Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification
The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages...
Saved in:
Published in | Journal of the Association for Information Science and Technology Vol. 67; no. 10; pp. 2464 - 2476 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2330-1635 2330-1643 |
DOI | 10.1002/asi.23596 |
Cover
Loading…
Abstract | The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis. |
---|---|
AbstractList | The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of
F
innish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis. The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis. The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised-learning classification, and discuss the advantages and disadvantages of this approach vis-a-vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning-based classification frameworks of scientific knowledge, as they typically try to fit new-to-the-world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large-scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large-scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis. |
Author | Suominen, Arho Toivanen, Hannes |
Author_xml | – sequence: 1 givenname: Arho surname: Suominen fullname: Suominen, Arho email: arho.suominen@vtt.fi organization: Innovation, Policy & Economy, VTT Technical Research Centre of Finland, P.O.Box 1000, 02044, Espoo, Finland – sequence: 2 givenname: Hannes surname: Toivanen fullname: Toivanen, Hannes email: hannes.toivanen@vtt.fi organization: Innovation, Policy & Economy, VTT Technical Research Centre of Finland, P.O.Box 1000, 02044, Espoo, Finland |
BookMark | eNp9kEtP3TAQhS1EJR5lwT_wki4CdmznwQ6uCgVRWqlUXVpznQkYEjt4klL-PbnclkWldjWjme8c6ZwdthliQMb2pTiUQuRHQP4wV6YuNth2rpTIZKHV5tuuzBbbI7oXQkhRVyaX2-zxMww8tpycx-CQP_nxjo9x8I73scHOh9tjvoj9AMlTDCt0CjQNmH56woZ3CCnMEIfQ8Luph5ABkb8N84-m5T26kbtudWq9g9HH8J69a6Ej3Ps9d9n3s483i0_Z1Zfzi8XJVeZUaYrMVRp1rZdYQGOUcXVbl9BUpZkzyaouG9E2lVKVEDovYdlgrTUKqJfaqVbmrdplB2vfIcXHCWm0vSeHXQcB40RWVsoUcjYsZ_TDGnUpEiVs7ZB8D-nZSmFXzdq5Wfva7Mwe_cU6P74GGxP47n-KJ9_h87-t7cm3iz-KbK3wNOKvNwWkB1uUczv2x_W5PdM3p1-vpbGX6gX88Zyw |
CitedBy_id | crossref_primary_10_1162_qss_a_00100 crossref_primary_10_1057_s41599_024_02978_7 crossref_primary_10_1016_j_ipm_2023_103495 crossref_primary_10_3390_w10040377 crossref_primary_10_1007_s11192_021_03946_7 crossref_primary_10_1016_j_techfore_2018_07_049 crossref_primary_10_1162_qss_a_00106 crossref_primary_10_22201_iibi_24488321xe_2023_96_58777 crossref_primary_10_1007_s11192_019_03275_w crossref_primary_10_1162_qss_a_00261 crossref_primary_10_1002_j_2334_5837_2021_00837_x crossref_primary_10_1093_biosci_biae093 crossref_primary_10_1016_j_techfore_2021_121402 crossref_primary_10_1016_j_joi_2022_101255 crossref_primary_10_1080_14740338_2018_1458838 crossref_primary_10_15575_join_v6i1_636 crossref_primary_10_3390_info15040200 crossref_primary_10_1002_asi_23786 crossref_primary_10_1007_s11192_018_2741_7 crossref_primary_10_1142_S1363919617400114 crossref_primary_10_1007_s11192_022_04358_x crossref_primary_10_3390_su17051882 crossref_primary_10_2139_ssrn_3985047 crossref_primary_10_3390_min8070284 crossref_primary_10_1007_s13740_018_0090_6 crossref_primary_10_1016_j_imu_2018_03_002 crossref_primary_10_3390_math11010034 crossref_primary_10_1002_asi_24714 crossref_primary_10_3390_s24041106 crossref_primary_10_3390_ijerph17020664 crossref_primary_10_1007_s43762_023_00083_0 crossref_primary_10_1080_10447318_2024_2416562 crossref_primary_10_1007_s11192_020_03789_8 crossref_primary_10_1007_s11192_022_04312_x crossref_primary_10_1016_j_kscej_2024_100068 crossref_primary_10_1080_1350178X_2018_1529215 crossref_primary_10_1007_s40725_021_00152_9 crossref_primary_10_2139_ssrn_3830937 crossref_primary_10_1007_s11482_021_09969_9 crossref_primary_10_1093_reseval_rvad020 crossref_primary_10_1007_s11192_018_2775_x crossref_primary_10_1109_ACCESS_2019_2963674 crossref_primary_10_3390_rs12162649 crossref_primary_10_1002_asi_23814 crossref_primary_10_1016_j_ecoser_2018_04_004 crossref_primary_10_1109_TEM_2020_2974761 crossref_primary_10_3389_frma_2020_595299 crossref_primary_10_1109_ACCESS_2023_3285116 crossref_primary_10_1177_25726668241270486 crossref_primary_10_1016_j_jclepro_2019_02_243 crossref_primary_10_1007_s11192_020_03737_6 crossref_primary_10_1016_j_catena_2021_105921 crossref_primary_10_17341_gazimmfd_1132053 crossref_primary_10_1016_j_scitotenv_2024_176477 crossref_primary_10_1016_j_joi_2017_08_008 crossref_primary_10_1016_j_techfore_2018_10_008 crossref_primary_10_1016_j_nanoen_2018_06_068 crossref_primary_10_1109_TEM_2019_2930335 crossref_primary_10_3390_su13105596 crossref_primary_10_1007_s11192_018_2891_7 crossref_primary_10_1002_j_2334_5837_2020_00809_x crossref_primary_10_2139_ssrn_4117933 crossref_primary_10_1002_sys_21575 crossref_primary_10_1016_j_ipm_2018_05_006 crossref_primary_10_3390_ijerph18189649 crossref_primary_10_1002_asi_23840 crossref_primary_10_1016_j_datak_2018_08_001 crossref_primary_10_1002_asi_24452 crossref_primary_10_1007_s11192_019_03342_2 crossref_primary_10_1016_j_landusepol_2019_104069 crossref_primary_10_1016_j_techfore_2021_121064 crossref_primary_10_1007_s11192_022_04318_5 crossref_primary_10_1109_ACCESS_2019_2945911 crossref_primary_10_1109_TEM_2019_2903115 crossref_primary_10_1016_j_joi_2018_09_004 crossref_primary_10_1016_j_poetic_2024_101950 crossref_primary_10_1080_01944363_2022_2038659 crossref_primary_10_2478_jdis_2022_0004 crossref_primary_10_1016_j_eswa_2024_123188 crossref_primary_10_1016_j_telpol_2020_101943 crossref_primary_10_1016_j_autcon_2024_105890 crossref_primary_10_4018_JGIM_300817 crossref_primary_10_1002_asi_24175 crossref_primary_10_1007_s11192_024_05161_6 crossref_primary_10_1016_j_techfore_2020_120366 crossref_primary_10_1016_j_ecolind_2018_12_045 crossref_primary_10_1016_j_joi_2021_101202 crossref_primary_10_1111_ajfs_12392 crossref_primary_10_1109_TEM_2019_2923634 crossref_primary_10_1016_j_cstp_2022_06_004 crossref_primary_10_1016_j_knosys_2017_07_011 crossref_primary_10_1007_s11192_020_03721_0 crossref_primary_10_3390_bs13100787 crossref_primary_10_1016_j_asej_2024_102896 crossref_primary_10_3390_su14042089 crossref_primary_10_3390_f9080453 |
Cites_doi | 10.1007/s11192-005-0255-6 10.1007/s11192-012-0784-8 10.1038/nmeth.1619 10.1007/BF02016789 10.1007/s11192-009-0045-7 10.1016/j.joi.2009.11.005 10.1371/journal.pone.0018029 10.1002/asi.20991 10.1145/1281192.1281246 10.1023/B:SCIE.0000037368.31217.34 10.1002/asi.4630240406 10.1002/asi.20683 10.1016/0048-7333(93)90031-C 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G 10.1145/1143844.1143967 10.1145/312624.312649 10.1023/A:1017919924342 10.1016/0048-7333(93)90032-D 10.1088/1742-5468/2008/10/P10008 10.1093/scipol/scu066 10.1177/030631277400400402 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G 10.1145/1148170.1148204 10.1007/BF02458488 10.1016/j.joi.2014.02.002 10.1007/BF02025827 10.1007/s11192-005-0208-0 10.1016/S0306-4573(00)00051-0 10.1002/asi.10153 10.1023/A:1022378804087 10.1002/asi.20967 10.1016/0048-7333(89)90016-4 10.1080/095006999290552 10.1007/BF02458483 10.1017/CBO9780511546914 10.1007/s11192-014-1321-8 10.1214/07-AOAS114 10.1007/s11192-014-1319-2 10.1002/asi.21312 10.1016/j.joi.2011.10.001 10.1002/aris.1440370106 10.1023/B:SCIE.0000027310.68393.bc |
ContentType | Journal Article |
Copyright | 2015 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T. |
Copyright_xml | – notice: 2015 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T. |
DBID | BSCLL 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/asi.23596 |
DatabaseName | Istex Wiley Online Library Open Access (Activated by CARLI) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2330-1643 |
EndPage | 2476 |
ExternalDocumentID | 10_1002_asi_23596 ASI23596 ark_67375_WNG_F4TBPN15_J |
Genre | article |
GroupedDBID | .4I 0R~ 1OC 33P 3SF 52U 5VS AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCUV ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACHQT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AIMQZ AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZFZN AZVAB BDRZF BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BRXPI BSCLL BY8 CCPQU D-F DCZOG DRFUL DRSTM EBO EBS EBU EIHBH EJD ELW F00 F01 F04 G-S G.N GODZA HGLYW I-F K60 K6~ K7- LATKE LEEKS LH4 LIQON LITHE LOXES LUTES LW6 LYRES MEWTI MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM NF~ O66 O9- P2W PQBIZ PQBZA PQEDU PQQKQ PROAC QB0 ROL SUPJJ TH9 WBKPD WIH WIK WOHZO WXSBR WYISQ WZISG 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT PMKZF 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3756-c84e494be6ad535c9f97ad8751641897d0fd833800427abde944e0a9b4c3f12f3 |
IEDL.DBID | 24P |
ISSN | 2330-1635 |
IngestDate | Fri Jul 11 08:42:17 EDT 2025 Tue Jul 01 03:09:21 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 Wed Jan 22 17:10:10 EST 2025 Wed Oct 30 09:57:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3756-c84e494be6ad535c9f97ad8751641897d0fd833800427abde944e0a9b4c3f12f3 |
Notes | ark:/67375/WNG-F4TBPN15-J Appendix S1. Wordcloud representation of the latent topics presented. Appendix S2. Full sized version of FIG 2. ArticleID:ASI23596 istex:3DB898B1273F06373EE0F4845C80C37A89C7B5B2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasi.23596 |
PQID | 1835618757 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1835618757 crossref_primary_10_1002_asi_23596 crossref_citationtrail_10_1002_asi_23596 wiley_primary_10_1002_asi_23596_ASI23596 istex_primary_ark_67375_WNG_F4TBPN15_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10 October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Association for Information Science and Technology |
PublicationTitleAlternate | J Assn Inf Sci Tec |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Moya-Anegón, S.G., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F.J. & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167-2179. Small, H. (2004). On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics, 60(1), 71-79. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. Glänzel, W., Schubert, A., & Czerwon, H.J. (1999). An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis. Scientometrics, 44(3), 427-439. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348-362. Glenisson, P., Glänzel, W., & Persson, O. (2005). Combining full-text analysis and bibliometric indicators. a pilot study. Scientometrics, 63(1), 163-180. Rip, A., & Courtial, J.P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381-400. Pudovkin, A.I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119. Klavans, R., & Boyack, K.W. (2014). Mapping altruism. Journal of Informetrics, 8(2), 431-447. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813. Ding, Y., Chowdhury, G.G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using coword analysis. Information Processing & Management, 37(6), 817-842. Klavans, R., & Boyack, K.W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455-476. Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2013). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767-786. Lehvo, A., & Nuutinen, A. (2006). Finnish science in international comparison: A bibliometric analysis. Publications of the Academy of Finland, 15(6). Peters, H., & van Raan, A.F. (1993b). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23-45. Zhang, L., Liu, X., Janssens, F., Liang, L., & Glänzel, W. (2010). Subject clustering analysis based on isi category classification. Journal of Informetrics, 4(2), 185-193. Börner, K., Chen, C., & Boyack, K.W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. Hood, W.W., & Wilson, C.S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314. Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F.J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145. Bassecoulard, E., & Zitt, M. (1999). Indicators in a research institute: A multi-level classification of scientific journals. Scientometrics, 44(3), 323-345. Feldman, R., & Sanger, J. (2006). The text mining handbook: Advanced approaches in analyzing unstructured data. New York: Cambridge University Press. Griffith, B.C., Small, H.G., Stonehill, J.A., & Dey, S. (1974). The structure of scientific literatures. II: Toward a macro-and microstructure for science. Social Studies of Science, 4(4), 339-365. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269. Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374. Slotte, V., & Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21(5), 515-531. Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., ... Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS One, 6(3), e18029. Jacomy, M., Heymann, S., Venturini, T., & Bastian, M. (2011). ForceAtlas2, a continuous graph layout algorithm for handy network visualization. Medialab Center of Research, 560. Braam, R.R., Moed, H.F., & Van Raan, A.F. (1991). Mapping of science by combined cocitation and word analysis: II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252-266. Liu, X., Yu, S., Janssens, F., Glänzel, W., Moreau, Y., & De Moor, B. (2010). Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. Journal of the American Society for Information Science and Technology, 61(6), 1105-1119. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589-593. Nichols, L.G. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100(3), 741-754. Yan, E., Ding, Y., Milojević, S., & Sugimoto, C.R. (2012). Topics in dynamic research communities: An exploratory study for the field of information retrieval. Journal of Informetrics, 6(1), 140-153. Small, H. (1993). Macro-level changes in the structure of cocitation clusters: 1983-1989. Scientometrics, 26(1), 5-20. Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research: JMLR, 3(2003), 993-1022. Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press. Peters, H., & van Raan, A.F. (1993a). Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling. Research Policy, 22(1), 47-71. Veugelers, R. (2010). Towards a multipolar science world: Trends and impact. Scientometrics, 82(2), 439-456. Blei, D.M., & Lafferty, J.D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35. Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357-367. Talley, E.M., Newman, D., Mimno, D., Herr, B.W., II, Wallach, H.M., Burns, G.A., ... McCallum, A. (2011). Database of NIH grants using machine-learned categories and graphical clustering. Nature Methods, 8(6), 443-444. Leydesdroff, L. (1989). Words and cowords as indicators of intellectual organization. Research Policy, 18(4), 209-223. 1993; 26 2004; 61 2004; 60 2012 2002; 53 2010 2009; 60 2006; 15 2009 2005; 63 2013; 100 1999; 44 2005; 64 2003; 37 2007 2006 1999; 21 2011; 6 2008; 2008 1993a; 22 2011; 8 2007; 58 2010; 61 2003; 56 1974; 4 1999 2010; 82 1993b; 22 1973; 24 1991; 42 2013; 94 1984; 6 2003; 3 2001; 37 2014 1999; 50 2012; 6 2007; 1 2014; 8 2014; 100 2010; 4 2001; 52 2011; 560 1989; 18 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 Blei D.M. (e_1_2_7_4_1) 2009 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 Jacomy M. (e_1_2_7_21_1) 2011; 560 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Blei D.M. (e_1_2_7_5_1) 2003; 3 e_1_2_7_51_1 Lehvo A. (e_1_2_7_24_1) 2006; 15 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Börner K. (e_1_2_7_9_1) 2010 |
References_xml | – reference: Griffith, B.C., Small, H.G., Stonehill, J.A., & Dey, S. (1974). The structure of scientific literatures. II: Toward a macro-and microstructure for science. Social Studies of Science, 4(4), 339-365. – reference: Lehvo, A., & Nuutinen, A. (2006). Finnish science in international comparison: A bibliometric analysis. Publications of the Academy of Finland, 15(6). – reference: Klavans, R., & Boyack, K.W. (2014). Mapping altruism. Journal of Informetrics, 8(2), 431-447. – reference: Nichols, L.G. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100(3), 741-754. – reference: Rip, A., & Courtial, J.P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381-400. – reference: Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., ... Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS One, 6(3), e18029. – reference: Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589-593. – reference: Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269. – reference: Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research: JMLR, 3(2003), 993-1022. – reference: Ding, Y., Chowdhury, G.G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using coword analysis. Information Processing & Management, 37(6), 817-842. – reference: Peters, H., & van Raan, A.F. (1993a). Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling. Research Policy, 22(1), 47-71. – reference: Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2013). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767-786. – reference: Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. – reference: Jacomy, M., Heymann, S., Venturini, T., & Bastian, M. (2011). ForceAtlas2, a continuous graph layout algorithm for handy network visualization. Medialab Center of Research, 560. – reference: Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F.J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145. – reference: Small, H. (1993). Macro-level changes in the structure of cocitation clusters: 1983-1989. Scientometrics, 26(1), 5-20. – reference: Leydesdroff, L. (1989). Words and cowords as indicators of intellectual organization. Research Policy, 18(4), 209-223. – reference: Glänzel, W., Schubert, A., & Czerwon, H.J. (1999). An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis. Scientometrics, 44(3), 427-439. – reference: Moya-Anegón, S.G., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F.J. & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167-2179. – reference: Small, H. (2004). On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics, 60(1), 71-79. – reference: Zhang, L., Liu, X., Janssens, F., Liang, L., & Glänzel, W. (2010). Subject clustering analysis based on isi category classification. Journal of Informetrics, 4(2), 185-193. – reference: Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357-367. – reference: Yan, E., Ding, Y., Milojević, S., & Sugimoto, C.R. (2012). Topics in dynamic research communities: An exploratory study for the field of information retrieval. Journal of Informetrics, 6(1), 140-153. – reference: Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press. – reference: Klavans, R., & Boyack, K.W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455-476. – reference: Peters, H., & van Raan, A.F. (1993b). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23-45. – reference: Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813. – reference: Bassecoulard, E., & Zitt, M. (1999). Indicators in a research institute: A multi-level classification of scientific journals. Scientometrics, 44(3), 323-345. – reference: Braam, R.R., Moed, H.F., & Van Raan, A.F. (1991). Mapping of science by combined cocitation and word analysis: II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252-266. – reference: Slotte, V., & Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21(5), 515-531. – reference: Blei, D.M., & Lafferty, J.D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35. – reference: Hood, W.W., & Wilson, C.S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314. – reference: Veugelers, R. (2010). Towards a multipolar science world: Trends and impact. Scientometrics, 82(2), 439-456. – reference: Liu, X., Yu, S., Janssens, F., Glänzel, W., Moreau, Y., & De Moor, B. (2010). Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. Journal of the American Society for Information Science and Technology, 61(6), 1105-1119. – reference: Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348-362. – reference: Börner, K., Chen, C., & Boyack, K.W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. – reference: Feldman, R., & Sanger, J. (2006). The text mining handbook: Advanced approaches in analyzing unstructured data. New York: Cambridge University Press. – reference: Pudovkin, A.I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119. – reference: Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374. – reference: Glenisson, P., Glänzel, W., & Persson, O. (2005). Combining full-text analysis and bibliometric indicators. a pilot study. Scientometrics, 63(1), 163-180. – reference: Talley, E.M., Newman, D., Mimno, D., Herr, B.W., II, Wallach, H.M., Burns, G.A., ... McCallum, A. (2011). Database of NIH grants using machine-learned categories and graphical clustering. Nature Methods, 8(6), 443-444. – volume: 6 start-page: 140 issue: 1 year: 2012 end-page: 153 article-title: Topics in dynamic research communities: An exploratory study for the field of information retrieval publication-title: Journal of Informetrics – start-page: 288 year: 2009 end-page: 296 article-title: Reading tea leaves: How humans interpret topic models – volume: 94 start-page: 589 issue: 2 year: 2013 end-page: 593 article-title: Global maps of science based on the new Web‐of‐Science categories publication-title: Scientometrics – volume: 2008 start-page: P10008 issue: 10 year: 2008 article-title: Fast unfolding of communities in large networks publication-title: Journal of Statistical Mechanics: Theory and Experiment – volume: 4 start-page: 339 issue: 4 year: 1974 end-page: 365 article-title: The structure of scientific literatures. II: Toward a macro‐and microstructure for science publication-title: Social Studies of Science – volume: 1 start-page: 17 issue: 1 year: 2007 end-page: 35 article-title: A correlated topic model of science publication-title: The Annals of Applied Statistics – volume: 37 start-page: 817 issue: 6 year: 2001 end-page: 842 article-title: Bibliometric cartography of information retrieval research by using coword analysis publication-title: Information Processing & Management – start-page: 490 year: 2007 end-page: 499 – volume: 26 start-page: 5 issue: 1 year: 1993 end-page: 20 article-title: Macro‐level changes in the structure of cocitation clusters: 1983–1989 publication-title: Scientometrics – volume: 4 start-page: 185 issue: 2 year: 2010 end-page: 193 article-title: Subject clustering analysis based on isi category classification publication-title: Journal of Informetrics – volume: 53 start-page: 1113 issue: 13 year: 2002 end-page: 1119 article-title: Algorithmic procedure for finding semantically related journals publication-title: Journal of the American Society for Information Science and Technology – volume: 18 start-page: 209 issue: 4 year: 1989 end-page: 223 article-title: Words and cowords as indicators of intellectual organization publication-title: Research Policy – volume: 6 start-page: 381 issue: 6 year: 1984 end-page: 400 article-title: Co‐word maps of biotechnology: An example of cognitive scientometrics publication-title: Scientometrics – volume: 560 year: 2011 article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization publication-title: Medialab Center of Research – volume: 8 start-page: 443 issue: 6 year: 2011 end-page: 444 article-title: Database of NIH grants using machine‐learned categories and graphical clustering publication-title: Nature Methods – year: 2014 article-title: Epistemic integration of the European research area: The shifting geography of the knowledge base of Finnish research, 1995–2010 – volume: 56 start-page: 357 issue: 3 year: 2003 end-page: 367 article-title: A new classification scheme of science fields and subfields designed for scientometric evaluation purposes publication-title: Scientometrics – volume: 6 start-page: e18029 issue: 3 year: 2011 article-title: Clustering more than two million biomedical publications: Comparing the accuracies of nine text‐based similarity approaches publication-title: PLoS One – volume: 60 start-page: 348 issue: 2 year: 2009 end-page: 362 article-title: A global map of science based on the ISI subject categories publication-title: Journal of the American Society for Information Science and Technology – volume: 60 start-page: 455 issue: 3 year: 2009 end-page: 476 article-title: Toward a consensus map of science publication-title: Journal of the American Society for Information Science and Technology – volume: 8 start-page: 431 issue: 2 year: 2014 end-page: 447 article-title: Mapping altruism publication-title: Journal of Informetrics – volume: 100 start-page: 767 issue: 3 year: 2013 end-page: 786 article-title: Clustering scientific documents with topic modeling publication-title: Scientometrics – volume: 60 start-page: 71 issue: 1 year: 2004 end-page: 79 article-title: On the shoulders of Robert Merton: Towards a normative theory of citation publication-title: Scientometrics – volume: 37 start-page: 179 issue: 1 year: 2003 end-page: 255 article-title: Visualizing knowledge domains publication-title: Annual Review of Information Science and Technology – volume: 15 issue: 6 year: 2006 article-title: Finnish science in international comparison: A bibliometric analysis publication-title: Publications of the Academy of Finland – year: 2007 – volume: 42 start-page: 252 issue: 4 year: 1991 end-page: 266 article-title: Mapping of science by combined cocitation and word analysis: II: Dynamical aspects publication-title: Journal of the American Society for Information Science – volume: 44 start-page: 427 issue: 3 year: 1999 end-page: 439 article-title: An item‐by‐item subject classification of papers published in multidisciplinary and general journals using reference analysis publication-title: Scientometrics – volume: 64 start-page: 351 issue: 3 year: 2005 end-page: 374 article-title: Mapping the backbone of science publication-title: Scientometrics – volume: 24 start-page: 265 issue: 4 year: 1973 end-page: 269 article-title: Co‐citation in the scientific literature: A new measure of the relationship between two documents publication-title: Journal of the American Society for Information Science – volume: 50 start-page: 799 issue: 9 year: 1999 end-page: 813 article-title: Visualizing science by citation mapping publication-title: Journal of the American Society for Information Science – start-page: 71 year: 2009 end-page: 94 – volume: 82 start-page: 439 issue: 2 year: 2010 end-page: 456 article-title: Towards a multipolar science world: Trends and impact publication-title: Scientometrics – start-page: 178 185 year: 2006 – year: 2010 – volume: 58 start-page: 2167 issue: 14 year: 2007 end-page: 2179 article-title: Visualizing the marrow of science publication-title: Journal of the American Society for Information Science and Technology – start-page: 977 984 year: 2006 – year: 2012 – volume: 21 start-page: 515 issue: 5 year: 1999 end-page: 531 article-title: Spontaneous concept maps aiding the understanding of scientific concepts publication-title: International Journal of Science Education – volume: 63 start-page: 163 issue: 1 year: 2005 end-page: 180 article-title: Combining full‐text analysis and bibliometric indicators. a pilot study publication-title: Scientometrics – start-page: 50 year: 1999 end-page: 57 – volume: 44 start-page: 323 issue: 3 year: 1999 end-page: 345 article-title: Indicators in a research institute: A multi‐level classification of scientific journals publication-title: Scientometrics – year: 2006 – volume: 22 start-page: 47 issue: 1 year: 1993a end-page: 71 article-title: Co‐word‐based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling publication-title: Research Policy – volume: 22 start-page: 23 issue: 1 year: 1993b end-page: 45 article-title: Co‐word‐based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling publication-title: Research Policy – volume: 100 start-page: 741 issue: 3 year: 2014 end-page: 754 article-title: A topic model approach to measuring interdisciplinarity at the National Science Foundation publication-title: Scientometrics – volume: 61 start-page: 129 issue: 1 year: 2004 end-page: 145 article-title: A new technique for building maps of large scientific domains based on the cocitation of classes and categories publication-title: Scientometrics – volume: 52 start-page: 291 issue: 2 year: 2001 end-page: 314 article-title: The literature of bibliometrics, scientometrics, and informetrics publication-title: Scientometrics – volume: 3 start-page: 993 issue: 2003 year: 2003 end-page: 1022 article-title: Latent Dirichlet Allocation publication-title: Journal of Machine Learning Research: JMLR – volume: 61 start-page: 1105 issue: 6 year: 2010 end-page: 1119 article-title: Weighted hybrid clustering by combining text mining and bibliometrics on a large‐scale journal database publication-title: Journal of the American Society for Information Science and Technology – ident: e_1_2_7_7_1 doi: 10.1007/s11192-005-0255-6 – ident: e_1_2_7_34_1 – ident: e_1_2_7_26_1 doi: 10.1007/s11192-012-0784-8 – ident: e_1_2_7_44_1 doi: 10.1038/nmeth.1619 – volume: 3 start-page: 993 issue: 2003 year: 2003 ident: e_1_2_7_5_1 article-title: Latent Dirichlet Allocation publication-title: Journal of Machine Learning Research: JMLR – ident: e_1_2_7_41_1 doi: 10.1007/BF02016789 – ident: e_1_2_7_46_1 doi: 10.1007/s11192-009-0045-7 – start-page: 71 volume-title: Text mining: Classification, clustering, and applications year: 2009 ident: e_1_2_7_4_1 – ident: e_1_2_7_51_1 doi: 10.1016/j.joi.2009.11.005 – ident: e_1_2_7_8_1 doi: 10.1371/journal.pone.0018029 – ident: e_1_2_7_22_1 doi: 10.1002/asi.20991 – ident: e_1_2_7_29_1 doi: 10.1145/1281192.1281246 – ident: e_1_2_7_30_1 doi: 10.1023/B:SCIE.0000037368.31217.34 – ident: e_1_2_7_40_1 doi: 10.1002/asi.4630240406 – ident: e_1_2_7_31_1 doi: 10.1002/asi.20683 – ident: e_1_2_7_36_1 doi: 10.1016/0048-7333(93)90031-C – ident: e_1_2_7_11_1 doi: 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G – ident: e_1_2_7_47_1 doi: 10.1145/1143844.1143967 – ident: e_1_2_7_32_1 – ident: e_1_2_7_19_1 doi: 10.1145/312624.312649 – volume: 560 year: 2011 ident: e_1_2_7_21_1 article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization publication-title: Medialab Center of Research – ident: e_1_2_7_20_1 doi: 10.1023/A:1017919924342 – ident: e_1_2_7_35_1 doi: 10.1016/0048-7333(93)90032-D – ident: e_1_2_7_6_1 doi: 10.1088/1742-5468/2008/10/P10008 – ident: e_1_2_7_45_1 doi: 10.1093/scipol/scu066 – ident: e_1_2_7_18_1 doi: 10.1177/030631277400400402 – ident: e_1_2_7_42_1 doi: 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G – volume-title: Atlas of science: Visualizing what we know year: 2010 ident: e_1_2_7_9_1 – ident: e_1_2_7_48_1 doi: 10.1145/1148170.1148204 – ident: e_1_2_7_16_1 doi: 10.1007/BF02458488 – ident: e_1_2_7_23_1 doi: 10.1016/j.joi.2014.02.002 – volume: 15 issue: 6 year: 2006 ident: e_1_2_7_24_1 article-title: Finnish science in international comparison: A bibliometric analysis publication-title: Publications of the Academy of Finland – ident: e_1_2_7_38_1 doi: 10.1007/BF02025827 – ident: e_1_2_7_17_1 doi: 10.1007/s11192-005-0208-0 – ident: e_1_2_7_13_1 doi: 10.1016/S0306-4573(00)00051-0 – ident: e_1_2_7_37_1 doi: 10.1002/asi.10153 – ident: e_1_2_7_15_1 doi: 10.1023/A:1022378804087 – ident: e_1_2_7_25_1 doi: 10.1002/asi.20967 – ident: e_1_2_7_27_1 doi: 10.1016/0048-7333(89)90016-4 – ident: e_1_2_7_39_1 doi: 10.1080/095006999290552 – ident: e_1_2_7_2_1 doi: 10.1007/BF02458483 – ident: e_1_2_7_14_1 doi: 10.1017/CBO9780511546914 – ident: e_1_2_7_50_1 doi: 10.1007/s11192-014-1321-8 – ident: e_1_2_7_3_1 doi: 10.1214/07-AOAS114 – ident: e_1_2_7_33_1 doi: 10.1007/s11192-014-1319-2 – ident: e_1_2_7_12_1 – ident: e_1_2_7_28_1 doi: 10.1002/asi.21312 – ident: e_1_2_7_49_1 doi: 10.1016/j.joi.2011.10.001 – ident: e_1_2_7_10_1 doi: 10.1002/aris.1440370106 – ident: e_1_2_7_43_1 doi: 10.1023/B:SCIE.0000027310.68393.bc |
SSID | ssj0001098521 |
Score | 2.5005274 |
Snippet | The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2464 |
SubjectTerms | automatic classification Cartography Classification Data processing Delineation Indexing Learning machine learning text mining Texts |
Title | Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification |
URI | https://api.istex.fr/ark:/67375/WNG-F4TBPN15-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasi.23596 https://www.proquest.com/docview/1835618757 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZp9tJLaWlKt2mDWkLpxY0fkm01p81j86C7BJLQ3ISeYWnxLvEaeuxP6G_ML8mM7HUaaCAX48MYmRlp5puRNB8h28r6nHkTRy6JTcRMoSPtywwfKlFOQFKBieJkmh9fstMrfrVGdld3Ydr-EH3BDVdG8Ne4wJWud-6bhqp69jXNuMifkQFercVJnrKz-wJLLEoe7l2lkLNHgDv4qrNQnO70Xz-IRwNU7e8HYPNfyBpizvgledGBRTpqrfuKrLnqNaknakHnnnaxi2IllS7ni5mhgdYGYtE3ut_TC6JoU9XNAp1C7SzteCKuqaosDRR9t3_-AoSeXYPHpXWjsTJDDaJqPEYULLdBLseHF_vHUUedEJms4HlkSuaYYNrlyvKMG-FFoSzkJpAdJaUobOxtCdlpoNpQ2jrBmIuV0MxkPkl99oasV_PKvSW01Nrnsc0t55bZtNA-UxnSriuWwBjFkHxZKVCarq840lv8km1H5FSCrmXQ9ZB86kUXbTON_wl9DlboJdTNTzx9VnD5Y3okx-xi72yacHk6JB9XZpKwJnCjQ1Vu3tQS3BTAQmzVDz8X7Pf4cHJ0fhJe3j1ddJM8B9yUt2f63pP15U3jPgA2WeqtMAe3yGB0MPl-fgfJDeMt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKe4ALAgFiSwsGIcQlND-2EyMupWLZlu6qElvRm-XfagXKrpqNxJFH4Bl5EmacbEolkLhEOUzkaCae-WYyno-Ql9oFwYJNE5-lNmG2NIkJVYEXnWkvIanARHE6E5NzdnLBL7bIu81ZmG4-xFBww50R_TVucCxIH1xPDdXN4k1ecClukR0m8hKJG3J2dl1hSWXF48GrHJL2BIAH34wWSvOD4ekbAWkHdfv9Btr8E7PGoDO-R-72aJEedua9T7Z8_YA0U72iy0D74EWxlErXy9XC0shrA8HoLT0a-AVRtK2bdoVeofGO9kQRl1TXjkaOvl8_fgKGXlyCy6VNa7A0Qy3CauwjiqZ7SM7HH-ZHk6TnTkhsUXKR2Ip5JpnxQjtecCuDLLWD5ATSo6ySpUuDqyA9jVwb2jgvGfOplobZImR5KB6R7XpZ-8eEVsYEkTrhOHfM5aUJhS6Qd12zDNYoR-T1RoHK9oPFkd_im-pGIucKdK2irkfkxSC66qZp_E3oVbTCIKGvvmL7WcnVl9lHNWbz92ezjKuTEXm-MZOCTYF_OnTtl22jwE8BLsRZ_fBy0X7_Xk4dfj6ON7v_L_qM3J7Mp6fq9Hj26Qm5AyBKdA1-e2R7fdX6fQAqa_M0fo-_AeiG5QU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKKyEuCFQQW1rqIoS4hObHTmJ6Km2XttDVSrSiN8u_1QqUjZqNxJFH4Bl5EmacbNpKVOIS5TCRoxl75puxPR8hb5T1OfMmjlwSm4iZQkfalxk-VKKcgKQCE8WzSX58wU4v-eUK2Vvehen6QwwFN1wZwV_jAq-t371pGqqa2fs04yJ_QNZwsw-nd8qmNwWWWJQ83LtKIWePAHfwZWehON0dvr4Tj9ZQtT_vgM3bkDXEnPET8rgHi3S_s-5TsuKqddKcqZrOPe1jF8VKKl3M65mhgdYGYtEHejDQC6JoWzVtjU6hcZb2PBFXVFWWBoq-P79-A4SeXYHHpU2rsTJDDaJqPEYULPeMXIyPzg-Oo546ITJZwfPIlMwxwbTLleUZN8KLQlnITSA7SkpR2NjbErLTQLWhtHWCMRcroZnJfJL67DlZreaVe0FoqbXPY5tbzi2zaaF9pjKkXVcsgTGKEXm3VKA0fV9xpLf4IbuOyKkEXcug6xF5PYjWXTONfwm9DVYYJNT1dzx9VnD5bfJJjtn5x-kk4fJ0RHaWZpKwJnCjQ1Vu3jYS3BTAQmzVDz8X7Hf_cHL_60l42fh_0W3ycHo4ll9OJp9fkkcAofLueN8mWV1ct24LYMpCvwrT8S-tJOQ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Map+of+science+with+topic+modeling%3A+Comparison+of+unsupervised+learning+and+human%E2%80%90assigned+subject+classification&rft.jtitle=Journal+of+the+Association+for+Information+Science+and+Technology&rft.au=Suominen%2C+Arho&rft.au=Toivanen%2C+Hannes&rft.date=2016-10-01&rft.issn=2330-1635&rft.eissn=2330-1643&rft.volume=67&rft.issue=10&rft.spage=2464&rft.epage=2476&rft_id=info:doi/10.1002%2Fasi.23596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asi_23596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-1635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-1635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-1635&client=summon |