Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges
Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of trad...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 2; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2020
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2567-3173 2567-3173 |
DOI | 10.1002/eom2.12047 |
Cover
Loading…
Abstract | Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work.
Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis are also discussed. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. |
---|---|
AbstractList | Abstract Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis are also discussed. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. image |
Author | Wang, Li'ao Lee, Shun Cheng Liu, Hongjing Cui, Wen Chen, Peng Dong, Fan |
Author_xml | – sequence: 1 givenname: Peng surname: Chen fullname: Chen, Peng organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Hongjing surname: Liu fullname: Liu, Hongjing organization: Chongqing University – sequence: 3 givenname: Wen surname: Cui fullname: Cui, Wen organization: Southwest Petroleum University – sequence: 4 givenname: Shun Cheng surname: Lee fullname: Lee, Shun Cheng organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Li'ao surname: Wang fullname: Wang, Li'ao email: wangliao@cqu.edu.cn organization: Chongqing University – sequence: 6 givenname: Fan orcidid: 0000-0003-2890-9964 surname: Dong fullname: Dong, Fan email: dfctbu@126.com organization: University of Electronic Science and Technology of China |
BookMark | eNp9kb1uFDEYRS0UJEJIwxO4Rtngv7Fn6CAKECkoBVBbHs_nWUcee2V7g7ajpuIZeRK8uwghhGj88_ncU_g-RScxRUDoOSWXlBD2EtLCLikjQj1Cp6yTasWp4id_nJ-g81LuSYM7Ipigp-jbG__j6_fRFJjwZp1qsqaasCu1YJcyDn5e1wZM2T9AxBAffE5xgdggbOLUJpDnHTabTfAt6lMsr_DHmre2bnNj6jb6OF_gDMbuX_ECdm2iL0u5OAjaLQSIM5Rn6LEzocD5r_0MfX57_enq_er27t3N1evbleWqU20d-o6onlEllVOTHKRQoh9Yb50UXHbMSGeIHd3AyUBGoINhkxxVR0dLac_P0M3ROyVzrzfZLybvdDJeHwYpz9rk6m0ALUboRN8BFZQI4LZ3FpxUxlIuh9Hw5npxdNmcSsngfvso0ftS9L4UfSilweQv2Pp6-LOajQ__jtBj5IsPsPuPXF_ffWDHzE_hfqSz |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126633 crossref_primary_10_1016_j_surfin_2024_105668 crossref_primary_10_1016_j_mssp_2024_109249 crossref_primary_10_1016_j_chemosphere_2021_132668 crossref_primary_10_1016_j_desal_2023_116680 crossref_primary_10_3390_catal13040666 crossref_primary_10_1002_aesr_202000097 crossref_primary_10_1039_D3RA06648G crossref_primary_10_1016_j_materresbull_2025_113352 crossref_primary_10_1021_acs_jpcc_4c01330 crossref_primary_10_1016_j_chemosphere_2022_137324 crossref_primary_10_1016_j_mtsust_2023_100409 crossref_primary_10_34133_2022_9897860 crossref_primary_10_1080_15567036_2022_2069884 crossref_primary_10_1016_j_jallcom_2024_177367 crossref_primary_10_1016_j_chemosphere_2023_138534 crossref_primary_10_1016_j_jcis_2023_07_172 crossref_primary_10_1016_j_crbiot_2024_100252 crossref_primary_10_1016_j_jhazmat_2021_126622 crossref_primary_10_1016_j_mseb_2024_117515 crossref_primary_10_1016_j_inoche_2025_114067 crossref_primary_10_1002_idm2_12025 crossref_primary_10_1016_j_jssc_2022_123784 crossref_primary_10_2139_ssrn_3990724 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1016_j_nantod_2024_102413 crossref_primary_10_1016_j_jallcom_2024_174915 crossref_primary_10_1021_acs_inorgchem_3c04487 crossref_primary_10_1016_j_apcatb_2021_120492 crossref_primary_10_1088_2053_1591_ad549c crossref_primary_10_1016_j_jmrt_2022_09_130 crossref_primary_10_1039_D1DT00236H crossref_primary_10_1016_j_envres_2021_112544 crossref_primary_10_1016_j_jhazmat_2024_136951 crossref_primary_10_1016_j_ceramint_2024_04_245 crossref_primary_10_1016_j_mtchem_2024_101924 crossref_primary_10_1007_s40684_025_00718_z crossref_primary_10_1016_j_apsusc_2024_159924 crossref_primary_10_1016_j_ccr_2023_215246 crossref_primary_10_1016_j_jpcs_2024_112132 crossref_primary_10_1039_D2CY01774A crossref_primary_10_1016_j_materresbull_2023_112560 crossref_primary_10_1039_D2QI02632E crossref_primary_10_1002_nano_202000127 crossref_primary_10_1021_acsomega_3c08939 crossref_primary_10_1007_s40726_023_00253_y crossref_primary_10_1016_j_seppur_2022_121897 crossref_primary_10_1039_D3NR02889E crossref_primary_10_1002_gch2_202200172 crossref_primary_10_1002_solr_202400386 crossref_primary_10_1039_D0NJ05506A crossref_primary_10_1016_j_surfin_2023_103812 crossref_primary_10_1016_j_cej_2022_135133 crossref_primary_10_1039_D1CY00739D crossref_primary_10_20964_2021_07_63 crossref_primary_10_1002_admt_202300760 crossref_primary_10_1007_s10876_023_02412_z crossref_primary_10_1016_j_apcatb_2021_120159 crossref_primary_10_1016_j_chemosphere_2024_141206 crossref_primary_10_1002_cnma_202300140 crossref_primary_10_1016_j_jhazmat_2021_126280 crossref_primary_10_1016_j_jphotochem_2022_114462 crossref_primary_10_1016_j_mcat_2024_113820 crossref_primary_10_1007_s12598_024_03002_2 crossref_primary_10_1039_D4CC00455H crossref_primary_10_1039_D4YA00240G crossref_primary_10_1039_D4MA00493K crossref_primary_10_1016_j_trechm_2025_01_006 crossref_primary_10_1016_j_colsurfa_2022_128829 crossref_primary_10_1016_j_jece_2025_115648 crossref_primary_10_1002_solr_202300406 crossref_primary_10_1016_j_jpcs_2023_111702 crossref_primary_10_1007_s43621_024_00439_4 crossref_primary_10_1016_j_jece_2022_107226 crossref_primary_10_1016_j_jcis_2021_07_018 crossref_primary_10_1016_j_jphotochem_2024_116237 crossref_primary_10_3390_polym13183064 crossref_primary_10_1039_D2RA07910K crossref_primary_10_3390_app11093975 crossref_primary_10_1039_D3RA01813J crossref_primary_10_1016_j_cej_2021_129305 crossref_primary_10_1016_j_ccr_2025_216443 crossref_primary_10_1016_j_jcis_2023_11_081 crossref_primary_10_1016_j_jece_2023_111855 crossref_primary_10_1007_s11356_022_19592_2 crossref_primary_10_1016_j_jece_2021_106264 crossref_primary_10_1007_s13204_023_02862_x crossref_primary_10_1016_j_cclet_2024_110125 crossref_primary_10_1016_j_esci_2023_100095 crossref_primary_10_1016_j_jre_2025_01_010 crossref_primary_10_1016_j_jece_2023_110613 crossref_primary_10_1016_j_cej_2022_135563 crossref_primary_10_1016_j_envres_2022_112834 crossref_primary_10_1016_j_ceramint_2024_12_241 crossref_primary_10_1016_j_jallcom_2023_171161 crossref_primary_10_1021_acs_chemrev_2c00422 crossref_primary_10_1038_s41467_023_36650_6 crossref_primary_10_1016_j_jcis_2021_08_146 crossref_primary_10_1016_j_molstruc_2024_138627 crossref_primary_10_1016_j_clay_2021_106319 crossref_primary_10_1002_eom2_12204 crossref_primary_10_1016_j_inoche_2021_108815 crossref_primary_10_1016_j_jece_2023_110864 crossref_primary_10_3390_ma17163975 crossref_primary_10_1016_j_cej_2022_139892 crossref_primary_10_1016_j_cej_2021_134104 crossref_primary_10_1016_j_cej_2021_132204 crossref_primary_10_1016_j_jece_2022_107838 crossref_primary_10_1016_j_indcrop_2022_115387 crossref_primary_10_1016_j_chemosphere_2023_140818 |
Cites_doi | 10.1016/j.jcat.2017.10.004 10.1016/j.apcatb.2019.118545 10.1002/adfm.201202144 10.1016/j.cattod.2018.01.013 10.1038/ncomms9816 10.1002/adfm.201801983 10.1016/j.cej.2015.11.103 10.1016/j.scitotenv.2019.03.071 10.1002/adma.200600654 10.1039/C4RA06419D 10.1021/cr00033a004 10.1088/0957-4484/16/9/060 10.1039/C4TA01339E 10.1039/c2cp23186g 10.1021/cr050977s 10.1016/j.cej.2016.01.032 10.1038/526628a 10.1007/s10562-012-0929-7 10.1016/j.apsusc.2016.06.003 10.1016/j.apcatb.2018.10.055 10.1016/j.apcatb.2017.06.022 10.1016/0167-2738(96)00348-7 10.1039/C1EE02875H 10.1016/j.apcatb.2016.06.032 10.1039/C4CS00126E 10.1002/chem.201803505 10.1016/j.colsurfa.2010.07.022 10.1103/PhysRevB.60.15484 10.1021/acs.jpcc.6b01188 10.1039/c1jm11840d 10.1002/aoc.4230 10.1021/cs400993w 10.1021/acscatal.6b01668 10.1103/PhysRevB.73.235104 10.1039/C3CP43856B 10.1021/es101890w 10.1021/cm802894z 10.1021/ja5044787 10.1039/C4NR03008G 10.1039/C8NH00062J 10.1021/es303968n 10.1039/c0cp01189d 10.1002/smll.200700043 10.1021/cg501527k 10.1107/S0021889869006443 10.1016/j.apsusc.2016.07.070 10.1016/j.jhazmat.2016.09.034 10.1039/C4NR02553A 10.1021/acsami.5b09994 10.1021/ja992541y 10.1039/C6SC00389C 10.1002/chem.201503778 10.1002/aenm.201600436 10.1002/adma.200304693 10.1021/jacs.6b11263 10.1038/srep20337 10.1016/j.jmst.2016.11.017 10.1021/acscatal.7b02662 10.1016/j.apcatb.2012.12.003 10.1088/0953-8984/7/37/005 10.1039/c0cp01871f 10.1039/C4RA10587G 10.1016/j.apsusc.2010.06.058 10.1002/pssb.2220750218 10.1016/j.apcatb.2015.04.026 10.1021/jp5035079 10.1016/j.apcatb.2017.12.008 10.1016/j.jclepro.2018.12.156 10.1021/jp052995j 10.1016/j.snb.2003.10.032 10.1002/cssc.201901196 10.1002/anie.201600405 10.1021/acsenergylett.8b00878 10.1021/acs.chemrev.9b00226 10.1038/nmat3454 10.1002/adma.201804872 10.1016/j.apcatb.2016.01.044 10.1039/C8CS00542G 10.1002/cssc.201701450 10.1016/j.molcata.2009.10.018 10.1016/j.cej.2019.04.003 10.1016/j.jhazmat.2016.08.069 10.1021/acs.jpclett.6b00428 10.1016/j.cej.2016.01.092 10.1002/anie.201207904 10.1016/j.solidstatesciences.2014.01.010 10.1039/b616460a 10.1002/adfm.201303214 10.1016/j.physb.2012.04.039 10.1016/j.apcatb.2006.08.002 10.1126/science.1143802 10.1016/j.apcatb.2016.08.027 10.1016/j.apcatb.2016.03.046 10.1016/j.apcatb.2016.05.022 10.1021/acs.est.9b03296 10.1016/j.apsusc.2017.06.186 10.1002/aenm.201600087 10.1039/C0NJ00410C 10.1016/j.apcatb.2017.11.079 10.1126/science.1135009 10.1126/science.1061051 10.1002/anie.201705628 10.1016/j.pnsc.2013.05.002 10.1002/smll.201901008 10.1016/j.jiec.2019.06.022 10.1016/j.ceramint.2018.08.320 10.1016/j.matchemphys.2010.01.046 10.1016/j.apcatb.2016.05.052 10.1039/c2ee03447f 10.1039/c3nr01577g 10.1016/j.cej.2012.02.079 10.1016/S0167-2738(02)00291-6 10.1016/S0025-5408(01)00641-9 10.1103/PhysRevB.41.11827 10.1016/j.jhazmat.2019.120879 10.1021/ja210610h 10.1016/j.cej.2016.06.090 10.1002/adfm.201804388 10.1016/j.ccr.2017.08.010 10.1016/j.apcatb.2006.02.022 10.1002/smll.201804426 10.1021/jp802115w 10.1006/jssc.1995.1214 10.1021/jp0555100 10.1021/acsanm.0c00090 10.1039/c2ra20881d 10.1016/j.jpcs.2019.05.042 10.1002/smtd.201700080 10.1021/cr00033a003 10.1088/0031-8949/37/5/022 10.1016/0025-5408(72)90227-9 10.1021/jacs.6b12850 10.1039/C8NR09147A 10.1016/j.mcat.2017.02.004 10.1039/C6CC07750A 10.1021/jp3065882 10.1039/C4CC02724H 10.1016/j.jphotochem.2010.03.004 10.1103/PhysRevLett.82.3328 10.1016/j.apcatb.2019.118025 10.1021/acsaem.8b01345 10.1126/science.173.3991.45 10.1039/b909930a 10.1016/j.matlet.2015.07.029 10.1021/acsami.8b19575 10.1016/j.apsusc.2016.10.118 10.1021/cs300213m 10.1021/acs.est.7b00040 10.1002/cssc.201200670 10.1021/acs.jpcc.9b02081 10.1016/j.apcatb.2011.12.037 10.1016/j.catcom.2016.09.030 10.1088/1748-9326/aaa49d 10.1021/acsanm.8b00281 10.1021/acs.est.7b01466 10.1016/j.jhazmat.2010.01.020 10.1021/acscatal.5b00444 10.1002/cctc.201701965 10.1038/s41929-019-0242-6 10.1016/j.progsurf.2006.03.001 10.1007/s12598-011-0262-0 10.1021/jp904448k 10.1039/C2CS35266D 10.1021/jacs.6b04629 10.1007/s12274-010-1042-0 10.1002/adma.200801354 10.1016/0038-1098(75)90791-7 10.1039/C7TA08619A 10.1021/ja0396753 10.1021/acsnano.5b04979 10.1021/jp802802j 10.1021/acssuschemeng.9b02575 10.1021/acscatal.8b04068 10.1002/anie.201916510 10.1016/j.apcata.2011.05.037 10.1021/cs501076a 10.1021/jacs.5b03105 10.1039/C7TA08766G 10.1016/j.apcatb.2016.06.020 10.1107/S0365110X62002297 10.1021/cr0500535 10.1021/acs.est.9b04535 10.1016/j.apcatb.2018.06.066 10.1016/j.cej.2012.08.021 10.1016/j.apcatb.2019.118130 10.1016/j.apcatb.2017.10.049 10.1038/nclimate1629 10.1021/cs501038q 10.1039/c3nr05529a 10.1039/c1cc11015b 10.1021/ja402956f 10.1002/anie.201108276 10.1002/smll.201200055 10.1002/cssc.201200254 10.1023/B:RUCB.0000019873.81002.60 10.1038/s41467-018-05738-9 10.7567/JJAP.51.09LE06 10.1021/jp4065505 10.1103/PhysRevB.33.3778 10.1021/jp409598s 10.1016/0025-5408(94)00123-5 10.1016/j.apsusc.2015.12.231 10.1016/j.jcat.2016.10.005 10.1002/chem.200500904 10.1002/slct.201600090 10.1016/j.apsusc.2019.144806 10.1016/j.apcatb.2018.09.032 10.1016/j.apt.2012.02.004 10.1016/j.apcatb.2017.05.035 10.1016/j.ijhydene.2018.06.179 10.1039/C4CP06045H 10.1002/adma.201601694 10.1126/science.284.5418.1335 10.1016/j.inoche.2013.12.024 10.1063/1.1507101 10.1016/S1872-2067(14)60075-9 10.1016/j.apcata.2006.04.016 10.1016/S1872-2067(19)63279-1 10.1021/acscatal.6b02089 10.1016/j.apcatb.2019.03.062 10.1039/c3en00098b |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/eom2.12047 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3 10_1002_eom2_12047 EOM212047 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Graduate Research and Innovation Foundation of Chongqing funderid: CYS18019 – fundername: The Graduate Research Innovation Fund Project of Southwest Petroleum University funderid: 2019cxyb012 – fundername: 111 Project funderid: B20030 – fundername: National Natural Science Foundation of China funderid: 21822601; 21777011 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3757-c398507821767f7d6964748928cf643652a6fa0cbf93090be19a2d6b751bc1183 |
IEDL.DBID | DOA |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:25:20 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 Wed Jan 22 16:32:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3757-c398507821767f7d6964748928cf643652a6fa0cbf93090be19a2d6b751bc1183 |
Notes | Funding information Peng Chen and Hongjing Liu contributed equally to this work. National Natural Science Foundation of China, Grant/Award Numbers: 21822601, 21777011; Graduate Research and Innovation Foundation of Chongqing, Grant/Award Number: CYS18019; The Graduate Research Innovation Fund Project of Southwest Petroleum University, Grant/Award Number: 2019cxyb012; 111 Project, Grant/Award Number: B20030 |
ORCID | 0000-0003-2890-9964 |
OpenAccessLink | https://doaj.org/article/4be5485e14104e3c8fcef67ac1369ba3 |
PageCount | 31 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3 crossref_primary_10_1002_eom2_12047 crossref_citationtrail_10_1002_eom2_12047 wiley_primary_10_1002_eom2_12047_EOM212047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2010; 12 1995; 30 2007; 107 2002; 150 2010; 15 2019; 11 2017; 88 1975; 16 2019; 12 2019; 15 2017; 391 1999; 284 2009; 113 2014; 24 2017; 394 2012; 14 2017; 310 2018; 44 2018; 43 2017; 432 2013; 5 2013; 6 2012; 11 2003; 52 2014; 136 2012; 407 2018; 6 1990; 41 1976; 75 2018; 9 2010; 20 2018; 3 2012; 134 2010; 1 2015; 137 2018; 1 2013; 52 2005; 109 2007; 3 2008; 112 2010; 3 2017; 321 1971; 173 2018; 32 2017; 201 2007; 17 2019; 7 2012; 189‐190 2019; 9 2018; 28 1979; 14 2019; 31 2018; 226 2019; 2 2020; 264 2015; 176‐177 2018; 225 2020; 260 2018; 224 2016; 288 2006; 110 1962; 15 2015; 526 2014; 40 2014; 43 2017; 139 2018; 24 1995; 7 2017; 51 2010; 44 2016; 6 2016; 7 2016; 1 2019; 40 2007; 315 2018; 238 2013; 132‐133 2018; 357 2019; 48 2010; 212 2010; 177 2019; 212 2014; 35 2014; 30 2016; 291 2005; 16 2012; 116 2018; 10 2001; 36 1996; 89 2018; 13 2017; 5 2017; 7 2012; 117‐118 2017; 1 2004; 126 2006; 73 2019; 53 2013; 24 2013; 23 1986; 33 1988; 37 2002; 117 2016; 344 1999; 121 2020; 59 2016; 187 2011; 13 2020; 54 1999; 82 2019; 243 2019; 123 2019; 241 2012; 51 2012; 209 2014; 1 2013; 15 2014; 4 2001; 293 2020; 3 2014; 2 2006; 68 2010; 317 1969; 2 2006; 66 2017; 33 2008; 319 2016; 199 2016; 198 2011; 21 2019; 119 2016; 192 2014; 50 2014; 6 2016; 196 2017; 218 2014; 118 2015; 15 1995; 95 2012; 142 2015; 6 2015; 17 2013; 47 2015; 5 2009; 21 2006; 12 2019; 78 2010; 368 2013; 42 2010; 121 2016; 365 2011; 30 2006; 18 2016; 52 1995; 116 2011; 35 2017; 29 2019; 668 1999; 60 2015; 9 2019; 380 2015; 8 2015; 7 2017; 214 2016; 120 2020; 507 2016; 55 2006; 81 2004; 99 2018; 430 2012; 2 2006; 308 2011; 106 2018; 315 2015; 159 2010; 257 2017; 10 2015; 21 2019; 259 2013; 135 2016; 138 2011; 47 2019; 251 2012; 5 2019; 370 2019; 134 2012; 8 2017; 349 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 O'Brien B (e_1_2_8_66_1) 2008; 112 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_87_1 Xa D (e_1_2_8_193_1) 2018; 357 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 Chen L (e_1_2_8_58_1) 2018; 43 Zhang Q (e_1_2_8_64_1) 2014; 2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 Ra H (e_1_2_8_82_1) 2014; 35 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_220_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 Tong W (e_1_2_8_83_1) 2010; 3 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_195_1 Liu Z (e_1_2_8_85_1) 2010; 15 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 Khuzwayo Z (e_1_2_8_36_1) 2017; 321 e_1_2_8_217_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 Maeda K (e_1_2_8_221_1) 2010; 1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 Di J (e_1_2_8_172_1) 2014; 2 e_1_2_8_27_1 Zhang L (e_1_2_8_91_1) 2013; 132 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 (e_1_2_8_77_1) 2011; 35 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_92_1 Jose G (e_1_2_8_199_1) 2018; 13 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_114_1 e_1_2_8_198_1 Katey WA (e_1_2_8_213_1) 2018; 9 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 Shu Y (e_1_2_8_55_1) 2016; 6 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_190_1 Phuruangrat A (e_1_2_8_205_1) 2015; 159 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 Zhang LZ (e_1_2_8_226_1) 2015; 8 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 7 start-page: 1400 year: 2016 end-page: 1405 article-title: BiVO {010} and {110} relative exposure extent: governing factor of surface charge population and photocatalytic activity publication-title: J Phys Chem Lett – volume: 57 start-page: 122 year: 2018 end-page: 138 article-title: Oxygen vacancy‐mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew Chem – volume: 142 start-page: 1413 year: 2012 end-page: 1436 article-title: Metal phosphides: preparation, characterization and catalytic reactivity publication-title: Catal Lett – volume: 2 start-page: 9224 year: 2012 end-page: 9229 article-title: First‐principles studies on facet‐dependent photocatalytic properties of bismuth oxyhalides (BiOXs) publication-title: RSC Adv – volume: 14 start-page: 2450 year: 2012 end-page: 2454 article-title: Investigation of band offsets of interface BiOCl:Bi WO : a first‐principles study publication-title: Phys Chem Chem Phys – volume: 430 start-page: 571 year: 2018 end-page: 577 article-title: 2D BiOCl/Bi O Cl nanojunction: enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation publication-title: Appl Surf Sci – volume: 47 start-page: 3490 year: 2013 end-page: 3497 article-title: Photocatalytic fuel cell (PFC) and dye self‐photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation publication-title: Environ Sci Technol – volume: 30 start-page: 1 year: 2014 end-page: 5 article-title: Syntheses, characterization and nonlinear optical properties of a bismuth subcarbonate Bi O CO publication-title: Solid State Sci – volume: 218 start-page: 20 year: 2017 end-page: 31 article-title: The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur‐doped TiO coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification publication-title: Appl Catal B‐Environ – volume: 1 start-page: 2589 year: 2018 end-page: 2599 article-title: Fabrication of porous cu‐doped BiVO nanotubes as efficient oxygen‐evolving photocatalysts publication-title: ACS Appl Nano Mater – volume: 121 start-page: 11459 year: 1999 end-page: 11467 article-title: A novel aqueous process for preparation of crystal form‐controlled and highly crystalline BiVO powder from layered vanadates at room temperature and its photocatalytic and photophysical properties publication-title: J Am Chem Soc – volume: 118 start-page: 389 year: 2014 end-page: 398 article-title: BiOCl/BiVO p–n heterojunction with enhanced photocatalytic activity under visible‐light irradiation publication-title: J Phys Chem C – volume: 18 start-page: 2604 year: 2006 end-page: 2608 article-title: Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition technique publication-title: Adv Mater – volume: 60 start-page: 15484 year: 1999 end-page: 15487 article-title: Electronic structure, phase stability, and semimetal‐semiconductor transitions in Bi publication-title: Phys Rev B – volume: 43 start-page: 5234 year: 2014 end-page: 5244 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev – volume: 89 start-page: 179 year: 1996 end-page: 196 article-title: Oxide ion conducting solid electrolytes based on Bi O publication-title: Solid State Ion – volume: 199 start-page: 87 year: 2016 end-page: 95 article-title: Three dimensional Z‐scheme (BiO) CO /MoS with enhanced visible light photocatalytic NO removal publication-title: Appl Catal B‐Environ – volume: 4 start-page: 116 year: 2014 end-page: 128 article-title: Direct photocatalysis by plasmonic nanostructures publication-title: ACS Catal – volume: 32 year: 2018 article-title: Synthesis, properties and mechanism of photodegradation of core–shell structured upconversion luminescent NaYF :Yb ,Er @BiOCl publication-title: Appl Organomet Chem – volume: 136 start-page: 8839 year: 2014 end-page: 8842 article-title: Enhanced photocatalytic CO ‐reduction activity of anatase TiO by coexposed {001} and {101} facets publication-title: J Am Chem Soc – volume: 310 start-page: 537 year: 2017 end-page: 559 article-title: A review on photocatalysis for air treatment: from catalyst development to reactor design publication-title: Chem Eng J – volume: 2 start-page: 30 year: 1969 end-page: 36 article-title: The crystal structure of arsenic at 4.2, 78 and 299°K publication-title: J Appl Cryst – volume: 11 start-page: 2103 year: 2019 end-page: 2111 article-title: Oxygen vacancies boost δ‐Bi O as a high‐performance electrode for rechargeable aqueous batteries publication-title: ACS Appl Mater Interfaces – volume: 243 start-page: 313 year: 2019 end-page: 321 article-title: Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO : enhanced photocatalysis and reaction mechanism publication-title: Appl Catal B‐Environ – volume: 135 start-page: 10411 year: 2013 end-page: 10417 article-title: Vacancy associates promoting solar‐driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets publication-title: J Am Chem Soc – volume: 7 start-page: 7309 year: 1995 end-page: 7323 article-title: Prominent ferroelastic domain walls in BiVO crystal publication-title: J Phys Condens Matter – volume: 6 start-page: 6948 year: 2016 end-page: 6958 article-title: Graphene‐based metal‐free catalysts for catalytic reactions in the liquid phase publication-title: ACS Catal – volume: 6 start-page: 8473 year: 2014 end-page: 8488 article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis publication-title: Nanoscale – volume: 4 start-page: 47136 year: 2014 end-page: 47152 article-title: Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application publication-title: RSC Adv – volume: 259 year: 2019 article-title: Photocatalytic mineralization of hydrogen sulfide as a dual‐phase technique for hydrogen production and environmental remediation publication-title: Appl Catal B‐Environ – volume: 357 start-page: 41 year: 2018 end-page: 50 article-title: Visible‐light‐induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres publication-title: J Catal – volume: 260 year: 2020 article-title: Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization publication-title: Appl Catal B‐Environ – volume: 21 start-page: 547 year: 2009 end-page: 551 article-title: ChemInform abstract: band edge electronic structure of BiVO : elucidating the role of the Bi s and V d orbitals publication-title: Chem Mater – volume: 319 start-page: 1776 year: 2008 end-page: 1779 article-title: Doped nanocrystals publication-title: Science – volume: 23 start-page: 286 year: 2013 end-page: 293 article-title: Does noble metal modification improve the photocatalytic activity of BiOCl? publication-title: Prog Nat Sci: Mater Int – volume: 116 start-page: 281 year: 1995 end-page: 285 article-title: Crystal structure of Bi O with β‐Sb O ‐type structure publication-title: J Solid State Chem – volume: 291 start-page: 39 year: 2016 end-page: 46 article-title: Facet‐dependent photocatalytic reduction of CO on BiOI nanosheets publication-title: Chem Eng J – volume: 29 year: 2017 article-title: Heterojunction photocatalysts publication-title: Adv Mater – volume: 6 year: 2016 article-title: Earth‐rich transition metal phosphide for energy conversion and storage publication-title: Adv Energy Mater – volume: 391 start-page: 194 year: 2017 end-page: 201 article-title: A plate‐on‐plate sandwiched Z‐scheme heterojunction photocatalyst: BiOBr‐Bi MoO with enhanced photocatalytic performance publication-title: Appl Surf Sci – volume: 15 year: 2019 article-title: Modulation of Bi MoO ‐based materials for photocatalytic water splitting and environmental application: a critical review publication-title: Small – volume: 4 start-page: 3498 year: 2014 end-page: 3503 article-title: Solar light driven pure water splitting on quantum sized BiVO without any cocatalyst publication-title: ACS Catal – volume: 321 start-page: 464 year: 2017 end-page: 472 article-title: Rose‐like I‐doped Bi O CO microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance publication-title: J Hazard Mater – volume: 159 start-page: 289 year: 2015 end-page: 292 article-title: Visible‐light driven photocatalytic degradation of rhodamine B by Ag/Bi WO heterostructures publication-title: Mater Lett – volume: 5 start-page: 24995 year: 2017 end-page: 25004 article-title: Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO conversion publication-title: J Mater Chem A – volume: 112 start-page: 10407 year: 2008 end-page: 10411 article-title: Bi WO nanocrystals with high photocatalytic activities under visible light publication-title: J Phys Chem C – volume: 2 start-page: 4208 year: 2014 end-page: 4216 article-title: Defect engineering in atomically‐thin bismuth oxychloride towards photocatalytic oxygen evolution publication-title: J Mater Chem A – volume: 106 start-page: 1 year: 2011 end-page: 13 article-title: Bi WO micro/nano‐structures: synthesis, modifications and visible‐light‐driven photocatalytic applications publication-title: Appl Catal B‐Environ – volume: 68 start-page: 125 year: 2006 end-page: 129 article-title: Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst publication-title: Appl Catal B‐Environ – volume: 16 start-page: 1771 year: 2005 end-page: 1775 article-title: Control to synthesize Bi S nanowires by a simple inorganic‐surfactant‐assisted solvothermal process publication-title: Nanotechnology – volume: 120 start-page: 11889 year: 2016 end-page: 11898 article-title: Bi Cocatalyst/Bi MoO microspheres nanohybrid with SPR‐promoted visible‐light photocatalysis publication-title: J Phys Chem C – volume: 214 start-page: 23 year: 2017 end-page: 33 article-title: Enhanced photocatalytic inactivation of by a novel Z‐scheme g‐C N /m‐Bi O hybrid photocatalyst under visible light: the role of reactive oxygen species publication-title: Appl Catal B‐Environ – volume: 2 start-page: 387 year: 2019 end-page: 399 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat Catal – volume: 52 start-page: 14242 year: 2016 end-page: 14245 article-title: Oxygen vacancy induced Bi WO for the realization of photocatalytic CO reduction over the full solar spectrum: from the UV to the NIR region publication-title: Chem Commun – volume: 1 start-page: 90 year: 2014 end-page: 112 article-title: Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms publication-title: Environ Sci Nano – volume: 33 start-page: 3778 year: 1986 end-page: 3784 article-title: Total‐energy calculations of the structural properties of the group‐V element arsenic publication-title: Phys Rev B Condens Matter – volume: 40 start-page: 215 year: 2014 end-page: 219 article-title: Novel Bi‐based iodate photocatalysts with high photocatalytic activity publication-title: Inorg Chem Commun – volume: 28 year: 2018 article-title: A MoSe /WSe heterojunction‐based photodetector at telecommunication wavelengths publication-title: Adv Funct Mater – volume: 199 start-page: 75 year: 2016 end-page: 86 article-title: In situ assembly of BiOI@Bi O Cl p‐n junction: charge induced unique front‐lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis publication-title: Appl Catal B‐Environ – volume: 2 start-page: 1677 year: 2012 end-page: 1683 article-title: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z‐scheme bridge publication-title: ACS Catal – volume: 17 start-page: 10383 year: 2015 end-page: 10390 article-title: Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst‐enhanced (BiO) CO hierarchical microspheres publication-title: Phys Chem Chem Phys – volume: 21 start-page: 1286 year: 2009 end-page: 1290 article-title: Synthesis of porous Bi WO thin films as efficient visible‐light‐active photocatalysts publication-title: Adv Mater – volume: 12 start-page: 15468 year: 2010 end-page: 15475 article-title: Synergistic effect of crystal and electronic structures on the visible‐light‐driven photocatalytic performances of Bi O polymorphs publication-title: Phys Chem Chem Phys – volume: 1 start-page: 2655 year: 2010 end-page: 2661 article-title: Photocatalytic water splitting: recent progress and future challenges publication-title: J PhysChemLett – volume: 112 start-page: 12018 year: 2008 end-page: 12023 article-title: Magnetotransport properties of electrodeposited bismuth films publication-title: J Phys Chem C – volume: 3 start-page: 464 year: 2018 end-page: 504 article-title: Review on nanoscale bi‐based photocatalyst publication-title: Nanoscale Horiz – volume: 20 start-page: 831 year: 2010 end-page: 843 article-title: Titania‐based photocatalysts—crystal growth, doping and heterostructuring publication-title: J Mater Chem – volume: 139 start-page: 3513 year: 2017 end-page: 3521 article-title: New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies publication-title: J Am Chem Soc – volume: 12 start-page: 1493 year: 2006 end-page: 1499 article-title: Unusual high‐temperature structural behavior in ferroelectric Bi WO publication-title: Chemistry – volume: 116 start-page: 20530 year: 2012 end-page: 20539 article-title: Exploring the optical potential of nano‐bismuth: tunable surface plasmon resonances in the near ultraviolet‐to‐near infrared range publication-title: J Phys Chem C – volume: 238 start-page: 119 year: 2018 end-page: 125 article-title: Bismuth vacancy mediated single unit cell Bi WO nanosheets for boosting photocatalytic oxygen evolution publication-title: Appl Catal B‐Environ – volume: 308 start-page: 105 year: 2006 end-page: 110 article-title: Sonochemical synthesis of nanocrystallite Bi O as a visible‐light‐driven photocatalyst publication-title: Appl Catal Gen – volume: 212 start-page: 1490 year: 2019 end-page: 1498 article-title: Industrial environmental efficiency, foreign direct investment and export——evidence from 30 provinces in China publication-title: J Clean Prod – volume: 5 start-page: 5133 year: 2012 end-page: 5130 article-title: Plasmonic solar water splitting publication-title: Energ Environ Sci – volume: 35 start-page: 989 year: 2014 end-page: 1007 article-title: Recent advances in visible light Bi‐based photocatalysts publication-title: Chin J Catal – volume: 110 start-page: 9188 year: 2006 end-page: 9194 article-title: Water molecule adsorption properties on the BiVO (100) surface publication-title: J Phys Chem B – volume: 284 start-page: 1335 year: 1999 end-page: 1337 article-title: Large magnetoresistance of electrodeposited single‐crystal bismuth thin films publication-title: Science – volume: 407 start-page: 3364 year: 2012 end-page: 3370 article-title: First‐principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals publication-title: Phys B: Condensed Matter – volume: 668 start-page: 966 year: 2019 end-page: 978 article-title: Recent advances on photocatalytic fuel cell for environmental applications—the marriage of photocatalysis and fuel cells publication-title: Sci Total Environ – volume: 370 start-page: 1366 year: 2019 end-page: 1375 article-title: Reactant activation and photocatalysis mechanisms on Bi‐metal@Bi GeO with oxygen vacancies: a combined experimental and theoretical investigation publication-title: Chem Eng J – volume: 5 start-page: 6732 year: 2012 end-page: 6743 article-title: Towards highly efficient photocatalysts using semiconductor nanoarchitectures publication-title: Energy Environ Sci – volume: 4 start-page: 4341 year: 2014 end-page: 4350 article-title: Noble metal‐like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO) CO microspheres for efficient visible light photocatalysis publication-title: ACS Catal – volume: 6 start-page: 7485 year: 2016 end-page: 7527 article-title: Recent advances in heterogeneous photocatalytic CO conversion to solar fuels publication-title: ACS Catal – volume: 10 start-page: 4306 year: 2017 end-page: 4323 article-title: Metal phosphides as co‐catalysts for photocatalytic and photoelectrocatalytic water splitting publication-title: ChemSusChem – volume: 291 start-page: 64 year: 2016 end-page: 73 article-title: Study of application of titania catalysts on solar photocatalysis: influence of type of pollutants and water matrices publication-title: Chem Eng J – volume: 42 start-page: 2294 year: 2013 end-page: 2320 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem Soc Rev – volume: 380 year: 2019 article-title: Novel method of square wave voltammetry for deposition of Bi S thin film: photocatalytic reduction of hexavalent Cr in single and binary mixtures publication-title: J Hazard Mater – volume: 6 year: 2016 article-title: Vacancy engineering for tuning electron and phonon structures of two‐dimensional materials publication-title: Adv Energy Mater – volume: 7 start-page: 15 year: 2015 end-page: 37 article-title: Graphitic carbon nitride based nanocomposites: a review publication-title: Nanoscale – volume: 113 start-page: 16009 year: 2009 end-page: 16014 article-title: Syntheses, growth mechanism, and optical properties of [001] growing Bi S nanorods publication-title: J Phys Chem C – volume: 173 start-page: 45 year: 1971 end-page: 47 article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy publication-title: Science – volume: 99 start-page: 74 year: 2004 end-page: 89 article-title: Bi O as a selective sensing material for NO detection publication-title: Sens Actuators B: Chem – volume: 78 start-page: 1 year: 2019 end-page: 20 article-title: Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review publication-title: J Ind Eng Chem – volume: 7 start-page: 4832 year: 2016 end-page: 4841 article-title: Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity publication-title: Chem Sci – volume: 293 start-page: 269 year: 2001 end-page: 271 article-title: Visible‐light photocatalysis in nitrogen‐doped titanium oxides publication-title: Science – volume: 59 start-page: 6590 year: 2020 end-page: 6595 article-title: Intrinsic facet‐dependent reactivity of well‐defined BiOBr nanosheets on photocatalytic water splitting publication-title: Angew Chem Int Ed – volume: 35 start-page: 197 year: 2011 article-title: Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α‐Bi O nanoparticles in aqueous solutions publication-title: New J Chem – volume: 225 start-page: 218 year: 2018 end-page: 227 article-title: Highly enhanced visible light photocatalysis and in situ FT‐IR studies on Bi metal@defective BiOCl hierarchical microspheres publication-title: Appl Catal B‐Environ – volume: 3 start-page: 1557 year: 2018 end-page: 1561 article-title: Reduction of CO to chemicals and fuels: a solution to global warming and energy crisis publication-title: ACS Energy Lett – volume: 24 start-page: 2421 year: 2014 end-page: 2440 article-title: Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity publication-title: Adv Funct Mater – volume: 118 start-page: 14662 year: 2014 end-page: 14669 article-title: Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed (102) facets publication-title: J Phys Chem C – volume: 3 start-page: 1618 year: 2007 end-page: 1625 article-title: Bi WO nano‐ and microstructures: shape control and associated visible‐light‐driven photocatalytic activities publication-title: Small – volume: 117‐118 start-page: 59 year: 2012 end-page: 66 article-title: Hydrothermal synthesis of BiVO : structural and morphological influence on the photocatalytic activity publication-title: Appl Catal B‐Environ – volume: 7 start-page: 8006 year: 2017 end-page: 8022 article-title: Photocatalytic water splitting: quantitative approaches toward photocatalyst by design publication-title: ACS Catal – volume: 187 start-page: 281 year: 2016 end-page: 290 article-title: Thickness‐ultrathin and bismuth‐rich strategies for BiOBr to enhance photoreduction of CO into solar fuels publication-title: Appl Catal B‐Environ – volume: 344 start-page: 401 year: 2016 end-page: 410 article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets publication-title: J Catal – volume: 55 start-page: 4697 year: 2016 end-page: 4700 article-title: Visible‐light‐induced photoredox catalysis of dye‐sensitized titanium dioxide: selective aerobic oxidation of organic sulfides publication-title: Angew Chem Int Ed – volume: 51 year: 2012 article-title: Local structure analysis of Bi WO publication-title: Jpn J Appl Phys – volume: 109 start-page: 22432 year: 2005 end-page: 22439 article-title: Visible‐light‐induced degradation of rhodamine B by nanosized Bi WO publication-title: J Phys Chem B – volume: 12 start-page: 3671 year: 2019 end-page: 3701 article-title: Bismuth‐based photocatalysts for solar photocatalytic carbon dioxide conversion publication-title: ChemSusChem – volume: 23 start-page: 1832 year: 2013 end-page: 1838 article-title: Highly ordered mesoporous crystalline MoSe material with efficient visible‐light‐driven photocatalytic activity and enhanced lithium storage performance publication-title: Adv Funct Mater – volume: 526 start-page: 628 year: 2015 end-page: 630 article-title: How to make the most of carbon dioxide publication-title: Nature – volume: 5 start-page: 8326 year: 2013 end-page: 8339 article-title: Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review publication-title: Nanoscale – volume: 9 start-page: 3262 year: 2018 article-title: 21st‐century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes publication-title: Nat Commun – volume: 16 start-page: 69 year: 1975 end-page: 70 article-title: Ferroelasticity in BiVO publication-title: Solid State Commun – volume: 31 year: 2019 article-title: Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration publication-title: Adv Mater – volume: 126 start-page: 4782 year: 2004 end-page: 4783 article-title: Efficient degradation of toxic organic pollutants with Ni O /TiO B under visible irradiation publication-title: J Am Chem Soc – volume: 134 start-page: 52 year: 2019 end-page: 57 article-title: Electronic structures and thermoelectric properties of polytype phases of bismuth publication-title: J Phys Chem Solid – volume: 107 start-page: 2891 year: 2007 end-page: 2959 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications publication-title: Chem Rev – volume: 368 start-page: 105 year: 2010 end-page: 111 article-title: Organic molecule directed synthesis of bismuth nanostructures with varied shapes in aqueous solution and their optical characterization publication-title: Colloid Surf A – volume: 107 start-page: 80 year: 2007 end-page: 96 article-title: Structures and oxide mobility in Bi−Ln−O materials: heritage of Bi O publication-title: Chem Rev – volume: 7 start-page: 27925 year: 2015 end-page: 27933 article-title: Synchronously achieving plasmonic bi metal deposition and I– doping by utilizing BiOIO as the self‐sacrificing template for high‐performance multifunctional applications publication-title: ACS Appl Mater Interfaces – volume: 88 start-page: 68 year: 2017 end-page: 72 article-title: Surfactant (CTAB) assisted flower‐like Bi WO through hydrothermal method: unintentional bromide ion doping and photocatalytic activity publication-title: Catal Commun – volume: 137 start-page: 6393 year: 2015 end-page: 6399 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets publication-title: J Am Chem Soc – volume: 47 start-page: 6951 year: 2011 end-page: 6953 article-title: The {001} facets‐dependent high photoactivity of BiOCl nanosheets publication-title: Chem Commun – volume: 24 start-page: 14928 year: 2018 end-page: 14932 article-title: Facet effects of Ag PO on charge‐carrier dynamics: trade‐off between photocatalytic activity and charge‐carrier lifetime publication-title: Chem‐Eur J – volume: 51 start-page: 8229 year: 2017 end-page: 8244 article-title: Environmental applications of 2D molybdenum disulfide (MoS ) nanosheets publication-title: Environ Sci Technol – volume: 73 year: 2006 article-title: Electronic structure of the delta phases of Bi O : a combined ab initio and x‐ray spectroscopy study publication-title: Phys Rev B – volume: 1 year: 2017 article-title: A review of direct Z‐scheme photocatalysts publication-title: Small Methods – volume: 95 start-page: 69 year: 1995 end-page: 96 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem Rev – volume: 6 start-page: 3100 year: 2018 end-page: 3107 article-title: Strong hybridization between Bi‐6s and O‐2p orbitals in Sillén–Aurivillius perovskite Bi MO X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation publication-title: J Mater Chem A – volume: 15 start-page: 865 year: 1962 end-page: 872 article-title: The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi publication-title: Acta Crystallogr – volume: 95 start-page: 49 year: 1995 end-page: 68 article-title: Light‐induced redox reactions in nanocrystalline systems publication-title: Chem Rev – volume: 30 start-page: 129 year: 1995 end-page: 134 article-title: Preparation of bismuth oxides with mixed valence from hydrated sodium bismuth oxide publication-title: Mater Res Bull – volume: 24 start-page: 79 year: 2013 end-page: 85 article-title: Novel synthesis and characterization of bismuth nano/microcrystals with sodium hypophosphite as reductant publication-title: Adv Powder Technol – volume: 33 start-page: 1 year: 2017 end-page: 22 article-title: Recent progress on visible light responsive heterojunctions for photocatalytic applications publication-title: J Mater Sci Technol – volume: 349 start-page: 84 year: 2017 end-page: 101 article-title: Bismuth‐rich bismuth oxyhalides for environmental and energy photocatalysis publication-title: Coord Chem Rev – volume: 37 start-page: 785 year: 1988 end-page: 789 article-title: Ab initio calculations of bismuth properties, including spin–orbit coupling publication-title: Phys Scr – volume: 212 start-page: 8 year: 2010 end-page: 13 article-title: The hydrothermal synthesis of BiOBr flakes for visible‐light‐responsive photocatalytic degradation of methyl orange publication-title: J Photochem Photobiol A – volume: 118 start-page: 1155 year: 2014 end-page: 1160 article-title: Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method publication-title: J Phys Chem C – volume: 44 start-page: 22102 year: 2018 end-page: 22107 article-title: In situ synthesis of Bi O /Bi MoO heterostructured microspheres for efficiently removal of acid orange 7 publication-title: Ceram Int – volume: 54 start-page: 3740 year: 2020 end-page: 3751 article-title: A review of microplastics in table salt, drinking water, and air: direct human exposure publication-title: Environ Sci Technol – volume: 6 start-page: 562 year: 2013 end-page: 577 article-title: Photocatalytic CO reduction using non‐titanium metal oxides and sulfides publication-title: ChemSusChem – volume: 196 start-page: 89 year: 2016 end-page: 99 article-title: Facile synthesis of Bi/Bi WO nanocomposite with enhanced photocatalytic activity under visible light publication-title: Appl Catal B‐Environ – volume: 6 year: 2016 article-title: Coexistence of multiple metastable polytypes in rhombohedral bismuth publication-title: Sci Rep – volume: 10 start-page: 3040 year: 2018 end-page: 3048 article-title: Iron‐doped bismuth tungstate with an excellent photocatalytic performance publication-title: ChemCatChem – volume: 139 start-page: 3438 year: 2017 end-page: 3445 article-title: Highly efficient and exceptionally durable CO photoreduction to methanol over freestanding defective single‐unit‐cell bismuth vanadate layers publication-title: J Am Chem Soc – volume: 391 start-page: 525 year: 2017 end-page: 534 article-title: The highly enhanced visible light photocatalytic degradation of gaseous o‐dichlorobenzene through fabricating like‐flowers BiPO /BiOBr p‐n heterojunction composites publication-title: Appl Surf Sci – volume: 13 start-page: 4746 year: 2011 end-page: 4753 article-title: Electronic structure and optical properties of monoclinic clinobisvanite BiVO publication-title: Phys Chem Chem Phys – volume: 9 start-page: 345 year: 2019 end-page: 364 article-title: Photocatalysis with reduced TiO : from black TiO to cocatalyst‐free hydrogen production publication-title: ACS Catal – volume: 4 start-page: 56682 year: 2014 end-page: 56689 article-title: Synthesis of hierarchical Bi O /Bi Ti O p‐n junction nanoribbons on carbon fibers from (001) facet dominated TiO nanosheets publication-title: RSC Adv – volume: 11 start-page: 1044 year: 2012 end-page: 1050 article-title: Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures publication-title: Nat Mater – volume: 75 start-page: 553 year: 1976 end-page: 558 article-title: Dynamical conductivity and plasmon excitation in Bi publication-title: Phys Status Solidi B – volume: 121 start-page: 6 year: 2010 end-page: 9 article-title: Self‐assembly and enhanced optical absorption of Bi WO nests via ionic liquid‐assisted hydrothermal method publication-title: Mater Chem Phys – volume: 241 start-page: 187 year: 2019 end-page: 195 article-title: Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi O SiO publication-title: Appl Catal B‐Environ – volume: 198 start-page: 347 year: 2016 end-page: 377 article-title: Graphitic carbon nitride (g‐C N ) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation publication-title: Appl Catal B‐Environ – volume: 44 start-page: 6843 year: 2010 end-page: 6848 article-title: Degradation and mineralization of bisphenol A by mesoporous Bi WO under simulated solar light irradiation publication-title: Environ Sci Technol – volume: 15 start-page: 534 year: 2015 end-page: 537 article-title: Highly efficient Bi O CO single‐crystal lamellas with dominantly exposed {001} facets publication-title: Cryst Growth Des – volume: 2 start-page: 560 year: 2012 end-page: 562 article-title: Measuring the carbon emissions of megacities publication-title: Nat Clim Change – volume: 177 start-page: 1013 year: 2010 end-page: 1018 article-title: Low‐temperature combustion synthesis of Bi WO nanoparticles as a visible‐light‐driven photocatalyst publication-title: J Hazard Mater – volume: 315 start-page: 633 year: 2007 end-page: 636 article-title: Ultrafast bond softening in bismuth: mapping a solid' s interatomic potential with X‐rays publication-title: Science – volume: 224 start-page: 101 year: 2018 end-page: 108 article-title: Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies publication-title: Appl Catal B‐Environ – volume: 5 start-page: 1926 year: 2012 end-page: 1934 article-title: Photocatalytic and photoelectrochemical water oxidation over metal‐doped monoclinic BiVO photoanodes publication-title: ChemSusChem – volume: 14 start-page: 1571 year: 1979 end-page: 1581 article-title: Crystal growth and structure of BiVO publication-title: Mater Res Bull – volume: 209 start-page: 273 year: 2012 end-page: 279 article-title: An easy synthesis of 1D bismuth nanostructures in acidic solution and their photocatalytic degradation of rhodamine B publication-title: Chem Eng J – volume: 66 start-page: 100 year: 2006 end-page: 110 article-title: Photocatalytic properties of nanosized Bi WO catalysts synthesized via a hydrothermal process publication-title: Appl Catal B‐Environ – volume: 51 start-page: 3147 year: 2012 end-page: 3151 article-title: Phosphate doping into monoclinic BiVO for enhanced Photoelectrochemical water oxidation activity publication-title: Angew Chem Int Ed – volume: 117 start-page: 7313 year: 2002 end-page: 7318 article-title: Electronic structures of promising photocatalysts InMO (M=V, Nb, ta) and BiVO for water decomposition in the visible wavelength region publication-title: J Chem Phys – volume: 1 start-page: 1278 year: 2016 end-page: 1286 article-title: High energy ball‐milling synthesis of nanostructured ag‐doped and BiVO ‐based photocatalysts publication-title: ChemistrySelect – volume: 6 start-page: 2009 year: 2014 end-page: 2026 article-title: Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications publication-title: Nanoscale – volume: 3 start-page: 464 year: 2018 end-page: 504 article-title: Review on nanoscale Bi‐based photocatalysts publication-title: Nanoscale Horiz – volume: 1 start-page: 6657 year: 2018 end-page: 6693 article-title: Photocatalysis: from fundamental principles to materials and applications publication-title: ACS Appl Energy Mater – volume: 138 start-page: 8928 year: 2016 end-page: 8935 article-title: Oxide defect engineering enables to couple solar energy into oxygen activation publication-title: J Am Chem Soc – volume: 13 year: 2018 article-title: Household air pollution, health, and climate change: cleaning the air publication-title: Environ Res Lett – volume: 192 start-page: 35 year: 2016 end-page: 45 article-title: Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of publication-title: Appl Catal B‐Environ – volume: 17 start-page: 2526 year: 2007 end-page: 2532 article-title: Fabrication of flower‐like Bi WO superstructures as high performance visible‐light driven photocatalysts publication-title: J Mater Chem – volume: 132‐133 start-page: 315 year: 2013 end-page: 320 article-title: Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst publication-title: Appl Catal B‐Environ – volume: 28 year: 2018 article-title: Surface defect engineering in 2D nanomaterials for Photocatalysis publication-title: Adv Funct Mater – volume: 189‐190 start-page: 473 year: 2012 end-page: 481 article-title: Photocatalytic degradation of methylene blue on CaBi O /Bi O composites under visible light publication-title: Chem Eng J – volume: 3 start-page: 379 year: 2010 end-page: 386 article-title: Bi S nanostructures: a new photocatalyst publication-title: Nano Res – volume: 6 year: 2015 article-title: Realization of a vertical topological p–n junction in epitaxial Sb Te /Bi Te heterostructures publication-title: Nat Commun – volume: 15 year: 2019 article-title: Synthesis of inorganic–organic 2D CdSe slab‐diamine quantum nets publication-title: Small – volume: 264 year: 2020 article-title: Bi metal prevents the deactivation of oxygen vacancies in Bi O CO for stable and efficient photocatalytic NO abatement publication-title: Appl Catal B‐Environ – volume: 7 start-page: 14051 year: 2019 end-page: 14063 article-title: Fabrication of 3D sponge@AgBr‐AgCl/ag and tubular photoreactor for continuous wastewater purification under sunlight irradiation publication-title: ACS Sustain Chem Eng – volume: 3 start-page: 2733 year: 2020 end-page: 2744 article-title: Flower‐like BiOI microspheres decorated with plasmonic gold nanoparticles for dual detoxification of organic and inorganic water pollutants publication-title: ACS Appl Nano Mater – volume: 134 start-page: 1974 year: 2012 end-page: 1977 article-title: Surface‐alkalinization‐induced enhancement of photocatalytic H evolution over SrTiO ‐based photocatalysts publication-title: J Am Chem Soc – volume: 432 start-page: 220 year: 2017 end-page: 231 article-title: Visible‐light‐induced Fe‐doped BiVO photocatalyst for contaminated water treatment publication-title: Mol Catal – volume: 36 start-page: 1629 year: 2001 end-page: 1637 article-title: Optical properties of bismuth trioxide thin films publication-title: Mater Res Bull – volume: 257 start-page: 172 year: 2010 end-page: 175 article-title: Preparation, electronic structure, and photocatalytic properties of Bi O CO nanosheet publication-title: Appl Surf Sci – volume: 2 start-page: 11065 year: 2014 end-page: 11072 article-title: From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air publication-title: J Mater Chem A – volume: 317 start-page: 34 year: 2010 end-page: 40 article-title: Synthetic Bi O CO nanostructures: novel photocatalyst with controlled special surface exposed publication-title: J Mol Catal A: Chem – volume: 119 start-page: 11020 year: 2019 end-page: 11041 article-title: Single molecule photocatalysis on TiO surfaces publication-title: Chem Rev – volume: 50 start-page: 10386 year: 2014 end-page: 10389 article-title: A semimetal bismuth element as a direct plasmonic photocatalyst publication-title: Chem Commun – volume: 201 start-page: 77 year: 2017 end-page: 83 article-title: BiVO nanowires decorated with CdS nanoparticles as Z‐scheme photocatalyst with enhanced H generation publication-title: Appl Catal B‐Environ – volume: 81 start-page: 191 year: 2006 end-page: 245 article-title: The surfaces of bismuth: structural and electronic properties publication-title: Prog Surf Sci – volume: 8 start-page: 1986 year: 2015 end-page: 1993 article-title: Facet‐dependent solar ammonia synthesis of BiOCl nanosheets via a proton‐assisted electron transfer pathway publication-title: Nanoscale – volume: 251 start-page: 220 year: 2019 end-page: 228 article-title: Targeting inside charge carriers transfer of photocatalyst: selective deposition of Ag O on BiVO with enhanced UV–vis‐NIR photocatalytic oxidation activity publication-title: Appl Catal B‐Environ – volume: 288 start-page: 264 year: 2016 end-page: 275 article-title: Chemical etching preparation of the Bi WO /BiOI p–n heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation publication-title: Chem Eng J – volume: 82 start-page: 3328 year: 1999 end-page: 3331 article-title: Large magnetoresistance and finite‐size effects in electrodeposited single‐crystal bi thin films publication-title: Phys Rev Lett – volume: 507 year: 2020 article-title: Synthesis of Bi O Cl nanosheets with oxygen vacancies: the effect of defect states on photocatalytic performance publication-title: Appl Surf Sci – volume: 53 start-page: 10371 year: 2019 end-page: 10378 article-title: UV‐improved removal of chloride ions from strongly acidic wastewater using Bi O : efficiency enhancement and mechanisms publication-title: Environ Sci Technol – volume: 41 start-page: 11827 year: 1990 end-page: 11836 article-title: First‐principles study of As, Sb, and Bi electronic properties publication-title: Phys Rev B Condens Matter – volume: 51 start-page: 5685 year: 2017 end-page: 5694 article-title: Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ Sci Technol – volume: 315 start-page: 223 year: 2018 end-page: 229 article-title: Promising application of SiC without co‐catalyst in photocatalysis and ozone integrated process for aqueous organics degradation publication-title: Catal Today – volume: 21 start-page: 12428 year: 2011 end-page: 12436 article-title: Template‐free fabrication and growth mechanism of uniform (BiO) CO hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation publication-title: J Mater Chem – volume: 365 start-page: 314 year: 2016 end-page: 335 article-title: Fabrication, modification and application of (BiO) CO ‐based photocatalysts: a review publication-title: Appl Surf Sci – volume: 11 start-page: 2366 year: 2019 end-page: 2373 article-title: Facet‐dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns publication-title: Nanoscale – volume: 15 start-page: 936 year: 2010 end-page: 940 article-title: Large‐scale synthesis of ultralong Bi S nanoribbons via a solvothermal process publication-title: Adv Mater – volume: 40 start-page: 620 year: 2019 end-page: 630 article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi O CO nanosheets publication-title: Chin J Catal – volume: 123 start-page: 13664 year: 2019 end-page: 13671 article-title: Shape‐tunable SrTiO crystals revealing facet‐dependent optical and photocatalytic properties publication-title: J Phys Chem C – volume: 30 start-page: 166 year: 2011 end-page: 172 article-title: DFT calculations on structural and electronic properties of Bi MO (M = Cr, Mo, W) publication-title: Rare Metals – volume: 150 start-page: 347 year: 2002 end-page: 353 article-title: A higher conductivity Bi O ‐based electrolyte publication-title: Solid State Ion – volume: 8 start-page: 2802 year: 2012 end-page: 2806 article-title: Facet‐dependent photocatalytic properties of AgBr nanocrystals publication-title: Small – volume: 15 start-page: 5415 year: 2013 end-page: 5423 article-title: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi publication-title: Phys Chem Chem Phys – volume: 226 start-page: 53 year: 2018 end-page: 60 article-title: Molecular adsorption promotes carrier migration: key step for molecular oxygen activation of defective Bi O I publication-title: Appl Catal B‐Environ – volume: 394 start-page: 364 year: 2017 end-page: 370 article-title: Facile synthesis of Bi S nanoribbons for photocatalytic reduction of CO into CH OH publication-title: Appl Surf Sci – volume: 52 start-page: 1035 year: 2013 end-page: 1039 article-title: Chlorine‐radical‐mediated photocatalytic activation of C‐H bonds with visible light publication-title: Angew Chem Int Ed – volume: 321 start-page: 424 year: 2017 end-page: 431 article-title: The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol publication-title: J Hazard Mater – volume: 48 start-page: 2109 year: 2019 end-page: 2125 article-title: Recent developments in heterogeneous photocatalysts for solar‐driven overall water splitting publication-title: Chem Soc Rev – volume: 52 start-page: 2555 year: 2003 end-page: 2562 article-title: Catalytic reduction of molecular nitrogen in solutions publication-title: Russ Chem Bull – volume: 176‐177 start-page: 444 year: 2015 end-page: 453 article-title: Monoclinic dibismuth tetraoxide: a new visible‐light‐driven photocatalyst for environmental remediation publication-title: Appl Catal B‐Environ – volume: 21 start-page: 18089 year: 2015 end-page: 18094 article-title: Solar‐light‐driven pure water splitting with ultrathin BiOCl nanosheets publication-title: Chem Eur J – volume: 5 start-page: 4094 year: 2015 end-page: 4103 article-title: Anionic group self‐doping as a promising strategy: band‐gap engineering and multi‐functional applications of high‐performance CO ‐doped Bi O CO publication-title: ACS Catal – volume: 9 start-page: 11302 year: 2015 end-page: 11309 article-title: Photocatalytic stability of single‐ and few‐layer MoS publication-title: ACS Nano – volume: 43 start-page: 16180 year: 2018 end-page: 16186 article-title: Computationally predicted fundamental behaviors of embedded hydrogen at TiC/W interfaces publication-title: Int J Hydrogen Energy – volume: 357 start-page: 41 year: 2018 ident: e_1_2_8_193_1 article-title: Visible‐light‐induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres publication-title: J Catal doi: 10.1016/j.jcat.2017.10.004 – ident: e_1_2_8_194_1 doi: 10.1016/j.apcatb.2019.118545 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.201202144 – ident: e_1_2_8_42_1 doi: 10.1016/j.cattod.2018.01.013 – ident: e_1_2_8_158_1 doi: 10.1038/ncomms9816 – ident: e_1_2_8_174_1 doi: 10.1002/adfm.201801983 – ident: e_1_2_8_210_1 doi: 10.1016/j.cej.2015.11.103 – ident: e_1_2_8_3_1 doi: 10.1016/j.scitotenv.2019.03.071 – ident: e_1_2_8_75_1 doi: 10.1002/adma.200600654 – ident: e_1_2_8_102_1 doi: 10.1039/C4RA06419D – ident: e_1_2_8_185_1 doi: 10.1021/cr00033a004 – ident: e_1_2_8_86_1 doi: 10.1088/0957-4484/16/9/060 – volume: 2 start-page: 11065 year: 2014 ident: e_1_2_8_64_1 article-title: From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air publication-title: J Mater Chem A doi: 10.1039/C4TA01339E – ident: e_1_2_8_95_1 doi: 10.1039/c2cp23186g – ident: e_1_2_8_70_1 doi: 10.1021/cr050977s – ident: e_1_2_8_219_1 doi: 10.1016/j.cej.2016.01.032 – ident: e_1_2_8_212_1 doi: 10.1038/526628a – ident: e_1_2_8_32_1 doi: 10.1007/s10562-012-0929-7 – ident: e_1_2_8_163_1 doi: 10.1016/j.apsusc.2016.06.003 – ident: e_1_2_8_35_1 doi: 10.1016/j.apcatb.2018.10.055 – ident: e_1_2_8_46_1 doi: 10.1016/j.apcatb.2017.06.022 – ident: e_1_2_8_69_1 doi: 10.1016/0167-2738(96)00348-7 – ident: e_1_2_8_188_1 doi: 10.1039/C1EE02875H – ident: e_1_2_8_167_1 doi: 10.1016/j.apcatb.2016.06.032 – ident: e_1_2_8_154_1 doi: 10.1039/C4CS00126E – ident: e_1_2_8_34_1 doi: 10.1002/chem.201803505 – ident: e_1_2_8_123_1 doi: 10.1016/j.colsurfa.2010.07.022 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.60.15484 – ident: e_1_2_8_191_1 doi: 10.1021/acs.jpcc.6b01188 – ident: e_1_2_8_113_1 doi: 10.1039/c1jm11840d – ident: e_1_2_8_139_1 doi: 10.1002/aoc.4230 – ident: e_1_2_8_186_1 doi: 10.1021/cs400993w – ident: e_1_2_8_44_1 doi: 10.1021/acscatal.6b01668 – ident: e_1_2_8_74_1 doi: 10.1103/PhysRevB.73.235104 – ident: e_1_2_8_68_1 doi: 10.1039/C3CP43856B – ident: e_1_2_8_129_1 doi: 10.1021/es101890w – ident: e_1_2_8_107_1 doi: 10.1021/cm802894z – ident: e_1_2_8_170_1 doi: 10.1021/ja5044787 – ident: e_1_2_8_43_1 doi: 10.1039/C4NR03008G – ident: e_1_2_8_45_1 doi: 10.1039/C8NH00062J – ident: e_1_2_8_90_1 doi: 10.1021/es303968n – ident: e_1_2_8_115_1 doi: 10.1039/c0cp01189d – ident: e_1_2_8_118_1 doi: 10.1002/smll.200700043 – ident: e_1_2_8_112_1 doi: 10.1021/cg501527k – ident: e_1_2_8_57_1 doi: 10.1107/S0021889869006443 – ident: e_1_2_8_169_1 doi: 10.1016/j.apsusc.2016.07.070 – ident: e_1_2_8_146_1 doi: 10.1016/j.jhazmat.2016.09.034 – ident: e_1_2_8_40_1 doi: 10.1039/C4NR02553A – ident: e_1_2_8_209_1 doi: 10.1021/acsami.5b09994 – ident: e_1_2_8_98_1 doi: 10.1021/ja992541y – ident: e_1_2_8_87_1 doi: 10.1039/C6SC00389C – ident: e_1_2_8_222_1 doi: 10.1002/chem.201503778 – ident: e_1_2_8_175_1 doi: 10.1002/aenm.201600436 – volume: 15 start-page: 936 year: 2010 ident: e_1_2_8_85_1 article-title: Large‐scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process publication-title: Adv Mater doi: 10.1002/adma.200304693 – ident: e_1_2_8_184_1 doi: 10.1021/jacs.6b11263 – volume: 6 start-page: 20337 year: 2016 ident: e_1_2_8_55_1 article-title: Coexistence of multiple metastable polytypes in rhombohedral bismuth publication-title: Sci Rep doi: 10.1038/srep20337 – ident: e_1_2_8_155_1 doi: 10.1016/j.jmst.2016.11.017 – ident: e_1_2_8_12_1 doi: 10.1021/acscatal.7b02662 – volume: 132 start-page: 315 year: 2013 ident: e_1_2_8_91_1 article-title: Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst publication-title: Appl Catal B‐Environ doi: 10.1016/j.apcatb.2012.12.003 – ident: e_1_2_8_96_1 doi: 10.1088/0953-8984/7/37/005 – ident: e_1_2_8_106_1 doi: 10.1039/c0cp01871f – ident: e_1_2_8_159_1 doi: 10.1039/C4RA10587G – ident: e_1_2_8_114_1 doi: 10.1016/j.apsusc.2010.06.058 – ident: e_1_2_8_61_1 doi: 10.1002/pssb.2220750218 – ident: e_1_2_8_80_1 doi: 10.1016/j.apcatb.2015.04.026 – ident: e_1_2_8_131_1 doi: 10.1021/jp5035079 – ident: e_1_2_8_178_1 doi: 10.1016/j.apcatb.2017.12.008 – ident: e_1_2_8_200_1 doi: 10.1016/j.jclepro.2018.12.156 – ident: e_1_2_8_109_1 doi: 10.1021/jp052995j – ident: e_1_2_8_71_1 doi: 10.1016/j.snb.2003.10.032 – ident: e_1_2_8_217_1 doi: 10.1002/cssc.201901196 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201600405 – ident: e_1_2_8_2_1 doi: 10.1021/acsenergylett.8b00878 – ident: e_1_2_8_14_1 doi: 10.1021/acs.chemrev.9b00226 – ident: e_1_2_8_187_1 doi: 10.1038/nmat3454 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201804872 – ident: e_1_2_8_218_1 doi: 10.1016/j.apcatb.2016.01.044 – ident: e_1_2_8_220_1 doi: 10.1039/C8CS00542G – ident: e_1_2_8_33_1 doi: 10.1002/cssc.201701450 – ident: e_1_2_8_111_1 doi: 10.1016/j.molcata.2009.10.018 – ident: e_1_2_8_176_1 doi: 10.1016/j.cej.2019.04.003 – volume: 321 start-page: 424 year: 2017 ident: e_1_2_8_36_1 article-title: The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.08.069 – ident: e_1_2_8_171_1 doi: 10.1021/acs.jpclett.6b00428 – ident: e_1_2_8_7_1 doi: 10.1016/j.cej.2016.01.092 – ident: e_1_2_8_92_1 doi: 10.1002/anie.201207904 – ident: e_1_2_8_103_1 doi: 10.1016/j.solidstatesciences.2014.01.010 – ident: e_1_2_8_126_1 doi: 10.1039/b616460a – ident: e_1_2_8_152_1 doi: 10.1002/adfm.201303214 – ident: e_1_2_8_93_1 doi: 10.1016/j.physb.2012.04.039 – ident: e_1_2_8_88_1 doi: 10.1016/j.apcatb.2006.08.002 – ident: e_1_2_8_134_1 doi: 10.1126/science.1143802 – ident: e_1_2_8_168_1 doi: 10.1016/j.apcatb.2016.08.027 – ident: e_1_2_8_148_1 doi: 10.1016/j.apcatb.2016.03.046 – ident: e_1_2_8_145_1 doi: 10.1016/j.apcatb.2016.05.022 – ident: e_1_2_8_17_1 doi: 10.1021/acs.est.9b03296 – ident: e_1_2_8_160_1 doi: 10.1016/j.apsusc.2017.06.186 – ident: e_1_2_8_197_1 doi: 10.1039/C8NH00062J – ident: e_1_2_8_31_1 doi: 10.1002/aenm.201600087 – volume: 35 start-page: 197 year: 2011 ident: e_1_2_8_77_1 article-title: Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α‐Bi2O3 nanoparticles in aqueous solutions publication-title: New J Chem doi: 10.1039/C0NJ00410C – ident: e_1_2_8_192_1 doi: 10.1016/j.apcatb.2017.11.079 – ident: e_1_2_8_56_1 doi: 10.1126/science.1135009 – ident: e_1_2_8_136_1 doi: 10.1126/science.1061051 – ident: e_1_2_8_216_1 doi: 10.1002/anie.201705628 – ident: e_1_2_8_143_1 doi: 10.1016/j.pnsc.2013.05.002 – ident: e_1_2_8_26_1 doi: 10.1002/smll.201901008 – ident: e_1_2_8_41_1 doi: 10.1016/j.jiec.2019.06.022 – ident: e_1_2_8_164_1 doi: 10.1016/j.ceramint.2018.08.320 – ident: e_1_2_8_128_1 doi: 10.1016/j.matchemphys.2010.01.046 – ident: e_1_2_8_4_1 doi: 10.1016/j.apcatb.2016.05.052 – volume: 2 start-page: 4208 year: 2014 ident: e_1_2_8_172_1 article-title: Defect engineering in atomically‐thin bismuth oxychloride towards photocatalytic oxygen evolution publication-title: J Mater Chem A – ident: e_1_2_8_156_1 doi: 10.1039/c2ee03447f – ident: e_1_2_8_157_1 doi: 10.1039/c3nr01577g – ident: e_1_2_8_204_1 doi: 10.1016/j.cej.2012.02.079 – ident: e_1_2_8_72_1 doi: 10.1016/S0167-2738(02)00291-6 – ident: e_1_2_8_73_1 doi: 10.1016/S0025-5408(01)00641-9 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.41.11827 – ident: e_1_2_8_22_1 doi: 10.1016/j.jhazmat.2019.120879 – ident: e_1_2_8_24_1 doi: 10.1021/ja210610h – ident: e_1_2_8_11_1 doi: 10.1016/j.cej.2016.06.090 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201804388 – ident: e_1_2_8_196_1 doi: 10.1016/j.ccr.2017.08.010 – ident: e_1_2_8_130_1 doi: 10.1016/j.apcatb.2006.02.022 – ident: e_1_2_8_29_1 doi: 10.1002/smll.201804426 – ident: e_1_2_8_127_1 doi: 10.1021/jp802115w – ident: e_1_2_8_79_1 doi: 10.1006/jssc.1995.1214 – ident: e_1_2_8_110_1 doi: 10.1021/jp0555100 – ident: e_1_2_8_208_1 doi: 10.1021/acsanm.0c00090 – ident: e_1_2_8_94_1 doi: 10.1039/c2ra20881d – ident: e_1_2_8_50_1 doi: 10.1016/j.jpcs.2019.05.042 – ident: e_1_2_8_165_1 doi: 10.1002/smtd.201700080 – ident: e_1_2_8_119_1 doi: 10.1021/cr00033a003 – ident: e_1_2_8_59_1 doi: 10.1088/0031-8949/37/5/022 – ident: e_1_2_8_99_1 doi: 10.1016/0025-5408(72)90227-9 – ident: e_1_2_8_182_1 doi: 10.1021/jacs.6b12850 – ident: e_1_2_8_132_1 doi: 10.1039/C8NR09147A – ident: e_1_2_8_141_1 doi: 10.1016/j.mcat.2017.02.004 – ident: e_1_2_8_177_1 doi: 10.1039/C6CC07750A – ident: e_1_2_8_67_1 doi: 10.1021/jp3065882 – ident: e_1_2_8_62_1 doi: 10.1039/C4CC02724H – ident: e_1_2_8_206_1 doi: 10.1016/j.jphotochem.2010.03.004 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevLett.82.3328 – ident: e_1_2_8_10_1 doi: 10.1016/j.apcatb.2019.118025 – ident: e_1_2_8_13_1 doi: 10.1021/acsaem.8b01345 – ident: e_1_2_8_198_1 doi: 10.1126/science.173.3991.45 – ident: e_1_2_8_135_1 doi: 10.1039/b909930a – volume: 159 start-page: 289 year: 2015 ident: e_1_2_8_205_1 article-title: Visible‐light driven photocatalytic degradation of rhodamine B by Ag/Bi2WO6 heterostructures publication-title: Mater Lett doi: 10.1016/j.matlet.2015.07.029 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.8b19575 – ident: e_1_2_8_21_1 doi: 10.1016/j.apsusc.2016.10.118 – ident: e_1_2_8_166_1 doi: 10.1021/cs300213m – ident: e_1_2_8_181_1 doi: 10.1021/acs.est.7b00040 – ident: e_1_2_8_19_1 doi: 10.1002/cssc.201200670 – ident: e_1_2_8_25_1 doi: 10.1021/acs.jpcc.9b02081 – ident: e_1_2_8_124_1 doi: 10.1016/j.apcatb.2011.12.037 – ident: e_1_2_8_147_1 doi: 10.1016/j.catcom.2016.09.030 – volume: 13 start-page: 030201 year: 2018 ident: e_1_2_8_199_1 article-title: Household air pollution, health, and climate change: cleaning the air publication-title: Environ Res Lett doi: 10.1088/1748-9326/aaa49d – ident: e_1_2_8_140_1 doi: 10.1021/acsanm.8b00281 – ident: e_1_2_8_18_1 doi: 10.1021/acs.est.7b01466 – ident: e_1_2_8_48_1 doi: 10.1016/j.jhazmat.2010.01.020 – ident: e_1_2_8_149_1 doi: 10.1021/acscatal.5b00444 – ident: e_1_2_8_138_1 doi: 10.1002/cctc.201701965 – ident: e_1_2_8_6_1 doi: 10.1038/s41929-019-0242-6 – volume: 8 start-page: 1986 year: 2015 ident: e_1_2_8_226_1 article-title: Facet‐dependent solar ammonia synthesis of BiOCl nanosheets via a proton‐assisted electron transfer pathway publication-title: Nanoscale – ident: e_1_2_8_53_1 doi: 10.1016/j.progsurf.2006.03.001 – ident: e_1_2_8_108_1 doi: 10.1007/s12598-011-0262-0 – ident: e_1_2_8_84_1 doi: 10.1021/jp904448k – ident: e_1_2_8_117_1 doi: 10.1039/C2CS35266D – ident: e_1_2_8_173_1 doi: 10.1021/jacs.6b04629 – volume: 3 start-page: 379 year: 2010 ident: e_1_2_8_83_1 article-title: Bi2S3 nanostructures: a new photocatalyst publication-title: Nano Res doi: 10.1007/s12274-010-1042-0 – ident: e_1_2_8_23_1 doi: 10.1002/adma.200801354 – ident: e_1_2_8_97_1 doi: 10.1016/0038-1098(75)90791-7 – ident: e_1_2_8_47_1 doi: 10.1039/C7TA08619A – ident: e_1_2_8_137_1 doi: 10.1021/ja0396753 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.5b04979 – volume: 112 start-page: 12018 year: 2008 ident: e_1_2_8_66_1 article-title: Magnetotransport properties of electrodeposited bismuth films publication-title: J Phys Chem C doi: 10.1021/jp802802j – ident: e_1_2_8_38_1 doi: 10.1021/acssuschemeng.9b02575 – ident: e_1_2_8_15_1 doi: 10.1021/acscatal.8b04068 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201916510 – ident: e_1_2_8_125_1 doi: 10.1016/j.apcata.2011.05.037 – ident: e_1_2_8_224_1 doi: 10.1021/cs501076a – ident: e_1_2_8_180_1 doi: 10.1021/jacs.5b03105 – ident: e_1_2_8_214_1 doi: 10.1039/C7TA08766G – ident: e_1_2_8_161_1 doi: 10.1016/j.apcatb.2016.06.020 – ident: e_1_2_8_51_1 doi: 10.1107/S0365110X62002297 – ident: e_1_2_8_116_1 doi: 10.1021/cr0500535 – ident: e_1_2_8_5_1 doi: 10.1021/acs.est.9b04535 – ident: e_1_2_8_183_1 doi: 10.1016/j.apcatb.2018.06.066 – ident: e_1_2_8_120_1 doi: 10.1016/j.cej.2012.08.021 – ident: e_1_2_8_203_1 doi: 10.1016/j.apcatb.2019.118130 – ident: e_1_2_8_223_1 doi: 10.1016/j.apcatb.2017.10.049 – ident: e_1_2_8_211_1 doi: 10.1038/nclimate1629 – ident: e_1_2_8_144_1 doi: 10.1021/cs501038q – ident: e_1_2_8_49_1 doi: 10.1039/c3nr05529a – ident: e_1_2_8_133_1 doi: 10.1039/c1cc11015b – ident: e_1_2_8_89_1 doi: 10.1021/ja402956f – volume: 1 start-page: 2655 year: 2010 ident: e_1_2_8_221_1 article-title: Photocatalytic water splitting: recent progress and future challenges publication-title: J PhysChemLett – ident: e_1_2_8_151_1 doi: 10.1002/anie.201108276 – ident: e_1_2_8_37_1 doi: 10.1002/smll.201200055 – ident: e_1_2_8_150_1 doi: 10.1002/cssc.201200254 – ident: e_1_2_8_225_1 doi: 10.1023/B:RUCB.0000019873.81002.60 – volume: 9 start-page: 3262 year: 2018 ident: e_1_2_8_213_1 article-title: 21st‐century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes publication-title: Nat Commun doi: 10.1038/s41467-018-05738-9 – ident: e_1_2_8_100_1 doi: 10.7567/JJAP.51.09LE06 – ident: e_1_2_8_121_1 doi: 10.1021/jp4065505 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevB.33.3778 – ident: e_1_2_8_162_1 doi: 10.1021/jp409598s – ident: e_1_2_8_78_1 doi: 10.1016/0025-5408(94)00123-5 – ident: e_1_2_8_104_1 doi: 10.1016/j.apsusc.2015.12.231 – ident: e_1_2_8_190_1 doi: 10.1016/j.jcat.2016.10.005 – ident: e_1_2_8_101_1 doi: 10.1002/chem.200500904 – ident: e_1_2_8_142_1 doi: 10.1002/slct.201600090 – ident: e_1_2_8_179_1 doi: 10.1016/j.apsusc.2019.144806 – ident: e_1_2_8_202_1 doi: 10.1016/j.apcatb.2018.09.032 – ident: e_1_2_8_122_1 doi: 10.1016/j.apt.2012.02.004 – ident: e_1_2_8_81_1 doi: 10.1016/j.apcatb.2017.05.035 – volume: 43 start-page: 16180 year: 2018 ident: e_1_2_8_58_1 article-title: Computationally predicted fundamental behaviors of embedded hydrogen at TiC/W interfaces publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.179 – ident: e_1_2_8_189_1 doi: 10.1039/C4CP06045H – ident: e_1_2_8_153_1 doi: 10.1002/adma.201601694 – ident: e_1_2_8_65_1 doi: 10.1126/science.284.5418.1335 – ident: e_1_2_8_195_1 doi: 10.1016/j.inoche.2013.12.024 – ident: e_1_2_8_105_1 doi: 10.1063/1.1507101 – volume: 35 start-page: 989 year: 2014 ident: e_1_2_8_82_1 article-title: Recent advances in visible light Bi‐based photocatalysts publication-title: Chin J Catal doi: 10.1016/S1872-2067(14)60075-9 – ident: e_1_2_8_76_1 doi: 10.1016/j.apcata.2006.04.016 – ident: e_1_2_8_201_1 doi: 10.1016/S1872-2067(19)63279-1 – ident: e_1_2_8_9_1 doi: 10.1021/acscatal.6b02089 – ident: e_1_2_8_207_1 doi: 10.1016/j.apcatb.2019.03.062 – ident: e_1_2_8_215_1 doi: 10.1039/c3en00098b |
SSID | ssj0002504241 |
Score | 2.486024 |
SecondaryResourceType | review_article |
Snippet | Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is... Abstract Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | Bi‐based photocatalysts energy conversion environmental remediation modification strategy photocatalytic mechanism |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS9xAFB62emkPpWpLt1YZsBdl000m8yMRL1pcRLAKVthbmB9vWsFNxKyH3nruqX9j_5LOm92Nu1AKvYQQXhLIy8z73pv5vkfIhwKkTo0vEqc9JDx4OTEK8kS7LDVaaO3iUszFZ3l2w8_HYtwjRwsuzEwfoiu44ciI8zUOcG3a4ZNoKDQT9jFjKVfPyDpya7F_AeNXXYUFxblYbF0ZwjoW41Te6ZOy4dPtKxEpCvevAtUYaUavyMs5RKTHM59ukB7Um-TFknDgFvl5cvv7xy-MQI7ef2umTazCfG-nLQ0glN5hxh0M3APOZXSJzBaeq2tHITL-6PLq9SG9jlKyKMNBp49YLhnQgCgj74FOABnCt-2kHcQH2EUPlvY1uRmdfvl0lsy7KiQ2V0KFY1kIBAaZksorJ5GLyouSFdYHeCIF09Lr1Bpf5mmZGshKzZw0SmTGhnQkf0PW6qaGt4QKCMmIE2WhgXGwTofJKg3GxkDqueV9sr_4spWdS45j54u7aiaWzCr0QhW90Cd7ne39TGjjr1Yn6KDOAsWx44Xm4Ws1H2sVNxDyMAG4hZVDbgtvwUulbZbL0ui8Tw6ie__xnur08oLFs3f_Y7xNnjPMx-MetPdkLfgNdgJomZrd-G_-AdeH6ys priority: 102 providerName: Wiley-Blackwell |
Title | Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12047 https://doaj.org/article/4be5485e14104e3c8fcef67ac1369ba3 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7qaT2I-8JxVQLrRbG1O52ku_e2LiMijAq7grcmjwoKzoxsjwcv4tmTv9FfslXpcWhB9LKXEJoiaVJF6qsk9RVjmyVok9pQJt4ESCRqObEF5InxWWqNMsbHq5jBsT48k0fn6rxT6ovehLX0wO3C7UkLCKoV0HtECbkrg4OgC-OyXFfWRJ5P9HmdYIr2YCLmQt804yMVezAeit1MpFRHpeOBIlH_S2AaPcvBMluaQkL-s_2Vj2wORp_YYoco8DN72L98un8kj-P59cV4Mo6nLrfNpOEIOvkVRdgo4P_S3sU7yWs4rhl5DjHDj3dvq3_w35E6lmg3-OSGjkd2OCLImOfAh0AZwZfNsNmJA7jnmivNF3Z20P_z6zCZVlFIXF6oAtuqVAQEskIXofCack9lWYnSBYQjWgmjg0mdDVWeVqmFrDLCa1uozDoMP_KvbGE0HsEK4wow-PCqKg0ICc4b3JxSFLYW0iCd7LGt55Wt3ZRinCpdXNUtObKoSQt11EKPfZ_JXrfEGq9K7ZOCZhJEhh0_oInUUxOp3zORHtuO6n1jnrp_MhCxt_o_ZvzGPgiKy-NbtDW2gPqEdQQvE7vB5oU83YjWiu3grv8P-mjzsA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPQCHqg-qLvRhqVxakZI4fiS9lQq0LbtQCZC4RX6MC9LuZkW2h9567onfyC-px5sNi1RV6iWKookjZWzPN-OZbwjZKUDq1PgicdpDwoOWE6MgT7TLUqOF1i4exQyPZf-cf70QF21uDtbCzPkhuoAbroy4X-MCx4D03h1rKNRj9iFjKVcr5CEPwBwnNePfuhALsnOx2Lsy2HWMxqm8Iyhle3ev3zNJkbn_PlKNpubwMXnUYkT6aa7UJ-QBTJ6SjSXmwGfk9_7V7a8bNEGOTi_rWR3DMD-bWUMDCqUjdLmDgLvGzYwuVbOFcfXEUYglf3T5-PojPY1cssjDQWc_MF6ySwOkjIUPdAxYInzVjJvdOIBdNGFpNsn54cHZ537StlVIbK6ECteyEIgMMiWVV05iMSovSlZYH_CJFExLr1NrfJmnZWogKzVz0iiRGRv8kfw5WZ3UE3hBqIDgjThRFhoYB-t02K3SIGwMpJ5b3iPvFn-2si3nOLa-GFVztmRWoRaqqIUeedvJTudMG3-V2kcFdRLIjh0f1Nffq3axVdxAcMQEYA4rh9wW3oKXStssl6XReY-8j-r9x3eqg5Mhi3db_yP8hqz1z4aDavDl-GibrDN0zmNC2kuyGnQIrwKCmZnXcZ7-AaEc7qA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiE4IJ5iWx6W4AJqaOL4kVS9UOiqPFoqQaXeIj_GUKm7WTXLgRtnTv2N_JJ6vLvpVkJIXKIomiRSvtjzzdjzDcCLCpXJbagybwJmIqKcWY1lZnyRWyON8WkpZv9A7R2JD8fyeAW2F7UwM32IPuFGIyPN1zTAJz5sXoqGYjvirwueC30NrtNqH23o4-Kwz7CQOBdPrSujW6dknC57fVK-eXn7FY-UhPuvEtXkaYZ34PacIrI3M0zvwgqO78GtJeHA-_B75-TPr3PyQJ5NvrfTNmVhfnbTjkUSyk4p4o4G_ozmMrZUzBafa8aeYar4Y8ur11vsS5KSJRkONv1B6ZINFhllqntgI6QK4ZNu1G2kB7hFD5buARwNd7--3cvmXRUyV2qp47GuJBGDQisdtFdUiyqqmlcuRHqiJDcqmNzZUJd5nVssasO9sloW1sVwpHwIq-N2jI-ASYzBiJd1ZZALdN7EySqPxtZiHoQTA3i5-LKNm0uOU-eL02YmlswbQqFJKAzgeW87mQlt_NVqhwDqLUgcO11oz74187HWCIsxDpNIW1gFlq4KDoPSxhWlqq0pB_AqwfuP9zS7n_d5Olv7H-NncOPw3bD59P7g4zrc5BSap-1oj2E1QohPIn-Z2qfpN70AOLztyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi%E2%80%90based+photocatalysts+for+light%E2%80%90driven+environmental+and+energy+applications%3A+Structural+tuning%2C+reaction+mechanisms%2C+and+challenges&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Peng+Chen&rft.au=Hongjing+Liu&rft.au=Wen+Cui&rft.au=Shun+Cheng+Lee&rft.date=2020-09-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=2&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12047&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |