Motor imagery and action observation of whole-body movements for experienced motor repertoire: an fNIRS study

The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor ima...

Full description

Saved in:
Bibliographic Details
Published inTairyoku kagaku. Japanese journal of physical fitness and sports medicine Vol. 12; no. 4; pp. 107 - 117
Main Authors Yokota, Hayaka, Kamijo, Keita, Mizuguchi, Nobuaki, Kubo, Hiroko, Nakata, Hiroki
Format Journal Article
LanguageEnglish
Published Tokyo The Japanese Society of Physical Fitness and Sports Medicine 25.07.2023
Japan Science and Technology Agency
Japanese Society of Physical Fitness and Sports Medicine
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor imagery and action observation. Each condition included three tasks of whole-body movement of gymnastics: (1) forward roll, (2) backward roll, and (3) cartwheel. Under both motor imagery and action observation conditions, the mean amplitude of oxy-Hb in the left posterior parietal cortex (PPC) was significantly more positive for the forward roll than cartwheel. The mean amplitude of deoxy-Hb was significantly more negative for the cartwheel than forward roll in the middle PPC. These findings suggest that PPC plays an important role in representations of movement during motor imagery and action observation. In addition, correlations between the vividness of motor imagery and mean amplitudes of oxy-Hb were identified in the premotor and primary motor areas. These results suggest that psychological assessments for vividness are linked to neural motor processes, and may provide a valid and economic tool to evaluate a person’s ability to perform motor imagery.
AbstractList The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor imagery and action observation. Each condition included three tasks of whole-body movement of gymnastics: (1) forward roll, (2) backward roll, and (3) cartwheel. Under both motor imagery and action observation conditions, the mean amplitude of oxy-Hb in the left posterior parietal cortex (PPC) was significantly more positive for the forward roll than cartwheel. The mean amplitude of deoxy-Hb was significantly more negative for the cartwheel than forward roll in the middle PPC. These findings suggest that PPC plays an important role in representations of movement during motor imagery and action observation. In addition, correlations between the vividness of motor imagery and mean amplitudes of oxy-Hb were identified in the premotor and primary motor areas. These results suggest that psychological assessments for vividness are linked to neural motor processes, and may provide a valid and economic tool to evaluate a person’s ability to perform motor imagery.
Author Kamijo, Keita
Kubo, Hiroko
Yokota, Hayaka
Mizuguchi, Nobuaki
Nakata, Hiroki
Author_xml – sequence: 1
  fullname: Yokota, Hayaka
  organization: Graduate School of Humanities and Sciences, Nara Women’s University
– sequence: 2
  fullname: Kamijo, Keita
  organization: Faculty of Liberal Arts and Sciences, Chukyo University
– sequence: 3
  fullname: Mizuguchi, Nobuaki
  organization: Research Organization of Science and Technology, Ritsumeikan University
– sequence: 4
  fullname: Kubo, Hiroko
  organization: Faculty of Engineering, Nara Women’s University
– sequence: 5
  fullname: Nakata, Hiroki
  organization: Faculty of Engineering, Nara Women’s University
BookMark eNo9kdtu1DAQhi1UJErpHQ9giVuy9TFOuEGo4rBSCxKHa2tij9tEm3ixs4V9e7xNiW88-uebf8ael-RsihMS8pqzjakZuxr2IY8bLjacmWfkXPCmrhou5NkaS_6CXOY8sHIMl5KJczLexjkm2o9wh-lIYfIU3NzHicYuY3qAJQ70z33cYdVFf6RjfMARpznTUErx7x5Tj5NDXzIns4RFmWOf8F0xpOHr9vsPmueDP74izwPsMl4-3Rfk16ePP6-_VDffPm-vP9xUThptqk6qGhoZPMhaydoI1wTgXIAx2gdQEJgOymDntdZGB2-UCQ16CKpUyVpekO3i6yMMdp_K89LRRujtoxDTnYU0926HVnauQ68ctEwo49pWdME3Bg1o7Y2RxevN4rVP8fcB82yHeEhTGd-KplZNK1tmCvV2oVyKOScMa1fO7Gk_9nE_losinPD3Cz7kufz8Cv-faoXVU8WacfeQLE7yH-U-njw
Cites_doi 10.1016/j.neuroimage.2005.04.025
10.1007/s11682-017-9813-9
10.1016/j.neubiorev.2018.08.003
10.1371/journal.pone.0220100
10.1371/journal.pone.0020368
10.1016/j.brainres.2009.08.014
10.3389/fphys.2015.00416
10.1016/j.ijpsycho.2007.10.004
10.1016/j.bandc.2017.06.010
10.1016/j.neulet.2019.134604
10.1016/j.neuroimage.2019.04.073
10.1016/j.jphysparis.2006.03.012
10.3389/fnhum.2018.00085
10.1152/japplphysiol.00392.2020
10.1111/j.1460-9568.2003.03066.x
10.1016/j.brainres.2010.04.048
10.1093/cercor/bhac210
10.1016/j.neuroscience.2014.06.004
10.1016/j.neuroscience.2018.03.050
10.1006/nimg.2001.0832
10.1002/jnr.25003
10.2174/1874440000802010005
10.1152/japplphysiol.00348.2017
10.1113/jphysiol.2004.070755
10.3389/fnhum.2014.00810
10.1016/j.neulet.2019.134284
10.1016/j.neures.2022.11.007
10.1016/j.jphysparis.2015.02.003
10.1097/WNN.0000000000000042
10.1007/s00221-008-1376-y
10.1152/jn.00132.2002
10.1016/j.cognition.2004.02.008
10.1016/j.neubiorev.2013.03.017
10.1016/j.neures.2013.03.012
10.1016/S0010-9452(08)70456-8
10.3390/jcm7120466
10.1016/j.tics.2009.08.001
10.1016/j.neulet.2018.02.036
10.1111/j.1749-6632.2009.04425.x
10.1111/j.1460-9568.2011.07938.x
10.1016/j.neuroimage.2020.116659
10.1016/j.neuroscience.2015.12.013
10.1146/annurev.neuro.27.070203.144230
10.1038/nrn2497
ContentType Journal Article
Copyright 2023 The Japanese Society of Physical Fitness and Sports Medicine
2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Japanese Society of Physical Fitness and Sports Medicine
– notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TS
NAPCQ
DOA
DOI 10.7600/jpfsm.12.107
DatabaseName CrossRef
Physical Education Index
Nursing & Allied Health Premium
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Physical Education Index
DatabaseTitleList Nursing & Allied Health Premium


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2186-8123
1881-4751
EndPage 117
ExternalDocumentID oai_doaj_org_article_3bcbed4ca90247c992bfd87e7a55d773
10_7600_jpfsm_12_107
article_jpfsm_12_4_12_107_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
JSH
KQ8
OK1
RJT
RZJ
AAYXX
CITATION
.55
2WC
53G
5GY
7TS
DIK
E3Z
NAPCQ
P2P
X7M
ID FETCH-LOGICAL-c3757-b346a83fda3643672c8fa112a775dfa4af05f47ebd55575fd747f8edaf483f363
IEDL.DBID DOA
ISSN 2186-8131
0039-906X
IngestDate Tue Oct 22 14:47:01 EDT 2024
Thu Oct 10 16:33:04 EDT 2024
Fri Aug 23 02:30:29 EDT 2024
Sun Jul 28 05:22:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3757-b346a83fda3643672c8fa112a775dfa4af05f47ebd55575fd747f8edaf483f363
OpenAccessLink https://doaj.org/article/3bcbed4ca90247c992bfd87e7a55d773
PQID 2864893907
PQPubID 2048472
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_3bcbed4ca90247c992bfd87e7a55d773
proquest_journals_2864893907
crossref_primary_10_7600_jpfsm_12_107
jstage_primary_article_jpfsm_12_4_12_107_article_char_en
PublicationCentury 2000
PublicationDate 2023/07/25
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 07
  year: 2023
  text: 2023/07/25
  day: 25
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Tairyoku kagaku. Japanese journal of physical fitness and sports medicine
PublicationTitleAlternate JPFSM
PublicationYear 2023
Publisher The Japanese Society of Physical Fitness and Sports Medicine
Japan Science and Technology Agency
Japanese Society of Physical Fitness and Sports Medicine
Publisher_xml – name: The Japanese Society of Physical Fitness and Sports Medicine
– name: Japan Science and Technology Agency
– name: Japanese Society of Physical Fitness and Sports Medicine
References 33) Carius D, Hörnig L, Ragert P and Kaminski E. 2020. Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neurosci Lett 715: 134604.
15) Filgueiras A, Quintas Conde EF and Hall CR. 2018. The neural basis of kinesthetic and visual imagery in sports: an ALE meta - analysis. Brain Imaging Behav 12: 1513-1523.
30) Bruno V, Castellani N, Garbarini F and Christensen MS. 2023. Moving without sensory feedback: online TMS over the dorsal premotor cortex impairs motor performance during ischemic nerve block. Cereb Cortex 33: 2315-2327.
9) Olsson CJ, Jonsson B, Larsson A and Nyberg L. 2018. Motor representations and practice affect brain systems underlying imagery: an fMRI study of internal imagery in novices and active high jumpers. Open Neuroimag J 2: 5-13.
24) Stevens JA. 2005. Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition 95: 329-350.
12) Zhang LL, Pi YL, Shen C, Zhu H, Li XP, Ni Z, Zhang J and Wu Y. 2018. Expertise-level-dependent functionally plastic changes during motor imagery in basketball players. Neuroscience 380: 78-89.
7) Crotti M, Koschutnig K and Wriessnegger SC. 2022. Handedness impacts the neural correlates of kinesthetic motor imagery and execution: an fMRI study. J Neurosci Res 100: 798-826.
38) Matsukawa K, Asahara R, Ishii K, Kunishi M, Yamashita Y, Hashiguchi Y, Liang N and Smith SA. 2020. Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans. J Appl Physiol 129: 1161-1172.
31) Matsunaga K, Maruyama A, Fujiwara T, Nakanishi R, Tsuji S and Rothwell JC. 2005. Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. J Physiol 562: 295-306.
42) Zabicki A, Haas B, Zentgraf K, Stark R, Munzert J and Krüger B. 2019. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex. Neuroimage 197: 273-283.
19) Mizuguchi N, Nakata H and Kanosue K. 2016. Motor imagery beyond the motor repertoire: activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements. Neuroscience 315: 104-113.
18) Grafton ST. 2009. Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci 1156: 97-117.
32) Wriessnegger SC, Kurzmann J and Neuper C. 2008. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Int J Psychophysiol 67: 54-63.
39) Rizzolatti G and Craighero L. 2004. The mirror-neuron system. Ann Rev Neurosci 27: 169-192.
43) Nakata H, Miyamoto T, Ogoh S, Kakigi R and Shibasaki M. 2017. Effects of acute hypoxia on human cognitive processing: A study using ERPs and SEPs. J Appl Physiol 123: 1246-1255.
2) Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P and Hallett M. 2003. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002.
11) Kim W, Chang Y, Kim J, Seo J, Ryu K, Lee E, Woo M and Janelle CM. 2014. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol 27: 173-182.
13) Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S and Jansen O. 2003. Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387.
25) Yokota H, Mizuguchi N, Kakigi R and Nakata H. 2018. Modulation of corticospinal excitability during positive and negative motor imageries. Neurosci Lett 672: 1-5.
37) Lorey B, Pilgramm S, Bischoff M, Stark R, Vaitl D, Kindermann S, Munzert J and Zentgraf K. 2011. Activation of the parieto-premotor network is associated with vivid motor imagery - a parametric fMRI study. PLoS One 6: e20368.
35) Desmurget M and Sirigu A. 2009. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 13: 411-419.
20) Herold F, Wiegel P, Scholkmann F and Müller NG. 2018. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: a systematic, methodology-focused review. J Clin Med 7: 466.
40) Kostorz K, Flanagin VL and Glasauer S. 2020. Synchronization between instructor and observer when learning a complex bimanual skill. Neuroimage 216: 116659.
21) Iso N, Moriuchi T, Sagari A, Kitajima E, Iso F, Tanaka K, Kikuchi Y, Tabira T and Higashi T. 2016. Monitoring local regional hemodynamic signal changes during motor execution and motor imagery using near-infrared spectroscopy. Front Physiol 6: 416.
44) Nakata H, Kakigi R, Kubo H and Shibasaki M. 2023. Effects of hypocapnia and hypercapnia on human somatosensory processing. Neurosci Res 190: 29-35.
27) Yokoyama N, Ohtaka C, Kato K, Kubo H and Nakata H. 2019. The difference in hemodynamic responses between dominant and non-dominant hands during muscle contraction and relaxation: an fNIRS study. PLoS One 14: e0220100.
1) Lotze M and Halsband U. 2006. Motor imagery. J Physiol Paris 99: 386-395.
22) Wriessnegger SC, Kirchmeyr D, Bauernfeind G and Müller-Putz GR. 2017. Force related hemodynamic responses during execution and imagery of a hand grip task: a functional near infrared spectroscopy study. Brain Cogn 117: 108-116.
29) Shironouchi F, Ohtaka C, Mizuguchi N, Kato K, Kakigi R and Nakata H. 2019. Remote effects on corticospinal excitability during motor execution and motor imagery. Neurosci Lett 707: 134284.
3) Imazu S, Sugio T, Tanaka S and Inui T. 2007. Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43: 301-307.
17) Jeannerod M. 2001. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14: S103-S109.
28) Amemiya K, Ishizu T, Ayabe T and Kojima S. 2010. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study. Brain Res 1343: 93-103.
6) Mizuguchi N, Nakata H and Kanosue K. 2014. Activity of right premotor-parietal regions dependent upon imagined force level: an fMRI study. Front Hum Neurosci 8: 810.
41) Wang Z, Wang S, Shi FY, Guan Y, Wu Y, Zhang LL, Shen C, Zeng YW, Wang DH and Zhang J. 2014. The effect of motor imagery with specific implement in expert badminton player. Neuroscience 275: 102-112.
16) Hardwick RM, Caspers S, Eickhoff SB and Swinnen SP. 2018. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 94: 31-44.
36) Haggard P. 2008. Human volition: towards a neuroscience of will. Nat Rev Neurosci 9: 934-946.
8) Munzert J, Zentgraf K, Stark R and Vaitl D. 2008. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Exp Brain Res 188: 437-444.
10) Wei G and Luo J. 2010. Sport expert’s motor imagery: functional imaging of professional motor skills and simple motor skills. Brain Res 1341: 52-62.
23) Wu S, Li J, Gao L, Chen C and He S. 2018. Suppressing systemic interference in fNIRS monitoring of the hemodynamic cortical response to motor execution and imagery. Front Hum Neurosci 12: 85.
26) Lebon F, Byblow WD, Collet C, Guillot A and Stinear CM. 2012. The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci 35: 323-331.
34) Ridderinkhof KR and Brass M. 2015. How kinesthetic motor imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris 109: 53-63.
14) Lacourse MG, Orr EL, Cramer SC and Cohen MJ. 2005. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27: 505-519.
5) Mizuguchi N, Nakata H, Hayashi T, Sakamoto M, Muraoka T, Uchida Y and Kanosue K. 2013. Brain activity during motor imagery of an action with an object: a functional magnetic resonance imaging study. Neurosci Res 76: 150-155.
4) Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE and Jackson PL. 2013. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37: 930-949.
22
44
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 14
  doi: 10.1016/j.neuroimage.2005.04.025
– ident: 15
  doi: 10.1007/s11682-017-9813-9
– ident: 16
  doi: 10.1016/j.neubiorev.2018.08.003
– ident: 27
  doi: 10.1371/journal.pone.0220100
– ident: 37
  doi: 10.1371/journal.pone.0020368
– ident: 10
  doi: 10.1016/j.brainres.2009.08.014
– ident: 21
  doi: 10.3389/fphys.2015.00416
– ident: 32
  doi: 10.1016/j.ijpsycho.2007.10.004
– ident: 22
  doi: 10.1016/j.bandc.2017.06.010
– ident: 33
  doi: 10.1016/j.neulet.2019.134604
– ident: 42
  doi: 10.1016/j.neuroimage.2019.04.073
– ident: 1
  doi: 10.1016/j.jphysparis.2006.03.012
– ident: 23
  doi: 10.3389/fnhum.2018.00085
– ident: 38
  doi: 10.1152/japplphysiol.00392.2020
– ident: 13
  doi: 10.1111/j.1460-9568.2003.03066.x
– ident: 28
  doi: 10.1016/j.brainres.2010.04.048
– ident: 30
  doi: 10.1093/cercor/bhac210
– ident: 41
  doi: 10.1016/j.neuroscience.2014.06.004
– ident: 12
  doi: 10.1016/j.neuroscience.2018.03.050
– ident: 17
  doi: 10.1006/nimg.2001.0832
– ident: 7
  doi: 10.1002/jnr.25003
– ident: 9
  doi: 10.2174/1874440000802010005
– ident: 43
  doi: 10.1152/japplphysiol.00348.2017
– ident: 31
  doi: 10.1113/jphysiol.2004.070755
– ident: 6
  doi: 10.3389/fnhum.2014.00810
– ident: 29
  doi: 10.1016/j.neulet.2019.134284
– ident: 44
  doi: 10.1016/j.neures.2022.11.007
– ident: 34
  doi: 10.1016/j.jphysparis.2015.02.003
– ident: 11
  doi: 10.1097/WNN.0000000000000042
– ident: 8
  doi: 10.1007/s00221-008-1376-y
– ident: 2
  doi: 10.1152/jn.00132.2002
– ident: 24
  doi: 10.1016/j.cognition.2004.02.008
– ident: 4
  doi: 10.1016/j.neubiorev.2013.03.017
– ident: 5
  doi: 10.1016/j.neures.2013.03.012
– ident: 3
  doi: 10.1016/S0010-9452(08)70456-8
– ident: 20
  doi: 10.3390/jcm7120466
– ident: 35
  doi: 10.1016/j.tics.2009.08.001
– ident: 25
  doi: 10.1016/j.neulet.2018.02.036
– ident: 18
  doi: 10.1111/j.1749-6632.2009.04425.x
– ident: 26
  doi: 10.1111/j.1460-9568.2011.07938.x
– ident: 40
  doi: 10.1016/j.neuroimage.2020.116659
– ident: 19
  doi: 10.1016/j.neuroscience.2015.12.013
– ident: 39
  doi: 10.1146/annurev.neuro.27.070203.144230
– ident: 36
  doi: 10.1038/nrn2497
SSID ssj0000713302
ssib002484552
ssib000936107
ssib017172186
ssib023159839
ssj0061700
ssib002223886
Score 2.2968738
Snippet The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb...
SourceID doaj
proquest
crossref
jstage
SourceType Open Website
Aggregation Database
Publisher
StartPage 107
SubjectTerms near-infrared spectroscopy
PPC
Title Motor imagery and action observation of whole-body movements for experienced motor repertoire: an fNIRS study
URI https://www.jstage.jst.go.jp/article/jpfsm/12/4/12_107/_article/-char/en
https://www.proquest.com/docview/2864893907
https://doaj.org/article/3bcbed4ca90247c992bfd87e7a55d773
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Physical Fitness and Sports Medicine, 2023/07/25, Vol.12(4), pp.107-117
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECbGkxejUWN9NBz0SNxdYGG9qbHxkXpQm_S2gQWMJu2atsb03zvDbjdNPHjxCstAZoD5hoVvCDmDiEFqJzRLXCGZcLpiBuzMvAoAF9K0sBLfDg-f8ruReBjL8VqqL7wT1tADN4q74Lay3onKFOBNVFUUmQ1OK6-MlE6phuczKdaCqbgHY-wVLxxiziWmU542t97xP9TFx2eYT_AUMMUssmv-KNL2gy_6AGT29nt7jj5nsEO2W7BIr5pB7pINP90jk2ENcTJ9nyD7xJKaqaPN4wRa2-6IldaBfmPqW2Zrt6STOtKCL-YUMCr1Hb2xgxoUNvNQsqhh-7sEgTQ83T-_0Mg8u09Gg9vXmzvWJk1gFVdSMctFbjQPznAAG7nKKh0MgCqjlHTBCBMSGYTy1kkJUC04iCeC9s4EAa14zg_I5rSe-kNCqySHrwKIC0JYr7TVgnuThdzxKhO2R85Xqis_G26MEmIKVHEZVVymGRSoHrlGvXbfIKN1LAA7l62dy7_s3CO6sUonZtWy60q0_XU1-HANVn-PnKzsWLYrdF5mOkfenSJRR_8xvGOyhYno8dQ3kydkczH78qcAVxa2DzPz_rEf5-cPYkTsoQ
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+and+action+observation+of+whole-body+movements+for+experienced+motor+repertoire%3A+an+fNIRS+study&rft.jtitle=Tairyoku+kagaku.+Japanese+journal+of+physical+fitness+and+sports+medicine&rft.au=Yokota%2C+Hayaka&rft.au=Kamijo%2C+Keita&rft.au=Mizuguchi%2C+Nobuaki&rft.au=Kubo%2C+Hiroko&rft.date=2023-07-25&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0039-906X&rft.eissn=1881-4751&rft.volume=12&rft.issue=4&rft_id=info:doi/10.7600%2Fjpfsm.12.107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2186-8131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2186-8131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2186-8131&client=summon