b069dead47cd4d0eb0a619c51edcc79f |
PQID | 3234096627 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f proquest_journals_3234096627 crossref_primary_10_1029_2024GL114146 wiley_primary_10_1029_2024GL114146_GRL70829 |
PublicationCentury | 2000 |
PublicationDate | 28 July 2025 |
PublicationDateYYYYMMDD | 2025-07-28 |
PublicationDate_xml | – month: 07 year: 2025 text: 28 July 2025 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_2_4_1 e_1_2_9_1_15_1 e_1_2_9_1_36_1 e_1_2_9_2_2_1 e_1_2_9_1_13_1 e_1_2_9_1_34_1 e_1_2_9_1_11_1 e_1_2_9_1_30_1 e_1_2_9_1_2_1 e_1_2_9_1_4_1 Li J. (e_1_2_9_1_32_1) 2022; 53 e_1_2_9_1_6_1 e_1_2_9_1_29_1 e_1_2_9_1_27_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_1_23_1 e_1_2_9_1_46_1 e_1_2_9_1_21_1 e_1_2_9_1_44_1 e_1_2_9_1_42_1 e_1_2_9_1_40_1 e_1_2_9_1_8_1 e_1_2_9_1_50_1 e_1_2_9_1_52_1 e_1_2_9_1_54_1 e_1_2_9_1_18_1 e_1_2_9_1_56_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_2_5_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_2_3_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_31_1 e_1_2_9_1_3_1 e_1_2_9_1_5_1 e_1_2_9_1_28_1 e_1_2_9_1_49_1 e_1_2_9_1_26_1 e_1_2_9_1_47_1 e_1_2_9_1_24_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_43_1 e_1_2_9_1_20_1 e_1_2_9_1_41_1 e_1_2_9_1_7_1 e_1_2_9_1_9_1 e_1_2_9_1_51_1 e_1_2_9_1_53_1 e_1_2_9_1_55_1 e_1_2_9_1_19_1 e_1_2_9_1_17_1 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_2_3_1 doi: 10.1073/pnas.2211243119 – ident: e_1_2_9_1_34_1 doi: 10.1016/j.epsl.2007.08.015 – ident: e_1_2_9_1_39_1 doi: 10.1016/s0012‐821x(02)00479‐x – ident: e_1_2_9_1_27_1 doi: 10.1029/2021jb023562 – ident: e_1_2_9_1_14_1 doi: 10.1130/ges01476.1 – ident: e_1_2_9_1_53_1 doi: 10.1029/2020gl088846 – ident: e_1_2_9_2_4_1 doi: 10.1002/2017jb014055 – ident: e_1_2_9_1_12_1 doi: 10.1002/2013jb010466 – volume: 53 start-page: 1 year: 2022 ident: e_1_2_9_1_32_1 article-title: Mid‐lower mantle scatterers: Detection methods, research progress and prospect publication-title: Reviews of Geophysics and Planetary Physics – ident: e_1_2_9_1_52_1 doi: 10.1016/j.epsl.2021.117151 – ident: e_1_2_9_1_5_1 doi: 10.1007/s00269‐006‐0107‐9 – ident: e_1_2_9_1_51_1 doi: 10.5194/egusphere-egu25-6476 – ident: e_1_2_9_1_19_1 doi: 10.1186/s40645‐024‐00615‐0 – ident: e_1_2_9_1_15_1 doi: 10.1002/2017gl075463 – ident: e_1_2_9_1_17_1 doi: 10.1016/s0038‐1098(00)00099‐5 – ident: e_1_2_9_1_38_1 doi: 10.1016/j.pepi.2010.08.004 – ident: e_1_2_9_1_48_1 doi: 10.1038/s41467‐019‐13720‐2 – ident: e_1_2_9_1_23_1 doi: 10.1093/gji/ggz241 – ident: e_1_2_9_2_5_1 doi: 10.2138/am-2002-1026 – ident: e_1_2_9_1_41_1 doi: 10.3406/bulmi.1982.7582 – ident: e_1_2_9_1_20_1 doi: 10.1016/j.epsl.2022.117472 – ident: e_1_2_9_1_13_1 doi: 10.1016/j.pepi.2008.10.005 – ident: e_1_2_9_1_40_1 doi: 10.1016/s0012‐821x(01)00375‐2 – ident: e_1_2_9_1_7_1 doi: 10.1016/j.epsl.2025.119360 – ident: e_1_2_9_1_35_1 doi: 10.2138/am‐2019‐6559 – ident: e_1_2_9_1_42_1 doi: 10.1126/science.261.5124.1024 – ident: e_1_2_9_1_24_1 doi: 10.1016/j.pepi.2023.107034 – ident: e_1_2_9_1_6_1 doi: 10.1029/1999jb900419 – ident: e_1_2_9_1_55_1 doi: 10.1029/2021jb023170 – ident: e_1_2_9_1_54_1 doi: 10.2138/am‐2022‐8458 – ident: e_1_2_9_1_18_1 doi: 10.1016/j.epsl.2005.06.035 – ident: e_1_2_9_1_8_1 doi: 10.2138/am‐2022‐8546 – ident: e_1_2_9_2_2_1 doi: 10.1029/2018jb015835 – ident: e_1_2_9_1_22_1 doi: 10.1016/j.pepi.2016.05.004 – ident: e_1_2_9_1_9_1 doi: 10.1080/08957950701659593 – ident: e_1_2_9_1_37_1 doi: 10.1029/2002jb002384 – ident: e_1_2_9_1_28_1 doi: 10.1038/374243a0 – ident: e_1_2_9_1_50_1 doi: 10.1093/gji/ggv314 – ident: e_1_2_9_1_10_1 doi: 10.1073/pnas.0609013104 – ident: e_1_2_9_1_16_1 doi: 10.1007/s00024‐017‐1763‐z – ident: e_1_2_9_1_26_1 doi: 10.1063/1.4768541 – ident: e_1_2_9_1_4_1 doi: 10.1016/j.pepi.2008.06.024 – ident: e_1_2_9_1_2_1 doi: 10.2138/am‐2003‐2‐307 – ident: e_1_2_9_1_49_1 doi: 10.1016/j.pepi.2014.01.013 – ident: e_1_2_9_1_36_1 doi: 10.1016/j.epsl.2013.02.015 – ident: e_1_2_9_1_43_1 doi: 10.1029/2009jb006709 – ident: e_1_2_9_1_33_1 doi: 10.1016/j.epsl.2013.10.042 – ident: e_1_2_9_1_44_1 doi: 10.1029/2007jb005263 – ident: e_1_2_9_1_47_1 doi: 10.1029/2005gl025106 – ident: e_1_2_9_1_56_1 doi: 10.1103/physrevlett.126.025701 – ident: e_1_2_9_1_29_1 doi: 10.1029/2000gl011570 – ident: e_1_2_9_1_30_1 doi: 10.2138/am.2007.2294 – ident: e_1_2_9_1_3_1 doi: 10.1126/science.282.5389.720 – ident: e_1_2_9_1_11_1 doi: 10.2138/am‐2018‐6267 – ident: e_1_2_9_1_46_1 doi: 10.1063/1.2360884 – ident: e_1_2_9_1_25_1 doi: 10.1126/science.283.5409.1888 – ident: e_1_2_9_1_31_1 doi: 10.1073/pnas.0706113104 – ident: e_1_2_9_1_45_1 doi: 10.1016/j.epsl.2005.04.004 – ident: e_1_2_9_1_21_1 doi: 10.1016/j.epsl.2022.117441 |
SSID | ssj0003031 |
Score | 2.4807193 |
Snippet | Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite within... Abstract Small‐scale scatterers observed in the mid‐lower mantle beneath the subduction zones are thought to result from the phase transition of stishovite... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | (Al, H)‐bearing stishovite Aluminum Concretions Crusts Lower mantle mid‐lower mantle Oceanic crust phase transition Phase transitions Raman spectroscopy Silica Silicon dioxide small‐scale seismic scatterers Spectroscopy Stishovite Subduction Subduction (geology) Subduction zones Transition pressure X-ray diffraction |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4aCUuCFjQlpd8YKVFbESa2LF9BAStULtClErcovgFlUqKKCC48QM48Bv5Jcw4oSqXlbhFjp1EnoznG3vmG0J2tLaxBsFGSeE9OCiZiaTxKhKp0zqTsskKTBTu_svafXZ6yS_rDTfMhan4ISYbbqgZYb1GBS_0uCYbQI5M8NpZqwNwHnR9lsxjdi2G9CXsbLISw_JcVcxTLJKJyOrAdxi_Pz36i0kKzP1f4OY0aA1W52SJLNZwkR5U8l0mM65cIT9aoRzvM1yFAE4z_kle-yUWEsLkcgqYjqKeD90TRYj3AC41HfnQ3nOD8c3A0J4JxJoA_uigDHe6A_v-8tbBqmm0C_M9dPSiKuJDz67B1tFg1kKEFz7sz8HwL23vwpBDUBZ8bQ_ZkUaPgGFXSf_k-OKoHdWVFiKTCq4ilTjOwV0F30wDPmHeGgWulHLc-dQqLm2Bk-lMJlObGuGt41Ixp_BgVMQ2XSNz5ah0vwjVzYx7gHFKITeaNoWOi6ZXUmiN5IWyQX5_TnZ-WxFq5OEgPFH5tFAa5BAlMemDNNihYXR3lddales4UxZ0gQljmY0dvAscQsObzhojlG-QzU855rVujvM0ScGpReL7BtkLsv3vh-St847ADOT1b_XeIAsJlgqORZTITTJ3f_fgtgC_3Ovt8JN-AB9_594 priority: 102 providerName: Wiley-Blackwell |
Title | Unraveling the Complex Features of the Seismic Scatterers in the Mid‐Lower Mantle Through Phase Transition of (Al, H)‐Bearing Stishovite |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL114146 https://www.proquest.com/docview/3234096627 https://doaj.org/article/b069dead47cd4d0eb0a619c51edcc79f |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BIiQuK56isFQ-gASCiNSxY_vYRWwr1KIV3aAVlyh-aSuVdEV3Edz4ARz4jfwSZpwUlQtcuEV5Op6x5_vk8TcAj631uUXDZryJEQlK6TLtoslUEawttR6JhjYKz9-W00q8OZWnO6W-KCeskwfuOu6lzUvj8XeFcl74PNi8Qczv5Ch455SJNPtizNuSqX4Oxom5q5VnRKa5KvuU95wbYvtiMkMakEDvTjBKmv1_AM1duJrizdFN2O-BIht3DbwFV0J7G65PUiHer3iUUjfd5g58r1oqIUTbyhmiOUYjfBW-MAJ3l0im2Tqm84uw3HxcOrZwSVITYR9btunKfOl_fvsxo3ppbI49vQrspCvfw47PMMqxFNBSbhe97Ol49YJNn-EjhzhM6LML0kVaf0b0eheqo9cnr6ZZX2Mhc4WSJjM8SIlEFVmZRWQioncGSZQJMsTCG6l9Q50ZXKkLXzgVfZDaiGBoSVTlvrgHe-26DfeB2VEpIwI4Y0gVzboGTTWKRitrSbZQD-DJtrPr805Ko05L4NzUu0YZwCFZ4vc9JICdTqBb1L1b1P9yiwEcbO1Y96NyUxe8QDpLkvcDeJ5s-9eG1JN3M0V7jx_8jxY9hBucagfnKuP6APYuPl2GRwhoLuwQrnJxPIRr4_fVh2qYPPkXxbP0qw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qrRBsEE8RKDALKoHAwvFrZhYsUqBJqVMhEqOKjfG8IFJwUNMC3fUDuuBP-Ce-hHvHTpRukFh0Z_k58pk79xx75lyAx0qZUCGwQVQ5hwIl04HQTgY8tkplQnSTihYKD_ezQZG8PUgP1uD3Yi1M4w-x_OBGkeHHawpw-iDdug2QSSbK9qSfI5_HYG9nVe7Zkx-o2eYvd18jwFtRtPNm_GoQtGUFAh3zVAYysmmK2gyFiMJknDijJeoGaVPrYiNTYSrs-bHVmYhNrLkzNhUysZL-AvLQxHjfS7BBRArDaKP3ofhYLAd_vLAp0ieTQEQ8a-faY4tfrLb3XBb0xQLOMdxVnuwT3c51uNYyVNZrutQNWLP1Tbjc9xWAT3DLzxnV81twVtRUu4jWszOkkYyGlqn9yYhVHqOKZzPn94_sZP51otlIey9P5JtsUvsjw4n5c_orp0JtbIgQTy0bN3WD2LsvmF6Zz6R-Uhnd7Elv-pwNnuIl24gDPXZEhkyz70ibb0NxISjcgfV6Vtu7wFQ3Sx0yRynJjk3pSoVV10nBlSK_RNGBrcXLLr81Hh6l__ceyXIVlA5sExLLc8h52--YHX4u20AuVZhJg-GXcG0SE1p8FmpQnXat0ZpL14HNBY5lOxzMyziKUUeT134Hnnls_9mQsv8-57To-d5_nf0IrgzGw7zMd_f37sPViCoVhzyIxCasHx0e2wdIn47Uw7bLMvh00VHyFx57JWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL0qqUBsEE8RKDALKoHAwrE9Hs-CRUpJUppUFalR1Y3xvCBScKqmBbrjA1jwJXwUX8K9YydKN0gsurP8HPnMnXuOPXMuwFOlTKgQ2CAqnUOBkuog004GIrZKpVnWSUpaKDzaSwd58u6QH67B78VamNofYvnBjSLDj9cU4MfGNWYD5JGJqj3pD5HOY6w3kyp37fk3lGzz1zvbiO9mFPXeHrwZBE1VgUDHgstARpZzlGaoQxTm4sQZLVE2SMuti43kmSmx48dWp1lsYi2csTyTiZX0E1CEJsb7XoF1jokwbMF690N-lC_HfrywrtEnkyCLRNpMtccWv1pt74Uk6GsFXCC4qzTZ57neTbjREFTWrXvULViz1W242vcFgM9xy08Z1fM78DOvqHQRLWdnyCIZjSxT-50RqTxDEc9mzu8f28n8y0SzsfZWnkg32aTyR0YT8-fHryHVaWMjRHhq2UFdNojtf8bsynwi9XPK6GbPutOXbPAcL9lCHOixY_Jjmn1F1nwX8ktB4R60qlll7wNTnZQ7JI5Skhub0qUKy46TmVCK7BKzNmwuXnZxXFt4FP7XeySLVVDasEVILM8h422_Y3byqWjiuFBhKg1GXyK0SUxo8VkoQTXvWKO1kK4NGwsci2Y0mBdxFKOMJqv9Nrzw2P6zIUX__VDQmucH_3X2E7i2v90rhjt7uw_hekR1ikMRRNkGtE5PzuwjJE-n6nHTYxl8vOwg-QvshiSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Complex+Features+of+the+Seismic+Scatterers+in+the+Mid%E2%80%90Lower+Mantle+Through+Phase+Transition+of+%28Al%2C+H%29%E2%80%90Bearing+Stishovite&rft.jtitle=Geophysical+research+letters&rft.au=Yingxin+Yu&rft.au=Youyue+Zhang&rft.au=Luo+Li&rft.au=Xinyue+Zhang&rft.date=2025-07-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL114146&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b069dead47cd4d0eb0a619c51edcc79f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |