Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges

Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of trad...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 2; no. 3
Main Authors Chen, Peng, Liu, Hongjing, Cui, Wen, Lee, Shun Cheng, Wang, Li'ao, Dong, Fan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2020
Wiley
Subjects
Online AccessGet full text
ISSN2567-3173
2567-3173
DOI10.1002/eom2.12047

Cover

Loading…
Abstract Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis are also discussed. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work.
AbstractList Abstract Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work.
Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis are also discussed. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work.
Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is regarded as an extremely attractive solution to environmental remediation and energy conversion. Unfortunately, practical applications of traditional photocatalysts are restricted owing to the poor absorption of visible light, insufficient charge separation and undefined reaction mechanism. Therefore, developing novel visible light photocatalysts and exploring their modification strategies are significant in the area of photocatalysis. Bi‐based photocatalysts have attracted wide attention due to unique geometric structures, tunable electronic structure and decent photocatalytic activity under visible light. At present, Bi‐based photocatalysts can be mainly classified as bismuth metal, binary oxides, bismuth oxyhalogen, multicomponent oxides and binary sulfides, and so forth. Although they can be used as independent photocatalysts for environmental purification and energy development, their efficiency is not ideal. Therefore, many efforts have been made to enhance their photocatalytic performance in the past few decades. Significant progresses in determining the fundamental properties of photocatalysts, improving the photocatalytic performance and understanding the photocatalytic mechanism in important reactions have been made benefited from the various new developed concepts and approaches. This review introduces the structural properties of Bi‐based photocatalysts in detail and summarizes the design and modification strategy for improving the photocatalytic performance, including metal/nonmetal doping, construction of heterojunctions, regulation of crystal facet exposure, and structural defects. Furthermore, we discuss the catalysis mechanisms of Bi‐based materials in terms of semiconductor photocatalysis and plasmonic photocatalysis. Finally, the applications, challenges and prospects of Bi‐based photocatalysts are proposed to guide the future work. image
Author Wang, Li'ao
Lee, Shun Cheng
Liu, Hongjing
Cui, Wen
Chen, Peng
Dong, Fan
Author_xml – sequence: 1
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Hongjing
  surname: Liu
  fullname: Liu, Hongjing
  organization: Chongqing University
– sequence: 3
  givenname: Wen
  surname: Cui
  fullname: Cui, Wen
  organization: Southwest Petroleum University
– sequence: 4
  givenname: Shun Cheng
  surname: Lee
  fullname: Lee, Shun Cheng
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Li'ao
  surname: Wang
  fullname: Wang, Li'ao
  email: wangliao@cqu.edu.cn
  organization: Chongqing University
– sequence: 6
  givenname: Fan
  orcidid: 0000-0003-2890-9964
  surname: Dong
  fullname: Dong, Fan
  email: dfctbu@126.com
  organization: University of Electronic Science and Technology of China
BookMark eNp9kb1uFDEYRS0UJEJIwxO4Rtngv7Fn6CAKECkoBVBbHs_nWUcee2V7g7ajpuIZeRK8uwghhGj88_ncU_g-RScxRUDoOSWXlBD2EtLCLikjQj1Cp6yTasWp4id_nJ-g81LuSYM7Ipigp-jbG__j6_fRFJjwZp1qsqaasCu1YJcyDn5e1wZM2T9AxBAffE5xgdggbOLUJpDnHTabTfAt6lMsr_DHmre2bnNj6jb6OF_gDMbuX_ECdm2iL0u5OAjaLQSIM5Rn6LEzocD5r_0MfX57_enq_er27t3N1evbleWqU20d-o6onlEllVOTHKRQoh9Yb50UXHbMSGeIHd3AyUBGoINhkxxVR0dLac_P0M3ROyVzrzfZLybvdDJeHwYpz9rk6m0ALUboRN8BFZQI4LZ3FpxUxlIuh9Hw5npxdNmcSsngfvso0ftS9L4UfSilweQv2Pp6-LOajQ__jtBj5IsPsPuPXF_ffWDHzE_hfqSz
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_126633
crossref_primary_10_1016_j_surfin_2024_105668
crossref_primary_10_1016_j_mssp_2024_109249
crossref_primary_10_1016_j_chemosphere_2021_132668
crossref_primary_10_1016_j_desal_2023_116680
crossref_primary_10_3390_catal13040666
crossref_primary_10_1002_aesr_202000097
crossref_primary_10_1039_D3RA06648G
crossref_primary_10_1016_j_materresbull_2025_113352
crossref_primary_10_1021_acs_jpcc_4c01330
crossref_primary_10_1016_j_chemosphere_2022_137324
crossref_primary_10_1016_j_mtsust_2023_100409
crossref_primary_10_34133_2022_9897860
crossref_primary_10_1080_15567036_2022_2069884
crossref_primary_10_1016_j_jallcom_2024_177367
crossref_primary_10_1016_j_chemosphere_2023_138534
crossref_primary_10_1016_j_jcis_2023_07_172
crossref_primary_10_1016_j_crbiot_2024_100252
crossref_primary_10_1016_j_jhazmat_2021_126622
crossref_primary_10_1016_j_mseb_2024_117515
crossref_primary_10_1016_j_inoche_2025_114067
crossref_primary_10_1002_idm2_12025
crossref_primary_10_1016_j_jssc_2022_123784
crossref_primary_10_2139_ssrn_3990724
crossref_primary_10_1016_j_surfin_2024_104902
crossref_primary_10_1016_j_nantod_2024_102413
crossref_primary_10_1016_j_jallcom_2024_174915
crossref_primary_10_1021_acs_inorgchem_3c04487
crossref_primary_10_1016_j_apcatb_2021_120492
crossref_primary_10_1088_2053_1591_ad549c
crossref_primary_10_1016_j_jmrt_2022_09_130
crossref_primary_10_1039_D1DT00236H
crossref_primary_10_1016_j_envres_2021_112544
crossref_primary_10_1016_j_jhazmat_2024_136951
crossref_primary_10_1016_j_ceramint_2024_04_245
crossref_primary_10_1016_j_mtchem_2024_101924
crossref_primary_10_1007_s40684_025_00718_z
crossref_primary_10_1016_j_apsusc_2024_159924
crossref_primary_10_1016_j_ccr_2023_215246
crossref_primary_10_1016_j_jpcs_2024_112132
crossref_primary_10_1039_D2CY01774A
crossref_primary_10_1016_j_materresbull_2023_112560
crossref_primary_10_1039_D2QI02632E
crossref_primary_10_1002_nano_202000127
crossref_primary_10_1021_acsomega_3c08939
crossref_primary_10_1007_s40726_023_00253_y
crossref_primary_10_1016_j_seppur_2022_121897
crossref_primary_10_1039_D3NR02889E
crossref_primary_10_1002_gch2_202200172
crossref_primary_10_1002_solr_202400386
crossref_primary_10_1039_D0NJ05506A
crossref_primary_10_1016_j_surfin_2023_103812
crossref_primary_10_1016_j_cej_2022_135133
crossref_primary_10_1039_D1CY00739D
crossref_primary_10_20964_2021_07_63
crossref_primary_10_1002_admt_202300760
crossref_primary_10_1007_s10876_023_02412_z
crossref_primary_10_1016_j_apcatb_2021_120159
crossref_primary_10_1016_j_chemosphere_2024_141206
crossref_primary_10_1002_cnma_202300140
crossref_primary_10_1016_j_jhazmat_2021_126280
crossref_primary_10_1016_j_jphotochem_2022_114462
crossref_primary_10_1016_j_mcat_2024_113820
crossref_primary_10_1007_s12598_024_03002_2
crossref_primary_10_1039_D4CC00455H
crossref_primary_10_1039_D4YA00240G
crossref_primary_10_1039_D4MA00493K
crossref_primary_10_1016_j_trechm_2025_01_006
crossref_primary_10_1016_j_colsurfa_2022_128829
crossref_primary_10_1016_j_jece_2025_115648
crossref_primary_10_1002_solr_202300406
crossref_primary_10_1016_j_jpcs_2023_111702
crossref_primary_10_1007_s43621_024_00439_4
crossref_primary_10_1016_j_jece_2022_107226
crossref_primary_10_1016_j_jcis_2021_07_018
crossref_primary_10_1016_j_jphotochem_2024_116237
crossref_primary_10_3390_polym13183064
crossref_primary_10_1039_D2RA07910K
crossref_primary_10_3390_app11093975
crossref_primary_10_1039_D3RA01813J
crossref_primary_10_1016_j_cej_2021_129305
crossref_primary_10_1016_j_ccr_2025_216443
crossref_primary_10_1016_j_jcis_2023_11_081
crossref_primary_10_1016_j_jece_2023_111855
crossref_primary_10_1007_s11356_022_19592_2
crossref_primary_10_1016_j_jece_2021_106264
crossref_primary_10_1007_s13204_023_02862_x
crossref_primary_10_1016_j_cclet_2024_110125
crossref_primary_10_1016_j_esci_2023_100095
crossref_primary_10_1016_j_jre_2025_01_010
crossref_primary_10_1016_j_jece_2023_110613
crossref_primary_10_1016_j_cej_2022_135563
crossref_primary_10_1016_j_envres_2022_112834
crossref_primary_10_1016_j_ceramint_2024_12_241
crossref_primary_10_1016_j_jallcom_2023_171161
crossref_primary_10_1021_acs_chemrev_2c00422
crossref_primary_10_1038_s41467_023_36650_6
crossref_primary_10_1016_j_jcis_2021_08_146
crossref_primary_10_1016_j_molstruc_2024_138627
crossref_primary_10_1016_j_clay_2021_106319
crossref_primary_10_1002_eom2_12204
crossref_primary_10_1016_j_inoche_2021_108815
crossref_primary_10_1016_j_jece_2023_110864
crossref_primary_10_3390_ma17163975
crossref_primary_10_1016_j_cej_2022_139892
crossref_primary_10_1016_j_cej_2021_134104
crossref_primary_10_1016_j_cej_2021_132204
crossref_primary_10_1016_j_jece_2022_107838
crossref_primary_10_1016_j_indcrop_2022_115387
crossref_primary_10_1016_j_chemosphere_2023_140818
Cites_doi 10.1016/j.jcat.2017.10.004
10.1016/j.apcatb.2019.118545
10.1002/adfm.201202144
10.1016/j.cattod.2018.01.013
10.1038/ncomms9816
10.1002/adfm.201801983
10.1016/j.cej.2015.11.103
10.1016/j.scitotenv.2019.03.071
10.1002/adma.200600654
10.1039/C4RA06419D
10.1021/cr00033a004
10.1088/0957-4484/16/9/060
10.1039/C4TA01339E
10.1039/c2cp23186g
10.1021/cr050977s
10.1016/j.cej.2016.01.032
10.1038/526628a
10.1007/s10562-012-0929-7
10.1016/j.apsusc.2016.06.003
10.1016/j.apcatb.2018.10.055
10.1016/j.apcatb.2017.06.022
10.1016/0167-2738(96)00348-7
10.1039/C1EE02875H
10.1016/j.apcatb.2016.06.032
10.1039/C4CS00126E
10.1002/chem.201803505
10.1016/j.colsurfa.2010.07.022
10.1103/PhysRevB.60.15484
10.1021/acs.jpcc.6b01188
10.1039/c1jm11840d
10.1002/aoc.4230
10.1021/cs400993w
10.1021/acscatal.6b01668
10.1103/PhysRevB.73.235104
10.1039/C3CP43856B
10.1021/es101890w
10.1021/cm802894z
10.1021/ja5044787
10.1039/C4NR03008G
10.1039/C8NH00062J
10.1021/es303968n
10.1039/c0cp01189d
10.1002/smll.200700043
10.1021/cg501527k
10.1107/S0021889869006443
10.1016/j.apsusc.2016.07.070
10.1016/j.jhazmat.2016.09.034
10.1039/C4NR02553A
10.1021/acsami.5b09994
10.1021/ja992541y
10.1039/C6SC00389C
10.1002/chem.201503778
10.1002/aenm.201600436
10.1002/adma.200304693
10.1021/jacs.6b11263
10.1038/srep20337
10.1016/j.jmst.2016.11.017
10.1021/acscatal.7b02662
10.1016/j.apcatb.2012.12.003
10.1088/0953-8984/7/37/005
10.1039/c0cp01871f
10.1039/C4RA10587G
10.1016/j.apsusc.2010.06.058
10.1002/pssb.2220750218
10.1016/j.apcatb.2015.04.026
10.1021/jp5035079
10.1016/j.apcatb.2017.12.008
10.1016/j.jclepro.2018.12.156
10.1021/jp052995j
10.1016/j.snb.2003.10.032
10.1002/cssc.201901196
10.1002/anie.201600405
10.1021/acsenergylett.8b00878
10.1021/acs.chemrev.9b00226
10.1038/nmat3454
10.1002/adma.201804872
10.1016/j.apcatb.2016.01.044
10.1039/C8CS00542G
10.1002/cssc.201701450
10.1016/j.molcata.2009.10.018
10.1016/j.cej.2019.04.003
10.1016/j.jhazmat.2016.08.069
10.1021/acs.jpclett.6b00428
10.1016/j.cej.2016.01.092
10.1002/anie.201207904
10.1016/j.solidstatesciences.2014.01.010
10.1039/b616460a
10.1002/adfm.201303214
10.1016/j.physb.2012.04.039
10.1016/j.apcatb.2006.08.002
10.1126/science.1143802
10.1016/j.apcatb.2016.08.027
10.1016/j.apcatb.2016.03.046
10.1016/j.apcatb.2016.05.022
10.1021/acs.est.9b03296
10.1016/j.apsusc.2017.06.186
10.1002/aenm.201600087
10.1039/C0NJ00410C
10.1016/j.apcatb.2017.11.079
10.1126/science.1135009
10.1126/science.1061051
10.1002/anie.201705628
10.1016/j.pnsc.2013.05.002
10.1002/smll.201901008
10.1016/j.jiec.2019.06.022
10.1016/j.ceramint.2018.08.320
10.1016/j.matchemphys.2010.01.046
10.1016/j.apcatb.2016.05.052
10.1039/c2ee03447f
10.1039/c3nr01577g
10.1016/j.cej.2012.02.079
10.1016/S0167-2738(02)00291-6
10.1016/S0025-5408(01)00641-9
10.1103/PhysRevB.41.11827
10.1016/j.jhazmat.2019.120879
10.1021/ja210610h
10.1016/j.cej.2016.06.090
10.1002/adfm.201804388
10.1016/j.ccr.2017.08.010
10.1016/j.apcatb.2006.02.022
10.1002/smll.201804426
10.1021/jp802115w
10.1006/jssc.1995.1214
10.1021/jp0555100
10.1021/acsanm.0c00090
10.1039/c2ra20881d
10.1016/j.jpcs.2019.05.042
10.1002/smtd.201700080
10.1021/cr00033a003
10.1088/0031-8949/37/5/022
10.1016/0025-5408(72)90227-9
10.1021/jacs.6b12850
10.1039/C8NR09147A
10.1016/j.mcat.2017.02.004
10.1039/C6CC07750A
10.1021/jp3065882
10.1039/C4CC02724H
10.1016/j.jphotochem.2010.03.004
10.1103/PhysRevLett.82.3328
10.1016/j.apcatb.2019.118025
10.1021/acsaem.8b01345
10.1126/science.173.3991.45
10.1039/b909930a
10.1016/j.matlet.2015.07.029
10.1021/acsami.8b19575
10.1016/j.apsusc.2016.10.118
10.1021/cs300213m
10.1021/acs.est.7b00040
10.1002/cssc.201200670
10.1021/acs.jpcc.9b02081
10.1016/j.apcatb.2011.12.037
10.1016/j.catcom.2016.09.030
10.1088/1748-9326/aaa49d
10.1021/acsanm.8b00281
10.1021/acs.est.7b01466
10.1016/j.jhazmat.2010.01.020
10.1021/acscatal.5b00444
10.1002/cctc.201701965
10.1038/s41929-019-0242-6
10.1016/j.progsurf.2006.03.001
10.1007/s12598-011-0262-0
10.1021/jp904448k
10.1039/C2CS35266D
10.1021/jacs.6b04629
10.1007/s12274-010-1042-0
10.1002/adma.200801354
10.1016/0038-1098(75)90791-7
10.1039/C7TA08619A
10.1021/ja0396753
10.1021/acsnano.5b04979
10.1021/jp802802j
10.1021/acssuschemeng.9b02575
10.1021/acscatal.8b04068
10.1002/anie.201916510
10.1016/j.apcata.2011.05.037
10.1021/cs501076a
10.1021/jacs.5b03105
10.1039/C7TA08766G
10.1016/j.apcatb.2016.06.020
10.1107/S0365110X62002297
10.1021/cr0500535
10.1021/acs.est.9b04535
10.1016/j.apcatb.2018.06.066
10.1016/j.cej.2012.08.021
10.1016/j.apcatb.2019.118130
10.1016/j.apcatb.2017.10.049
10.1038/nclimate1629
10.1021/cs501038q
10.1039/c3nr05529a
10.1039/c1cc11015b
10.1021/ja402956f
10.1002/anie.201108276
10.1002/smll.201200055
10.1002/cssc.201200254
10.1023/B:RUCB.0000019873.81002.60
10.1038/s41467-018-05738-9
10.7567/JJAP.51.09LE06
10.1021/jp4065505
10.1103/PhysRevB.33.3778
10.1021/jp409598s
10.1016/0025-5408(94)00123-5
10.1016/j.apsusc.2015.12.231
10.1016/j.jcat.2016.10.005
10.1002/chem.200500904
10.1002/slct.201600090
10.1016/j.apsusc.2019.144806
10.1016/j.apcatb.2018.09.032
10.1016/j.apt.2012.02.004
10.1016/j.apcatb.2017.05.035
10.1016/j.ijhydene.2018.06.179
10.1039/C4CP06045H
10.1002/adma.201601694
10.1126/science.284.5418.1335
10.1016/j.inoche.2013.12.024
10.1063/1.1507101
10.1016/S1872-2067(14)60075-9
10.1016/j.apcata.2006.04.016
10.1016/S1872-2067(19)63279-1
10.1021/acscatal.6b02089
10.1016/j.apcatb.2019.03.062
10.1039/c3en00098b
ContentType Journal Article
Copyright 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/eom2.12047
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3
10_1002_eom2_12047
EOM212047
Genre reviewArticle
GrantInformation_xml – fundername: Graduate Research and Innovation Foundation of Chongqing
  funderid: CYS18019
– fundername: The Graduate Research Innovation Fund Project of Southwest Petroleum University
  funderid: 2019cxyb012
– fundername: 111 Project
  funderid: B20030
– fundername: National Natural Science Foundation of China
  funderid: 21822601; 21777011
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3757-c398507821767f7d6964748928cf643652a6fa0cbf93090be19a2d6b751bc1183
IEDL.DBID DOA
ISSN 2567-3173
IngestDate Wed Aug 27 01:25:20 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Wed Jan 22 16:32:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3757-c398507821767f7d6964748928cf643652a6fa0cbf93090be19a2d6b751bc1183
Notes Funding information
Peng Chen and Hongjing Liu contributed equally to this work.
National Natural Science Foundation of China, Grant/Award Numbers: 21822601, 21777011; Graduate Research and Innovation Foundation of Chongqing, Grant/Award Number: CYS18019; The Graduate Research Innovation Fund Project of Southwest Petroleum University, Grant/Award Number: 2019cxyb012; 111 Project, Grant/Award Number: B20030
ORCID 0000-0003-2890-9964
OpenAccessLink https://doaj.org/article/4be5485e14104e3c8fcef67ac1369ba3
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3
crossref_primary_10_1002_eom2_12047
crossref_citationtrail_10_1002_eom2_12047
wiley_primary_10_1002_eom2_12047_EOM212047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 12
1995; 30
2007; 107
2002; 150
2010; 15
2019; 11
2017; 88
1975; 16
2019; 12
2019; 15
2017; 391
1999; 284
2009; 113
2014; 24
2017; 394
2012; 14
2017; 310
2018; 44
2018; 43
2017; 432
2013; 5
2013; 6
2012; 11
2003; 52
2014; 136
2012; 407
2018; 6
1990; 41
1976; 75
2018; 9
2010; 20
2018; 3
2012; 134
2010; 1
2015; 137
2018; 1
2013; 52
2005; 109
2007; 3
2008; 112
2010; 3
2017; 321
1971; 173
2018; 32
2017; 201
2007; 17
2019; 7
2012; 189‐190
2019; 9
2018; 28
1979; 14
2019; 31
2018; 226
2019; 2
2020; 264
2015; 176‐177
2018; 225
2020; 260
2018; 224
2016; 288
2006; 110
1962; 15
2015; 526
2014; 40
2014; 43
2017; 139
2018; 24
1995; 7
2017; 51
2010; 44
2016; 6
2016; 7
2016; 1
2019; 40
2007; 315
2018; 238
2013; 132‐133
2018; 357
2019; 48
2010; 212
2010; 177
2019; 212
2014; 35
2014; 30
2016; 291
2005; 16
2012; 116
2018; 10
2001; 36
1996; 89
2018; 13
2017; 5
2017; 7
2012; 117‐118
2017; 1
2004; 126
2006; 73
2019; 53
2013; 24
2013; 23
1986; 33
1988; 37
2002; 117
2016; 344
1999; 121
2020; 59
2016; 187
2011; 13
2020; 54
1999; 82
2019; 243
2019; 123
2019; 241
2012; 51
2012; 209
2014; 1
2013; 15
2014; 4
2001; 293
2020; 3
2014; 2
2006; 68
2010; 317
1969; 2
2006; 66
2017; 33
2008; 319
2016; 199
2016; 198
2011; 21
2019; 119
2016; 192
2014; 50
2014; 6
2016; 196
2017; 218
2014; 118
2015; 15
1995; 95
2012; 142
2015; 6
2015; 17
2013; 47
2015; 5
2009; 21
2006; 12
2019; 78
2010; 368
2013; 42
2010; 121
2016; 365
2011; 30
2006; 18
2016; 52
1995; 116
2011; 35
2017; 29
2019; 668
1999; 60
2015; 9
2019; 380
2015; 8
2015; 7
2017; 214
2016; 120
2020; 507
2016; 55
2006; 81
2004; 99
2018; 430
2012; 2
2006; 308
2011; 106
2018; 315
2015; 159
2010; 257
2017; 10
2015; 21
2019; 259
2013; 135
2016; 138
2011; 47
2019; 251
2012; 5
2019; 370
2019; 134
2012; 8
2017; 349
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
O'Brien B (e_1_2_8_66_1) 2008; 112
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_87_1
Xa D (e_1_2_8_193_1) 2018; 357
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
Chen L (e_1_2_8_58_1) 2018; 43
Zhang Q (e_1_2_8_64_1) 2014; 2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
Ra H (e_1_2_8_82_1) 2014; 35
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_220_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
Tong W (e_1_2_8_83_1) 2010; 3
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_195_1
Liu Z (e_1_2_8_85_1) 2010; 15
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
Khuzwayo Z (e_1_2_8_36_1) 2017; 321
e_1_2_8_217_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
Maeda K (e_1_2_8_221_1) 2010; 1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
Di J (e_1_2_8_172_1) 2014; 2
e_1_2_8_27_1
Zhang L (e_1_2_8_91_1) 2013; 132
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
(e_1_2_8_77_1) 2011; 35
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_92_1
Jose G (e_1_2_8_199_1) 2018; 13
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_114_1
e_1_2_8_198_1
Katey WA (e_1_2_8_213_1) 2018; 9
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
Shu Y (e_1_2_8_55_1) 2016; 6
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_190_1
Phuruangrat A (e_1_2_8_205_1) 2015; 159
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
Zhang LZ (e_1_2_8_226_1) 2015; 8
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 7
  start-page: 1400
  year: 2016
  end-page: 1405
  article-title: BiVO {010} and {110} relative exposure extent: governing factor of surface charge population and photocatalytic activity
  publication-title: J Phys Chem Lett
– volume: 57
  start-page: 122
  year: 2018
  end-page: 138
  article-title: Oxygen vacancy‐mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew Chem
– volume: 142
  start-page: 1413
  year: 2012
  end-page: 1436
  article-title: Metal phosphides: preparation, characterization and catalytic reactivity
  publication-title: Catal Lett
– volume: 2
  start-page: 9224
  year: 2012
  end-page: 9229
  article-title: First‐principles studies on facet‐dependent photocatalytic properties of bismuth oxyhalides (BiOXs)
  publication-title: RSC Adv
– volume: 14
  start-page: 2450
  year: 2012
  end-page: 2454
  article-title: Investigation of band offsets of interface BiOCl:Bi WO : a first‐principles study
  publication-title: Phys Chem Chem Phys
– volume: 430
  start-page: 571
  year: 2018
  end-page: 577
  article-title: 2D BiOCl/Bi O Cl nanojunction: enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation
  publication-title: Appl Surf Sci
– volume: 47
  start-page: 3490
  year: 2013
  end-page: 3497
  article-title: Photocatalytic fuel cell (PFC) and dye self‐photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation
  publication-title: Environ Sci Technol
– volume: 30
  start-page: 1
  year: 2014
  end-page: 5
  article-title: Syntheses, characterization and nonlinear optical properties of a bismuth subcarbonate Bi O CO
  publication-title: Solid State Sci
– volume: 218
  start-page: 20
  year: 2017
  end-page: 31
  article-title: The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur‐doped TiO coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification
  publication-title: Appl Catal B‐Environ
– volume: 1
  start-page: 2589
  year: 2018
  end-page: 2599
  article-title: Fabrication of porous cu‐doped BiVO nanotubes as efficient oxygen‐evolving photocatalysts
  publication-title: ACS Appl Nano Mater
– volume: 121
  start-page: 11459
  year: 1999
  end-page: 11467
  article-title: A novel aqueous process for preparation of crystal form‐controlled and highly crystalline BiVO powder from layered vanadates at room temperature and its photocatalytic and photophysical properties
  publication-title: J Am Chem Soc
– volume: 118
  start-page: 389
  year: 2014
  end-page: 398
  article-title: BiOCl/BiVO p–n heterojunction with enhanced photocatalytic activity under visible‐light irradiation
  publication-title: J Phys Chem C
– volume: 18
  start-page: 2604
  year: 2006
  end-page: 2608
  article-title: Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition technique
  publication-title: Adv Mater
– volume: 60
  start-page: 15484
  year: 1999
  end-page: 15487
  article-title: Electronic structure, phase stability, and semimetal‐semiconductor transitions in Bi
  publication-title: Phys Rev B
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
– volume: 89
  start-page: 179
  year: 1996
  end-page: 196
  article-title: Oxide ion conducting solid electrolytes based on Bi O
  publication-title: Solid State Ion
– volume: 199
  start-page: 87
  year: 2016
  end-page: 95
  article-title: Three dimensional Z‐scheme (BiO) CO /MoS with enhanced visible light photocatalytic NO removal
  publication-title: Appl Catal B‐Environ
– volume: 4
  start-page: 116
  year: 2014
  end-page: 128
  article-title: Direct photocatalysis by plasmonic nanostructures
  publication-title: ACS Catal
– volume: 32
  year: 2018
  article-title: Synthesis, properties and mechanism of photodegradation of core–shell structured upconversion luminescent NaYF :Yb ,Er @BiOCl
  publication-title: Appl Organomet Chem
– volume: 136
  start-page: 8839
  year: 2014
  end-page: 8842
  article-title: Enhanced photocatalytic CO ‐reduction activity of anatase TiO by coexposed {001} and {101} facets
  publication-title: J Am Chem Soc
– volume: 310
  start-page: 537
  year: 2017
  end-page: 559
  article-title: A review on photocatalysis for air treatment: from catalyst development to reactor design
  publication-title: Chem Eng J
– volume: 2
  start-page: 30
  year: 1969
  end-page: 36
  article-title: The crystal structure of arsenic at 4.2, 78 and 299°K
  publication-title: J Appl Cryst
– volume: 11
  start-page: 2103
  year: 2019
  end-page: 2111
  article-title: Oxygen vacancies boost δ‐Bi O as a high‐performance electrode for rechargeable aqueous batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 243
  start-page: 313
  year: 2019
  end-page: 321
  article-title: Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO : enhanced photocatalysis and reaction mechanism
  publication-title: Appl Catal B‐Environ
– volume: 135
  start-page: 10411
  year: 2013
  end-page: 10417
  article-title: Vacancy associates promoting solar‐driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 7309
  year: 1995
  end-page: 7323
  article-title: Prominent ferroelastic domain walls in BiVO crystal
  publication-title: J Phys Condens Matter
– volume: 6
  start-page: 6948
  year: 2016
  end-page: 6958
  article-title: Graphene‐based metal‐free catalysts for catalytic reactions in the liquid phase
  publication-title: ACS Catal
– volume: 6
  start-page: 8473
  year: 2014
  end-page: 8488
  article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
  publication-title: Nanoscale
– volume: 4
  start-page: 47136
  year: 2014
  end-page: 47152
  article-title: Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application
  publication-title: RSC Adv
– volume: 259
  year: 2019
  article-title: Photocatalytic mineralization of hydrogen sulfide as a dual‐phase technique for hydrogen production and environmental remediation
  publication-title: Appl Catal B‐Environ
– volume: 357
  start-page: 41
  year: 2018
  end-page: 50
  article-title: Visible‐light‐induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres
  publication-title: J Catal
– volume: 260
  year: 2020
  article-title: Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization
  publication-title: Appl Catal B‐Environ
– volume: 21
  start-page: 547
  year: 2009
  end-page: 551
  article-title: ChemInform abstract: band edge electronic structure of BiVO : elucidating the role of the Bi s and V d orbitals
  publication-title: Chem Mater
– volume: 319
  start-page: 1776
  year: 2008
  end-page: 1779
  article-title: Doped nanocrystals
  publication-title: Science
– volume: 23
  start-page: 286
  year: 2013
  end-page: 293
  article-title: Does noble metal modification improve the photocatalytic activity of BiOCl?
  publication-title: Prog Nat Sci: Mater Int
– volume: 116
  start-page: 281
  year: 1995
  end-page: 285
  article-title: Crystal structure of Bi O with β‐Sb O ‐type structure
  publication-title: J Solid State Chem
– volume: 291
  start-page: 39
  year: 2016
  end-page: 46
  article-title: Facet‐dependent photocatalytic reduction of CO on BiOI nanosheets
  publication-title: Chem Eng J
– volume: 29
  year: 2017
  article-title: Heterojunction photocatalysts
  publication-title: Adv Mater
– volume: 6
  year: 2016
  article-title: Earth‐rich transition metal phosphide for energy conversion and storage
  publication-title: Adv Energy Mater
– volume: 391
  start-page: 194
  year: 2017
  end-page: 201
  article-title: A plate‐on‐plate sandwiched Z‐scheme heterojunction photocatalyst: BiOBr‐Bi MoO with enhanced photocatalytic performance
  publication-title: Appl Surf Sci
– volume: 15
  year: 2019
  article-title: Modulation of Bi MoO ‐based materials for photocatalytic water splitting and environmental application: a critical review
  publication-title: Small
– volume: 4
  start-page: 3498
  year: 2014
  end-page: 3503
  article-title: Solar light driven pure water splitting on quantum sized BiVO without any cocatalyst
  publication-title: ACS Catal
– volume: 321
  start-page: 464
  year: 2017
  end-page: 472
  article-title: Rose‐like I‐doped Bi O CO microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance
  publication-title: J Hazard Mater
– volume: 159
  start-page: 289
  year: 2015
  end-page: 292
  article-title: Visible‐light driven photocatalytic degradation of rhodamine B by Ag/Bi WO heterostructures
  publication-title: Mater Lett
– volume: 5
  start-page: 24995
  year: 2017
  end-page: 25004
  article-title: Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO conversion
  publication-title: J Mater Chem A
– volume: 112
  start-page: 10407
  year: 2008
  end-page: 10411
  article-title: Bi WO nanocrystals with high photocatalytic activities under visible light
  publication-title: J Phys Chem C
– volume: 2
  start-page: 4208
  year: 2014
  end-page: 4216
  article-title: Defect engineering in atomically‐thin bismuth oxychloride towards photocatalytic oxygen evolution
  publication-title: J Mater Chem A
– volume: 106
  start-page: 1
  year: 2011
  end-page: 13
  article-title: Bi WO micro/nano‐structures: synthesis, modifications and visible‐light‐driven photocatalytic applications
  publication-title: Appl Catal B‐Environ
– volume: 68
  start-page: 125
  year: 2006
  end-page: 129
  article-title: Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst
  publication-title: Appl Catal B‐Environ
– volume: 16
  start-page: 1771
  year: 2005
  end-page: 1775
  article-title: Control to synthesize Bi S nanowires by a simple inorganic‐surfactant‐assisted solvothermal process
  publication-title: Nanotechnology
– volume: 120
  start-page: 11889
  year: 2016
  end-page: 11898
  article-title: Bi Cocatalyst/Bi MoO microspheres nanohybrid with SPR‐promoted visible‐light photocatalysis
  publication-title: J Phys Chem C
– volume: 214
  start-page: 23
  year: 2017
  end-page: 33
  article-title: Enhanced photocatalytic inactivation of by a novel Z‐scheme g‐C N /m‐Bi O hybrid photocatalyst under visible light: the role of reactive oxygen species
  publication-title: Appl Catal B‐Environ
– volume: 2
  start-page: 387
  year: 2019
  end-page: 399
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat Catal
– volume: 52
  start-page: 14242
  year: 2016
  end-page: 14245
  article-title: Oxygen vacancy induced Bi WO for the realization of photocatalytic CO reduction over the full solar spectrum: from the UV to the NIR region
  publication-title: Chem Commun
– volume: 1
  start-page: 90
  year: 2014
  end-page: 112
  article-title: Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms
  publication-title: Environ Sci Nano
– volume: 33
  start-page: 3778
  year: 1986
  end-page: 3784
  article-title: Total‐energy calculations of the structural properties of the group‐V element arsenic
  publication-title: Phys Rev B Condens Matter
– volume: 40
  start-page: 215
  year: 2014
  end-page: 219
  article-title: Novel Bi‐based iodate photocatalysts with high photocatalytic activity
  publication-title: Inorg Chem Commun
– volume: 28
  year: 2018
  article-title: A MoSe /WSe heterojunction‐based photodetector at telecommunication wavelengths
  publication-title: Adv Funct Mater
– volume: 199
  start-page: 75
  year: 2016
  end-page: 86
  article-title: In situ assembly of BiOI@Bi O Cl p‐n junction: charge induced unique front‐lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis
  publication-title: Appl Catal B‐Environ
– volume: 2
  start-page: 1677
  year: 2012
  end-page: 1683
  article-title: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z‐scheme bridge
  publication-title: ACS Catal
– volume: 17
  start-page: 10383
  year: 2015
  end-page: 10390
  article-title: Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst‐enhanced (BiO) CO hierarchical microspheres
  publication-title: Phys Chem Chem Phys
– volume: 21
  start-page: 1286
  year: 2009
  end-page: 1290
  article-title: Synthesis of porous Bi WO thin films as efficient visible‐light‐active photocatalysts
  publication-title: Adv Mater
– volume: 12
  start-page: 15468
  year: 2010
  end-page: 15475
  article-title: Synergistic effect of crystal and electronic structures on the visible‐light‐driven photocatalytic performances of Bi O polymorphs
  publication-title: Phys Chem Chem Phys
– volume: 1
  start-page: 2655
  year: 2010
  end-page: 2661
  article-title: Photocatalytic water splitting: recent progress and future challenges
  publication-title: J PhysChemLett
– volume: 112
  start-page: 12018
  year: 2008
  end-page: 12023
  article-title: Magnetotransport properties of electrodeposited bismuth films
  publication-title: J Phys Chem C
– volume: 3
  start-page: 464
  year: 2018
  end-page: 504
  article-title: Review on nanoscale bi‐based photocatalyst
  publication-title: Nanoscale Horiz
– volume: 20
  start-page: 831
  year: 2010
  end-page: 843
  article-title: Titania‐based photocatalysts—crystal growth, doping and heterostructuring
  publication-title: J Mater Chem
– volume: 139
  start-page: 3513
  year: 2017
  end-page: 3521
  article-title: New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 1493
  year: 2006
  end-page: 1499
  article-title: Unusual high‐temperature structural behavior in ferroelectric Bi WO
  publication-title: Chemistry
– volume: 116
  start-page: 20530
  year: 2012
  end-page: 20539
  article-title: Exploring the optical potential of nano‐bismuth: tunable surface plasmon resonances in the near ultraviolet‐to‐near infrared range
  publication-title: J Phys Chem C
– volume: 238
  start-page: 119
  year: 2018
  end-page: 125
  article-title: Bismuth vacancy mediated single unit cell Bi WO nanosheets for boosting photocatalytic oxygen evolution
  publication-title: Appl Catal B‐Environ
– volume: 308
  start-page: 105
  year: 2006
  end-page: 110
  article-title: Sonochemical synthesis of nanocrystallite Bi O as a visible‐light‐driven photocatalyst
  publication-title: Appl Catal Gen
– volume: 212
  start-page: 1490
  year: 2019
  end-page: 1498
  article-title: Industrial environmental efficiency, foreign direct investment and export——evidence from 30 provinces in China
  publication-title: J Clean Prod
– volume: 5
  start-page: 5133
  year: 2012
  end-page: 5130
  article-title: Plasmonic solar water splitting
  publication-title: Energ Environ Sci
– volume: 35
  start-page: 989
  year: 2014
  end-page: 1007
  article-title: Recent advances in visible light Bi‐based photocatalysts
  publication-title: Chin J Catal
– volume: 110
  start-page: 9188
  year: 2006
  end-page: 9194
  article-title: Water molecule adsorption properties on the BiVO (100) surface
  publication-title: J Phys Chem B
– volume: 284
  start-page: 1335
  year: 1999
  end-page: 1337
  article-title: Large magnetoresistance of electrodeposited single‐crystal bismuth thin films
  publication-title: Science
– volume: 407
  start-page: 3364
  year: 2012
  end-page: 3370
  article-title: First‐principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals
  publication-title: Phys B: Condensed Matter
– volume: 668
  start-page: 966
  year: 2019
  end-page: 978
  article-title: Recent advances on photocatalytic fuel cell for environmental applications—the marriage of photocatalysis and fuel cells
  publication-title: Sci Total Environ
– volume: 370
  start-page: 1366
  year: 2019
  end-page: 1375
  article-title: Reactant activation and photocatalysis mechanisms on Bi‐metal@Bi GeO with oxygen vacancies: a combined experimental and theoretical investigation
  publication-title: Chem Eng J
– volume: 5
  start-page: 6732
  year: 2012
  end-page: 6743
  article-title: Towards highly efficient photocatalysts using semiconductor nanoarchitectures
  publication-title: Energy Environ Sci
– volume: 4
  start-page: 4341
  year: 2014
  end-page: 4350
  article-title: Noble metal‐like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO) CO microspheres for efficient visible light photocatalysis
  publication-title: ACS Catal
– volume: 6
  start-page: 7485
  year: 2016
  end-page: 7527
  article-title: Recent advances in heterogeneous photocatalytic CO conversion to solar fuels
  publication-title: ACS Catal
– volume: 10
  start-page: 4306
  year: 2017
  end-page: 4323
  article-title: Metal phosphides as co‐catalysts for photocatalytic and photoelectrocatalytic water splitting
  publication-title: ChemSusChem
– volume: 291
  start-page: 64
  year: 2016
  end-page: 73
  article-title: Study of application of titania catalysts on solar photocatalysis: influence of type of pollutants and water matrices
  publication-title: Chem Eng J
– volume: 42
  start-page: 2294
  year: 2013
  end-page: 2320
  article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
  publication-title: Chem Soc Rev
– volume: 380
  year: 2019
  article-title: Novel method of square wave voltammetry for deposition of Bi S thin film: photocatalytic reduction of hexavalent Cr in single and binary mixtures
  publication-title: J Hazard Mater
– volume: 6
  year: 2016
  article-title: Vacancy engineering for tuning electron and phonon structures of two‐dimensional materials
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 15
  year: 2015
  end-page: 37
  article-title: Graphitic carbon nitride based nanocomposites: a review
  publication-title: Nanoscale
– volume: 113
  start-page: 16009
  year: 2009
  end-page: 16014
  article-title: Syntheses, growth mechanism, and optical properties of [001] growing Bi S nanorods
  publication-title: J Phys Chem C
– volume: 173
  start-page: 45
  year: 1971
  end-page: 47
  article-title: Nitric oxide air pollution: detection by optoacoustic spectroscopy
  publication-title: Science
– volume: 99
  start-page: 74
  year: 2004
  end-page: 89
  article-title: Bi O as a selective sensing material for NO detection
  publication-title: Sens Actuators B: Chem
– volume: 78
  start-page: 1
  year: 2019
  end-page: 20
  article-title: Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review
  publication-title: J Ind Eng Chem
– volume: 7
  start-page: 4832
  year: 2016
  end-page: 4841
  article-title: Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity
  publication-title: Chem Sci
– volume: 293
  start-page: 269
  year: 2001
  end-page: 271
  article-title: Visible‐light photocatalysis in nitrogen‐doped titanium oxides
  publication-title: Science
– volume: 59
  start-page: 6590
  year: 2020
  end-page: 6595
  article-title: Intrinsic facet‐dependent reactivity of well‐defined BiOBr nanosheets on photocatalytic water splitting
  publication-title: Angew Chem Int Ed
– volume: 35
  start-page: 197
  year: 2011
  article-title: Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α‐Bi O nanoparticles in aqueous solutions
  publication-title: New J Chem
– volume: 225
  start-page: 218
  year: 2018
  end-page: 227
  article-title: Highly enhanced visible light photocatalysis and in situ FT‐IR studies on Bi metal@defective BiOCl hierarchical microspheres
  publication-title: Appl Catal B‐Environ
– volume: 3
  start-page: 1557
  year: 2018
  end-page: 1561
  article-title: Reduction of CO to chemicals and fuels: a solution to global warming and energy crisis
  publication-title: ACS Energy Lett
– volume: 24
  start-page: 2421
  year: 2014
  end-page: 2440
  article-title: Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity
  publication-title: Adv Funct Mater
– volume: 118
  start-page: 14662
  year: 2014
  end-page: 14669
  article-title: Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed (102) facets
  publication-title: J Phys Chem C
– volume: 3
  start-page: 1618
  year: 2007
  end-page: 1625
  article-title: Bi WO nano‐ and microstructures: shape control and associated visible‐light‐driven photocatalytic activities
  publication-title: Small
– volume: 117‐118
  start-page: 59
  year: 2012
  end-page: 66
  article-title: Hydrothermal synthesis of BiVO : structural and morphological influence on the photocatalytic activity
  publication-title: Appl Catal B‐Environ
– volume: 7
  start-page: 8006
  year: 2017
  end-page: 8022
  article-title: Photocatalytic water splitting: quantitative approaches toward photocatalyst by design
  publication-title: ACS Catal
– volume: 187
  start-page: 281
  year: 2016
  end-page: 290
  article-title: Thickness‐ultrathin and bismuth‐rich strategies for BiOBr to enhance photoreduction of CO into solar fuels
  publication-title: Appl Catal B‐Environ
– volume: 344
  start-page: 401
  year: 2016
  end-page: 410
  article-title: Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets
  publication-title: J Catal
– volume: 55
  start-page: 4697
  year: 2016
  end-page: 4700
  article-title: Visible‐light‐induced photoredox catalysis of dye‐sensitized titanium dioxide: selective aerobic oxidation of organic sulfides
  publication-title: Angew Chem Int Ed
– volume: 51
  year: 2012
  article-title: Local structure analysis of Bi WO
  publication-title: Jpn J Appl Phys
– volume: 109
  start-page: 22432
  year: 2005
  end-page: 22439
  article-title: Visible‐light‐induced degradation of rhodamine B by nanosized Bi WO
  publication-title: J Phys Chem B
– volume: 12
  start-page: 3671
  year: 2019
  end-page: 3701
  article-title: Bismuth‐based photocatalysts for solar photocatalytic carbon dioxide conversion
  publication-title: ChemSusChem
– volume: 23
  start-page: 1832
  year: 2013
  end-page: 1838
  article-title: Highly ordered mesoporous crystalline MoSe material with efficient visible‐light‐driven photocatalytic activity and enhanced lithium storage performance
  publication-title: Adv Funct Mater
– volume: 526
  start-page: 628
  year: 2015
  end-page: 630
  article-title: How to make the most of carbon dioxide
  publication-title: Nature
– volume: 5
  start-page: 8326
  year: 2013
  end-page: 8339
  article-title: Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review
  publication-title: Nanoscale
– volume: 9
  start-page: 3262
  year: 2018
  article-title: 21st‐century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
  publication-title: Nat Commun
– volume: 16
  start-page: 69
  year: 1975
  end-page: 70
  article-title: Ferroelasticity in BiVO
  publication-title: Solid State Commun
– volume: 31
  year: 2019
  article-title: Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration
  publication-title: Adv Mater
– volume: 126
  start-page: 4782
  year: 2004
  end-page: 4783
  article-title: Efficient degradation of toxic organic pollutants with Ni O /TiO B under visible irradiation
  publication-title: J Am Chem Soc
– volume: 134
  start-page: 52
  year: 2019
  end-page: 57
  article-title: Electronic structures and thermoelectric properties of polytype phases of bismuth
  publication-title: J Phys Chem Solid
– volume: 107
  start-page: 2891
  year: 2007
  end-page: 2959
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications
  publication-title: Chem Rev
– volume: 368
  start-page: 105
  year: 2010
  end-page: 111
  article-title: Organic molecule directed synthesis of bismuth nanostructures with varied shapes in aqueous solution and their optical characterization
  publication-title: Colloid Surf A
– volume: 107
  start-page: 80
  year: 2007
  end-page: 96
  article-title: Structures and oxide mobility in Bi−Ln−O materials: heritage of Bi O
  publication-title: Chem Rev
– volume: 7
  start-page: 27925
  year: 2015
  end-page: 27933
  article-title: Synchronously achieving plasmonic bi metal deposition and I– doping by utilizing BiOIO as the self‐sacrificing template for high‐performance multifunctional applications
  publication-title: ACS Appl Mater Interfaces
– volume: 88
  start-page: 68
  year: 2017
  end-page: 72
  article-title: Surfactant (CTAB) assisted flower‐like Bi WO through hydrothermal method: unintentional bromide ion doping and photocatalytic activity
  publication-title: Catal Commun
– volume: 137
  start-page: 6393
  year: 2015
  end-page: 6399
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets
  publication-title: J Am Chem Soc
– volume: 47
  start-page: 6951
  year: 2011
  end-page: 6953
  article-title: The {001} facets‐dependent high photoactivity of BiOCl nanosheets
  publication-title: Chem Commun
– volume: 24
  start-page: 14928
  year: 2018
  end-page: 14932
  article-title: Facet effects of Ag PO on charge‐carrier dynamics: trade‐off between photocatalytic activity and charge‐carrier lifetime
  publication-title: Chem‐Eur J
– volume: 51
  start-page: 8229
  year: 2017
  end-page: 8244
  article-title: Environmental applications of 2D molybdenum disulfide (MoS ) nanosheets
  publication-title: Environ Sci Technol
– volume: 73
  year: 2006
  article-title: Electronic structure of the delta phases of Bi O : a combined ab initio and x‐ray spectroscopy study
  publication-title: Phys Rev B
– volume: 1
  year: 2017
  article-title: A review of direct Z‐scheme photocatalysts
  publication-title: Small Methods
– volume: 95
  start-page: 69
  year: 1995
  end-page: 96
  article-title: Environmental applications of semiconductor photocatalysis
  publication-title: Chem Rev
– volume: 6
  start-page: 3100
  year: 2018
  end-page: 3107
  article-title: Strong hybridization between Bi‐6s and O‐2p orbitals in Sillén–Aurivillius perovskite Bi MO X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation
  publication-title: J Mater Chem A
– volume: 15
  start-page: 865
  year: 1962
  end-page: 872
  article-title: The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi
  publication-title: Acta Crystallogr
– volume: 95
  start-page: 49
  year: 1995
  end-page: 68
  article-title: Light‐induced redox reactions in nanocrystalline systems
  publication-title: Chem Rev
– volume: 30
  start-page: 129
  year: 1995
  end-page: 134
  article-title: Preparation of bismuth oxides with mixed valence from hydrated sodium bismuth oxide
  publication-title: Mater Res Bull
– volume: 24
  start-page: 79
  year: 2013
  end-page: 85
  article-title: Novel synthesis and characterization of bismuth nano/microcrystals with sodium hypophosphite as reductant
  publication-title: Adv Powder Technol
– volume: 33
  start-page: 1
  year: 2017
  end-page: 22
  article-title: Recent progress on visible light responsive heterojunctions for photocatalytic applications
  publication-title: J Mater Sci Technol
– volume: 349
  start-page: 84
  year: 2017
  end-page: 101
  article-title: Bismuth‐rich bismuth oxyhalides for environmental and energy photocatalysis
  publication-title: Coord Chem Rev
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  article-title: Ab initio calculations of bismuth properties, including spin–orbit coupling
  publication-title: Phys Scr
– volume: 212
  start-page: 8
  year: 2010
  end-page: 13
  article-title: The hydrothermal synthesis of BiOBr flakes for visible‐light‐responsive photocatalytic degradation of methyl orange
  publication-title: J Photochem Photobiol A
– volume: 118
  start-page: 1155
  year: 2014
  end-page: 1160
  article-title: Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method
  publication-title: J Phys Chem C
– volume: 44
  start-page: 22102
  year: 2018
  end-page: 22107
  article-title: In situ synthesis of Bi O /Bi MoO heterostructured microspheres for efficiently removal of acid orange 7
  publication-title: Ceram Int
– volume: 54
  start-page: 3740
  year: 2020
  end-page: 3751
  article-title: A review of microplastics in table salt, drinking water, and air: direct human exposure
  publication-title: Environ Sci Technol
– volume: 6
  start-page: 562
  year: 2013
  end-page: 577
  article-title: Photocatalytic CO reduction using non‐titanium metal oxides and sulfides
  publication-title: ChemSusChem
– volume: 196
  start-page: 89
  year: 2016
  end-page: 99
  article-title: Facile synthesis of Bi/Bi WO nanocomposite with enhanced photocatalytic activity under visible light
  publication-title: Appl Catal B‐Environ
– volume: 6
  year: 2016
  article-title: Coexistence of multiple metastable polytypes in rhombohedral bismuth
  publication-title: Sci Rep
– volume: 10
  start-page: 3040
  year: 2018
  end-page: 3048
  article-title: Iron‐doped bismuth tungstate with an excellent photocatalytic performance
  publication-title: ChemCatChem
– volume: 139
  start-page: 3438
  year: 2017
  end-page: 3445
  article-title: Highly efficient and exceptionally durable CO photoreduction to methanol over freestanding defective single‐unit‐cell bismuth vanadate layers
  publication-title: J Am Chem Soc
– volume: 391
  start-page: 525
  year: 2017
  end-page: 534
  article-title: The highly enhanced visible light photocatalytic degradation of gaseous o‐dichlorobenzene through fabricating like‐flowers BiPO /BiOBr p‐n heterojunction composites
  publication-title: Appl Surf Sci
– volume: 13
  start-page: 4746
  year: 2011
  end-page: 4753
  article-title: Electronic structure and optical properties of monoclinic clinobisvanite BiVO
  publication-title: Phys Chem Chem Phys
– volume: 9
  start-page: 345
  year: 2019
  end-page: 364
  article-title: Photocatalysis with reduced TiO : from black TiO to cocatalyst‐free hydrogen production
  publication-title: ACS Catal
– volume: 4
  start-page: 56682
  year: 2014
  end-page: 56689
  article-title: Synthesis of hierarchical Bi O /Bi Ti O p‐n junction nanoribbons on carbon fibers from (001) facet dominated TiO nanosheets
  publication-title: RSC Adv
– volume: 11
  start-page: 1044
  year: 2012
  end-page: 1050
  article-title: Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures
  publication-title: Nat Mater
– volume: 75
  start-page: 553
  year: 1976
  end-page: 558
  article-title: Dynamical conductivity and plasmon excitation in Bi
  publication-title: Phys Status Solidi B
– volume: 121
  start-page: 6
  year: 2010
  end-page: 9
  article-title: Self‐assembly and enhanced optical absorption of Bi WO nests via ionic liquid‐assisted hydrothermal method
  publication-title: Mater Chem Phys
– volume: 241
  start-page: 187
  year: 2019
  end-page: 195
  article-title: Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi O SiO
  publication-title: Appl Catal B‐Environ
– volume: 198
  start-page: 347
  year: 2016
  end-page: 377
  article-title: Graphitic carbon nitride (g‐C N ) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation
  publication-title: Appl Catal B‐Environ
– volume: 44
  start-page: 6843
  year: 2010
  end-page: 6848
  article-title: Degradation and mineralization of bisphenol A by mesoporous Bi WO under simulated solar light irradiation
  publication-title: Environ Sci Technol
– volume: 15
  start-page: 534
  year: 2015
  end-page: 537
  article-title: Highly efficient Bi O CO single‐crystal lamellas with dominantly exposed {001} facets
  publication-title: Cryst Growth Des
– volume: 2
  start-page: 560
  year: 2012
  end-page: 562
  article-title: Measuring the carbon emissions of megacities
  publication-title: Nat Clim Change
– volume: 177
  start-page: 1013
  year: 2010
  end-page: 1018
  article-title: Low‐temperature combustion synthesis of Bi WO nanoparticles as a visible‐light‐driven photocatalyst
  publication-title: J Hazard Mater
– volume: 315
  start-page: 633
  year: 2007
  end-page: 636
  article-title: Ultrafast bond softening in bismuth: mapping a solid' s interatomic potential with X‐rays
  publication-title: Science
– volume: 224
  start-page: 101
  year: 2018
  end-page: 108
  article-title: Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies
  publication-title: Appl Catal B‐Environ
– volume: 5
  start-page: 1926
  year: 2012
  end-page: 1934
  article-title: Photocatalytic and photoelectrochemical water oxidation over metal‐doped monoclinic BiVO photoanodes
  publication-title: ChemSusChem
– volume: 14
  start-page: 1571
  year: 1979
  end-page: 1581
  article-title: Crystal growth and structure of BiVO
  publication-title: Mater Res Bull
– volume: 209
  start-page: 273
  year: 2012
  end-page: 279
  article-title: An easy synthesis of 1D bismuth nanostructures in acidic solution and their photocatalytic degradation of rhodamine B
  publication-title: Chem Eng J
– volume: 66
  start-page: 100
  year: 2006
  end-page: 110
  article-title: Photocatalytic properties of nanosized Bi WO catalysts synthesized via a hydrothermal process
  publication-title: Appl Catal B‐Environ
– volume: 51
  start-page: 3147
  year: 2012
  end-page: 3151
  article-title: Phosphate doping into monoclinic BiVO for enhanced Photoelectrochemical water oxidation activity
  publication-title: Angew Chem Int Ed
– volume: 117
  start-page: 7313
  year: 2002
  end-page: 7318
  article-title: Electronic structures of promising photocatalysts InMO (M=V, Nb, ta) and BiVO for water decomposition in the visible wavelength region
  publication-title: J Chem Phys
– volume: 1
  start-page: 1278
  year: 2016
  end-page: 1286
  article-title: High energy ball‐milling synthesis of nanostructured ag‐doped and BiVO ‐based photocatalysts
  publication-title: ChemistrySelect
– volume: 6
  start-page: 2009
  year: 2014
  end-page: 2026
  article-title: Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications
  publication-title: Nanoscale
– volume: 3
  start-page: 464
  year: 2018
  end-page: 504
  article-title: Review on nanoscale Bi‐based photocatalysts
  publication-title: Nanoscale Horiz
– volume: 1
  start-page: 6657
  year: 2018
  end-page: 6693
  article-title: Photocatalysis: from fundamental principles to materials and applications
  publication-title: ACS Appl Energy Mater
– volume: 138
  start-page: 8928
  year: 2016
  end-page: 8935
  article-title: Oxide defect engineering enables to couple solar energy into oxygen activation
  publication-title: J Am Chem Soc
– volume: 13
  year: 2018
  article-title: Household air pollution, health, and climate change: cleaning the air
  publication-title: Environ Res Lett
– volume: 192
  start-page: 35
  year: 2016
  end-page: 45
  article-title: Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of
  publication-title: Appl Catal B‐Environ
– volume: 17
  start-page: 2526
  year: 2007
  end-page: 2532
  article-title: Fabrication of flower‐like Bi WO superstructures as high performance visible‐light driven photocatalysts
  publication-title: J Mater Chem
– volume: 132‐133
  start-page: 315
  year: 2013
  end-page: 320
  article-title: Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst
  publication-title: Appl Catal B‐Environ
– volume: 28
  year: 2018
  article-title: Surface defect engineering in 2D nanomaterials for Photocatalysis
  publication-title: Adv Funct Mater
– volume: 189‐190
  start-page: 473
  year: 2012
  end-page: 481
  article-title: Photocatalytic degradation of methylene blue on CaBi O /Bi O composites under visible light
  publication-title: Chem Eng J
– volume: 3
  start-page: 379
  year: 2010
  end-page: 386
  article-title: Bi S nanostructures: a new photocatalyst
  publication-title: Nano Res
– volume: 6
  year: 2015
  article-title: Realization of a vertical topological p–n junction in epitaxial Sb Te /Bi Te heterostructures
  publication-title: Nat Commun
– volume: 15
  year: 2019
  article-title: Synthesis of inorganic–organic 2D CdSe slab‐diamine quantum nets
  publication-title: Small
– volume: 264
  year: 2020
  article-title: Bi metal prevents the deactivation of oxygen vacancies in Bi O CO for stable and efficient photocatalytic NO abatement
  publication-title: Appl Catal B‐Environ
– volume: 7
  start-page: 14051
  year: 2019
  end-page: 14063
  article-title: Fabrication of 3D sponge@AgBr‐AgCl/ag and tubular photoreactor for continuous wastewater purification under sunlight irradiation
  publication-title: ACS Sustain Chem Eng
– volume: 3
  start-page: 2733
  year: 2020
  end-page: 2744
  article-title: Flower‐like BiOI microspheres decorated with plasmonic gold nanoparticles for dual detoxification of organic and inorganic water pollutants
  publication-title: ACS Appl Nano Mater
– volume: 134
  start-page: 1974
  year: 2012
  end-page: 1977
  article-title: Surface‐alkalinization‐induced enhancement of photocatalytic H evolution over SrTiO ‐based photocatalysts
  publication-title: J Am Chem Soc
– volume: 432
  start-page: 220
  year: 2017
  end-page: 231
  article-title: Visible‐light‐induced Fe‐doped BiVO photocatalyst for contaminated water treatment
  publication-title: Mol Catal
– volume: 36
  start-page: 1629
  year: 2001
  end-page: 1637
  article-title: Optical properties of bismuth trioxide thin films
  publication-title: Mater Res Bull
– volume: 257
  start-page: 172
  year: 2010
  end-page: 175
  article-title: Preparation, electronic structure, and photocatalytic properties of Bi O CO nanosheet
  publication-title: Appl Surf Sci
– volume: 2
  start-page: 11065
  year: 2014
  end-page: 11072
  article-title: From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air
  publication-title: J Mater Chem A
– volume: 317
  start-page: 34
  year: 2010
  end-page: 40
  article-title: Synthetic Bi O CO nanostructures: novel photocatalyst with controlled special surface exposed
  publication-title: J Mol Catal A: Chem
– volume: 119
  start-page: 11020
  year: 2019
  end-page: 11041
  article-title: Single molecule photocatalysis on TiO surfaces
  publication-title: Chem Rev
– volume: 50
  start-page: 10386
  year: 2014
  end-page: 10389
  article-title: A semimetal bismuth element as a direct plasmonic photocatalyst
  publication-title: Chem Commun
– volume: 201
  start-page: 77
  year: 2017
  end-page: 83
  article-title: BiVO nanowires decorated with CdS nanoparticles as Z‐scheme photocatalyst with enhanced H generation
  publication-title: Appl Catal B‐Environ
– volume: 81
  start-page: 191
  year: 2006
  end-page: 245
  article-title: The surfaces of bismuth: structural and electronic properties
  publication-title: Prog Surf Sci
– volume: 8
  start-page: 1986
  year: 2015
  end-page: 1993
  article-title: Facet‐dependent solar ammonia synthesis of BiOCl nanosheets via a proton‐assisted electron transfer pathway
  publication-title: Nanoscale
– volume: 251
  start-page: 220
  year: 2019
  end-page: 228
  article-title: Targeting inside charge carriers transfer of photocatalyst: selective deposition of Ag O on BiVO with enhanced UV–vis‐NIR photocatalytic oxidation activity
  publication-title: Appl Catal B‐Environ
– volume: 288
  start-page: 264
  year: 2016
  end-page: 275
  article-title: Chemical etching preparation of the Bi WO /BiOI p–n heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation
  publication-title: Chem Eng J
– volume: 82
  start-page: 3328
  year: 1999
  end-page: 3331
  article-title: Large magnetoresistance and finite‐size effects in electrodeposited single‐crystal bi thin films
  publication-title: Phys Rev Lett
– volume: 507
  year: 2020
  article-title: Synthesis of Bi O Cl nanosheets with oxygen vacancies: the effect of defect states on photocatalytic performance
  publication-title: Appl Surf Sci
– volume: 53
  start-page: 10371
  year: 2019
  end-page: 10378
  article-title: UV‐improved removal of chloride ions from strongly acidic wastewater using Bi O : efficiency enhancement and mechanisms
  publication-title: Environ Sci Technol
– volume: 41
  start-page: 11827
  year: 1990
  end-page: 11836
  article-title: First‐principles study of As, Sb, and Bi electronic properties
  publication-title: Phys Rev B Condens Matter
– volume: 51
  start-page: 5685
  year: 2017
  end-page: 5694
  article-title: Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ Sci Technol
– volume: 315
  start-page: 223
  year: 2018
  end-page: 229
  article-title: Promising application of SiC without co‐catalyst in photocatalysis and ozone integrated process for aqueous organics degradation
  publication-title: Catal Today
– volume: 21
  start-page: 12428
  year: 2011
  end-page: 12436
  article-title: Template‐free fabrication and growth mechanism of uniform (BiO) CO hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation
  publication-title: J Mater Chem
– volume: 365
  start-page: 314
  year: 2016
  end-page: 335
  article-title: Fabrication, modification and application of (BiO) CO ‐based photocatalysts: a review
  publication-title: Appl Surf Sci
– volume: 11
  start-page: 2366
  year: 2019
  end-page: 2373
  article-title: Facet‐dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns
  publication-title: Nanoscale
– volume: 15
  start-page: 936
  year: 2010
  end-page: 940
  article-title: Large‐scale synthesis of ultralong Bi S nanoribbons via a solvothermal process
  publication-title: Adv Mater
– volume: 40
  start-page: 620
  year: 2019
  end-page: 630
  article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi O CO nanosheets
  publication-title: Chin J Catal
– volume: 123
  start-page: 13664
  year: 2019
  end-page: 13671
  article-title: Shape‐tunable SrTiO crystals revealing facet‐dependent optical and photocatalytic properties
  publication-title: J Phys Chem C
– volume: 30
  start-page: 166
  year: 2011
  end-page: 172
  article-title: DFT calculations on structural and electronic properties of Bi MO (M = Cr, Mo, W)
  publication-title: Rare Metals
– volume: 150
  start-page: 347
  year: 2002
  end-page: 353
  article-title: A higher conductivity Bi O ‐based electrolyte
  publication-title: Solid State Ion
– volume: 8
  start-page: 2802
  year: 2012
  end-page: 2806
  article-title: Facet‐dependent photocatalytic properties of AgBr nanocrystals
  publication-title: Small
– volume: 15
  start-page: 5415
  year: 2013
  end-page: 5423
  article-title: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi
  publication-title: Phys Chem Chem Phys
– volume: 226
  start-page: 53
  year: 2018
  end-page: 60
  article-title: Molecular adsorption promotes carrier migration: key step for molecular oxygen activation of defective Bi O I
  publication-title: Appl Catal B‐Environ
– volume: 394
  start-page: 364
  year: 2017
  end-page: 370
  article-title: Facile synthesis of Bi S nanoribbons for photocatalytic reduction of CO into CH OH
  publication-title: Appl Surf Sci
– volume: 52
  start-page: 1035
  year: 2013
  end-page: 1039
  article-title: Chlorine‐radical‐mediated photocatalytic activation of C‐H bonds with visible light
  publication-title: Angew Chem Int Ed
– volume: 321
  start-page: 424
  year: 2017
  end-page: 431
  article-title: The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol
  publication-title: J Hazard Mater
– volume: 48
  start-page: 2109
  year: 2019
  end-page: 2125
  article-title: Recent developments in heterogeneous photocatalysts for solar‐driven overall water splitting
  publication-title: Chem Soc Rev
– volume: 52
  start-page: 2555
  year: 2003
  end-page: 2562
  article-title: Catalytic reduction of molecular nitrogen in solutions
  publication-title: Russ Chem Bull
– volume: 176‐177
  start-page: 444
  year: 2015
  end-page: 453
  article-title: Monoclinic dibismuth tetraoxide: a new visible‐light‐driven photocatalyst for environmental remediation
  publication-title: Appl Catal B‐Environ
– volume: 21
  start-page: 18089
  year: 2015
  end-page: 18094
  article-title: Solar‐light‐driven pure water splitting with ultrathin BiOCl nanosheets
  publication-title: Chem Eur J
– volume: 5
  start-page: 4094
  year: 2015
  end-page: 4103
  article-title: Anionic group self‐doping as a promising strategy: band‐gap engineering and multi‐functional applications of high‐performance CO ‐doped Bi O CO
  publication-title: ACS Catal
– volume: 9
  start-page: 11302
  year: 2015
  end-page: 11309
  article-title: Photocatalytic stability of single‐ and few‐layer MoS
  publication-title: ACS Nano
– volume: 43
  start-page: 16180
  year: 2018
  end-page: 16186
  article-title: Computationally predicted fundamental behaviors of embedded hydrogen at TiC/W interfaces
  publication-title: Int J Hydrogen Energy
– volume: 357
  start-page: 41
  year: 2018
  ident: e_1_2_8_193_1
  article-title: Visible‐light‐induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.10.004
– ident: e_1_2_8_194_1
  doi: 10.1016/j.apcatb.2019.118545
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.201202144
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cattod.2018.01.013
– ident: e_1_2_8_158_1
  doi: 10.1038/ncomms9816
– ident: e_1_2_8_174_1
  doi: 10.1002/adfm.201801983
– ident: e_1_2_8_210_1
  doi: 10.1016/j.cej.2015.11.103
– ident: e_1_2_8_3_1
  doi: 10.1016/j.scitotenv.2019.03.071
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.200600654
– ident: e_1_2_8_102_1
  doi: 10.1039/C4RA06419D
– ident: e_1_2_8_185_1
  doi: 10.1021/cr00033a004
– ident: e_1_2_8_86_1
  doi: 10.1088/0957-4484/16/9/060
– volume: 2
  start-page: 11065
  year: 2014
  ident: e_1_2_8_64_1
  article-title: From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA01339E
– ident: e_1_2_8_95_1
  doi: 10.1039/c2cp23186g
– ident: e_1_2_8_70_1
  doi: 10.1021/cr050977s
– ident: e_1_2_8_219_1
  doi: 10.1016/j.cej.2016.01.032
– ident: e_1_2_8_212_1
  doi: 10.1038/526628a
– ident: e_1_2_8_32_1
  doi: 10.1007/s10562-012-0929-7
– ident: e_1_2_8_163_1
  doi: 10.1016/j.apsusc.2016.06.003
– ident: e_1_2_8_35_1
  doi: 10.1016/j.apcatb.2018.10.055
– ident: e_1_2_8_46_1
  doi: 10.1016/j.apcatb.2017.06.022
– ident: e_1_2_8_69_1
  doi: 10.1016/0167-2738(96)00348-7
– ident: e_1_2_8_188_1
  doi: 10.1039/C1EE02875H
– ident: e_1_2_8_167_1
  doi: 10.1016/j.apcatb.2016.06.032
– ident: e_1_2_8_154_1
  doi: 10.1039/C4CS00126E
– ident: e_1_2_8_34_1
  doi: 10.1002/chem.201803505
– ident: e_1_2_8_123_1
  doi: 10.1016/j.colsurfa.2010.07.022
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.60.15484
– ident: e_1_2_8_191_1
  doi: 10.1021/acs.jpcc.6b01188
– ident: e_1_2_8_113_1
  doi: 10.1039/c1jm11840d
– ident: e_1_2_8_139_1
  doi: 10.1002/aoc.4230
– ident: e_1_2_8_186_1
  doi: 10.1021/cs400993w
– ident: e_1_2_8_44_1
  doi: 10.1021/acscatal.6b01668
– ident: e_1_2_8_74_1
  doi: 10.1103/PhysRevB.73.235104
– ident: e_1_2_8_68_1
  doi: 10.1039/C3CP43856B
– ident: e_1_2_8_129_1
  doi: 10.1021/es101890w
– ident: e_1_2_8_107_1
  doi: 10.1021/cm802894z
– ident: e_1_2_8_170_1
  doi: 10.1021/ja5044787
– ident: e_1_2_8_43_1
  doi: 10.1039/C4NR03008G
– ident: e_1_2_8_45_1
  doi: 10.1039/C8NH00062J
– ident: e_1_2_8_90_1
  doi: 10.1021/es303968n
– ident: e_1_2_8_115_1
  doi: 10.1039/c0cp01189d
– ident: e_1_2_8_118_1
  doi: 10.1002/smll.200700043
– ident: e_1_2_8_112_1
  doi: 10.1021/cg501527k
– ident: e_1_2_8_57_1
  doi: 10.1107/S0021889869006443
– ident: e_1_2_8_169_1
  doi: 10.1016/j.apsusc.2016.07.070
– ident: e_1_2_8_146_1
  doi: 10.1016/j.jhazmat.2016.09.034
– ident: e_1_2_8_40_1
  doi: 10.1039/C4NR02553A
– ident: e_1_2_8_209_1
  doi: 10.1021/acsami.5b09994
– ident: e_1_2_8_98_1
  doi: 10.1021/ja992541y
– ident: e_1_2_8_87_1
  doi: 10.1039/C6SC00389C
– ident: e_1_2_8_222_1
  doi: 10.1002/chem.201503778
– ident: e_1_2_8_175_1
  doi: 10.1002/aenm.201600436
– volume: 15
  start-page: 936
  year: 2010
  ident: e_1_2_8_85_1
  article-title: Large‐scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process
  publication-title: Adv Mater
  doi: 10.1002/adma.200304693
– ident: e_1_2_8_184_1
  doi: 10.1021/jacs.6b11263
– volume: 6
  start-page: 20337
  year: 2016
  ident: e_1_2_8_55_1
  article-title: Coexistence of multiple metastable polytypes in rhombohedral bismuth
  publication-title: Sci Rep
  doi: 10.1038/srep20337
– ident: e_1_2_8_155_1
  doi: 10.1016/j.jmst.2016.11.017
– ident: e_1_2_8_12_1
  doi: 10.1021/acscatal.7b02662
– volume: 132
  start-page: 315
  year: 2013
  ident: e_1_2_8_91_1
  article-title: Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst
  publication-title: Appl Catal B‐Environ
  doi: 10.1016/j.apcatb.2012.12.003
– ident: e_1_2_8_96_1
  doi: 10.1088/0953-8984/7/37/005
– ident: e_1_2_8_106_1
  doi: 10.1039/c0cp01871f
– ident: e_1_2_8_159_1
  doi: 10.1039/C4RA10587G
– ident: e_1_2_8_114_1
  doi: 10.1016/j.apsusc.2010.06.058
– ident: e_1_2_8_61_1
  doi: 10.1002/pssb.2220750218
– ident: e_1_2_8_80_1
  doi: 10.1016/j.apcatb.2015.04.026
– ident: e_1_2_8_131_1
  doi: 10.1021/jp5035079
– ident: e_1_2_8_178_1
  doi: 10.1016/j.apcatb.2017.12.008
– ident: e_1_2_8_200_1
  doi: 10.1016/j.jclepro.2018.12.156
– ident: e_1_2_8_109_1
  doi: 10.1021/jp052995j
– ident: e_1_2_8_71_1
  doi: 10.1016/j.snb.2003.10.032
– ident: e_1_2_8_217_1
  doi: 10.1002/cssc.201901196
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201600405
– ident: e_1_2_8_2_1
  doi: 10.1021/acsenergylett.8b00878
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.chemrev.9b00226
– ident: e_1_2_8_187_1
  doi: 10.1038/nmat3454
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201804872
– ident: e_1_2_8_218_1
  doi: 10.1016/j.apcatb.2016.01.044
– ident: e_1_2_8_220_1
  doi: 10.1039/C8CS00542G
– ident: e_1_2_8_33_1
  doi: 10.1002/cssc.201701450
– ident: e_1_2_8_111_1
  doi: 10.1016/j.molcata.2009.10.018
– ident: e_1_2_8_176_1
  doi: 10.1016/j.cej.2019.04.003
– volume: 321
  start-page: 424
  year: 2017
  ident: e_1_2_8_36_1
  article-title: The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.08.069
– ident: e_1_2_8_171_1
  doi: 10.1021/acs.jpclett.6b00428
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cej.2016.01.092
– ident: e_1_2_8_92_1
  doi: 10.1002/anie.201207904
– ident: e_1_2_8_103_1
  doi: 10.1016/j.solidstatesciences.2014.01.010
– ident: e_1_2_8_126_1
  doi: 10.1039/b616460a
– ident: e_1_2_8_152_1
  doi: 10.1002/adfm.201303214
– ident: e_1_2_8_93_1
  doi: 10.1016/j.physb.2012.04.039
– ident: e_1_2_8_88_1
  doi: 10.1016/j.apcatb.2006.08.002
– ident: e_1_2_8_134_1
  doi: 10.1126/science.1143802
– ident: e_1_2_8_168_1
  doi: 10.1016/j.apcatb.2016.08.027
– ident: e_1_2_8_148_1
  doi: 10.1016/j.apcatb.2016.03.046
– ident: e_1_2_8_145_1
  doi: 10.1016/j.apcatb.2016.05.022
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.est.9b03296
– ident: e_1_2_8_160_1
  doi: 10.1016/j.apsusc.2017.06.186
– ident: e_1_2_8_197_1
  doi: 10.1039/C8NH00062J
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.201600087
– volume: 35
  start-page: 197
  year: 2011
  ident: e_1_2_8_77_1
  article-title: Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α‐Bi2O3 nanoparticles in aqueous solutions
  publication-title: New J Chem
  doi: 10.1039/C0NJ00410C
– ident: e_1_2_8_192_1
  doi: 10.1016/j.apcatb.2017.11.079
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1135009
– ident: e_1_2_8_136_1
  doi: 10.1126/science.1061051
– ident: e_1_2_8_216_1
  doi: 10.1002/anie.201705628
– ident: e_1_2_8_143_1
  doi: 10.1016/j.pnsc.2013.05.002
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.201901008
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jiec.2019.06.022
– ident: e_1_2_8_164_1
  doi: 10.1016/j.ceramint.2018.08.320
– ident: e_1_2_8_128_1
  doi: 10.1016/j.matchemphys.2010.01.046
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apcatb.2016.05.052
– volume: 2
  start-page: 4208
  year: 2014
  ident: e_1_2_8_172_1
  article-title: Defect engineering in atomically‐thin bismuth oxychloride towards photocatalytic oxygen evolution
  publication-title: J Mater Chem A
– ident: e_1_2_8_156_1
  doi: 10.1039/c2ee03447f
– ident: e_1_2_8_157_1
  doi: 10.1039/c3nr01577g
– ident: e_1_2_8_204_1
  doi: 10.1016/j.cej.2012.02.079
– ident: e_1_2_8_72_1
  doi: 10.1016/S0167-2738(02)00291-6
– ident: e_1_2_8_73_1
  doi: 10.1016/S0025-5408(01)00641-9
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.41.11827
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jhazmat.2019.120879
– ident: e_1_2_8_24_1
  doi: 10.1021/ja210610h
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cej.2016.06.090
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201804388
– ident: e_1_2_8_196_1
  doi: 10.1016/j.ccr.2017.08.010
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apcatb.2006.02.022
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201804426
– ident: e_1_2_8_127_1
  doi: 10.1021/jp802115w
– ident: e_1_2_8_79_1
  doi: 10.1006/jssc.1995.1214
– ident: e_1_2_8_110_1
  doi: 10.1021/jp0555100
– ident: e_1_2_8_208_1
  doi: 10.1021/acsanm.0c00090
– ident: e_1_2_8_94_1
  doi: 10.1039/c2ra20881d
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jpcs.2019.05.042
– ident: e_1_2_8_165_1
  doi: 10.1002/smtd.201700080
– ident: e_1_2_8_119_1
  doi: 10.1021/cr00033a003
– ident: e_1_2_8_59_1
  doi: 10.1088/0031-8949/37/5/022
– ident: e_1_2_8_99_1
  doi: 10.1016/0025-5408(72)90227-9
– ident: e_1_2_8_182_1
  doi: 10.1021/jacs.6b12850
– ident: e_1_2_8_132_1
  doi: 10.1039/C8NR09147A
– ident: e_1_2_8_141_1
  doi: 10.1016/j.mcat.2017.02.004
– ident: e_1_2_8_177_1
  doi: 10.1039/C6CC07750A
– ident: e_1_2_8_67_1
  doi: 10.1021/jp3065882
– ident: e_1_2_8_62_1
  doi: 10.1039/C4CC02724H
– ident: e_1_2_8_206_1
  doi: 10.1016/j.jphotochem.2010.03.004
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevLett.82.3328
– ident: e_1_2_8_10_1
  doi: 10.1016/j.apcatb.2019.118025
– ident: e_1_2_8_13_1
  doi: 10.1021/acsaem.8b01345
– ident: e_1_2_8_198_1
  doi: 10.1126/science.173.3991.45
– ident: e_1_2_8_135_1
  doi: 10.1039/b909930a
– volume: 159
  start-page: 289
  year: 2015
  ident: e_1_2_8_205_1
  article-title: Visible‐light driven photocatalytic degradation of rhodamine B by Ag/Bi2WO6 heterostructures
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.07.029
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.8b19575
– ident: e_1_2_8_21_1
  doi: 10.1016/j.apsusc.2016.10.118
– ident: e_1_2_8_166_1
  doi: 10.1021/cs300213m
– ident: e_1_2_8_181_1
  doi: 10.1021/acs.est.7b00040
– ident: e_1_2_8_19_1
  doi: 10.1002/cssc.201200670
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.jpcc.9b02081
– ident: e_1_2_8_124_1
  doi: 10.1016/j.apcatb.2011.12.037
– ident: e_1_2_8_147_1
  doi: 10.1016/j.catcom.2016.09.030
– volume: 13
  start-page: 030201
  year: 2018
  ident: e_1_2_8_199_1
  article-title: Household air pollution, health, and climate change: cleaning the air
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aaa49d
– ident: e_1_2_8_140_1
  doi: 10.1021/acsanm.8b00281
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.est.7b01466
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jhazmat.2010.01.020
– ident: e_1_2_8_149_1
  doi: 10.1021/acscatal.5b00444
– ident: e_1_2_8_138_1
  doi: 10.1002/cctc.201701965
– ident: e_1_2_8_6_1
  doi: 10.1038/s41929-019-0242-6
– volume: 8
  start-page: 1986
  year: 2015
  ident: e_1_2_8_226_1
  article-title: Facet‐dependent solar ammonia synthesis of BiOCl nanosheets via a proton‐assisted electron transfer pathway
  publication-title: Nanoscale
– ident: e_1_2_8_53_1
  doi: 10.1016/j.progsurf.2006.03.001
– ident: e_1_2_8_108_1
  doi: 10.1007/s12598-011-0262-0
– ident: e_1_2_8_84_1
  doi: 10.1021/jp904448k
– ident: e_1_2_8_117_1
  doi: 10.1039/C2CS35266D
– ident: e_1_2_8_173_1
  doi: 10.1021/jacs.6b04629
– volume: 3
  start-page: 379
  year: 2010
  ident: e_1_2_8_83_1
  article-title: Bi2S3 nanostructures: a new photocatalyst
  publication-title: Nano Res
  doi: 10.1007/s12274-010-1042-0
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.200801354
– ident: e_1_2_8_97_1
  doi: 10.1016/0038-1098(75)90791-7
– ident: e_1_2_8_47_1
  doi: 10.1039/C7TA08619A
– ident: e_1_2_8_137_1
  doi: 10.1021/ja0396753
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.5b04979
– volume: 112
  start-page: 12018
  year: 2008
  ident: e_1_2_8_66_1
  article-title: Magnetotransport properties of electrodeposited bismuth films
  publication-title: J Phys Chem C
  doi: 10.1021/jp802802j
– ident: e_1_2_8_38_1
  doi: 10.1021/acssuschemeng.9b02575
– ident: e_1_2_8_15_1
  doi: 10.1021/acscatal.8b04068
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.201916510
– ident: e_1_2_8_125_1
  doi: 10.1016/j.apcata.2011.05.037
– ident: e_1_2_8_224_1
  doi: 10.1021/cs501076a
– ident: e_1_2_8_180_1
  doi: 10.1021/jacs.5b03105
– ident: e_1_2_8_214_1
  doi: 10.1039/C7TA08766G
– ident: e_1_2_8_161_1
  doi: 10.1016/j.apcatb.2016.06.020
– ident: e_1_2_8_51_1
  doi: 10.1107/S0365110X62002297
– ident: e_1_2_8_116_1
  doi: 10.1021/cr0500535
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.est.9b04535
– ident: e_1_2_8_183_1
  doi: 10.1016/j.apcatb.2018.06.066
– ident: e_1_2_8_120_1
  doi: 10.1016/j.cej.2012.08.021
– ident: e_1_2_8_203_1
  doi: 10.1016/j.apcatb.2019.118130
– ident: e_1_2_8_223_1
  doi: 10.1016/j.apcatb.2017.10.049
– ident: e_1_2_8_211_1
  doi: 10.1038/nclimate1629
– ident: e_1_2_8_144_1
  doi: 10.1021/cs501038q
– ident: e_1_2_8_49_1
  doi: 10.1039/c3nr05529a
– ident: e_1_2_8_133_1
  doi: 10.1039/c1cc11015b
– ident: e_1_2_8_89_1
  doi: 10.1021/ja402956f
– volume: 1
  start-page: 2655
  year: 2010
  ident: e_1_2_8_221_1
  article-title: Photocatalytic water splitting: recent progress and future challenges
  publication-title: J PhysChemLett
– ident: e_1_2_8_151_1
  doi: 10.1002/anie.201108276
– ident: e_1_2_8_37_1
  doi: 10.1002/smll.201200055
– ident: e_1_2_8_150_1
  doi: 10.1002/cssc.201200254
– ident: e_1_2_8_225_1
  doi: 10.1023/B:RUCB.0000019873.81002.60
– volume: 9
  start-page: 3262
  year: 2018
  ident: e_1_2_8_213_1
  article-title: 21st‐century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05738-9
– ident: e_1_2_8_100_1
  doi: 10.7567/JJAP.51.09LE06
– ident: e_1_2_8_121_1
  doi: 10.1021/jp4065505
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevB.33.3778
– ident: e_1_2_8_162_1
  doi: 10.1021/jp409598s
– ident: e_1_2_8_78_1
  doi: 10.1016/0025-5408(94)00123-5
– ident: e_1_2_8_104_1
  doi: 10.1016/j.apsusc.2015.12.231
– ident: e_1_2_8_190_1
  doi: 10.1016/j.jcat.2016.10.005
– ident: e_1_2_8_101_1
  doi: 10.1002/chem.200500904
– ident: e_1_2_8_142_1
  doi: 10.1002/slct.201600090
– ident: e_1_2_8_179_1
  doi: 10.1016/j.apsusc.2019.144806
– ident: e_1_2_8_202_1
  doi: 10.1016/j.apcatb.2018.09.032
– ident: e_1_2_8_122_1
  doi: 10.1016/j.apt.2012.02.004
– ident: e_1_2_8_81_1
  doi: 10.1016/j.apcatb.2017.05.035
– volume: 43
  start-page: 16180
  year: 2018
  ident: e_1_2_8_58_1
  article-title: Computationally predicted fundamental behaviors of embedded hydrogen at TiC/W interfaces
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.179
– ident: e_1_2_8_189_1
  doi: 10.1039/C4CP06045H
– ident: e_1_2_8_153_1
  doi: 10.1002/adma.201601694
– ident: e_1_2_8_65_1
  doi: 10.1126/science.284.5418.1335
– ident: e_1_2_8_195_1
  doi: 10.1016/j.inoche.2013.12.024
– ident: e_1_2_8_105_1
  doi: 10.1063/1.1507101
– volume: 35
  start-page: 989
  year: 2014
  ident: e_1_2_8_82_1
  article-title: Recent advances in visible light Bi‐based photocatalysts
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(14)60075-9
– ident: e_1_2_8_76_1
  doi: 10.1016/j.apcata.2006.04.016
– ident: e_1_2_8_201_1
  doi: 10.1016/S1872-2067(19)63279-1
– ident: e_1_2_8_9_1
  doi: 10.1021/acscatal.6b02089
– ident: e_1_2_8_207_1
  doi: 10.1016/j.apcatb.2019.03.062
– ident: e_1_2_8_215_1
  doi: 10.1039/c3en00098b
SSID ssj0002504241
Score 2.486024
SecondaryResourceType review_article
Snippet Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic technology is...
Abstract Environmental pollution and energy crisis have become major challenges to sustainable development of human society. Solar‐driven photocatalytic...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Bi‐based photocatalysts
energy conversion
environmental remediation
modification strategy
photocatalytic mechanism
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS9xAFB62emkPpWpLt1YZsBdl000m8yMRL1pcRLAKVthbmB9vWsFNxKyH3nruqX9j_5LOm92Nu1AKvYQQXhLIy8z73pv5vkfIhwKkTo0vEqc9JDx4OTEK8kS7LDVaaO3iUszFZ3l2w8_HYtwjRwsuzEwfoiu44ciI8zUOcG3a4ZNoKDQT9jFjKVfPyDpya7F_AeNXXYUFxblYbF0ZwjoW41Te6ZOy4dPtKxEpCvevAtUYaUavyMs5RKTHM59ukB7Um-TFknDgFvl5cvv7xy-MQI7ef2umTazCfG-nLQ0glN5hxh0M3APOZXSJzBaeq2tHITL-6PLq9SG9jlKyKMNBp49YLhnQgCgj74FOABnCt-2kHcQH2EUPlvY1uRmdfvl0lsy7KiQ2V0KFY1kIBAaZksorJ5GLyouSFdYHeCIF09Lr1Bpf5mmZGshKzZw0SmTGhnQkf0PW6qaGt4QKCMmIE2WhgXGwTofJKg3GxkDqueV9sr_4spWdS45j54u7aiaWzCr0QhW90Cd7ne39TGjjr1Yn6KDOAsWx44Xm4Ws1H2sVNxDyMAG4hZVDbgtvwUulbZbL0ui8Tw6ie__xnur08oLFs3f_Y7xNnjPMx-MetPdkLfgNdgJomZrd-G_-AdeH6ys
  priority: 102
  providerName: Wiley-Blackwell
Title Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12047
https://doaj.org/article/4be5485e14104e3c8fcef67ac1369ba3
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA7qaT2I-8JxVQLrRbG1O52ku_e2LiMijAq7grcmjwoKzoxsjwcv4tmTv9FfslXpcWhB9LKXEJoiaVJF6qsk9RVjmyVok9pQJt4ESCRqObEF5InxWWqNMsbHq5jBsT48k0fn6rxT6ovehLX0wO3C7UkLCKoV0HtECbkrg4OgC-OyXFfWRJ5P9HmdYIr2YCLmQt804yMVezAeit1MpFRHpeOBIlH_S2AaPcvBMluaQkL-s_2Vj2wORp_YYoco8DN72L98un8kj-P59cV4Mo6nLrfNpOEIOvkVRdgo4P_S3sU7yWs4rhl5DjHDj3dvq3_w35E6lmg3-OSGjkd2OCLImOfAh0AZwZfNsNmJA7jnmivNF3Z20P_z6zCZVlFIXF6oAtuqVAQEskIXofCack9lWYnSBYQjWgmjg0mdDVWeVqmFrDLCa1uozDoMP_KvbGE0HsEK4wow-PCqKg0ICc4b3JxSFLYW0iCd7LGt55Wt3ZRinCpdXNUtObKoSQt11EKPfZ_JXrfEGq9K7ZOCZhJEhh0_oInUUxOp3zORHtuO6n1jnrp_MhCxt_o_ZvzGPgiKy-NbtDW2gPqEdQQvE7vB5oU83YjWiu3grv8P-mjzsA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPQCHqg-qLvRhqVxakZI4fiS9lQq0LbtQCZC4RX6MC9LuZkW2h9567onfyC-px5sNi1RV6iWKookjZWzPN-OZbwjZKUDq1PgicdpDwoOWE6MgT7TLUqOF1i4exQyPZf-cf70QF21uDtbCzPkhuoAbroy4X-MCx4D03h1rKNRj9iFjKVcr5CEPwBwnNePfuhALsnOx2Lsy2HWMxqm8Iyhle3ev3zNJkbn_PlKNpubwMXnUYkT6aa7UJ-QBTJ6SjSXmwGfk9_7V7a8bNEGOTi_rWR3DMD-bWUMDCqUjdLmDgLvGzYwuVbOFcfXEUYglf3T5-PojPY1cssjDQWc_MF6ySwOkjIUPdAxYInzVjJvdOIBdNGFpNsn54cHZ537StlVIbK6ECteyEIgMMiWVV05iMSovSlZYH_CJFExLr1NrfJmnZWogKzVz0iiRGRv8kfw5WZ3UE3hBqIDgjThRFhoYB-t02K3SIGwMpJ5b3iPvFn-2si3nOLa-GFVztmRWoRaqqIUeedvJTudMG3-V2kcFdRLIjh0f1Nffq3axVdxAcMQEYA4rh9wW3oKXStssl6XReY-8j-r9x3eqg5Mhi3db_yP8hqz1z4aDavDl-GibrDN0zmNC2kuyGnQIrwKCmZnXcZ7-AaEc7qA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiE4IJ5iWx6W4AJqaOL4kVS9UOiqPFoqQaXeIj_GUKm7WTXLgRtnTv2N_JJ6vLvpVkJIXKIomiRSvtjzzdjzDcCLCpXJbagybwJmIqKcWY1lZnyRWyON8WkpZv9A7R2JD8fyeAW2F7UwM32IPuFGIyPN1zTAJz5sXoqGYjvirwueC30NrtNqH23o4-Kwz7CQOBdPrSujW6dknC57fVK-eXn7FY-UhPuvEtXkaYZ34PacIrI3M0zvwgqO78GtJeHA-_B75-TPr3PyQJ5NvrfTNmVhfnbTjkUSyk4p4o4G_ozmMrZUzBafa8aeYar4Y8ur11vsS5KSJRkONv1B6ZINFhllqntgI6QK4ZNu1G2kB7hFD5buARwNd7--3cvmXRUyV2qp47GuJBGDQisdtFdUiyqqmlcuRHqiJDcqmNzZUJd5nVssasO9sloW1sVwpHwIq-N2jI-ASYzBiJd1ZZALdN7EySqPxtZiHoQTA3i5-LKNm0uOU-eL02YmlswbQqFJKAzgeW87mQlt_NVqhwDqLUgcO11oz74187HWCIsxDpNIW1gFlq4KDoPSxhWlqq0pB_AqwfuP9zS7n_d5Olv7H-NncOPw3bD59P7g4zrc5BSap-1oj2E1QohPIn-Z2qfpN70AOLztyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi%E2%80%90based+photocatalysts+for+light%E2%80%90driven+environmental+and+energy+applications%3A+Structural+tuning%2C+reaction+mechanisms%2C+and+challenges&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Peng+Chen&rft.au=Hongjing+Liu&rft.au=Wen+Cui&rft.au=Shun+Cheng+Lee&rft.date=2020-09-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=2&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12047&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4be5485e14104e3c8fcef67ac1369ba3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon