Empirical Evidence for A‐Site Order in Perovskites

Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the N...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 100; no. 1; pp. 429 - 442
Main Authors Tolman, Kevin, Ubic, Rick, Liu, Bing, Williamson, Izaak, Bedke, Katherine, Nelson, Eric B., Li, Lan, Chen, Xiang Ming, Dickey, E.
Format Journal Article
LanguageEnglish
Published Columbus Wiley Subscription Services, Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na(1−3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1−3x)/2La(1+x)/2TiO3 and Na(1−3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.
AbstractList Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na(1−3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1−3x)/2La(1+x)/2TiO3 and Na(1−3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.
Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A-site cation ordering. Specifically, four compositions in the Na(1-3x)/2La(1+x)/2TiO3 system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid-state mixed-oxide method. The structure of the x = 0 end-member (Na0.5La0.5TiO3) has been reported in various space groups, but always with a random distribution of Na+ and La3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long-range A-site ordering is observed in this composition via X-ray or neutron diffraction, electron-diffraction data indicate short-range ordering of Na+ and La3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First-principles calculations via density functional theory support both conclusions that short-range ordering in Na0.5La0.5TiO3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li(1-3x)/2La(1+x)/2TiO3 and Na(1-3x)/2La(1+x)/2(Mg0.5W0.5)O3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.
Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A‐site cation ordering. Specifically, four compositions in the Na (1−3 x )/2 La (1+ x )/2 TiO 3 system ( x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid‐state mixed‐oxide method. The structure of the x = 0 end‐member (Na 0.5 La 0.5 TiO 3 ) has been reported in various space groups, but always with a random distribution of Na + and La 3+ on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long‐range A‐site ordering is observed in this composition via X‐ray or neutron diffraction, electron‐diffraction data indicate short‐range ordering of Na + and La 3+ ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x . First‐principles calculations via density functional theory support both conclusions that short‐range ordering in Na 0.5 La 0.5 TiO 3 is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li (1−3 x )/2 La (1+ x )/2 TiO 3 and Na (1−3 x )/2 La (1+ x )/2 (Mg 0.5 W 0.5 )O 3 solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.
Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation ordering. In this work, an empirical model is used to predict the existence of A-site cation ordering. Specifically, four compositions in the Na sub((1-3x)/2)La sub((1+x)/2)TiO sub(3) system (x = 0.0, 0.0533, 0.1733 and 0.225) were synthesized using a conventional solid-state mixed-oxide method. The structure of the x = 0 end-member (Na sub(0.5)La sub(0.5)TiO sub(3)) has been reported in various space groups, but always with a random distribution of Na super(+) and La super(3+) on the A site; however, empirical modeling suggests that it is not only ordered but also that a small volume increase accompanies the ordering process. While no evidence of long-range A-site ordering is observed in this composition via X-ray or neutron diffraction, electron-diffraction data indicate short-range ordering of Na super(+) and La super(3+) ions, with the degree of cation ordering decreasing (but the scale of ordered domains and degree of vacancy ordering generally increasing) with increasing x. First-principles calculations via density functional theory support both conclusions that short-range ordering in Na sub(0.5)La sub(0.5)TiO sub(3) is stable and that it results in a volume increase with respect to the disordered analog. A similar analysis has been conducted for the Li sub((1-3x)/2)La sub((1+x)/2)TiO sub(3) and Na sub((1-3x)/2)La sub((1+x)/2)(Mg sub(0.5) W sub(0.5))O sub(3) solid solutions. These systems provide additional validation of the accuracy and versatility of the empirical modeling method used.
Author Liu, Bing
Ubic, Rick
Williamson, Izaak
Tolman, Kevin
Dickey, E.
Chen, Xiang Ming
Bedke, Katherine
Li, Lan
Nelson, Eric B.
Author_xml – sequence: 1
  givenname: Kevin
  surname: Tolman
  fullname: Tolman, Kevin
  email: kevintolman@boisestate.edu
  organization: Boise State University
– sequence: 2
  givenname: Rick
  surname: Ubic
  fullname: Ubic, Rick
  organization: Boise State University
– sequence: 3
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
  organization: Zhejiang University
– sequence: 4
  givenname: Izaak
  surname: Williamson
  fullname: Williamson, Izaak
  organization: Boise State University
– sequence: 5
  givenname: Katherine
  surname: Bedke
  fullname: Bedke, Katherine
  organization: Boise State University
– sequence: 6
  givenname: Eric B.
  surname: Nelson
  fullname: Nelson, Eric B.
  organization: Boise State University
– sequence: 7
  givenname: Lan
  surname: Li
  fullname: Li, Lan
  organization: Center for Advanced Energy Studies
– sequence: 8
  givenname: Xiang Ming
  surname: Chen
  fullname: Chen, Xiang Ming
  organization: Zhejiang University
– sequence: 9
  givenname: E.
  surname: Dickey
  fullname: Dickey, E.
BookMark eNp9kM9KAzEQxoNUsK1efIIFLyJsTbKbP3sspf6jUEE9L2kyC6nbTU22ld58BJ_RJzF1PRVxLsMMv-9j5hugXuMaQOic4BGJdb1UGkYkZ7k4Qn3CGElpQXgP9THGNBWS4hM0CGEZR1LIvI_y6WptvdWqTqZba6DRkFTOJ-Ovj88n20Iy9wZ8YpvkEbzbhte4C6fouFJ1gLPfPkQvN9PnyV06m9_eT8azVGeCiVQqahg3ldRGaWWwgEKBXhjFJRjMtKpkxheaLHJBqaggy7hieSEUNgWnnGZDdNn5rr1720Boy5UNGupaNeA2oSRSxkdYznhELw7Qpdv4Jl4XKSYYpxKTSF11lPYuBA9VufZ2pfyuJLjcB1juAyx_AowwPoC1bVVrXdN6Zeu_JaSTvNsadv-Ylw_jybTTfAPEtIR6
CODEN JACTAW
CitedBy_id crossref_primary_10_1111_jace_20264
crossref_primary_10_1021_acs_inorgchem_4c04267
crossref_primary_10_1016_j_jallcom_2020_156106
crossref_primary_10_1111_jace_16695
crossref_primary_10_1111_jace_16168
crossref_primary_10_1016_j_jallcom_2017_11_333
crossref_primary_10_1016_j_materresbull_2025_113318
Cites_doi 10.1016/j.ssi.2009.08.002
10.4191/KCERS.2003.40.6.513
10.1103/PhysRevLett.77.3865
10.1016/0025-5408(92)90251-T
10.1006/jssc.1995.1040
10.1016/j.jallcom.2015.04.213
10.1021/cm048353a
10.1016/j.jssc.2007.03.017
10.1107/S0567739472001536
10.1021/cm703659f
10.1111/j.1551-2916.2005.00432.x
10.1007/BF01507527
10.1016/j.ssi.2006.08.012
10.1016/j.jallcom.2013.04.091
10.1557/PROC-575-337
10.1021/cm060120r
10.1016/S0167-2738(00)00761-X
10.1016/j.jssc.2006.12.030
10.1016/j.jssc.2012.05.008
10.1107/S0108768106015527
10.1107/S0567739476001551
10.1103/PhysRevB.54.11169
10.1016/j.jssc.2011.11.007
10.1016/S0167-2738(96)00522-X
10.1016/S0167-577X(99)00149-4
10.1111/j.1551-2916.2007.01881.x
10.1103/PhysRevB.50.17953
10.1107/S0108768194014047
10.1107/S0108270103011934
10.1016/j.jssc.2013.09.015
10.1006/jssc.1999.8456
10.1006/jssc.2002.9560
10.1103/PhysRevB.59.1758
10.1080/10584587.2013.851576
10.1016/S0167-2738(98)00220-3
10.1021/jp408682r
10.1021/cm9018698
10.1039/c3ta14433j
10.1107/S0365110X53000156
10.1246/bcsj.57.1859
10.1016/j.jssc.2006.01.005
10.1002/(SICI)1521-3773(20000204)39:3<619::AID-ANIE619>3.0.CO;2-O
10.1006/jssc.2001.9430
10.1080/00150199708008599
10.1107/S0021889894004218
10.1093/jmicro/dfm031
10.1016/j.jssc.2014.12.024
10.1006/jssc.1994.1315
10.1088/0953-8984/20/50/505215
10.1107/S0567740872007976
10.1016/S0025-5408(98)00170-6
10.1016/j.jssc.2003.10.036
10.1103/PhysRevB.19.3593
10.1088/0953-8984/15/26/304
10.1006/jssc.1996.0385
10.1039/B616238J
10.1007/978-94-009-5540-0
10.1006/jssc.1998.7789
10.1002/pssb.201046030
10.1007/978-0-387-76501-3
10.1021/ic060434g
10.1016/j.jssc.2006.12.012
ContentType Journal Article
Copyright 2016 The American Ceramic Society
2017 American Ceramic Society
Copyright_xml – notice: 2016 The American Ceramic Society
– notice: 2017 American Ceramic Society
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.14547
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList
Materials Research Database
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 442
ExternalDocumentID 4298914481
10_1111_jace_14547
JACE14547
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1052788
– fundername: Micron School of Materials Science and Engineering at Boise State University
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3757-8a2d56df8cdacad07e9aecbda68ed05caf836bc1b47227fe336a5497a0d962623
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Jul 11 15:28:50 EDT 2025
Fri Jul 25 19:15:20 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Tue Jul 01 01:35:30 EDT 2025
Wed Jan 22 17:10:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3757-8a2d56df8cdacad07e9aecbda68ed05caf836bc1b47227fe336a5497a0d962623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1857562801
PQPubID 41752
PageCount 11
ParticipantIDs proquest_miscellaneous_1880005456
proquest_journals_1857562801
crossref_primary_10_1111_jace_14547
crossref_citationtrail_10_1111_jace_14547
wiley_primary_10_1111_jace_14547_JACE14547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2000; 575
2013; 207
2015; 225
2000; 42
2003; 15
2003; 59
1994; 27
2000; 134
1998; 112
2006; 177
2006; 179
1996; 77
1976; 32
2004; 177
1997; 95
2006; 62
2014; 2
1967; 11
1999; 59
1984; 57
2013; 117
1984
2007; 180
2008; 20
2003; 40
1989
2009; 1148
1994; 112
2007; 17
1979; 19
2012; 185
1995; 51
2009; 21
2015; 644
2009; 180
2013; 148
2010; 247
2009
2007; 90
2006; 18
1953; 6
1995; 114
1998; 138
1926; 14
1999; 148
2007; 56
1996; 54
2005; 88
1972; 28
1996; 127
2012; 194
2000; 39
2006; 45
1960; 24
2002; 163
2002; 166
1997; 200
2013; 575
1977; 435
1992; 27
2005; 17
1994; 50
1998; 33
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Deschanvres A. (e_1_2_6_25_1) 1967; 11
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Agranovskaya A. (e_1_2_6_6_1) 1960; 24
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
García‐Martína S. (e_1_2_6_18_1) 2009; 1148
Askeland D. R. (e_1_2_6_41_1) 1989
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
Propach V. (e_1_2_6_26_1) 1977
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 56
  start-page: 225
  issue: 6
  year: 2007
  end-page: 34
  article-title: Crystal and Defect Structures of La Li TiO ( Similar to 0.1) Produced by a Melt Process
  publication-title: J. Electron Microsc.
– year: 2009
– volume: 185
  start-page: 107
  year: 2012
  end-page: 16
  article-title: Structures of Ordered Tungsten‐ or Molybdenum‐Containing Quaternary Perovskite Oxides
  publication-title: J. Solid State Chem.
– volume: 435
  start-page: 161
  year: 1977
  end-page: 71
– volume: 247
  start-page: 1773
  issue: 7
  year: 2010
  end-page: 7
  article-title: Structural Evolution of Double Perovskite Sr MgWO Under High Pressure
  publication-title: Phys. Status Solidi B‐Basic Solid State Phys.
– volume: 19
  start-page: 3593
  issue: 7
  year: 1979
  end-page: 602
  article-title: SrTiO – Intrinsic Quantum Para‐Electric Below 4‐K
  publication-title: Phys. Rev. B
– year: 1989
– volume: 57
  start-page: 1859
  issue: 7
  year: 1984
  end-page: 62
  article-title: Cation Ordering in (NaLa)(MgW)O With the Perovskite Structure
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 17
  start-page: 1391
  issue: 6
  year: 2005
  end-page: 7
  article-title: Structural Modifications Induced by Composition in the La Na Ti O Perovskites: A Neutron Diffraction Study
  publication-title: Chem. Mater.
– volume: 39
  start-page: 619
  issue: 3
  year: 2000
  end-page: 21
  article-title: On the Location of Li Cations in the Fast Li Cation Conductor La Li TiO Perovskite
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 1275
  year: 1960
  end-page: 81
  article-title: Physical‐Chemical Investigation of the Formation of Complex Ferroelectrics With Perovskite Structure
  publication-title: Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya
– volume: 20
  start-page: 3127
  issue: 9
  year: 2008
  end-page: 33
  article-title: Structure of Compounds in the Sr Ce TiO Homologous Series
  publication-title: Chem. Mater.
– volume: 179
  start-page: 1076
  issue: 4
  year: 2006
  end-page: 85
  article-title: A‐Site Cation Ordering in AA'BB'O Perovskites
  publication-title: J. Solid State Chem.
– volume: 180
  start-page: 995
  issue: 3
  year: 2007
  end-page: 1001
  article-title: Crystal Structures of Na Ln TiO (Ln: La, Eu, Tb)
  publication-title: J. Solid State Chem.
– volume: 575
  start-page: 337
  year: 2000
  end-page: 42
  article-title: Relationship Between Crystal Structure and Li+‐Conductivity in La Li TiO Perovskite
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 42
  start-page: 1
  issue: 1–2
  year: 2000
  end-page: 6
  article-title: Structure Characteristics and Valence State Study for La Na TiO Synthesized Under High‐Pressure and High‐Temperature Conditions
  publication-title: Mater. Lett.
– volume: 40
  start-page: 513
  issue: 6
  year: 2003
  end-page: 8
  article-title: The Structure Determination of La Li □ TiO by the Powder Neutron and X‐ray Diffraction
  publication-title: J. Korean Ceram. Soc.
– volume: 27
  start-page: 1115
  issue: 9
  year: 1992
  end-page: 23
  article-title: Crystal‐Structure and NMR‐Studies of a Cubic Perovskite – The Fluoride NaBaLiNiF
  publication-title: Mater. Res. Bull.
– volume: 194
  start-page: 168
  year: 2012
  end-page: 72
  article-title: Transmission Electron Microscopic Study of Pyrochlore to Defect‐Fluorite Transition in Rare‐Earth Pyrohafnates
  publication-title: J. Solid State Chem.
– volume: 28
  start-page: 607
  issue: 6
  year: 1972
  end-page: 16
  article-title: Vacancy Short‐Range Order in Substoichiometric Transition Metal Carbides and Nitrides With the NaCl Structure. II. Numerical Calculation of Vacancy Arrangement
  publication-title: AYA Acta Crystallogr. Sect. A
– volume: 59
  start-page: I86
  year: 2003
  end-page: 8
  article-title: Ca MgWO From Neutron and X‐ray Powder Data
  publication-title: Acta Crystallogr. Sect. C‐Cryst. Struct. Commun.
– volume: 33
  start-page: 1681
  issue: 11
  year: 1998
  end-page: 91
  article-title: Topotactic H /Li ion Exchange on La Li TiO : New Metastable Perovskite Phases La TiO (OH) and La TiO Obtained by Further Dehydration
  publication-title: Mater. Res. Bull.
– volume: 180
  start-page: 1362
  issue: 26–27
  year: 2009
  end-page: 71
  article-title: Li Mobility in Li Na La TiO Perovskites (0 ≤ ≤0.5) Influence of Structural and Compositional Parameters
  publication-title: Solid State Ionics
– volume: 134
  start-page: 219
  issue: 3–4
  year: 2000
  end-page: 28
  article-title: Influence of Composition on the Structure and Conductivity of the Fast Ionic Conductors La Li TiO (0.03 ≤ ≤ 0.167)
  publication-title: Solid State Ionics
– volume: 62
  start-page: 521
  year: 2006
  end-page: 9
  article-title: Neutron and Electron Diffraction Studies of La(Zn Ti )O Perovskite
  publication-title: Acta Crystallogr. Sec. B‐Struct. Sci.
– volume: 17
  start-page: 1589
  issue: 16
  year: 2007
  end-page: 92
  article-title: A Novel one‐pot Metathesis Route for the Synthesis of Double Perovskites, Ba MM' O (M = Mg, Ni, Zn; M′ = Nb, Ta) With 1:2 Ordering of M and M′ Atoms
  publication-title: J. Mater. Chem.
– volume: 90
  start-page: 3326
  issue: 10
  year: 2007
  end-page: 30
  article-title: Revised Method for the Prediction of Lattice Constants in Cubic and Pseudocubic Perovskites
  publication-title: J. Am. Ceram. Soc.
– volume: 2
  start-page: 2418
  issue: 7
  year: 2014
  end-page: 26
  article-title: An Integrated Approach for Structural Characterization of Complex Solid State Electrolytes: The Case of Lithium Lanthanum Titanate
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 892
  year: 1994
  end-page: 900
  article-title: A Correction for Powder Diffraction Peak Asymmetry Due to Axial Divergence
  publication-title: J. Appl. Crystallogr.
– volume: 117
  start-page: 26740
  issue: 50
  year: 2013
  end-page: 9
  article-title: Gradual Structural Evolution From Pyrochlore to Defect‐Fluorite in Y Sn Zr O : Average vs Local Structure
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 345
  issue: 2
  year: 1994
  end-page: 54
  article-title: Synthesis, Characterization, and Acid Exchange of the Layered Perovskites – A Nd Ti O (A = NA, K)
  publication-title: J. Solid State Chem.
– volume: 644
  start-page: 982
  year: 2015
  end-page: 95
  article-title: Lattice‐Constant Prediction and Effect of Vacancies in Aliovalently Doped Perovskites
  publication-title: J. Alloys Compd.
– volume: 114
  start-page: 277
  issue: 1
  year: 1995
  end-page: 81
  article-title: High‐Pressure Synthesis and Crystal‐Structure of CaFeTi O , a New Perovskite Structure Type
  publication-title: J. Solid State Chem.
– volume: 112
  start-page: 291
  issue: 3–4
  year: 1998
  end-page: 7
  article-title: Electrical Properties of La Li Ti O (0.1 < < 0.3)
  publication-title: Solid State Ionics
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  end-page: 86
  article-title: Efficient Iterative Schemes for ab Initio Total‐Energy Calculations Using a Plane‐Wave Basis set
  publication-title: Phys. Rev. B
– volume: 1148
  start-page: 15
  year: 2009
  end-page: 05
  article-title: Structural Complexity in AA′MM′O Perovskites. A Transmission Electron Microscopy Study
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 180
  start-page: 824
  issue: 3
  year: 2007
  end-page: 33
  article-title: Phase Transitions in A‐Site Substituted Perovskite Compounds: The (Ca Na La )TiO3 (0 ≤ ≤ 0.5) Solid Solution
  publication-title: J. Solid State Chem.
– volume: 88
  start-page: 2332
  issue: 8
  year: 2005
  end-page: 5
  article-title: Temperature Dependence of Lattice Parameters and Anisotropic Thermal Expansion of Bismuth Oxide
  publication-title: J. Am. Ceram. Soc.
– volume: 32
  start-page: 751
  issue: SEP1
  year: 1976
  end-page: 67
  article-title: Revised Effective Ionic‐Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
  publication-title: Acta Crystallogr. Sec. A
– volume: 138
  start-page: 307
  issue: 2
  year: 1998
  end-page: 12
  article-title: A Structural Study of the Perovskite Series Na La Th TiO
  publication-title: J. Solid State Chem.
– volume: 177
  start-page: 1157
  issue: 4–5
  year: 2004
  end-page: 64
  article-title: Structural Changes Produced During Heating of the Fast ion Conductor Li La TiO . A Neutron Diffraction Study
  publication-title: J. Solid State Chem.
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  end-page: 8
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
– volume: 207
  start-page: 117
  year: 2013
  end-page: 25
  article-title: Investigation of the Hydrothermal Crystallisation of the Perovskite Solid Solution NaCe La Ti O and its Defect Chemistry
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 4077
  year: 1967
  end-page: 8
  article-title: Substitution of Copper for a Bivalent Metal in Titanates of Perovskite Type
  publication-title: Bull. Soc. Chim. Fr.
– volume: 14
  start-page: 477
  year: 1926
  end-page: 85
  article-title: The Laws of Crystal Chemistry
  publication-title: Naturwissenschaften
– volume: 127
  start-page: 283
  issue: 2
  year: 1996
  end-page: 94
  article-title: Structural and Microstructural Studies of the Series La Li V TiO
  publication-title: J. Solid State Chem.
– volume: 166
  start-page: 67
  issue: 1
  year: 2002
  end-page: 72
  article-title: Crystal Structure of a Lithium ion‐Conducting Perovskite La Li TiO ( = 0.05)
  publication-title: J. Solid State Chem.
– volume: 21
  start-page: 4706
  issue: 19
  year: 2009
  end-page: 10
  article-title: Crystal Structure of Sr Ce TiO Ceramics
  publication-title: Chem. Mater.
– volume: 28
  start-page: 3384
  year: 1972
  end-page: 92
– volume: 225
  start-page: 359
  year: 2015
  end-page: 67
  article-title: Structural Effect of Aliovalent Doping in Lead Perovskites
  publication-title: J. Solid State Chem.
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  end-page: 79
  article-title: Projector Augmented‐Wave Method
  publication-title: Phys. Rev. B
– volume: 148
  start-page: 329
  issue: 2
  year: 1999
  end-page: 32
  article-title: Structural Refinement by Neutron Diffraction of La Li Ti O
  publication-title: J. Solid State Chem.
– volume: 200
  start-page: 93
  issue: 1–4
  year: 1997
  end-page: 107
  article-title: High Temperature Quantum Paraelectricity in Perovskite‐Type Titanates Ln Na TiO (Ln = La, Pr, Nd, Sm, Eu, Gd and Tb)
  publication-title: Ferroelectrics
– volume: 148
  start-page: 1
  issue: 1
  year: 2013
  end-page: 16
  article-title: Perovskites: Temperature and Coordination Dependent Ionic Radii
  publication-title: Integr. Ferroelectr.
– year: 1984
– volume: 6
  start-page: 67
  issue: 1
  year: 1953
  end-page: 70
  article-title: Rare Earth Titianates With a Perovskite Structure
  publication-title: Acta Crystallogr. A
– volume: 51
  start-page: 668
  year: 1995
  end-page: 73
  article-title: Crystal‐Structure of the Antiferroelectric Perovskite Pb MgWO
  publication-title: Acta Crystallogr. Sect. B‐Struct. Sci.
– volume: 95
  start-page: 241
  issue: 3–4
  year: 1997
  end-page: 8
  article-title: Structural and Electrical Characterization of new Materials With Perovskite Structure
  publication-title: Solid State Ionics
– volume: 163
  start-page: 472
  issue: 2
  year: 2002
  end-page: 8
  article-title: New La TiO Derivatives: Structure and Impedance Spectroscopy
  publication-title: J. Solid State Chem.
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  end-page: 75
  article-title: From Ultrasoft Pseudopotentials to the Projector Augmented‐Wave Method
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 1
  issue: 50
  year: 2008
  end-page: 6
  article-title: Structure and Phase Transition of Na La TiO
  publication-title: J. Phys.‐Condens. Matter
– volume: 180
  start-page: 1678
  issue: 5
  year: 2007
  end-page: 85
  article-title: Systematic Study of Photoluminescence Upon Band gap Excitation in Perovskite‐Type Titanates R Na TiO : Pr (R = La, Gd, Lu, and Y)
  publication-title: J. Solid State Chem.
– volume: 45
  start-page: 8736
  issue: 21
  year: 2006
  end-page: 42
  article-title: Reversible Cation/Anion Extraction From K La Ti O : Formation of new Layered Titanates, KLa Ti O and La Ti O
  publication-title: Inorg. Chem.
– volume: 177
  start-page: 3037
  issue: 35–36
  year: 2006
  end-page: 44
  article-title: Structural Investigations of Migration Pathways in Lithium ion‐Conducting La Li TiO Perovskites
  publication-title: Solid State Ionics
– volume: 15
  start-page: 4543
  issue: 26
  year: 2003
  end-page: 53
  article-title: Structures and Phase Transition in the Layered Perovskite La Sr TiO : A new Orthorhombic Structure Solved From High‐Resolution Diffraction in Combination With Group Theoretical Analysis
  publication-title: J. Phys.‐Condens. Matter
– volume: 575
  start-page: 239
  year: 2013
  end-page: 45
  article-title: Effective Size of Vacancies in Aliovalently Doped SrTiO Perovskites
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 2411
  issue: 9
  year: 2006
  end-page: 7
  article-title: Neutron Diffraction Study of Quenched Li La TiO Lithium ion Conducting Perovskite
  publication-title: Chem. Mater.
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ssi.2009.08.002
– ident: e_1_2_6_53_1
  doi: 10.4191/KCERS.2003.40.6.513
– ident: e_1_2_6_38_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_24_1
  doi: 10.1016/0025-5408(92)90251-T
– ident: e_1_2_6_23_1
  doi: 10.1006/jssc.1995.1040
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jallcom.2015.04.213
– ident: e_1_2_6_10_1
  doi: 10.1021/cm048353a
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jssc.2007.03.017
– ident: e_1_2_6_63_1
  doi: 10.1107/S0567739472001536
– ident: e_1_2_6_28_1
  doi: 10.1021/cm703659f
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1551-2916.2005.00432.x
– volume: 11
  start-page: 4077
  year: 1967
  ident: e_1_2_6_25_1
  article-title: Substitution of Copper for a Bivalent Metal in Titanates of Perovskite Type
  publication-title: Bull. Soc. Chim. Fr.
– ident: e_1_2_6_33_1
  doi: 10.1007/BF01507527
– ident: e_1_2_6_55_1
  doi: 10.1016/j.ssi.2006.08.012
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jallcom.2013.04.091
– ident: e_1_2_6_51_1
  doi: 10.1557/PROC-575-337
– ident: e_1_2_6_66_1
  doi: 10.1021/cm060120r
– ident: e_1_2_6_52_1
  doi: 10.1016/S0167-2738(00)00761-X
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jssc.2006.12.030
– volume: 1148
  start-page: 15
  year: 2009
  ident: e_1_2_6_18_1
  article-title: Structural Complexity in AA′MM′O6 Perovskites. A Transmission Electron Microscopy Study
  publication-title: Mater. Res. Soc. Symp. Proc.
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jssc.2012.05.008
– ident: e_1_2_6_45_1
  doi: 10.1107/S0108768106015527
– ident: e_1_2_6_32_1
  doi: 10.1107/S0567739476001551
– ident: e_1_2_6_37_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jssc.2011.11.007
– ident: e_1_2_6_65_1
  doi: 10.1016/S0167-2738(96)00522-X
– ident: e_1_2_6_7_1
  doi: 10.1016/S0167-577X(99)00149-4
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1551-2916.2007.01881.x
– ident: e_1_2_6_39_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_6_49_1
  doi: 10.1107/S0108768194014047
– ident: e_1_2_6_46_1
  doi: 10.1107/S0108270103011934
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jssc.2013.09.015
– ident: e_1_2_6_58_1
  doi: 10.1006/jssc.1999.8456
– ident: e_1_2_6_67_1
  doi: 10.1006/jssc.2002.9560
– ident: e_1_2_6_40_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_2_1
  doi: 10.1080/10584587.2013.851576
– ident: e_1_2_6_54_1
  doi: 10.1016/S0167-2738(98)00220-3
– ident: e_1_2_6_42_1
  doi: 10.1021/jp408682r
– start-page: 161
  volume-title: Zeitschrift für Anorganische und Allgemeine Chemie
  year: 1977
  ident: e_1_2_6_26_1
– ident: e_1_2_6_29_1
  doi: 10.1021/cm9018698
– volume-title: The Science and Engineering of Materials
  year: 1989
  ident: e_1_2_6_41_1
– ident: e_1_2_6_57_1
  doi: 10.1039/c3ta14433j
– ident: e_1_2_6_5_1
  doi: 10.1107/S0365110X53000156
– ident: e_1_2_6_22_1
  doi: 10.1246/bcsj.57.1859
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jssc.2006.01.005
– ident: e_1_2_6_50_1
  doi: 10.1002/(SICI)1521-3773(20000204)39:3<619::AID-ANIE619>3.0.CO;2-O
– ident: e_1_2_6_9_1
  doi: 10.1006/jssc.2001.9430
– ident: e_1_2_6_3_1
  doi: 10.1080/00150199708008599
– ident: e_1_2_6_36_1
  doi: 10.1107/S0021889894004218
– ident: e_1_2_6_59_1
  doi: 10.1093/jmicro/dfm031
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jssc.2014.12.024
– ident: e_1_2_6_21_1
  doi: 10.1006/jssc.1994.1315
– ident: e_1_2_6_13_1
  doi: 10.1088/0953-8984/20/50/505215
– ident: e_1_2_6_27_1
  doi: 10.1107/S0567740872007976
– ident: e_1_2_6_60_1
  doi: 10.1016/S0025-5408(98)00170-6
– ident: e_1_2_6_61_1
  doi: 10.1016/j.jssc.2003.10.036
– ident: e_1_2_6_4_1
  doi: 10.1103/PhysRevB.19.3593
– ident: e_1_2_6_19_1
  doi: 10.1088/0953-8984/15/26/304
– ident: e_1_2_6_56_1
  doi: 10.1006/jssc.1996.0385
– ident: e_1_2_6_44_1
  doi: 10.1039/B616238J
– ident: e_1_2_6_62_1
  doi: 10.1007/978-94-009-5540-0
– ident: e_1_2_6_8_1
  doi: 10.1006/jssc.1998.7789
– volume: 24
  start-page: 1275
  year: 1960
  ident: e_1_2_6_6_1
  article-title: Physical‐Chemical Investigation of the Formation of Complex Ferroelectrics With Perovskite Structure
  publication-title: Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya
– ident: e_1_2_6_47_1
  doi: 10.1002/pssb.201046030
– ident: e_1_2_6_64_1
  doi: 10.1007/978-0-387-76501-3
– ident: e_1_2_6_20_1
  doi: 10.1021/ic060434g
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jssc.2006.12.012
SSID ssj0001984
Score 2.3818667
Snippet Models for composition–structure relationships are useful in both the lab and industry, yet few exist for perovskites‐containing extrinsic defects or cation...
Models for composition-structure relationships are useful in both the lab and industry, yet few exist for perovskites-containing extrinsic defects or cation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 429
SubjectTerms Cations
Ceramics
Density functional theory
Diffraction
Empirical analysis
Mathematical models
modeling/model
Modelling
Neutron diffraction
Order disorder
Perovskite
perovskites
Solid solutions
vacancies
Title Empirical Evidence for A‐Site Order in Perovskites
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14547
https://www.proquest.com/docview/1857562801
https://www.proquest.com/docview/1880005456
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPsid98C5Wp0T0RaGja5tewJcxNsbAC-pkL1KSNIGhdmNdffDJj-Bn9JOYpJdNEUHfWnpKm8vp-Z80-QXghBKOHcwsE3NGTDcUjhnYnJo0CF0pv4XLQ7Ua-eLS6w3c_hAPl-C8XAuT8yGqATflGfp7rRyc0HTRyQnj0s-xq5aSq8laShHdzNlRMpt2S-2roHAFm1RP46lu_RqN5hJzUajqSNNdg4fyHfMJJo-NbEYb7PUbvvG_hViH1UKColbeZzZgiSebsLIAJpRn96M0y23SLXA7z5ORRomgchNSJLUuan28vd9KyYquFL8TjRJ0zafjl1QNCKfbMOh27to9s9htwWSOj2WoInaMvVgELCaMxJbPQ8IZjYkX8NjCjIjA8ShrUoWX9AV3HI_I5NInVhzKrMh2dqCWjBO-C8hqEtsPhR9iyl0fE2JTHgiKFe_QFo4w4LSs9YgVKHK1I8ZTVKUksl4iXS8GHFe2kxzA8aNVvWy8qHDCNFKYKynvZAw24Ki6LN1H_RMhCR9nyibQshV7BpzplvrlKVG_1e7oo72_GO_Dsq3EgB64qUNtNs34gZQyM3qou-wnxHXvIA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHVTkAB6B8iG1LawQcQEqVJnE-DhxW7VbbTxC0qLdgO2NpBWSrZrcVnHgEXoRX4SF4ks44H10QQuLQA7dEGSmJxzP5e2L_DPBUK5ShNL4n0SgvymzopQFqT6dZRPLbRpjxauT9g3h4FO0cy-M5-N6uhan5EF3BjSPD5WsOcC5Iz0a5MkiBLqOkmVO5i5_PacRWvdzeJPc-C4KtweHG0Gs2FfBMmEjKyCooZFzY1BTKqMJPMFNodKHiFAtfGmXTMNZmXTNFMbEYhrGiMVSi_CIj8c-cA8r413gLcUb1b765pFXR-D1q1TZj6Boaqps41D3rr9-_S1E7K43dt23rNvxoW6We0vJhbTrRa-bLb8DI_6bZ7sCtRmWLfh0WCzCH5V24OcNepLN3o2pa21T3IBp8Ohk5Wopo91kVJOdF_-fXb29JlYtXjCgVo1K8xtPxWcU17-o-HF3JSzyA-XJc4kMQ_roKkswmmdQYJVKpQGNqtWSkY2BD24PnrZtz09DWedOPj3k36iI_5M4PPXjS2Z7UjJE_Wi23vSVv8kyVM8mLFCzJjB487i5ThuDfPqrE8ZRtUqfMZdyDF65r_OUu-U5_Y-COFv_FeBWuDw_39_K97YPdJbgRsPZxdaplmJ-cTvERKbeJXnHxIuD9Vfe0C5RmT94
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHVZEqOADlQ2xbWiPgAFKqNLHzceCw6u6qH1AqoKi3YDtjaUWbXTW7oPbEI_AgvEpfok_SsfPRpUJIHHrgligjJfF4Jv9x7J8BXiiJIhTa9wRq6fHUhF4SoPJUknKS34Zjalcjv9uLtg74zqE4nINfzVqYig_RDrjZyHD52gb4ODezQS41UpwLHtdTKnfx9DsVbOWb7R5592UQDPqfNre8ek8BT4exoIQsg1xEuUl0LrXM_RhTiVrlMkow94WWJgkjpTeUhSjGBsMwklRCxdLPU9L-FnNACf8Wj_zUbhTR-3AFq6LynTdi21LoahiqmzfUPuvvn78rTTurjN2nbXAPzptGqWa0fF2fTtS6PrvGi_xfWu0-3K01NutWQbEIc1g8gDsz5EU6-zwsp5VN-RB4_3g8dKwU1uyyykjMs-7Fj58fSZOz9xZQyoYF28eT0bfSjniXj-DgRl7iMcwXowKfAPM3ZBCnJk6FQh4LKQOFiVHCAh0DE5oOvGq8nOmatW63_DjK2pqL_JA5P3TgeWs7rggjf7RaaTpLVmeZMrMcL9KvJDI68Ky9TPnB_vSRBY6m1iZxulxEHXjtesZf7pLtdDf77mjpX4zXYGG_N8jebu_tLsPtwAofN0i1AvOTkyk-Jdk2UasuWhh8uemOdglCoU6N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Evidence+for+A-Site+Order+in+Perovskites&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Tolman%2C+Kevin&rft.au=Ubic%2C+Rick&rft.au=Liu%2C+Bing&rft.au=Williamson%2C+Izaak&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=100&rft.issue=1&rft.spage=429&rft_id=info:doi/10.1111%2Fjace.14547&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4298914481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon