Empirical Evidence for A‐Site Order in Perovskites
Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the N...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 100; no. 1; pp. 429 - 442 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Wiley Subscription Services, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na(1−3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1−3x)/2La(1+x)/2TiO3 and Na(1−3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used. |
---|---|
AbstractList | Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na(1−3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1−3x)/2La(1+x)/2TiO3 and Na(1−3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used. Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A-site cation ordering. Specifically, four compositions in the Na(1-3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid-state mixed-oxide method. The structure of the x = 0 end-member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long-range A-site ordering is observed in this composition via X-ray or neutron diffraction, electron-diffraction data indicate short-range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First-principles calculations via density functional theory support both conclusions that short-range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1-3x)/2La(1+x)/2TiO3 and Na(1-3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used. Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na (1−3 x )/2 La (1+ x )/2 TiO 3 system ( x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na 0.5 La 0.5 TiO 3 ) has been reported in various space groups, but always with a random distribution of Na + and La 3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na + and La 3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x . First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na 0.5 La 0.5 TiO 3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li (1−3 x )/2 La (1+ x )/2 TiO 3 and Na (1−3 x )/2 La (1+ x )/2 (Mg 0.5 W 0.5 )O 3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used. Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A-site cation ordering. Specifically, four compositions in the Na sub((1-3x)/2)La sub((1+x)/2)TiO sub(3) system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid-state mixed-oxide method. The structure of the x = 0 end-member (Na sub(0.5)La sub(0.5)TiO sub(3)) has been reported in various space groups, but always with a random distribution of Na super(+) and La super(3+) on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long-range A-site ordering is observed in this composition via X-ray or neutron diffraction, electron-diffraction data indicate short-range ordering of Na super(+) and La super(3+) ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First-principles calculations via density functional theory support both conclusions that short-range ordering in Na sub(0.5)La sub(0.5)TiO sub(3) is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li sub((1-3x)/2)La sub((1+x)/2)TiO sub(3) and Na sub((1-3x)/2)La sub((1+x)/2)(Mg sub(0.5) W sub(0.5))O sub(3) solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used. |
Author | Liu, Bing Ubic, Rick Williamson, Izaak Tolman, Kevin Dickey, E. Chen, Xiang Ming Bedke, Katherine Li, Lan Nelson, Eric B. |
Author_xml | – sequence: 1 givenname: Kevin surname: Tolman fullname: Tolman, Kevin email: kevintolman@boisestate.edu organization: Boise State University – sequence: 2 givenname: Rick surname: Ubic fullname: Ubic, Rick organization: Boise State University – sequence: 3 givenname: Bing surname: Liu fullname: Liu, Bing organization: Zhejiang University – sequence: 4 givenname: Izaak surname: Williamson fullname: Williamson, Izaak organization: Boise State University – sequence: 5 givenname: Katherine surname: Bedke fullname: Bedke, Katherine organization: Boise State University – sequence: 6 givenname: Eric B. surname: Nelson fullname: Nelson, Eric B. organization: Boise State University – sequence: 7 givenname: Lan surname: Li fullname: Li, Lan organization: Center for Advanced Energy Studies – sequence: 8 givenname: Xiang Ming surname: Chen fullname: Chen, Xiang Ming organization: Zhejiang University – sequence: 9 givenname: E. surname: Dickey fullname: Dickey, E. |
BookMark | eNp9kM9KAzEQxoNUsK1efIIFLyJsTbKbP3sspf6jUEE9L2kyC6nbTU22ld58BJ_RJzF1PRVxLsMMv-9j5hugXuMaQOic4BGJdb1UGkYkZ7k4Qn3CGElpQXgP9THGNBWS4hM0CGEZR1LIvI_y6WptvdWqTqZba6DRkFTOJ-Ovj88n20Iy9wZ8YpvkEbzbhte4C6fouFJ1gLPfPkQvN9PnyV06m9_eT8azVGeCiVQqahg3ldRGaWWwgEKBXhjFJRjMtKpkxheaLHJBqaggy7hieSEUNgWnnGZDdNn5rr1720Boy5UNGupaNeA2oSRSxkdYznhELw7Qpdv4Jl4XKSYYpxKTSF11lPYuBA9VufZ2pfyuJLjcB1juAyx_AowwPoC1bVVrXdN6Zeu_JaSTvNsadv-Ylw_jybTTfAPEtIR6 |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1111_jace_20264 crossref_primary_10_1021_acs_inorgchem_4c04267 crossref_primary_10_1016_j_jallcom_2020_156106 crossref_primary_10_1111_jace_16695 crossref_primary_10_1111_jace_16168 crossref_primary_10_1016_j_jallcom_2017_11_333 crossref_primary_10_1016_j_materresbull_2025_113318 |
Cites_doi | 10.1016/j.ssi.2009.08.002 10.4191/KCERS.2003.40.6.513 10.1103/PhysRevLett.77.3865 10.1016/0025-5408(92)90251-T 10.1006/jssc.1995.1040 10.1016/j.jallcom.2015.04.213 10.1021/cm048353a 10.1016/j.jssc.2007.03.017 10.1107/S0567739472001536 10.1021/cm703659f 10.1111/j.1551-2916.2005.00432.x 10.1007/BF01507527 10.1016/j.ssi.2006.08.012 10.1016/j.jallcom.2013.04.091 10.1557/PROC-575-337 10.1021/cm060120r 10.1016/S0167-2738(00)00761-X 10.1016/j.jssc.2006.12.030 10.1016/j.jssc.2012.05.008 10.1107/S0108768106015527 10.1107/S0567739476001551 10.1103/PhysRevB.54.11169 10.1016/j.jssc.2011.11.007 10.1016/S0167-2738(96)00522-X 10.1016/S0167-577X(99)00149-4 10.1111/j.1551-2916.2007.01881.x 10.1103/PhysRevB.50.17953 10.1107/S0108768194014047 10.1107/S0108270103011934 10.1016/j.jssc.2013.09.015 10.1006/jssc.1999.8456 10.1006/jssc.2002.9560 10.1103/PhysRevB.59.1758 10.1080/10584587.2013.851576 10.1016/S0167-2738(98)00220-3 10.1021/jp408682r 10.1021/cm9018698 10.1039/c3ta14433j 10.1107/S0365110X53000156 10.1246/bcsj.57.1859 10.1016/j.jssc.2006.01.005 10.1002/(SICI)1521-3773(20000204)39:3<619::AID-ANIE619>3.0.CO;2-O 10.1006/jssc.2001.9430 10.1080/00150199708008599 10.1107/S0021889894004218 10.1093/jmicro/dfm031 10.1016/j.jssc.2014.12.024 10.1006/jssc.1994.1315 10.1088/0953-8984/20/50/505215 10.1107/S0567740872007976 10.1016/S0025-5408(98)00170-6 10.1016/j.jssc.2003.10.036 10.1103/PhysRevB.19.3593 10.1088/0953-8984/15/26/304 10.1006/jssc.1996.0385 10.1039/B616238J 10.1007/978-94-009-5540-0 10.1006/jssc.1998.7789 10.1002/pssb.201046030 10.1007/978-0-387-76501-3 10.1021/ic060434g 10.1016/j.jssc.2006.12.012 |
ContentType | Journal Article |
Copyright | 2016 The American Ceramic Society 2017 American Ceramic Society |
Copyright_xml | – notice: 2016 The American Ceramic Society – notice: 2017 American Ceramic Society |
DBID | AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/jace.14547 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
EndPage | 442 |
ExternalDocumentID | 4298914481 10_1111_jace_14547 JACE14547 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1052788 – fundername: Micron School of Materials Science and Engineering at Boise State University |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3757-8a2d56df8cdacad07e9aecbda68ed05caf836bc1b47227fe336a5497a0d962623 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 11 15:28:50 EDT 2025 Fri Jul 25 19:15:20 EDT 2025 Thu Apr 24 23:07:03 EDT 2025 Tue Jul 01 01:35:30 EDT 2025 Wed Jan 22 17:10:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3757-8a2d56df8cdacad07e9aecbda68ed05caf836bc1b47227fe336a5497a0d962623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1857562801 |
PQPubID | 41752 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1880005456 proquest_journals_1857562801 crossref_primary_10_1111_jace_14547 crossref_citationtrail_10_1111_jace_14547 wiley_primary_10_1111_jace_14547_JACE14547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2000; 575 2013; 207 2015; 225 2000; 42 2003; 15 2003; 59 1994; 27 2000; 134 1998; 112 2006; 177 2006; 179 1996; 77 1976; 32 2004; 177 1997; 95 2006; 62 2014; 2 1967; 11 1999; 59 1984; 57 2013; 117 1984 2007; 180 2008; 20 2003; 40 1989 2009; 1148 1994; 112 2007; 17 1979; 19 2012; 185 1995; 51 2009; 21 2015; 644 2009; 180 2013; 148 2010; 247 2009 2007; 90 2006; 18 1953; 6 1995; 114 1998; 138 1926; 14 1999; 148 2007; 56 1996; 54 2005; 88 1972; 28 1996; 127 2012; 194 2000; 39 2006; 45 1960; 24 2002; 163 2002; 166 1997; 200 2013; 575 1977; 435 1992; 27 2005; 17 1994; 50 1998; 33 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Deschanvres A. (e_1_2_6_25_1) 1967; 11 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Agranovskaya A. (e_1_2_6_6_1) 1960; 24 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 García‐Martína S. (e_1_2_6_18_1) 2009; 1148 Askeland D. R. (e_1_2_6_41_1) 1989 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 Propach V. (e_1_2_6_26_1) 1977 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 56 start-page: 225 issue: 6 year: 2007 end-page: 34 article-title: Crystal and Defect Structures of La Li TiO ( Similar to 0.1) Produced by a Melt Process publication-title: J. Electron Microsc. – year: 2009 – volume: 185 start-page: 107 year: 2012 end-page: 16 article-title: Structures of Ordered Tungsten‐ or Molybdenum‐Containing Quaternary Perovskite Oxides publication-title: J. Solid State Chem. – volume: 435 start-page: 161 year: 1977 end-page: 71 – volume: 247 start-page: 1773 issue: 7 year: 2010 end-page: 7 article-title: Structural Evolution of Double Perovskite Sr MgWO Under High Pressure publication-title: Phys. Status Solidi B‐Basic Solid State Phys. – volume: 19 start-page: 3593 issue: 7 year: 1979 end-page: 602 article-title: SrTiO – Intrinsic Quantum Para‐Electric Below 4‐K publication-title: Phys. Rev. B – year: 1989 – volume: 57 start-page: 1859 issue: 7 year: 1984 end-page: 62 article-title: Cation Ordering in (NaLa)(MgW)O With the Perovskite Structure publication-title: Bull. Chem. Soc. Jpn. – volume: 17 start-page: 1391 issue: 6 year: 2005 end-page: 7 article-title: Structural Modifications Induced by Composition in the La Na Ti O Perovskites: A Neutron Diffraction Study publication-title: Chem. Mater. – volume: 39 start-page: 619 issue: 3 year: 2000 end-page: 21 article-title: On the Location of Li Cations in the Fast Li Cation Conductor La Li TiO Perovskite publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 1275 year: 1960 end-page: 81 article-title: Physical‐Chemical Investigation of the Formation of Complex Ferroelectrics With Perovskite Structure publication-title: Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya – volume: 20 start-page: 3127 issue: 9 year: 2008 end-page: 33 article-title: Structure of Compounds in the Sr Ce TiO Homologous Series publication-title: Chem. Mater. – volume: 179 start-page: 1076 issue: 4 year: 2006 end-page: 85 article-title: A‐Site Cation Ordering in AA'BB'O Perovskites publication-title: J. Solid State Chem. – volume: 180 start-page: 995 issue: 3 year: 2007 end-page: 1001 article-title: Crystal Structures of Na Ln TiO (Ln: La, Eu, Tb) publication-title: J. Solid State Chem. – volume: 575 start-page: 337 year: 2000 end-page: 42 article-title: Relationship Between Crystal Structure and Li+‐Conductivity in La Li TiO Perovskite publication-title: Mater. Res. Soc. Symp. Proc. – volume: 42 start-page: 1 issue: 1–2 year: 2000 end-page: 6 article-title: Structure Characteristics and Valence State Study for La Na TiO Synthesized Under High‐Pressure and High‐Temperature Conditions publication-title: Mater. Lett. – volume: 40 start-page: 513 issue: 6 year: 2003 end-page: 8 article-title: The Structure Determination of La Li □ TiO by the Powder Neutron and X‐ray Diffraction publication-title: J. Korean Ceram. Soc. – volume: 27 start-page: 1115 issue: 9 year: 1992 end-page: 23 article-title: Crystal‐Structure and NMR‐Studies of a Cubic Perovskite – The Fluoride NaBaLiNiF publication-title: Mater. Res. Bull. – volume: 194 start-page: 168 year: 2012 end-page: 72 article-title: Transmission Electron Microscopic Study of Pyrochlore to Defect‐Fluorite Transition in Rare‐Earth Pyrohafnates publication-title: J. Solid State Chem. – volume: 28 start-page: 607 issue: 6 year: 1972 end-page: 16 article-title: Vacancy Short‐Range Order in Substoichiometric Transition Metal Carbides and Nitrides With the NaCl Structure. II. Numerical Calculation of Vacancy Arrangement publication-title: AYA Acta Crystallogr. Sect. A – volume: 59 start-page: I86 year: 2003 end-page: 8 article-title: Ca MgWO From Neutron and X‐ray Powder Data publication-title: Acta Crystallogr. Sect. C‐Cryst. Struct. Commun. – volume: 33 start-page: 1681 issue: 11 year: 1998 end-page: 91 article-title: Topotactic H /Li ion Exchange on La Li TiO : New Metastable Perovskite Phases La TiO (OH) and La TiO Obtained by Further Dehydration publication-title: Mater. Res. Bull. – volume: 180 start-page: 1362 issue: 26–27 year: 2009 end-page: 71 article-title: Li Mobility in Li Na La TiO Perovskites (0 ≤ ≤0.5) Influence of Structural and Compositional Parameters publication-title: Solid State Ionics – volume: 134 start-page: 219 issue: 3–4 year: 2000 end-page: 28 article-title: Influence of Composition on the Structure and Conductivity of the Fast Ionic Conductors La Li TiO (0.03 ≤ ≤ 0.167) publication-title: Solid State Ionics – volume: 62 start-page: 521 year: 2006 end-page: 9 article-title: Neutron and Electron Diffraction Studies of La(Zn Ti )O Perovskite publication-title: Acta Crystallogr. Sec. B‐Struct. Sci. – volume: 17 start-page: 1589 issue: 16 year: 2007 end-page: 92 article-title: A Novel one‐pot Metathesis Route for the Synthesis of Double Perovskites, Ba MM' O (M = Mg, Ni, Zn; M′ = Nb, Ta) With 1:2 Ordering of M and M′ Atoms publication-title: J. Mater. Chem. – volume: 90 start-page: 3326 issue: 10 year: 2007 end-page: 30 article-title: Revised Method for the Prediction of Lattice Constants in Cubic and Pseudocubic Perovskites publication-title: J. Am. Ceram. Soc. – volume: 2 start-page: 2418 issue: 7 year: 2014 end-page: 26 article-title: An Integrated Approach for Structural Characterization of Complex Solid State Electrolytes: The Case of Lithium Lanthanum Titanate publication-title: J. Mater. Chem. A – volume: 27 start-page: 892 year: 1994 end-page: 900 article-title: A Correction for Powder Diffraction Peak Asymmetry Due to Axial Divergence publication-title: J. Appl. Crystallogr. – volume: 117 start-page: 26740 issue: 50 year: 2013 end-page: 9 article-title: Gradual Structural Evolution From Pyrochlore to Defect‐Fluorite in Y Sn Zr O : Average vs Local Structure publication-title: J. Phys. Chem. C – volume: 112 start-page: 345 issue: 2 year: 1994 end-page: 54 article-title: Synthesis, Characterization, and Acid Exchange of the Layered Perovskites – A Nd Ti O (A = NA, K) publication-title: J. Solid State Chem. – volume: 644 start-page: 982 year: 2015 end-page: 95 article-title: Lattice‐Constant Prediction and Effect of Vacancies in Aliovalently Doped Perovskites publication-title: J. Alloys Compd. – volume: 114 start-page: 277 issue: 1 year: 1995 end-page: 81 article-title: High‐Pressure Synthesis and Crystal‐Structure of CaFeTi O , a New Perovskite Structure Type publication-title: J. Solid State Chem. – volume: 112 start-page: 291 issue: 3–4 year: 1998 end-page: 7 article-title: Electrical Properties of La Li Ti O (0.1 < < 0.3) publication-title: Solid State Ionics – volume: 54 start-page: 11169 issue: 16 year: 1996 end-page: 86 article-title: Efficient Iterative Schemes for ab Initio Total‐Energy Calculations Using a Plane‐Wave Basis set publication-title: Phys. Rev. B – volume: 1148 start-page: 15 year: 2009 end-page: 05 article-title: Structural Complexity in AA′MM′O Perovskites. A Transmission Electron Microscopy Study publication-title: Mater. Res. Soc. Symp. Proc. – volume: 180 start-page: 824 issue: 3 year: 2007 end-page: 33 article-title: Phase Transitions in A‐Site Substituted Perovskite Compounds: The (Ca Na La )TiO3 (0 ≤ ≤ 0.5) Solid Solution publication-title: J. Solid State Chem. – volume: 88 start-page: 2332 issue: 8 year: 2005 end-page: 5 article-title: Temperature Dependence of Lattice Parameters and Anisotropic Thermal Expansion of Bismuth Oxide publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 751 issue: SEP1 year: 1976 end-page: 67 article-title: Revised Effective Ionic‐Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides publication-title: Acta Crystallogr. Sec. A – volume: 138 start-page: 307 issue: 2 year: 1998 end-page: 12 article-title: A Structural Study of the Perovskite Series Na La Th TiO publication-title: J. Solid State Chem. – volume: 177 start-page: 1157 issue: 4–5 year: 2004 end-page: 64 article-title: Structural Changes Produced During Heating of the Fast ion Conductor Li La TiO . A Neutron Diffraction Study publication-title: J. Solid State Chem. – volume: 77 start-page: 3865 issue: 18 year: 1996 end-page: 8 article-title: Generalized Gradient Approximation Made Simple publication-title: Phys. Rev. Lett. – volume: 207 start-page: 117 year: 2013 end-page: 25 article-title: Investigation of the Hydrothermal Crystallisation of the Perovskite Solid Solution NaCe La Ti O and its Defect Chemistry publication-title: J. Solid State Chem. – volume: 11 start-page: 4077 year: 1967 end-page: 8 article-title: Substitution of Copper for a Bivalent Metal in Titanates of Perovskite Type publication-title: Bull. Soc. Chim. Fr. – volume: 14 start-page: 477 year: 1926 end-page: 85 article-title: The Laws of Crystal Chemistry publication-title: Naturwissenschaften – volume: 127 start-page: 283 issue: 2 year: 1996 end-page: 94 article-title: Structural and Microstructural Studies of the Series La Li V TiO publication-title: J. Solid State Chem. – volume: 166 start-page: 67 issue: 1 year: 2002 end-page: 72 article-title: Crystal Structure of a Lithium ion‐Conducting Perovskite La Li TiO ( = 0.05) publication-title: J. Solid State Chem. – volume: 21 start-page: 4706 issue: 19 year: 2009 end-page: 10 article-title: Crystal Structure of Sr Ce TiO Ceramics publication-title: Chem. Mater. – volume: 28 start-page: 3384 year: 1972 end-page: 92 – volume: 225 start-page: 359 year: 2015 end-page: 67 article-title: Structural Effect of Aliovalent Doping in Lead Perovskites publication-title: J. Solid State Chem. – volume: 50 start-page: 17953 issue: 24 year: 1994 end-page: 79 article-title: Projector Augmented‐Wave Method publication-title: Phys. Rev. B – volume: 148 start-page: 329 issue: 2 year: 1999 end-page: 32 article-title: Structural Refinement by Neutron Diffraction of La Li Ti O publication-title: J. Solid State Chem. – volume: 200 start-page: 93 issue: 1–4 year: 1997 end-page: 107 article-title: High Temperature Quantum Paraelectricity in Perovskite‐Type Titanates Ln Na TiO (Ln = La, Pr, Nd, Sm, Eu, Gd and Tb) publication-title: Ferroelectrics – volume: 148 start-page: 1 issue: 1 year: 2013 end-page: 16 article-title: Perovskites: Temperature and Coordination Dependent Ionic Radii publication-title: Integr. Ferroelectr. – year: 1984 – volume: 6 start-page: 67 issue: 1 year: 1953 end-page: 70 article-title: Rare Earth Titianates With a Perovskite Structure publication-title: Acta Crystallogr. A – volume: 51 start-page: 668 year: 1995 end-page: 73 article-title: Crystal‐Structure of the Antiferroelectric Perovskite Pb MgWO publication-title: Acta Crystallogr. Sect. B‐Struct. Sci. – volume: 95 start-page: 241 issue: 3–4 year: 1997 end-page: 8 article-title: Structural and Electrical Characterization of new Materials With Perovskite Structure publication-title: Solid State Ionics – volume: 163 start-page: 472 issue: 2 year: 2002 end-page: 8 article-title: New La TiO Derivatives: Structure and Impedance Spectroscopy publication-title: J. Solid State Chem. – volume: 59 start-page: 1758 issue: 3 year: 1999 end-page: 75 article-title: From Ultrasoft Pseudopotentials to the Projector Augmented‐Wave Method publication-title: Phys. Rev. B – volume: 20 start-page: 1 issue: 50 year: 2008 end-page: 6 article-title: Structure and Phase Transition of Na La TiO publication-title: J. Phys.‐Condens. Matter – volume: 180 start-page: 1678 issue: 5 year: 2007 end-page: 85 article-title: Systematic Study of Photoluminescence Upon Band gap Excitation in Perovskite‐Type Titanates R Na TiO : Pr (R = La, Gd, Lu, and Y) publication-title: J. Solid State Chem. – volume: 45 start-page: 8736 issue: 21 year: 2006 end-page: 42 article-title: Reversible Cation/Anion Extraction From K La Ti O : Formation of new Layered Titanates, KLa Ti O and La Ti O publication-title: Inorg. Chem. – volume: 177 start-page: 3037 issue: 35–36 year: 2006 end-page: 44 article-title: Structural Investigations of Migration Pathways in Lithium ion‐Conducting La Li TiO Perovskites publication-title: Solid State Ionics – volume: 15 start-page: 4543 issue: 26 year: 2003 end-page: 53 article-title: Structures and Phase Transition in the Layered Perovskite La Sr TiO : A new Orthorhombic Structure Solved From High‐Resolution Diffraction in Combination With Group Theoretical Analysis publication-title: J. Phys.‐Condens. Matter – volume: 575 start-page: 239 year: 2013 end-page: 45 article-title: Effective Size of Vacancies in Aliovalently Doped SrTiO Perovskites publication-title: J. Alloys Compd. – volume: 18 start-page: 2411 issue: 9 year: 2006 end-page: 7 article-title: Neutron Diffraction Study of Quenched Li La TiO Lithium ion Conducting Perovskite publication-title: Chem. Mater. – ident: e_1_2_6_16_1 doi: 10.1016/j.ssi.2009.08.002 – ident: e_1_2_6_53_1 doi: 10.4191/KCERS.2003.40.6.513 – ident: e_1_2_6_38_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_24_1 doi: 10.1016/0025-5408(92)90251-T – ident: e_1_2_6_23_1 doi: 10.1006/jssc.1995.1040 – ident: e_1_2_6_31_1 doi: 10.1016/j.jallcom.2015.04.213 – ident: e_1_2_6_10_1 doi: 10.1021/cm048353a – ident: e_1_2_6_15_1 doi: 10.1016/j.jssc.2007.03.017 – ident: e_1_2_6_63_1 doi: 10.1107/S0567739472001536 – ident: e_1_2_6_28_1 doi: 10.1021/cm703659f – ident: e_1_2_6_68_1 doi: 10.1111/j.1551-2916.2005.00432.x – volume: 11 start-page: 4077 year: 1967 ident: e_1_2_6_25_1 article-title: Substitution of Copper for a Bivalent Metal in Titanates of Perovskite Type publication-title: Bull. Soc. Chim. Fr. – ident: e_1_2_6_33_1 doi: 10.1007/BF01507527 – ident: e_1_2_6_55_1 doi: 10.1016/j.ssi.2006.08.012 – ident: e_1_2_6_30_1 doi: 10.1016/j.jallcom.2013.04.091 – ident: e_1_2_6_51_1 doi: 10.1557/PROC-575-337 – ident: e_1_2_6_66_1 doi: 10.1021/cm060120r – ident: e_1_2_6_52_1 doi: 10.1016/S0167-2738(00)00761-X – ident: e_1_2_6_12_1 doi: 10.1016/j.jssc.2006.12.030 – volume: 1148 start-page: 15 year: 2009 ident: e_1_2_6_18_1 article-title: Structural Complexity in AA′MM′O6 Perovskites. A Transmission Electron Microscopy Study publication-title: Mater. Res. Soc. Symp. Proc. – ident: e_1_2_6_43_1 doi: 10.1016/j.jssc.2012.05.008 – ident: e_1_2_6_45_1 doi: 10.1107/S0108768106015527 – ident: e_1_2_6_32_1 doi: 10.1107/S0567739476001551 – ident: e_1_2_6_37_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_6_48_1 doi: 10.1016/j.jssc.2011.11.007 – ident: e_1_2_6_65_1 doi: 10.1016/S0167-2738(96)00522-X – ident: e_1_2_6_7_1 doi: 10.1016/S0167-577X(99)00149-4 – ident: e_1_2_6_34_1 doi: 10.1111/j.1551-2916.2007.01881.x – ident: e_1_2_6_39_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_6_49_1 doi: 10.1107/S0108768194014047 – ident: e_1_2_6_46_1 doi: 10.1107/S0108270103011934 – ident: e_1_2_6_17_1 doi: 10.1016/j.jssc.2013.09.015 – ident: e_1_2_6_58_1 doi: 10.1006/jssc.1999.8456 – ident: e_1_2_6_67_1 doi: 10.1006/jssc.2002.9560 – ident: e_1_2_6_40_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_6_2_1 doi: 10.1080/10584587.2013.851576 – ident: e_1_2_6_54_1 doi: 10.1016/S0167-2738(98)00220-3 – ident: e_1_2_6_42_1 doi: 10.1021/jp408682r – start-page: 161 volume-title: Zeitschrift für Anorganische und Allgemeine Chemie year: 1977 ident: e_1_2_6_26_1 – ident: e_1_2_6_29_1 doi: 10.1021/cm9018698 – volume-title: The Science and Engineering of Materials year: 1989 ident: e_1_2_6_41_1 – ident: e_1_2_6_57_1 doi: 10.1039/c3ta14433j – ident: e_1_2_6_5_1 doi: 10.1107/S0365110X53000156 – ident: e_1_2_6_22_1 doi: 10.1246/bcsj.57.1859 – ident: e_1_2_6_14_1 doi: 10.1016/j.jssc.2006.01.005 – ident: e_1_2_6_50_1 doi: 10.1002/(SICI)1521-3773(20000204)39:3<619::AID-ANIE619>3.0.CO;2-O – ident: e_1_2_6_9_1 doi: 10.1006/jssc.2001.9430 – ident: e_1_2_6_3_1 doi: 10.1080/00150199708008599 – ident: e_1_2_6_36_1 doi: 10.1107/S0021889894004218 – ident: e_1_2_6_59_1 doi: 10.1093/jmicro/dfm031 – ident: e_1_2_6_35_1 doi: 10.1016/j.jssc.2014.12.024 – ident: e_1_2_6_21_1 doi: 10.1006/jssc.1994.1315 – ident: e_1_2_6_13_1 doi: 10.1088/0953-8984/20/50/505215 – ident: e_1_2_6_27_1 doi: 10.1107/S0567740872007976 – ident: e_1_2_6_60_1 doi: 10.1016/S0025-5408(98)00170-6 – ident: e_1_2_6_61_1 doi: 10.1016/j.jssc.2003.10.036 – ident: e_1_2_6_4_1 doi: 10.1103/PhysRevB.19.3593 – ident: e_1_2_6_19_1 doi: 10.1088/0953-8984/15/26/304 – ident: e_1_2_6_56_1 doi: 10.1006/jssc.1996.0385 – ident: e_1_2_6_44_1 doi: 10.1039/B616238J – ident: e_1_2_6_62_1 doi: 10.1007/978-94-009-5540-0 – ident: e_1_2_6_8_1 doi: 10.1006/jssc.1998.7789 – volume: 24 start-page: 1275 year: 1960 ident: e_1_2_6_6_1 article-title: Physical‐Chemical Investigation of the Formation of Complex Ferroelectrics With Perovskite Structure publication-title: Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya – ident: e_1_2_6_47_1 doi: 10.1002/pssb.201046030 – ident: e_1_2_6_64_1 doi: 10.1007/978-0-387-76501-3 – ident: e_1_2_6_20_1 doi: 10.1021/ic060434g – ident: e_1_2_6_11_1 doi: 10.1016/j.jssc.2006.12.012 |
SSID | ssj0001984 |
Score | 2.3818667 |
Snippet | Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation... Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 429 |
SubjectTerms | Cations Ceramics Density functional theory Diffraction Empirical analysis Mathematical models modeling/model Modelling Neutron diffraction Order disorder Perovskite perovskites Solid solutions vacancies |
Title | Empirical Evidence for A‐Site Order in Perovskites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14547 https://www.proquest.com/docview/1857562801 https://www.proquest.com/docview/1880005456 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPsid98C5Wp0T0RaGja5tewJcxNsbAC-pkL1KSNIGhdmNdffDJj-Bn9JOYpJdNEUHfWnpKm8vp-Z80-QXghBKOHcwsE3NGTDcUjhnYnJo0CF0pv4XLQ7Ua-eLS6w3c_hAPl-C8XAuT8yGqATflGfp7rRyc0HTRyQnj0s-xq5aSq8laShHdzNlRMpt2S-2roHAFm1RP46lu_RqN5hJzUajqSNNdg4fyHfMJJo-NbEYb7PUbvvG_hViH1UKColbeZzZgiSebsLIAJpRn96M0y23SLXA7z5ORRomgchNSJLUuan28vd9KyYquFL8TjRJ0zafjl1QNCKfbMOh27to9s9htwWSOj2WoInaMvVgELCaMxJbPQ8IZjYkX8NjCjIjA8ShrUoWX9AV3HI_I5NInVhzKrMh2dqCWjBO-C8hqEtsPhR9iyl0fE2JTHgiKFe_QFo4w4LSs9YgVKHK1I8ZTVKUksl4iXS8GHFe2kxzA8aNVvWy8qHDCNFKYKynvZAw24Ki6LN1H_RMhCR9nyibQshV7BpzplvrlKVG_1e7oo72_GO_Dsq3EgB64qUNtNs34gZQyM3qou-wnxHXvIA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHVTkAB6B8iG1LawQcQEqVJnE-DhxW7VbbTxC0qLdgO2NpBWSrZrcVnHgEXoRX4SF4ks44H10QQuLQA7dEGSmJxzP5e2L_DPBUK5ShNL4n0SgvymzopQFqT6dZRPLbRpjxauT9g3h4FO0cy-M5-N6uhan5EF3BjSPD5WsOcC5Iz0a5MkiBLqOkmVO5i5_PacRWvdzeJPc-C4KtweHG0Gs2FfBMmEjKyCooZFzY1BTKqMJPMFNodKHiFAtfGmXTMNZmXTNFMbEYhrGiMVSi_CIj8c-cA8r413gLcUb1b765pFXR-D1q1TZj6Boaqps41D3rr9-_S1E7K43dt23rNvxoW6We0vJhbTrRa-bLb8DI_6bZ7sCtRmWLfh0WCzCH5V24OcNepLN3o2pa21T3IBp8Ohk5Wopo91kVJOdF_-fXb29JlYtXjCgVo1K8xtPxWcU17-o-HF3JSzyA-XJc4kMQ_roKkswmmdQYJVKpQGNqtWSkY2BD24PnrZtz09DWedOPj3k36iI_5M4PPXjS2Z7UjJE_Wi23vSVv8kyVM8mLFCzJjB487i5ThuDfPqrE8ZRtUqfMZdyDF65r_OUu-U5_Y-COFv_FeBWuDw_39_K97YPdJbgRsPZxdaplmJ-cTvERKbeJXnHxIuD9Vfe0C5RmT94 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHVZEqOADlQ2xbWiPgAFKqNLHzceCw6u6qH1AqoKi3YDtjaUWbXTW7oPbEI_AgvEpfok_SsfPRpUJIHHrgligjJfF4Jv9x7J8BXiiJIhTa9wRq6fHUhF4SoPJUknKS34Zjalcjv9uLtg74zqE4nINfzVqYig_RDrjZyHD52gb4ODezQS41UpwLHtdTKnfx9DsVbOWb7R5592UQDPqfNre8ek8BT4exoIQsg1xEuUl0LrXM_RhTiVrlMkow94WWJgkjpTeUhSjGBsMwklRCxdLPU9L-FnNACf8Wj_zUbhTR-3AFq6LynTdi21LoahiqmzfUPuvvn78rTTurjN2nbXAPzptGqWa0fF2fTtS6PrvGi_xfWu0-3K01NutWQbEIc1g8gDsz5EU6-zwsp5VN-RB4_3g8dKwU1uyyykjMs-7Fj58fSZOz9xZQyoYF28eT0bfSjniXj-DgRl7iMcwXowKfAPM3ZBCnJk6FQh4LKQOFiVHCAh0DE5oOvGq8nOmatW63_DjK2pqL_JA5P3TgeWs7rggjf7RaaTpLVmeZMrMcL9KvJDI68Ky9TPnB_vSRBY6m1iZxulxEHXjtesZf7pLtdDf77mjpX4zXYGG_N8jebu_tLsPtwAofN0i1AvOTkyk-Jdk2UasuWhh8uemOdglCoU6N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Evidence+for+A-Site+Order+in+Perovskites&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Tolman%2C+Kevin&rft.au=Ubic%2C+Rick&rft.au=Liu%2C+Bing&rft.au=Williamson%2C+Izaak&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=100&rft.issue=1&rft.spage=429&rft_id=info:doi/10.1111%2Fjace.14547&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4298914481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |