Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification

The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Association for Information Science and Technology Vol. 67; no. 10; pp. 2464 - 2476
Main Authors Suominen, Arho, Toivanen, Hannes
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.10.2016
Subjects
Online AccessGet full text
ISSN2330-1635
2330-1643
DOI10.1002/asi.23596

Cover

Loading…
Abstract The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis.
AbstractList The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of F innish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis.
The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised‐learning classification, and discuss the advantages and disadvantages of this approach vis‐à‐vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning‐based classification frameworks of scientific knowledge, as they typically try to fit new‐to‐the‐world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large‐scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large‐scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis.
The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a persistent challenge in this regard. We present a map of Finnish science based on unsupervised-learning classification, and discuss the advantages and disadvantages of this approach vis-a-vis those generated by human reasoning. We conclude that from theoretical and practical perspectives there exist several challenges for human reasoning-based classification frameworks of scientific knowledge, as they typically try to fit new-to-the-world knowledge into historical models of scientific knowledge, and cannot easily be deployed for new large-scale data sets. Automated classification schemes, in contrast, generate classification models only from the available text corpus, thereby identifying credibly novel bodies of knowledge. They also lend themselves to versatile large-scale data analysis, and enable a range of Big Data possibilities. However, we also argue that it is neither possible nor fruitful to declare one or another method a superior approach in terms of realism to classify scientific knowledge, and we believe that the merits of each approach are dependent on the practical objectives of analysis.
Author Suominen, Arho
Toivanen, Hannes
Author_xml – sequence: 1
  givenname: Arho
  surname: Suominen
  fullname: Suominen, Arho
  email: arho.suominen@vtt.fi
  organization: Innovation, Policy & Economy, VTT Technical Research Centre of Finland, P.O.Box 1000, 02044, Espoo, Finland
– sequence: 2
  givenname: Hannes
  surname: Toivanen
  fullname: Toivanen, Hannes
  email: hannes.toivanen@vtt.fi
  organization: Innovation, Policy & Economy, VTT Technical Research Centre of Finland, P.O.Box 1000, 02044, Espoo, Finland
BookMark eNp9kEtP3TAQhS1EJR5lwT_wki4CdmznwQ6uCgVRWqlUXVpznQkYEjt4klL-PbnclkWldjWjme8c6ZwdthliQMb2pTiUQuRHQP4wV6YuNth2rpTIZKHV5tuuzBbbI7oXQkhRVyaX2-zxMww8tpycx-CQP_nxjo9x8I73scHOh9tjvoj9AMlTDCt0CjQNmH56woZ3CCnMEIfQ8Luph5ABkb8N84-m5T26kbtudWq9g9HH8J69a6Ej3Ps9d9n3s483i0_Z1Zfzi8XJVeZUaYrMVRp1rZdYQGOUcXVbl9BUpZkzyaouG9E2lVKVEDovYdlgrTUKqJfaqVbmrdplB2vfIcXHCWm0vSeHXQcB40RWVsoUcjYsZ_TDGnUpEiVs7ZB8D-nZSmFXzdq5Wfva7Mwe_cU6P74GGxP47n-KJ9_h87-t7cm3iz-KbK3wNOKvNwWkB1uUczv2x_W5PdM3p1-vpbGX6gX88Zyw
CitedBy_id crossref_primary_10_1162_qss_a_00100
crossref_primary_10_1057_s41599_024_02978_7
crossref_primary_10_1016_j_ipm_2023_103495
crossref_primary_10_3390_w10040377
crossref_primary_10_1007_s11192_021_03946_7
crossref_primary_10_1016_j_techfore_2018_07_049
crossref_primary_10_1162_qss_a_00106
crossref_primary_10_22201_iibi_24488321xe_2023_96_58777
crossref_primary_10_1007_s11192_019_03275_w
crossref_primary_10_1162_qss_a_00261
crossref_primary_10_1002_j_2334_5837_2021_00837_x
crossref_primary_10_1093_biosci_biae093
crossref_primary_10_1016_j_techfore_2021_121402
crossref_primary_10_1016_j_joi_2022_101255
crossref_primary_10_1080_14740338_2018_1458838
crossref_primary_10_15575_join_v6i1_636
crossref_primary_10_3390_info15040200
crossref_primary_10_1002_asi_23786
crossref_primary_10_1007_s11192_018_2741_7
crossref_primary_10_1142_S1363919617400114
crossref_primary_10_1007_s11192_022_04358_x
crossref_primary_10_3390_su17051882
crossref_primary_10_2139_ssrn_3985047
crossref_primary_10_3390_min8070284
crossref_primary_10_1007_s13740_018_0090_6
crossref_primary_10_1016_j_imu_2018_03_002
crossref_primary_10_3390_math11010034
crossref_primary_10_1002_asi_24714
crossref_primary_10_3390_s24041106
crossref_primary_10_3390_ijerph17020664
crossref_primary_10_1007_s43762_023_00083_0
crossref_primary_10_1080_10447318_2024_2416562
crossref_primary_10_1007_s11192_020_03789_8
crossref_primary_10_1007_s11192_022_04312_x
crossref_primary_10_1016_j_kscej_2024_100068
crossref_primary_10_1080_1350178X_2018_1529215
crossref_primary_10_1007_s40725_021_00152_9
crossref_primary_10_2139_ssrn_3830937
crossref_primary_10_1007_s11482_021_09969_9
crossref_primary_10_1093_reseval_rvad020
crossref_primary_10_1007_s11192_018_2775_x
crossref_primary_10_1109_ACCESS_2019_2963674
crossref_primary_10_3390_rs12162649
crossref_primary_10_1002_asi_23814
crossref_primary_10_1016_j_ecoser_2018_04_004
crossref_primary_10_1109_TEM_2020_2974761
crossref_primary_10_3389_frma_2020_595299
crossref_primary_10_1109_ACCESS_2023_3285116
crossref_primary_10_1177_25726668241270486
crossref_primary_10_1016_j_jclepro_2019_02_243
crossref_primary_10_1007_s11192_020_03737_6
crossref_primary_10_1016_j_catena_2021_105921
crossref_primary_10_17341_gazimmfd_1132053
crossref_primary_10_1016_j_scitotenv_2024_176477
crossref_primary_10_1016_j_joi_2017_08_008
crossref_primary_10_1016_j_techfore_2018_10_008
crossref_primary_10_1016_j_nanoen_2018_06_068
crossref_primary_10_1109_TEM_2019_2930335
crossref_primary_10_3390_su13105596
crossref_primary_10_1007_s11192_018_2891_7
crossref_primary_10_1002_j_2334_5837_2020_00809_x
crossref_primary_10_2139_ssrn_4117933
crossref_primary_10_1002_sys_21575
crossref_primary_10_1016_j_ipm_2018_05_006
crossref_primary_10_3390_ijerph18189649
crossref_primary_10_1002_asi_23840
crossref_primary_10_1016_j_datak_2018_08_001
crossref_primary_10_1002_asi_24452
crossref_primary_10_1007_s11192_019_03342_2
crossref_primary_10_1016_j_landusepol_2019_104069
crossref_primary_10_1016_j_techfore_2021_121064
crossref_primary_10_1007_s11192_022_04318_5
crossref_primary_10_1109_ACCESS_2019_2945911
crossref_primary_10_1109_TEM_2019_2903115
crossref_primary_10_1016_j_joi_2018_09_004
crossref_primary_10_1016_j_poetic_2024_101950
crossref_primary_10_1080_01944363_2022_2038659
crossref_primary_10_2478_jdis_2022_0004
crossref_primary_10_1016_j_eswa_2024_123188
crossref_primary_10_1016_j_telpol_2020_101943
crossref_primary_10_1016_j_autcon_2024_105890
crossref_primary_10_4018_JGIM_300817
crossref_primary_10_1002_asi_24175
crossref_primary_10_1007_s11192_024_05161_6
crossref_primary_10_1016_j_techfore_2020_120366
crossref_primary_10_1016_j_ecolind_2018_12_045
crossref_primary_10_1016_j_joi_2021_101202
crossref_primary_10_1111_ajfs_12392
crossref_primary_10_1109_TEM_2019_2923634
crossref_primary_10_1016_j_cstp_2022_06_004
crossref_primary_10_1016_j_knosys_2017_07_011
crossref_primary_10_1007_s11192_020_03721_0
crossref_primary_10_3390_bs13100787
crossref_primary_10_1016_j_asej_2024_102896
crossref_primary_10_3390_su14042089
crossref_primary_10_3390_f9080453
Cites_doi 10.1007/s11192-005-0255-6
10.1007/s11192-012-0784-8
10.1038/nmeth.1619
10.1007/BF02016789
10.1007/s11192-009-0045-7
10.1016/j.joi.2009.11.005
10.1371/journal.pone.0018029
10.1002/asi.20991
10.1145/1281192.1281246
10.1023/B:SCIE.0000037368.31217.34
10.1002/asi.4630240406
10.1002/asi.20683
10.1016/0048-7333(93)90031-C
10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G
10.1145/1143844.1143967
10.1145/312624.312649
10.1023/A:1017919924342
10.1016/0048-7333(93)90032-D
10.1088/1742-5468/2008/10/P10008
10.1093/scipol/scu066
10.1177/030631277400400402
10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
10.1145/1148170.1148204
10.1007/BF02458488
10.1016/j.joi.2014.02.002
10.1007/BF02025827
10.1007/s11192-005-0208-0
10.1016/S0306-4573(00)00051-0
10.1002/asi.10153
10.1023/A:1022378804087
10.1002/asi.20967
10.1016/0048-7333(89)90016-4
10.1080/095006999290552
10.1007/BF02458483
10.1017/CBO9780511546914
10.1007/s11192-014-1321-8
10.1214/07-AOAS114
10.1007/s11192-014-1319-2
10.1002/asi.21312
10.1016/j.joi.2011.10.001
10.1002/aris.1440370106
10.1023/B:SCIE.0000027310.68393.bc
ContentType Journal Article
Copyright 2015 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T.
Copyright_xml – notice: 2015 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals, Inc. on behalf of ASIS&T.
DBID BSCLL
24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/asi.23596
DatabaseName Istex
Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2330-1643
EndPage 2476
ExternalDocumentID 10_1002_asi_23596
ASI23596
ark_67375_WNG_F4TBPN15_J
Genre article
GroupedDBID .4I
0R~
1OC
33P
3SF
52U
5VS
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHQT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIMQZ
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
AZVAB
BDRZF
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BRXPI
BSCLL
BY8
CCPQU
D-F
DCZOG
DRFUL
DRSTM
EBO
EBS
EBU
EIHBH
EJD
ELW
F00
F01
F04
G-S
G.N
GODZA
HGLYW
I-F
K60
K6~
K7-
LATKE
LEEKS
LH4
LIQON
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
O66
O9-
P2W
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
QB0
ROL
SUPJJ
TH9
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
PMKZF
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3756-c84e494be6ad535c9f97ad8751641897d0fd833800427abde944e0a9b4c3f12f3
IEDL.DBID 24P
ISSN 2330-1635
IngestDate Fri Jul 11 08:42:17 EDT 2025
Tue Jul 01 03:09:21 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
Wed Jan 22 17:10:10 EST 2025
Wed Oct 30 09:57:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3756-c84e494be6ad535c9f97ad8751641897d0fd833800427abde944e0a9b4c3f12f3
Notes ark:/67375/WNG-F4TBPN15-J
Appendix S1. Wordcloud representation of the latent topics presented. Appendix S2. Full sized version of FIG 2.
ArticleID:ASI23596
istex:3DB898B1273F06373EE0F4845C80C37A89C7B5B2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasi.23596
PQID 1835618757
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1835618757
crossref_primary_10_1002_asi_23596
crossref_citationtrail_10_1002_asi_23596
wiley_primary_10_1002_asi_23596_ASI23596
istex_primary_ark_67375_WNG_F4TBPN15_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10
PublicationDecade 2010
PublicationTitle Journal of the Association for Information Science and Technology
PublicationTitleAlternate J Assn Inf Sci Tec
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Moya-Anegón, S.G., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F.J. & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167-2179.
Small, H. (2004). On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics, 60(1), 71-79.
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
Glänzel, W., Schubert, A., & Czerwon, H.J. (1999). An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis. Scientometrics, 44(3), 427-439.
Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348-362.
Glenisson, P., Glänzel, W., & Persson, O. (2005). Combining full-text analysis and bibliometric indicators. a pilot study. Scientometrics, 63(1), 163-180.
Rip, A., & Courtial, J.P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381-400.
Pudovkin, A.I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119.
Klavans, R., & Boyack, K.W. (2014). Mapping altruism. Journal of Informetrics, 8(2), 431-447.
Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813.
Ding, Y., Chowdhury, G.G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using coword analysis. Information Processing & Management, 37(6), 817-842.
Klavans, R., & Boyack, K.W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455-476.
Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2013). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767-786.
Lehvo, A., & Nuutinen, A. (2006). Finnish science in international comparison: A bibliometric analysis. Publications of the Academy of Finland, 15(6).
Peters, H., & van Raan, A.F. (1993b). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23-45.
Zhang, L., Liu, X., Janssens, F., Liang, L., & Glänzel, W. (2010). Subject clustering analysis based on isi category classification. Journal of Informetrics, 4(2), 185-193.
Börner, K., Chen, C., & Boyack, K.W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255.
Hood, W.W., & Wilson, C.S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314.
Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F.J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145.
Bassecoulard, E., & Zitt, M. (1999). Indicators in a research institute: A multi-level classification of scientific journals. Scientometrics, 44(3), 323-345.
Feldman, R., & Sanger, J. (2006). The text mining handbook: Advanced approaches in analyzing unstructured data. New York: Cambridge University Press.
Griffith, B.C., Small, H.G., Stonehill, J.A., & Dey, S. (1974). The structure of scientific literatures. II: Toward a macro-and microstructure for science. Social Studies of Science, 4(4), 339-365.
Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269.
Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374.
Slotte, V., & Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21(5), 515-531.
Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., ... Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS One, 6(3), e18029.
Jacomy, M., Heymann, S., Venturini, T., & Bastian, M. (2011). ForceAtlas2, a continuous graph layout algorithm for handy network visualization. Medialab Center of Research, 560.
Braam, R.R., Moed, H.F., & Van Raan, A.F. (1991). Mapping of science by combined cocitation and word analysis: II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252-266.
Liu, X., Yu, S., Janssens, F., Glänzel, W., Moreau, Y., & De Moor, B. (2010). Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. Journal of the American Society for Information Science and Technology, 61(6), 1105-1119.
Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589-593.
Nichols, L.G. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100(3), 741-754.
Yan, E., Ding, Y., Milojević, S., & Sugimoto, C.R. (2012). Topics in dynamic research communities: An exploratory study for the field of information retrieval. Journal of Informetrics, 6(1), 140-153.
Small, H. (1993). Macro-level changes in the structure of cocitation clusters: 1983-1989. Scientometrics, 26(1), 5-20.
Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research: JMLR, 3(2003), 993-1022.
Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press.
Peters, H., & van Raan, A.F. (1993a). Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling. Research Policy, 22(1), 47-71.
Veugelers, R. (2010). Towards a multipolar science world: Trends and impact. Scientometrics, 82(2), 439-456.
Blei, D.M., & Lafferty, J.D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35.
Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357-367.
Talley, E.M., Newman, D., Mimno, D., Herr, B.W., II, Wallach, H.M., Burns, G.A., ... McCallum, A. (2011). Database of NIH grants using machine-learned categories and graphical clustering. Nature Methods, 8(6), 443-444.
Leydesdroff, L. (1989). Words and cowords as indicators of intellectual organization. Research Policy, 18(4), 209-223.
1993; 26
2004; 61
2004; 60
2012
2002; 53
2010
2009; 60
2006; 15
2009
2005; 63
2013; 100
1999; 44
2005; 64
2003; 37
2007
2006
1999; 21
2011; 6
2008; 2008
1993a; 22
2011; 8
2007; 58
2010; 61
2003; 56
1974; 4
1999
2010; 82
1993b; 22
1973; 24
1991; 42
2013; 94
1984; 6
2003; 3
2001; 37
2014
1999; 50
2012; 6
2007; 1
2014; 8
2014; 100
2010; 4
2001; 52
2011; 560
1989; 18
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
Blei D.M. (e_1_2_7_4_1) 2009
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
Jacomy M. (e_1_2_7_21_1) 2011; 560
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Blei D.M. (e_1_2_7_5_1) 2003; 3
e_1_2_7_51_1
Lehvo A. (e_1_2_7_24_1) 2006; 15
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Börner K. (e_1_2_7_9_1) 2010
References_xml – reference: Griffith, B.C., Small, H.G., Stonehill, J.A., & Dey, S. (1974). The structure of scientific literatures. II: Toward a macro-and microstructure for science. Social Studies of Science, 4(4), 339-365.
– reference: Lehvo, A., & Nuutinen, A. (2006). Finnish science in international comparison: A bibliometric analysis. Publications of the Academy of Finland, 15(6).
– reference: Klavans, R., & Boyack, K.W. (2014). Mapping altruism. Journal of Informetrics, 8(2), 431-447.
– reference: Nichols, L.G. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100(3), 741-754.
– reference: Rip, A., & Courtial, J.P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381-400.
– reference: Boyack, K.W., Newman, D., Duhon, R.J., Klavans, R., Patek, M., Biberstine, J.R., ... Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS One, 6(3), e18029.
– reference: Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589-593.
– reference: Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269.
– reference: Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research: JMLR, 3(2003), 993-1022.
– reference: Ding, Y., Chowdhury, G.G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using coword analysis. Information Processing & Management, 37(6), 817-842.
– reference: Peters, H., & van Raan, A.F. (1993a). Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling. Research Policy, 22(1), 47-71.
– reference: Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2013). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767-786.
– reference: Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
– reference: Jacomy, M., Heymann, S., Venturini, T., & Bastian, M. (2011). ForceAtlas2, a continuous graph layout algorithm for handy network visualization. Medialab Center of Research, 560.
– reference: Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F.J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145.
– reference: Small, H. (1993). Macro-level changes in the structure of cocitation clusters: 1983-1989. Scientometrics, 26(1), 5-20.
– reference: Leydesdroff, L. (1989). Words and cowords as indicators of intellectual organization. Research Policy, 18(4), 209-223.
– reference: Glänzel, W., Schubert, A., & Czerwon, H.J. (1999). An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis. Scientometrics, 44(3), 427-439.
– reference: Moya-Anegón, S.G., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F.J. & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167-2179.
– reference: Small, H. (2004). On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics, 60(1), 71-79.
– reference: Zhang, L., Liu, X., Janssens, F., Liang, L., & Glänzel, W. (2010). Subject clustering analysis based on isi category classification. Journal of Informetrics, 4(2), 185-193.
– reference: Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357-367.
– reference: Yan, E., Ding, Y., Milojević, S., & Sugimoto, C.R. (2012). Topics in dynamic research communities: An exploratory study for the field of information retrieval. Journal of Informetrics, 6(1), 140-153.
– reference: Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press.
– reference: Klavans, R., & Boyack, K.W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455-476.
– reference: Peters, H., & van Raan, A.F. (1993b). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23-45.
– reference: Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813.
– reference: Bassecoulard, E., & Zitt, M. (1999). Indicators in a research institute: A multi-level classification of scientific journals. Scientometrics, 44(3), 323-345.
– reference: Braam, R.R., Moed, H.F., & Van Raan, A.F. (1991). Mapping of science by combined cocitation and word analysis: II: Dynamical aspects. Journal of the American Society for Information Science, 42(4), 252-266.
– reference: Slotte, V., & Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21(5), 515-531.
– reference: Blei, D.M., & Lafferty, J.D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35.
– reference: Hood, W.W., & Wilson, C.S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314.
– reference: Veugelers, R. (2010). Towards a multipolar science world: Trends and impact. Scientometrics, 82(2), 439-456.
– reference: Liu, X., Yu, S., Janssens, F., Glänzel, W., Moreau, Y., & De Moor, B. (2010). Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. Journal of the American Society for Information Science and Technology, 61(6), 1105-1119.
– reference: Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348-362.
– reference: Börner, K., Chen, C., & Boyack, K.W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255.
– reference: Feldman, R., & Sanger, J. (2006). The text mining handbook: Advanced approaches in analyzing unstructured data. New York: Cambridge University Press.
– reference: Pudovkin, A.I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119.
– reference: Boyack, K.W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374.
– reference: Glenisson, P., Glänzel, W., & Persson, O. (2005). Combining full-text analysis and bibliometric indicators. a pilot study. Scientometrics, 63(1), 163-180.
– reference: Talley, E.M., Newman, D., Mimno, D., Herr, B.W., II, Wallach, H.M., Burns, G.A., ... McCallum, A. (2011). Database of NIH grants using machine-learned categories and graphical clustering. Nature Methods, 8(6), 443-444.
– volume: 6
  start-page: 140
  issue: 1
  year: 2012
  end-page: 153
  article-title: Topics in dynamic research communities: An exploratory study for the field of information retrieval
  publication-title: Journal of Informetrics
– start-page: 288
  year: 2009
  end-page: 296
  article-title: Reading tea leaves: How humans interpret topic models
– volume: 94
  start-page: 589
  issue: 2
  year: 2013
  end-page: 593
  article-title: Global maps of science based on the new Web‐of‐Science categories
  publication-title: Scientometrics
– volume: 2008
  start-page: P10008
  issue: 10
  year: 2008
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– volume: 4
  start-page: 339
  issue: 4
  year: 1974
  end-page: 365
  article-title: The structure of scientific literatures. II: Toward a macro‐and microstructure for science
  publication-title: Social Studies of Science
– volume: 1
  start-page: 17
  issue: 1
  year: 2007
  end-page: 35
  article-title: A correlated topic model of science
  publication-title: The Annals of Applied Statistics
– volume: 37
  start-page: 817
  issue: 6
  year: 2001
  end-page: 842
  article-title: Bibliometric cartography of information retrieval research by using coword analysis
  publication-title: Information Processing & Management
– start-page: 490
  year: 2007
  end-page: 499
– volume: 26
  start-page: 5
  issue: 1
  year: 1993
  end-page: 20
  article-title: Macro‐level changes in the structure of cocitation clusters: 1983–1989
  publication-title: Scientometrics
– volume: 4
  start-page: 185
  issue: 2
  year: 2010
  end-page: 193
  article-title: Subject clustering analysis based on isi category classification
  publication-title: Journal of Informetrics
– volume: 53
  start-page: 1113
  issue: 13
  year: 2002
  end-page: 1119
  article-title: Algorithmic procedure for finding semantically related journals
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 18
  start-page: 209
  issue: 4
  year: 1989
  end-page: 223
  article-title: Words and cowords as indicators of intellectual organization
  publication-title: Research Policy
– volume: 6
  start-page: 381
  issue: 6
  year: 1984
  end-page: 400
  article-title: Co‐word maps of biotechnology: An example of cognitive scientometrics
  publication-title: Scientometrics
– volume: 560
  year: 2011
  article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization
  publication-title: Medialab Center of Research
– volume: 8
  start-page: 443
  issue: 6
  year: 2011
  end-page: 444
  article-title: Database of NIH grants using machine‐learned categories and graphical clustering
  publication-title: Nature Methods
– year: 2014
  article-title: Epistemic integration of the European research area: The shifting geography of the knowledge base of Finnish research, 1995–2010
– volume: 56
  start-page: 357
  issue: 3
  year: 2003
  end-page: 367
  article-title: A new classification scheme of science fields and subfields designed for scientometric evaluation purposes
  publication-title: Scientometrics
– volume: 6
  start-page: e18029
  issue: 3
  year: 2011
  article-title: Clustering more than two million biomedical publications: Comparing the accuracies of nine text‐based similarity approaches
  publication-title: PLoS One
– volume: 60
  start-page: 348
  issue: 2
  year: 2009
  end-page: 362
  article-title: A global map of science based on the ISI subject categories
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 60
  start-page: 455
  issue: 3
  year: 2009
  end-page: 476
  article-title: Toward a consensus map of science
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 8
  start-page: 431
  issue: 2
  year: 2014
  end-page: 447
  article-title: Mapping altruism
  publication-title: Journal of Informetrics
– volume: 100
  start-page: 767
  issue: 3
  year: 2013
  end-page: 786
  article-title: Clustering scientific documents with topic modeling
  publication-title: Scientometrics
– volume: 60
  start-page: 71
  issue: 1
  year: 2004
  end-page: 79
  article-title: On the shoulders of Robert Merton: Towards a normative theory of citation
  publication-title: Scientometrics
– volume: 37
  start-page: 179
  issue: 1
  year: 2003
  end-page: 255
  article-title: Visualizing knowledge domains
  publication-title: Annual Review of Information Science and Technology
– volume: 15
  issue: 6
  year: 2006
  article-title: Finnish science in international comparison: A bibliometric analysis
  publication-title: Publications of the Academy of Finland
– year: 2007
– volume: 42
  start-page: 252
  issue: 4
  year: 1991
  end-page: 266
  article-title: Mapping of science by combined cocitation and word analysis: II: Dynamical aspects
  publication-title: Journal of the American Society for Information Science
– volume: 44
  start-page: 427
  issue: 3
  year: 1999
  end-page: 439
  article-title: An item‐by‐item subject classification of papers published in multidisciplinary and general journals using reference analysis
  publication-title: Scientometrics
– volume: 64
  start-page: 351
  issue: 3
  year: 2005
  end-page: 374
  article-title: Mapping the backbone of science
  publication-title: Scientometrics
– volume: 24
  start-page: 265
  issue: 4
  year: 1973
  end-page: 269
  article-title: Co‐citation in the scientific literature: A new measure of the relationship between two documents
  publication-title: Journal of the American Society for Information Science
– volume: 50
  start-page: 799
  issue: 9
  year: 1999
  end-page: 813
  article-title: Visualizing science by citation mapping
  publication-title: Journal of the American Society for Information Science
– start-page: 71
  year: 2009
  end-page: 94
– volume: 82
  start-page: 439
  issue: 2
  year: 2010
  end-page: 456
  article-title: Towards a multipolar science world: Trends and impact
  publication-title: Scientometrics
– start-page: 178 185
  year: 2006
– year: 2010
– volume: 58
  start-page: 2167
  issue: 14
  year: 2007
  end-page: 2179
  article-title: Visualizing the marrow of science
  publication-title: Journal of the American Society for Information Science and Technology
– start-page: 977 984
  year: 2006
– year: 2012
– volume: 21
  start-page: 515
  issue: 5
  year: 1999
  end-page: 531
  article-title: Spontaneous concept maps aiding the understanding of scientific concepts
  publication-title: International Journal of Science Education
– volume: 63
  start-page: 163
  issue: 1
  year: 2005
  end-page: 180
  article-title: Combining full‐text analysis and bibliometric indicators. a pilot study
  publication-title: Scientometrics
– start-page: 50
  year: 1999
  end-page: 57
– volume: 44
  start-page: 323
  issue: 3
  year: 1999
  end-page: 345
  article-title: Indicators in a research institute: A multi‐level classification of scientific journals
  publication-title: Scientometrics
– year: 2006
– volume: 22
  start-page: 47
  issue: 1
  year: 1993a
  end-page: 71
  article-title: Co‐word‐based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling
  publication-title: Research Policy
– volume: 22
  start-page: 23
  issue: 1
  year: 1993b
  end-page: 45
  article-title: Co‐word‐based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling
  publication-title: Research Policy
– volume: 100
  start-page: 741
  issue: 3
  year: 2014
  end-page: 754
  article-title: A topic model approach to measuring interdisciplinarity at the National Science Foundation
  publication-title: Scientometrics
– volume: 61
  start-page: 129
  issue: 1
  year: 2004
  end-page: 145
  article-title: A new technique for building maps of large scientific domains based on the cocitation of classes and categories
  publication-title: Scientometrics
– volume: 52
  start-page: 291
  issue: 2
  year: 2001
  end-page: 314
  article-title: The literature of bibliometrics, scientometrics, and informetrics
  publication-title: Scientometrics
– volume: 3
  start-page: 993
  issue: 2003
  year: 2003
  end-page: 1022
  article-title: Latent Dirichlet Allocation
  publication-title: Journal of Machine Learning Research: JMLR
– volume: 61
  start-page: 1105
  issue: 6
  year: 2010
  end-page: 1119
  article-title: Weighted hybrid clustering by combining text mining and bibliometrics on a large‐scale journal database
  publication-title: Journal of the American Society for Information Science and Technology
– ident: e_1_2_7_7_1
  doi: 10.1007/s11192-005-0255-6
– ident: e_1_2_7_34_1
– ident: e_1_2_7_26_1
  doi: 10.1007/s11192-012-0784-8
– ident: e_1_2_7_44_1
  doi: 10.1038/nmeth.1619
– volume: 3
  start-page: 993
  issue: 2003
  year: 2003
  ident: e_1_2_7_5_1
  article-title: Latent Dirichlet Allocation
  publication-title: Journal of Machine Learning Research: JMLR
– ident: e_1_2_7_41_1
  doi: 10.1007/BF02016789
– ident: e_1_2_7_46_1
  doi: 10.1007/s11192-009-0045-7
– start-page: 71
  volume-title: Text mining: Classification, clustering, and applications
  year: 2009
  ident: e_1_2_7_4_1
– ident: e_1_2_7_51_1
  doi: 10.1016/j.joi.2009.11.005
– ident: e_1_2_7_8_1
  doi: 10.1371/journal.pone.0018029
– ident: e_1_2_7_22_1
  doi: 10.1002/asi.20991
– ident: e_1_2_7_29_1
  doi: 10.1145/1281192.1281246
– ident: e_1_2_7_30_1
  doi: 10.1023/B:SCIE.0000037368.31217.34
– ident: e_1_2_7_40_1
  doi: 10.1002/asi.4630240406
– ident: e_1_2_7_31_1
  doi: 10.1002/asi.20683
– ident: e_1_2_7_36_1
  doi: 10.1016/0048-7333(93)90031-C
– ident: e_1_2_7_11_1
  doi: 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G
– ident: e_1_2_7_47_1
  doi: 10.1145/1143844.1143967
– ident: e_1_2_7_32_1
– ident: e_1_2_7_19_1
  doi: 10.1145/312624.312649
– volume: 560
  year: 2011
  ident: e_1_2_7_21_1
  article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization
  publication-title: Medialab Center of Research
– ident: e_1_2_7_20_1
  doi: 10.1023/A:1017919924342
– ident: e_1_2_7_35_1
  doi: 10.1016/0048-7333(93)90032-D
– ident: e_1_2_7_6_1
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: e_1_2_7_45_1
  doi: 10.1093/scipol/scu066
– ident: e_1_2_7_18_1
  doi: 10.1177/030631277400400402
– ident: e_1_2_7_42_1
  doi: 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
– volume-title: Atlas of science: Visualizing what we know
  year: 2010
  ident: e_1_2_7_9_1
– ident: e_1_2_7_48_1
  doi: 10.1145/1148170.1148204
– ident: e_1_2_7_16_1
  doi: 10.1007/BF02458488
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joi.2014.02.002
– volume: 15
  issue: 6
  year: 2006
  ident: e_1_2_7_24_1
  article-title: Finnish science in international comparison: A bibliometric analysis
  publication-title: Publications of the Academy of Finland
– ident: e_1_2_7_38_1
  doi: 10.1007/BF02025827
– ident: e_1_2_7_17_1
  doi: 10.1007/s11192-005-0208-0
– ident: e_1_2_7_13_1
  doi: 10.1016/S0306-4573(00)00051-0
– ident: e_1_2_7_37_1
  doi: 10.1002/asi.10153
– ident: e_1_2_7_15_1
  doi: 10.1023/A:1022378804087
– ident: e_1_2_7_25_1
  doi: 10.1002/asi.20967
– ident: e_1_2_7_27_1
  doi: 10.1016/0048-7333(89)90016-4
– ident: e_1_2_7_39_1
  doi: 10.1080/095006999290552
– ident: e_1_2_7_2_1
  doi: 10.1007/BF02458483
– ident: e_1_2_7_14_1
  doi: 10.1017/CBO9780511546914
– ident: e_1_2_7_50_1
  doi: 10.1007/s11192-014-1321-8
– ident: e_1_2_7_3_1
  doi: 10.1214/07-AOAS114
– ident: e_1_2_7_33_1
  doi: 10.1007/s11192-014-1319-2
– ident: e_1_2_7_12_1
– ident: e_1_2_7_28_1
  doi: 10.1002/asi.21312
– ident: e_1_2_7_49_1
  doi: 10.1016/j.joi.2011.10.001
– ident: e_1_2_7_10_1
  doi: 10.1002/aris.1440370106
– ident: e_1_2_7_43_1
  doi: 10.1023/B:SCIE.0000027310.68393.bc
SSID ssj0001098521
Score 2.5005274
Snippet The delineation of coordinates is fundamental for the cartography of science, and accurate and credible classification of scientific knowledge presents a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2464
SubjectTerms automatic classification
Cartography
Classification
Data processing
Delineation
Indexing
Learning
machine learning
text mining
Texts
Title Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification
URI https://api.istex.fr/ark:/67375/WNG-F4TBPN15-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasi.23596
https://www.proquest.com/docview/1835618757
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZp9tJLaWlKt2mDWkLpxY0fkm01p81j86C7BJLQ3ISeYWnxLvEaeuxP6G_ML8mM7HUaaCAX48MYmRlp5puRNB8h28r6nHkTRy6JTcRMoSPtywwfKlFOQFKBieJkmh9fstMrfrVGdld3Ydr-EH3BDVdG8Ne4wJWud-6bhqp69jXNuMifkQFercVJnrKz-wJLLEoe7l2lkLNHgDv4qrNQnO70Xz-IRwNU7e8HYPNfyBpizvgledGBRTpqrfuKrLnqNaknakHnnnaxi2IllS7ni5mhgdYGYtE3ut_TC6JoU9XNAp1C7SzteCKuqaosDRR9t3_-AoSeXYPHpXWjsTJDDaJqPEYULLdBLseHF_vHUUedEJms4HlkSuaYYNrlyvKMG-FFoSzkJpAdJaUobOxtCdlpoNpQ2jrBmIuV0MxkPkl99oasV_PKvSW01Nrnsc0t55bZtNA-UxnSriuWwBjFkHxZKVCarq840lv8km1H5FSCrmXQ9ZB86kUXbTON_wl9DlboJdTNTzx9VnD5Y3okx-xi72yacHk6JB9XZpKwJnCjQ1Vu3tQS3BTAQmzVDz8X7Pf4cHJ0fhJe3j1ddJM8B9yUt2f63pP15U3jPgA2WeqtMAe3yGB0MPl-fgfJDeMt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKe4ALAgFiSwsGIcQlND-2EyMupWLZlu6qElvRm-XfagXKrpqNxJFH4Bl5EmacbEolkLhEOUzkaCae-WYyno-Ql9oFwYJNE5-lNmG2NIkJVYEXnWkvIanARHE6E5NzdnLBL7bIu81ZmG4-xFBww50R_TVucCxIH1xPDdXN4k1ecClukR0m8hKJG3J2dl1hSWXF48GrHJL2BIAH34wWSvOD4ekbAWkHdfv9Btr8E7PGoDO-R-72aJEedua9T7Z8_YA0U72iy0D74EWxlErXy9XC0shrA8HoLT0a-AVRtK2bdoVeofGO9kQRl1TXjkaOvl8_fgKGXlyCy6VNa7A0Qy3CauwjiqZ7SM7HH-ZHk6TnTkhsUXKR2Ip5JpnxQjtecCuDLLWD5ATSo6ySpUuDqyA9jVwb2jgvGfOplobZImR5KB6R7XpZ-8eEVsYEkTrhOHfM5aUJhS6Qd12zDNYoR-T1RoHK9oPFkd_im-pGIucKdK2irkfkxSC66qZp_E3oVbTCIKGvvmL7WcnVl9lHNWbz92ezjKuTEXm-MZOCTYF_OnTtl22jwE8BLsRZ_fBy0X7_Xk4dfj6ON7v_L_qM3J7Mp6fq9Hj26Qm5AyBKdA1-e2R7fdX6fQAqa_M0fo-_AeiG5QU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKKyEuCFQQW1rqIoS4hObHTmJ6Km2XttDVSrSiN8u_1QqUjZqNxJFH4Bl5EmacbNpKVOIS5TCRoxl75puxPR8hb5T1OfMmjlwSm4iZQkfalxk-VKKcgKQCE8WzSX58wU4v-eUK2Vvehen6QwwFN1wZwV_jAq-t371pGqqa2fs04yJ_QNZwsw-nd8qmNwWWWJQ83LtKIWePAHfwZWehON0dvr4Tj9ZQtT_vgM3bkDXEnPET8rgHi3S_s-5TsuKqddKcqZrOPe1jF8VKKl3M65mhgdYGYtEHejDQC6JoWzVtjU6hcZb2PBFXVFWWBoq-P79-A4SeXYHHpU2rsTJDDaJqPEYULPeMXIyPzg-Oo546ITJZwfPIlMwxwbTLleUZN8KLQlnITSA7SkpR2NjbErLTQLWhtHWCMRcroZnJfJL67DlZreaVe0FoqbXPY5tbzi2zaaF9pjKkXVcsgTGKEXm3VKA0fV9xpLf4IbuOyKkEXcug6xF5PYjWXTONfwm9DVYYJNT1dzx9VnD5bfJJjtn5x-kk4fJ0RHaWZpKwJnCjQ1Vu3jYS3BTAQmzVDz8X7Hf_cHL_60l42fh_0W3ycHo4ll9OJp9fkkcAofLueN8mWV1ct24LYMpCvwrT8S-tJOQ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Map+of+science+with+topic+modeling%3A+Comparison+of+unsupervised+learning+and+human%E2%80%90assigned+subject+classification&rft.jtitle=Journal+of+the+Association+for+Information+Science+and+Technology&rft.au=Suominen%2C+Arho&rft.au=Toivanen%2C+Hannes&rft.date=2016-10-01&rft.issn=2330-1635&rft.eissn=2330-1643&rft.volume=67&rft.issue=10&rft.spage=2464&rft.epage=2476&rft_id=info:doi/10.1002%2Fasi.23596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asi_23596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-1635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-1635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-1635&client=summon