Motor imagery and action observation of whole-body movements for experienced motor repertoire: an fNIRS study
The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor ima...
Saved in:
Published in | Tairyoku kagaku. Japanese journal of physical fitness and sports medicine Vol. 12; no. 4; pp. 107 - 117 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Japanese Society of Physical Fitness and Sports Medicine
25.07.2023
Japan Science and Technology Agency Japanese Society of Physical Fitness and Sports Medicine |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor imagery and action observation. Each condition included three tasks of whole-body movement of gymnastics: (1) forward roll, (2) backward roll, and (3) cartwheel. Under both motor imagery and action observation conditions, the mean amplitude of oxy-Hb in the left posterior parietal cortex (PPC) was significantly more positive for the forward roll than cartwheel. The mean amplitude of deoxy-Hb was significantly more negative for the cartwheel than forward roll in the middle PPC. These findings suggest that PPC plays an important role in representations of movement during motor imagery and action observation. In addition, correlations between the vividness of motor imagery and mean amplitudes of oxy-Hb were identified in the premotor and primary motor areas. These results suggest that psychological assessments for vividness are linked to neural motor processes, and may provide a valid and economic tool to evaluate a person’s ability to perform motor imagery. |
---|---|
AbstractList | The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb during motor imagery and action observation for whole-body movements. Sixteen female participants performed tasks under two conditions: motor imagery and action observation. Each condition included three tasks of whole-body movement of gymnastics: (1) forward roll, (2) backward roll, and (3) cartwheel. Under both motor imagery and action observation conditions, the mean amplitude of oxy-Hb in the left posterior parietal cortex (PPC) was significantly more positive for the forward roll than cartwheel. The mean amplitude of deoxy-Hb was significantly more negative for the cartwheel than forward roll in the middle PPC. These findings suggest that PPC plays an important role in representations of movement during motor imagery and action observation. In addition, correlations between the vividness of motor imagery and mean amplitudes of oxy-Hb were identified in the premotor and primary motor areas. These results suggest that psychological assessments for vividness are linked to neural motor processes, and may provide a valid and economic tool to evaluate a person’s ability to perform motor imagery. |
Author | Kamijo, Keita Kubo, Hiroko Yokota, Hayaka Mizuguchi, Nobuaki Nakata, Hiroki |
Author_xml | – sequence: 1 fullname: Yokota, Hayaka organization: Graduate School of Humanities and Sciences, Nara Women’s University – sequence: 2 fullname: Kamijo, Keita organization: Faculty of Liberal Arts and Sciences, Chukyo University – sequence: 3 fullname: Mizuguchi, Nobuaki organization: Research Organization of Science and Technology, Ritsumeikan University – sequence: 4 fullname: Kubo, Hiroko organization: Faculty of Engineering, Nara Women’s University – sequence: 5 fullname: Nakata, Hiroki organization: Faculty of Engineering, Nara Women’s University |
BookMark | eNo9kdtu1DAQhi1UJErpHQ9giVuy9TFOuEGo4rBSCxKHa2tij9tEm3ixs4V9e7xNiW88-uebf8ael-RsihMS8pqzjakZuxr2IY8bLjacmWfkXPCmrhou5NkaS_6CXOY8sHIMl5KJczLexjkm2o9wh-lIYfIU3NzHicYuY3qAJQ70z33cYdVFf6RjfMARpznTUErx7x5Tj5NDXzIns4RFmWOf8F0xpOHr9vsPmueDP74izwPsMl4-3Rfk16ePP6-_VDffPm-vP9xUThptqk6qGhoZPMhaydoI1wTgXIAx2gdQEJgOymDntdZGB2-UCQ16CKpUyVpekO3i6yMMdp_K89LRRujtoxDTnYU0926HVnauQ68ctEwo49pWdME3Bg1o7Y2RxevN4rVP8fcB82yHeEhTGd-KplZNK1tmCvV2oVyKOScMa1fO7Gk_9nE_losinPD3Cz7kufz8Cv-faoXVU8WacfeQLE7yH-U-njw |
Cites_doi | 10.1016/j.neuroimage.2005.04.025 10.1007/s11682-017-9813-9 10.1016/j.neubiorev.2018.08.003 10.1371/journal.pone.0220100 10.1371/journal.pone.0020368 10.1016/j.brainres.2009.08.014 10.3389/fphys.2015.00416 10.1016/j.ijpsycho.2007.10.004 10.1016/j.bandc.2017.06.010 10.1016/j.neulet.2019.134604 10.1016/j.neuroimage.2019.04.073 10.1016/j.jphysparis.2006.03.012 10.3389/fnhum.2018.00085 10.1152/japplphysiol.00392.2020 10.1111/j.1460-9568.2003.03066.x 10.1016/j.brainres.2010.04.048 10.1093/cercor/bhac210 10.1016/j.neuroscience.2014.06.004 10.1016/j.neuroscience.2018.03.050 10.1006/nimg.2001.0832 10.1002/jnr.25003 10.2174/1874440000802010005 10.1152/japplphysiol.00348.2017 10.1113/jphysiol.2004.070755 10.3389/fnhum.2014.00810 10.1016/j.neulet.2019.134284 10.1016/j.neures.2022.11.007 10.1016/j.jphysparis.2015.02.003 10.1097/WNN.0000000000000042 10.1007/s00221-008-1376-y 10.1152/jn.00132.2002 10.1016/j.cognition.2004.02.008 10.1016/j.neubiorev.2013.03.017 10.1016/j.neures.2013.03.012 10.1016/S0010-9452(08)70456-8 10.3390/jcm7120466 10.1016/j.tics.2009.08.001 10.1016/j.neulet.2018.02.036 10.1111/j.1749-6632.2009.04425.x 10.1111/j.1460-9568.2011.07938.x 10.1016/j.neuroimage.2020.116659 10.1016/j.neuroscience.2015.12.013 10.1146/annurev.neuro.27.070203.144230 10.1038/nrn2497 |
ContentType | Journal Article |
Copyright | 2023 The Japanese Society of Physical Fitness and Sports Medicine 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Japanese Society of Physical Fitness and Sports Medicine – notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TS NAPCQ DOA |
DOI | 10.7600/jpfsm.12.107 |
DatabaseName | CrossRef Physical Education Index Nursing & Allied Health Premium DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Physical Education Index |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2186-8123 1881-4751 |
EndPage | 117 |
ExternalDocumentID | oai_doaj_org_article_3bcbed4ca90247c992bfd87e7a55d773 10_7600_jpfsm_12_107 article_jpfsm_12_4_12_107_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION .55 2WC 53G 5GY 7TS DIK E3Z NAPCQ P2P X7M |
ID | FETCH-LOGICAL-c3757-b346a83fda3643672c8fa112a775dfa4af05f47ebd55575fd747f8edaf483f363 |
IEDL.DBID | DOA |
ISSN | 2186-8131 0039-906X |
IngestDate | Tue Oct 22 14:47:01 EDT 2024 Thu Oct 10 16:33:04 EDT 2024 Fri Aug 23 02:30:29 EDT 2024 Sun Jul 28 05:22:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3757-b346a83fda3643672c8fa112a775dfa4af05f47ebd55575fd747f8edaf483f363 |
OpenAccessLink | https://doaj.org/article/3bcbed4ca90247c992bfd87e7a55d773 |
PQID | 2864893907 |
PQPubID | 2048472 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bcbed4ca90247c992bfd87e7a55d773 proquest_journals_2864893907 crossref_primary_10_7600_jpfsm_12_107 jstage_primary_article_jpfsm_12_4_12_107_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023/07/25 |
PublicationDateYYYYMMDD | 2023-07-25 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023/07/25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Tairyoku kagaku. Japanese journal of physical fitness and sports medicine |
PublicationTitleAlternate | JPFSM |
PublicationYear | 2023 |
Publisher | The Japanese Society of Physical Fitness and Sports Medicine Japan Science and Technology Agency Japanese Society of Physical Fitness and Sports Medicine |
Publisher_xml | – name: The Japanese Society of Physical Fitness and Sports Medicine – name: Japan Science and Technology Agency – name: Japanese Society of Physical Fitness and Sports Medicine |
References | 33) Carius D, Hörnig L, Ragert P and Kaminski E. 2020. Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neurosci Lett 715: 134604. 15) Filgueiras A, Quintas Conde EF and Hall CR. 2018. The neural basis of kinesthetic and visual imagery in sports: an ALE meta - analysis. Brain Imaging Behav 12: 1513-1523. 30) Bruno V, Castellani N, Garbarini F and Christensen MS. 2023. Moving without sensory feedback: online TMS over the dorsal premotor cortex impairs motor performance during ischemic nerve block. Cereb Cortex 33: 2315-2327. 9) Olsson CJ, Jonsson B, Larsson A and Nyberg L. 2018. Motor representations and practice affect brain systems underlying imagery: an fMRI study of internal imagery in novices and active high jumpers. Open Neuroimag J 2: 5-13. 24) Stevens JA. 2005. Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition 95: 329-350. 12) Zhang LL, Pi YL, Shen C, Zhu H, Li XP, Ni Z, Zhang J and Wu Y. 2018. Expertise-level-dependent functionally plastic changes during motor imagery in basketball players. Neuroscience 380: 78-89. 7) Crotti M, Koschutnig K and Wriessnegger SC. 2022. Handedness impacts the neural correlates of kinesthetic motor imagery and execution: an fMRI study. J Neurosci Res 100: 798-826. 38) Matsukawa K, Asahara R, Ishii K, Kunishi M, Yamashita Y, Hashiguchi Y, Liang N and Smith SA. 2020. Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans. J Appl Physiol 129: 1161-1172. 31) Matsunaga K, Maruyama A, Fujiwara T, Nakanishi R, Tsuji S and Rothwell JC. 2005. Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. J Physiol 562: 295-306. 42) Zabicki A, Haas B, Zentgraf K, Stark R, Munzert J and Krüger B. 2019. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex. Neuroimage 197: 273-283. 19) Mizuguchi N, Nakata H and Kanosue K. 2016. Motor imagery beyond the motor repertoire: activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements. Neuroscience 315: 104-113. 18) Grafton ST. 2009. Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci 1156: 97-117. 32) Wriessnegger SC, Kurzmann J and Neuper C. 2008. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Int J Psychophysiol 67: 54-63. 39) Rizzolatti G and Craighero L. 2004. The mirror-neuron system. Ann Rev Neurosci 27: 169-192. 43) Nakata H, Miyamoto T, Ogoh S, Kakigi R and Shibasaki M. 2017. Effects of acute hypoxia on human cognitive processing: A study using ERPs and SEPs. J Appl Physiol 123: 1246-1255. 2) Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P and Hallett M. 2003. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002. 11) Kim W, Chang Y, Kim J, Seo J, Ryu K, Lee E, Woo M and Janelle CM. 2014. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol 27: 173-182. 13) Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S and Jansen O. 2003. Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387. 25) Yokota H, Mizuguchi N, Kakigi R and Nakata H. 2018. Modulation of corticospinal excitability during positive and negative motor imageries. Neurosci Lett 672: 1-5. 37) Lorey B, Pilgramm S, Bischoff M, Stark R, Vaitl D, Kindermann S, Munzert J and Zentgraf K. 2011. Activation of the parieto-premotor network is associated with vivid motor imagery - a parametric fMRI study. PLoS One 6: e20368. 35) Desmurget M and Sirigu A. 2009. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 13: 411-419. 20) Herold F, Wiegel P, Scholkmann F and Müller NG. 2018. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: a systematic, methodology-focused review. J Clin Med 7: 466. 40) Kostorz K, Flanagin VL and Glasauer S. 2020. Synchronization between instructor and observer when learning a complex bimanual skill. Neuroimage 216: 116659. 21) Iso N, Moriuchi T, Sagari A, Kitajima E, Iso F, Tanaka K, Kikuchi Y, Tabira T and Higashi T. 2016. Monitoring local regional hemodynamic signal changes during motor execution and motor imagery using near-infrared spectroscopy. Front Physiol 6: 416. 44) Nakata H, Kakigi R, Kubo H and Shibasaki M. 2023. Effects of hypocapnia and hypercapnia on human somatosensory processing. Neurosci Res 190: 29-35. 27) Yokoyama N, Ohtaka C, Kato K, Kubo H and Nakata H. 2019. The difference in hemodynamic responses between dominant and non-dominant hands during muscle contraction and relaxation: an fNIRS study. PLoS One 14: e0220100. 1) Lotze M and Halsband U. 2006. Motor imagery. J Physiol Paris 99: 386-395. 22) Wriessnegger SC, Kirchmeyr D, Bauernfeind G and Müller-Putz GR. 2017. Force related hemodynamic responses during execution and imagery of a hand grip task: a functional near infrared spectroscopy study. Brain Cogn 117: 108-116. 29) Shironouchi F, Ohtaka C, Mizuguchi N, Kato K, Kakigi R and Nakata H. 2019. Remote effects on corticospinal excitability during motor execution and motor imagery. Neurosci Lett 707: 134284. 3) Imazu S, Sugio T, Tanaka S and Inui T. 2007. Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43: 301-307. 17) Jeannerod M. 2001. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14: S103-S109. 28) Amemiya K, Ishizu T, Ayabe T and Kojima S. 2010. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study. Brain Res 1343: 93-103. 6) Mizuguchi N, Nakata H and Kanosue K. 2014. Activity of right premotor-parietal regions dependent upon imagined force level: an fMRI study. Front Hum Neurosci 8: 810. 41) Wang Z, Wang S, Shi FY, Guan Y, Wu Y, Zhang LL, Shen C, Zeng YW, Wang DH and Zhang J. 2014. The effect of motor imagery with specific implement in expert badminton player. Neuroscience 275: 102-112. 16) Hardwick RM, Caspers S, Eickhoff SB and Swinnen SP. 2018. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 94: 31-44. 36) Haggard P. 2008. Human volition: towards a neuroscience of will. Nat Rev Neurosci 9: 934-946. 8) Munzert J, Zentgraf K, Stark R and Vaitl D. 2008. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Exp Brain Res 188: 437-444. 10) Wei G and Luo J. 2010. Sport expert’s motor imagery: functional imaging of professional motor skills and simple motor skills. Brain Res 1341: 52-62. 23) Wu S, Li J, Gao L, Chen C and He S. 2018. Suppressing systemic interference in fNIRS monitoring of the hemodynamic cortical response to motor execution and imagery. Front Hum Neurosci 12: 85. 26) Lebon F, Byblow WD, Collet C, Guillot A and Stinear CM. 2012. The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci 35: 323-331. 34) Ridderinkhof KR and Brass M. 2015. How kinesthetic motor imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris 109: 53-63. 14) Lacourse MG, Orr EL, Cramer SC and Cohen MJ. 2005. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27: 505-519. 5) Mizuguchi N, Nakata H, Hayashi T, Sakamoto M, Muraoka T, Uchida Y and Kanosue K. 2013. Brain activity during motor imagery of an action with an object: a functional magnetic resonance imaging study. Neurosci Res 76: 150-155. 4) Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE and Jackson PL. 2013. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37: 930-949. 22 44 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 14 doi: 10.1016/j.neuroimage.2005.04.025 – ident: 15 doi: 10.1007/s11682-017-9813-9 – ident: 16 doi: 10.1016/j.neubiorev.2018.08.003 – ident: 27 doi: 10.1371/journal.pone.0220100 – ident: 37 doi: 10.1371/journal.pone.0020368 – ident: 10 doi: 10.1016/j.brainres.2009.08.014 – ident: 21 doi: 10.3389/fphys.2015.00416 – ident: 32 doi: 10.1016/j.ijpsycho.2007.10.004 – ident: 22 doi: 10.1016/j.bandc.2017.06.010 – ident: 33 doi: 10.1016/j.neulet.2019.134604 – ident: 42 doi: 10.1016/j.neuroimage.2019.04.073 – ident: 1 doi: 10.1016/j.jphysparis.2006.03.012 – ident: 23 doi: 10.3389/fnhum.2018.00085 – ident: 38 doi: 10.1152/japplphysiol.00392.2020 – ident: 13 doi: 10.1111/j.1460-9568.2003.03066.x – ident: 28 doi: 10.1016/j.brainres.2010.04.048 – ident: 30 doi: 10.1093/cercor/bhac210 – ident: 41 doi: 10.1016/j.neuroscience.2014.06.004 – ident: 12 doi: 10.1016/j.neuroscience.2018.03.050 – ident: 17 doi: 10.1006/nimg.2001.0832 – ident: 7 doi: 10.1002/jnr.25003 – ident: 9 doi: 10.2174/1874440000802010005 – ident: 43 doi: 10.1152/japplphysiol.00348.2017 – ident: 31 doi: 10.1113/jphysiol.2004.070755 – ident: 6 doi: 10.3389/fnhum.2014.00810 – ident: 29 doi: 10.1016/j.neulet.2019.134284 – ident: 44 doi: 10.1016/j.neures.2022.11.007 – ident: 34 doi: 10.1016/j.jphysparis.2015.02.003 – ident: 11 doi: 10.1097/WNN.0000000000000042 – ident: 8 doi: 10.1007/s00221-008-1376-y – ident: 2 doi: 10.1152/jn.00132.2002 – ident: 24 doi: 10.1016/j.cognition.2004.02.008 – ident: 4 doi: 10.1016/j.neubiorev.2013.03.017 – ident: 5 doi: 10.1016/j.neures.2013.03.012 – ident: 3 doi: 10.1016/S0010-9452(08)70456-8 – ident: 20 doi: 10.3390/jcm7120466 – ident: 35 doi: 10.1016/j.tics.2009.08.001 – ident: 25 doi: 10.1016/j.neulet.2018.02.036 – ident: 18 doi: 10.1111/j.1749-6632.2009.04425.x – ident: 26 doi: 10.1111/j.1460-9568.2011.07938.x – ident: 40 doi: 10.1016/j.neuroimage.2020.116659 – ident: 19 doi: 10.1016/j.neuroscience.2015.12.013 – ident: 39 doi: 10.1146/annurev.neuro.27.070203.144230 – ident: 36 doi: 10.1038/nrn2497 |
SSID | ssj0000713302 ssib002484552 ssib000936107 ssib017172186 ssib023159839 ssj0061700 ssib002223886 |
Score | 2.2968738 |
Snippet | The present study used functional near-infrared spectroscopy (fNIRS), and investigated the characteristics of hemodynamic responses of oxy-Hb and deoxy-Hb... |
SourceID | doaj proquest crossref jstage |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 107 |
SubjectTerms | near-infrared spectroscopy PPC |
Title | Motor imagery and action observation of whole-body movements for experienced motor repertoire: an fNIRS study |
URI | https://www.jstage.jst.go.jp/article/jpfsm/12/4/12_107/_article/-char/en https://www.proquest.com/docview/2864893907 https://doaj.org/article/3bcbed4ca90247c992bfd87e7a55d773 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Physical Fitness and Sports Medicine, 2023/07/25, Vol.12(4), pp.107-117 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECbGkxejUWN9NBz0SNxdYGG9qbHxkXpQm_S2gQWMJu2atsb03zvDbjdNPHjxCstAZoD5hoVvCDmDiEFqJzRLXCGZcLpiBuzMvAoAF9K0sBLfDg-f8ruReBjL8VqqL7wT1tADN4q74Lay3onKFOBNVFUUmQ1OK6-MlE6phuczKdaCqbgHY-wVLxxiziWmU542t97xP9TFx2eYT_AUMMUssmv-KNL2gy_6AGT29nt7jj5nsEO2W7BIr5pB7pINP90jk2ENcTJ9nyD7xJKaqaPN4wRa2-6IldaBfmPqW2Zrt6STOtKCL-YUMCr1Hb2xgxoUNvNQsqhh-7sEgTQ83T-_0Mg8u09Gg9vXmzvWJk1gFVdSMctFbjQPznAAG7nKKh0MgCqjlHTBCBMSGYTy1kkJUC04iCeC9s4EAa14zg_I5rSe-kNCqySHrwKIC0JYr7TVgnuThdzxKhO2R85Xqis_G26MEmIKVHEZVVymGRSoHrlGvXbfIKN1LAA7l62dy7_s3CO6sUonZtWy60q0_XU1-HANVn-PnKzsWLYrdF5mOkfenSJRR_8xvGOyhYno8dQ3kydkczH78qcAVxa2DzPz_rEf5-cPYkTsoQ |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+and+action+observation+of+whole-body+movements+for+experienced+motor+repertoire%3A+an+fNIRS+study&rft.jtitle=Tairyoku+kagaku.+Japanese+journal+of+physical+fitness+and+sports+medicine&rft.au=Yokota%2C+Hayaka&rft.au=Kamijo%2C+Keita&rft.au=Mizuguchi%2C+Nobuaki&rft.au=Kubo%2C+Hiroko&rft.date=2023-07-25&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0039-906X&rft.eissn=1881-4751&rft.volume=12&rft.issue=4&rft_id=info:doi/10.7600%2Fjpfsm.12.107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2186-8131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2186-8131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2186-8131&client=summon |