Combinatorial Photothermal 3D‐Printing Scaffold and Checkpoint Blockade Inhibits Growth/Metastasis of Breast Cancer to Bone and Accelerates Osteogenesis
Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly destructive, which urges the engineering of multifunctional biomaterials, not only for eliminating primary/metastases tumors effectively but also...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly destructive, which urges the engineering of multifunctional biomaterials, not only for eliminating primary/metastases tumors effectively but also for enhancing bone–tissue regeneration. Herein, an immune adjuvant (R837)‐loaded and niobium carbide (Nb2C) MXene‐modified 3D‐printing biodegradable scaffold (BG@NbSiR) is designed and constructed to effectively treat bone metastasis of breast cancer. The engineered BG@NbSiR scaffold can eradicate primary tumors, activate the immune response, suppress metastases, prevent tumor relapses (long‐term immunological memory) by synergizing with checkpoint blockade immunotherapy, and accelerate osteogenesis as evidenced by multiple in vivo murine models. In particular, single‐cell sequencing (scRNA‐seq) is employed to further determine the critical factors responding to BG@NbSiR scaffold‐based photothermia plus checkpoint blockade‐combined immunotherapy. Several gene functional terms are identified in both tumor biology (including copy number variation) and immune response, which further reveal the underlying therapeutic mechanisms from the perspective of single‐cell transcriptome. This work not only demonstrates the promising clinical application potentials of BG@NbSiR scaffold‐based therapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes.
Bone metastasis of breast cancer is one of the main causes for the high mortality. This work not only demonstrates the promising clinical application potentials of BG@NbSiR‐scaffold‐based immunotherapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes. |
---|---|
AbstractList | Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly destructive, which urges the engineering of multifunctional biomaterials, not only for eliminating primary/metastases tumors effectively but also for enhancing bone–tissue regeneration. Herein, an immune adjuvant (R837)‐loaded and niobium carbide (Nb2C) MXene‐modified 3D‐printing biodegradable scaffold (BG@NbSiR) is designed and constructed to effectively treat bone metastasis of breast cancer. The engineered BG@NbSiR scaffold can eradicate primary tumors, activate the immune response, suppress metastases, prevent tumor relapses (long‐term immunological memory) by synergizing with checkpoint blockade immunotherapy, and accelerate osteogenesis as evidenced by multiple in vivo murine models. In particular, single‐cell sequencing (scRNA‐seq) is employed to further determine the critical factors responding to BG@NbSiR scaffold‐based photothermia plus checkpoint blockade‐combined immunotherapy. Several gene functional terms are identified in both tumor biology (including copy number variation) and immune response, which further reveal the underlying therapeutic mechanisms from the perspective of single‐cell transcriptome. This work not only demonstrates the promising clinical application potentials of BG@NbSiR scaffold‐based therapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes.
Bone metastasis of breast cancer is one of the main causes for the high mortality. This work not only demonstrates the promising clinical application potentials of BG@NbSiR‐scaffold‐based immunotherapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes. Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly destructive, which urges the engineering of multifunctional biomaterials, not only for eliminating primary/metastases tumors effectively but also for enhancing bone–tissue regeneration. Herein, an immune adjuvant (R837)‐loaded and niobium carbide (Nb 2 C) MXene‐modified 3D‐printing biodegradable scaffold (BG@NbSiR) is designed and constructed to effectively treat bone metastasis of breast cancer. The engineered BG@NbSiR scaffold can eradicate primary tumors, activate the immune response, suppress metastases, prevent tumor relapses (long‐term immunological memory) by synergizing with checkpoint blockade immunotherapy, and accelerate osteogenesis as evidenced by multiple in vivo murine models. In particular, single‐cell sequencing (scRNA‐seq) is employed to further determine the critical factors responding to BG@NbSiR scaffold‐based photothermia plus checkpoint blockade‐combined immunotherapy. Several gene functional terms are identified in both tumor biology (including copy number variation) and immune response, which further reveal the underlying therapeutic mechanisms from the perspective of single‐cell transcriptome. This work not only demonstrates the promising clinical application potentials of BG@NbSiR scaffold‐based therapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes. Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly destructive, which urges the engineering of multifunctional biomaterials, not only for eliminating primary/metastases tumors effectively but also for enhancing bone–tissue regeneration. Herein, an immune adjuvant (R837)‐loaded and niobium carbide (Nb2C) MXene‐modified 3D‐printing biodegradable scaffold (BG@NbSiR) is designed and constructed to effectively treat bone metastasis of breast cancer. The engineered BG@NbSiR scaffold can eradicate primary tumors, activate the immune response, suppress metastases, prevent tumor relapses (long‐term immunological memory) by synergizing with checkpoint blockade immunotherapy, and accelerate osteogenesis as evidenced by multiple in vivo murine models. In particular, single‐cell sequencing (scRNA‐seq) is employed to further determine the critical factors responding to BG@NbSiR scaffold‐based photothermia plus checkpoint blockade‐combined immunotherapy. Several gene functional terms are identified in both tumor biology (including copy number variation) and immune response, which further reveal the underlying therapeutic mechanisms from the perspective of single‐cell transcriptome. This work not only demonstrates the promising clinical application potentials of BG@NbSiR scaffold‐based therapy against bone metastasis of breast cancer, but also provides distinctive avenues to optimize the design and construction of multifunctional tissue‐engineering biomaterials based on single‐cell genomes. |
Author | Hao, Yongqiang Yu, Luodan Chen, Yu Yao, Heliang He, Chao |
Author_xml | – sequence: 1 givenname: Chao surname: He fullname: He, Chao organization: Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Luodan surname: Yu fullname: Yu, Luodan email: yuluodan@shu.edu.cn organization: Shanghai University – sequence: 3 givenname: Heliang surname: Yao fullname: Yao, Heliang organization: Chinese Academy of Sciences – sequence: 4 givenname: Yu orcidid: 0000-0002-8206-3325 surname: Chen fullname: Chen, Yu email: chenyuedu@shu.edu.cn organization: Shanghai University – sequence: 5 givenname: Yongqiang surname: Hao fullname: Hao, Yongqiang email: haoyq1664@sh9hospital.org.cn organization: Shanghai Jiao Tong University School of Medicine |
BookMark | eNqFkctKBDEQRYMo-Ny6DrieMY-efixn2icoCiq4a2rSFTvak4xJRNz5Ca79PL_E6IiCIEJBqpJ7bgXuOlm2ziIh25wNOWNiF1o9GwomGMsFz5bIGs95PpBMlMvfPb9eJesh3DLGi0Jma-S1drOpsRCdN9DT885FFzv0szTIvbfnl3NvbDT2hl4o0Nr1LQXb0rpDdTd36YlOeqfuoEV6bDszNTHQQ-8eY7d7ihFCKhOo03TiMU20BqvQ0-joJP3-02usFPboIWKgZyGiu0GLidokKxr6gFtf5wa5Oti_rI8GJ2eHx_X4ZKBkMcoGOkNdcI685AKZGgHLFbQFL3MQJVZlmafLqi21ULptK61ziQKVGhUCppIxuUF2Fr5z7-4fMMTm1j14m1Y2IqtGUnIhZVJlC5XyLgSPulEmQjTORg-mbzhrPlJoPlJovlNI2PAXNvdmBv7pb6BaAI-mx6d_1M147-D0h30Hk9-gZQ |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_01_020 crossref_primary_10_1016_j_matdes_2023_111656 crossref_primary_10_1021_acsomega_3c06944 crossref_primary_10_1016_j_mtadv_2022_100209 crossref_primary_10_1088_1758_5090_aca5b8 crossref_primary_10_1016_j_addr_2022_114308 crossref_primary_10_1016_j_carbon_2022_08_029 crossref_primary_10_3390_polym14235278 crossref_primary_10_1039_D1BM00809A crossref_primary_10_1016_j_biomaterials_2023_121999 crossref_primary_10_1016_j_apmt_2022_101553 crossref_primary_10_1016_j_bioadv_2023_213500 crossref_primary_10_1021_acsami_4c07894 crossref_primary_10_1002_adfm_202109882 crossref_primary_10_1021_accountsmr_2c00025 crossref_primary_10_1039_D4NA00931B crossref_primary_10_1186_s12951_023_01809_2 crossref_primary_10_3390_chemistry3040095 crossref_primary_10_1142_S1793545824420021 crossref_primary_10_1088_1748_605X_ad6520 crossref_primary_10_1002_btm2_10409 crossref_primary_10_1002_adhm_202304060 crossref_primary_10_1016_j_jiec_2025_02_020 crossref_primary_10_1016_j_biomaterials_2024_122683 crossref_primary_10_3390_ijms25105414 crossref_primary_10_1016_j_biomaterials_2024_122762 crossref_primary_10_1021_acsami_1c13107 crossref_primary_10_1039_D3TB00925D crossref_primary_10_1016_j_ceramint_2023_03_109 crossref_primary_10_1016_j_actbio_2022_08_042 crossref_primary_10_1021_acsnano_3c01913 crossref_primary_10_1111_jace_19185 crossref_primary_10_3390_ijms232416190 crossref_primary_10_1016_j_pmatsci_2025_101433 crossref_primary_10_1016_j_jconrel_2021_11_005 crossref_primary_10_1002_jbm_a_37438 crossref_primary_10_1038_s41467_024_55430_4 crossref_primary_10_1016_j_fmre_2024_02_005 crossref_primary_10_1016_j_jconrel_2024_07_067 crossref_primary_10_1016_j_apsb_2024_03_004 crossref_primary_10_1039_D3NR02527F crossref_primary_10_1021_acsnano_4c16136 crossref_primary_10_1016_j_mtbio_2023_100889 crossref_primary_10_1039_D4TB02834A crossref_primary_10_3389_fbioe_2023_1154301 crossref_primary_10_1016_j_nantod_2024_102423 crossref_primary_10_1002_advs_202406324 crossref_primary_10_1088_1748_605X_ad08e1 crossref_primary_10_1002_smll_202310325 crossref_primary_10_1016_j_actbio_2022_10_005 crossref_primary_10_1002_smll_202303438 crossref_primary_10_1002_adfm_202412165 crossref_primary_10_1186_s12951_023_01940_0 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1016_j_jddst_2024_105345 crossref_primary_10_1002_adfm_202203430 crossref_primary_10_1016_j_addr_2022_114360 crossref_primary_10_1016_j_ccr_2024_216006 crossref_primary_10_1021_acsbiomaterials_3c01129 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1002_adfm_202406237 crossref_primary_10_1002_smll_202102557 crossref_primary_10_1002_adfm_202104131 crossref_primary_10_1016_j_ijbiomac_2024_137193 crossref_primary_10_1002_smtd_202100536 crossref_primary_10_1016_j_intimp_2025_114411 crossref_primary_10_1038_s41392_023_01654_7 crossref_primary_10_1016_j_jiec_2022_10_014 crossref_primary_10_1002_advs_202304053 crossref_primary_10_1186_s40824_023_00453_z crossref_primary_10_1002_adfm_202311015 crossref_primary_10_1186_s12951_022_01579_3 crossref_primary_10_1038_s41413_021_00180_y crossref_primary_10_1016_j_colsurfb_2025_114568 crossref_primary_10_3390_bios12080568 |
Cites_doi | 10.1186/s12885-017-3922-0 10.1002/adma.201705611 10.3390/cancers12020385 10.1038/s41467-020-14568-7 10.1016/j.tibtech.2017.12.003 10.1038/s41467-019-13837-4 10.1038/s41467-019-09760-3 10.1002/jcp.28132 10.1038/s41577-019-0232-6 10.1021/acsbiomaterials.9b00909 10.1038/s41590-020-0607-7 10.3322/canjclin.56.6.366 10.3390/ijms21103573 10.1016/j.bbcan.2019.06.002 10.1038/srep08124 10.1016/j.cell.2019.03.025 10.1016/j.msec.2020.110905 10.1021/jacs.7b07818 10.1002/advs.201901511 10.1126/science.aat1699 10.1016/j.mvr.2018.12.002 10.1016/j.actbio.2014.03.037 10.1038/s41577-019-0218-4 10.1002/eji.201545702 10.1038/s41467-019-14259-y 10.1038/nature21350 10.1016/j.biomaterials.2020.119983 10.1038/s41467-019-14065-6 10.1530/ERC-19-0042 10.1016/j.cellimm.2019.03.002 10.1038/ncb3613 10.1158/1078-0432.CCR-15-2910 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202006214 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202006214 ADFM202006214 |
Genre | article |
GrantInformation_xml | – fundername: Excellent Young Scientist Foundation – fundername: Shanghai Ninth People's Hospital – fundername: Xuemei Tong's lab and Oebiotech Co., Ltd – fundername: Program of Shanghai Subject Chief Scientist funderid: 18XD1404300 – fundername: Youth Program of National Natural Science Foundation of China funderid: 51902334 – fundername: National Key R&D Program of China funderid: 2016YFC1100600; 2016YFA0203700 – fundername: National Natural Science Foundation of China funderid: 51672303; 81972058; 51722211 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3754-f4ef711e1812e0c5a06cad7186a28e98860c59d8f2cfdd9ff63e2ecc572ab3003 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:27:47 EDT 2025 Tue Jul 01 04:12:22 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Wed Jan 22 16:31:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3754-f4ef711e1812e0c5a06cad7186a28e98860c59d8f2cfdd9ff63e2ecc572ab3003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8206-3325 |
PQID | 2495331233 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2495331233 crossref_citationtrail_10_1002_adfm_202006214 crossref_primary_10_1002_adfm_202006214 wiley_primary_10_1002_adfm_202006214_ADFM202006214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2019; 7 2019; 2019 2015; 5 2019; 5 2006; 56 2020; 20 2019; 10 2020; 12 2020; 11 2020; 245 2019; 123 2017; 139 2018; 18 2019; 26 2019; 234 2017; 19 2018; 30 2020; 112 2020; 21 2019; 338 2017; 541 2019; 177 2019; 1872 2016; 46 2018; 36 2014; 10 2016; 22 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 Zhang L. (e_1_2_6_31_1) 2019; 2019 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 21 start-page: 3573 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 112 year: 2020 publication-title: Mater. Sci. Eng., C – volume: 36 start-page: 430 year: 2018 publication-title: Trends Biotechnol. – volume: 22 start-page: 4746 year: 2016 publication-title: Clin. Cancer Res. – volume: 11 start-page: 790 year: 2020 publication-title: Nat. Commun. – volume: 56 start-page: 366 year: 2006 publication-title: Ca‐Cancer J. Clin. – volume: 361 start-page: 594 year: 2018 publication-title: Science – volume: 123 start-page: 50 year: 2019 publication-title: Microvasc. Res. – volume: 245 year: 2020 publication-title: Biomaterials – volume: 234 year: 2019 publication-title: J. Cell. Physiol. – volume: 177 start-page: 1172 year: 2019 publication-title: Cell – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 147 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 642 year: 2020 publication-title: Nat. Commun. – volume: 20 start-page: 25 year: 2020 publication-title: Nat. Rev. Immunol. – volume: 1872 start-page: 89 year: 2019 publication-title: Biochim. Biophys. Acta, Rev. Cancer – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 562 year: 2020 publication-title: Nat. Commun. – volume: 541 start-page: 331 year: 2017 publication-title: Nature – volume: 5 start-page: 8124 year: 2015 publication-title: Sci. Rep. – volume: 7 year: 2019 publication-title: Adv. Sci. – volume: 20 start-page: 158 year: 2020 publication-title: Nat. Rev. Immunol. – volume: 26 start-page: 689 year: 2019 publication-title: Endocr.‐Relat. Cancer – volume: 19 start-page: 1274 year: 2017 publication-title: Nat. Cell Biol. – volume: 21 start-page: 412 year: 2020 publication-title: Nat. Immunol. – volume: 12 start-page: 385 year: 2020 publication-title: Cancers – volume: 10 start-page: 3363 year: 2014 publication-title: Acta Biomater. – volume: 18 start-page: 44 year: 2018 publication-title: BMC Cancer – volume: 10 start-page: 2025 year: 2019 publication-title: Nat. Commun. – volume: 46 start-page: 1809 year: 2016 publication-title: Eur. J. Immunol. – volume: 338 start-page: 27 year: 2019 publication-title: Cell. Immunol. – volume: 5 start-page: 6463 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 2019 year: 2019 publication-title: Oxid. Med. Cell. Longevity – ident: e_1_2_6_5_1 doi: 10.1186/s12885-017-3922-0 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201705611 – ident: e_1_2_6_3_1 doi: 10.3390/cancers12020385 – ident: e_1_2_6_12_1 doi: 10.1038/s41467-020-14568-7 – ident: e_1_2_6_19_1 doi: 10.1016/j.tibtech.2017.12.003 – ident: e_1_2_6_23_1 doi: 10.1038/s41467-019-13837-4 – ident: e_1_2_6_10_1 doi: 10.1038/s41467-019-09760-3 – ident: e_1_2_6_30_1 doi: 10.1002/jcp.28132 – ident: e_1_2_6_25_1 doi: 10.1038/s41577-019-0232-6 – ident: e_1_2_6_16_1 doi: 10.1021/acsbiomaterials.9b00909 – ident: e_1_2_6_27_1 doi: 10.1038/s41590-020-0607-7 – ident: e_1_2_6_6_1 doi: 10.3322/canjclin.56.6.366 – ident: e_1_2_6_4_1 doi: 10.3390/ijms21103573 – volume: 2019 start-page: 6326517 year: 2019 ident: e_1_2_6_31_1 publication-title: Oxid. Med. Cell. Longevity – ident: e_1_2_6_26_1 doi: 10.1016/j.bbcan.2019.06.002 – ident: e_1_2_6_21_1 doi: 10.1038/srep08124 – ident: e_1_2_6_11_1 doi: 10.1016/j.cell.2019.03.025 – ident: e_1_2_6_17_1 doi: 10.1016/j.msec.2020.110905 – ident: e_1_2_6_15_1 doi: 10.1021/jacs.7b07818 – ident: e_1_2_6_20_1 doi: 10.1002/advs.201901511 – ident: e_1_2_6_14_1 doi: 10.1126/science.aat1699 – ident: e_1_2_6_33_1 doi: 10.1016/j.mvr.2018.12.002 – ident: e_1_2_6_22_1 doi: 10.1016/j.actbio.2014.03.037 – ident: e_1_2_6_24_1 doi: 10.1038/s41577-019-0218-4 – ident: e_1_2_6_28_1 doi: 10.1002/eji.201545702 – ident: e_1_2_6_7_1 doi: 10.1038/s41467-019-14259-y – ident: e_1_2_6_13_1 doi: 10.1038/nature21350 – ident: e_1_2_6_18_1 doi: 10.1016/j.biomaterials.2020.119983 – ident: e_1_2_6_1_1 doi: 10.1038/s41467-019-14065-6 – ident: e_1_2_6_2_1 doi: 10.1530/ERC-19-0042 – ident: e_1_2_6_29_1 doi: 10.1016/j.cellimm.2019.03.002 – ident: e_1_2_6_8_1 doi: 10.1038/ncb3613 – ident: e_1_2_6_32_1 doi: 10.1158/1078-0432.CCR-15-2910 |
SSID | ssj0017734 |
Score | 2.5971928 |
Snippet | Cancer metastases are the main causes for the high mortality of cancer. The current treatment modality for bone metastasis of breast cancer is dominantly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biodegradability Biomedical materials bone metastasis, breast cancer Breast cancer checkpoint blockade Combinatorial analysis Design optimization Genomes Immune system Immunology Immunotherapy Materials science Metastasis Niobium carbide osteogenesis photothermal therapy Regeneration Scaffolds Three dimensional printing Tissue engineering Tumors |
Title | Combinatorial Photothermal 3D‐Printing Scaffold and Checkpoint Blockade Inhibits Growth/Metastasis of Breast Cancer to Bone and Accelerates Osteogenesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202006214 https://www.proquest.com/docview/2495331233 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLfQuGyHAQO0wjb5gMQpa-K4SXrsH8pAFCbGpN4ix_ajVUcyLd6FEx-BMx-PT7L3nDbrkNAkODqxncR-f37Pef6ZsVdgCgQCkAWJlr1AplIGCOplUCBU6Bc6hNBT5k8_Jifn8v2sN9vYxd_wQ7QLbqQZ3l6Tgqui7t6ShioDtJOcQmLhT7KmhC1CRZ9b_qgoTZvfyklECV7RbM3aGIru3eZ3vdIt1NwErN7jTB4xtX7XJtFkeXztimP9_Q8ax__5mMdsdwVH-aCRnyfsgS332M4GSeFT9gtNBobPFJyjrPLTeeX8rq1vWIjHv3_8PMV6lDzNz7QCqC4MV6Xho7nVy8sKb_EhOsylMpa_K-eLYuFq_haDfzfvTq1TiE7rRc0r4EPKj3d8RHJ4xV3Fh1VpfV8DrdE7EqlFzT-hWFZfyUIv6mfsfPLmy-gkWJ3oEGg6ajcAaSGNIkuwwoa6p8JEK4PuMVEis_0sS_Bi32QgNBjTB0hiK1DIeqlQRYwG6DnbKvHZ-4yD0VKAsrSoLRFGqhhjr8zGEEIisGGHBesZzfWK7pxO3bjIG6JmkdOY5-2Yd9jrtv5lQ_Tx15oHawHJVwpf58Ln6SIMiDtM-Jm-p5d8MJ5M29KLf2n0km0LyrDxGXEHbMtdXdtDhEiuOGIPB-Pph7Mjrw43f8wMVg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQAH_lEXCviAxCndxPEm2eP-sGyhWypopd4ix_awqy1J1bgXTjwCZx6PJ2HG2aQtEkKCoxPbSewZzzfO-BvGXoEpEAhAFiRaDgKZShkgqJdBgVBhWOgQQk-ZvzhI5sfy3cmgjSakszANP0S34Uaa4ddrUnDakO5fsoYqA3SUnHxiQamsb1Jab6LPn37sGKSiNG1-LCcRhXhFJy1vYyj619tft0uXYPMqZPU2Z3aPFe3bNqEm690LV-zqr78ROf7X59xndzeIlI8aEXrAbtjyIbtzhafwEfuBqwZ60OSfo7jyw2Xl_MGtL1iIpz-_fT_EehQ_zT9pBVCdGq5KwydLq9dnFd7iY7SZa2Us3yuXq2Llav4W_X-37C-sUwhQ61XNK-BjCpF3fEKieM5dxcdVaX1fI63RQBKvRc0_oGRWn2mRXtWP2fHszdFkHmySOgSasu0GIC2kUWQJWdhQD1SYaGXQQiZKZHaYZQleHJoMhAZjhgBJbAXK2SAVqohxDXrCtkp89jbjYLQUoCzta0tEkipG9yuzMYSQCGzYY0E7pbneMJ5T4o3TvOFqFjmNed6NeY-97uqfNVwff6y500pIvtH5Ohc-VBeRQNxjwk_1X3rJR9PZois9_ZdGL9mt-dFiP9_fO3j_jN0WFHDjA-R22JY7v7DPETG54oXXiV_GCg7e |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcyltdKOADEqd0E8frJMd9sLTAlhVQaW-R40d3tSVZNe6FEz-Bc39efwkzzm66RUJIcHRiO4k94_nGGX9DyGurCwACNg2E4r2AJ5wHAOp5UABUyAoV2tBT5k-OxeEJfz_rzbZO8Tf8EO2GG2qGX69RwVfadq9JQ6W2eJIcXWKGmaxvcxFmmLxh9LklkIqSpPmvLCKM8IpmG9rGkHVvtr9plq6x5jZi9SZnfJ_Izcs2kSbLgwtXHKjvv_E4_s_XPCC7azxK-40APSS3TPmI3NtiKXxMLmHNAP8ZvXMQVjqdV84f2_oGhXh09ePnFOph9DT9oqS11ZmmstR0ODdquargFh2AxVxKbehROV8UC1fTd-D9u3l3YpwEeFovalpZOsAAeUeHKIjn1FV0UJXG99VXCswjslrU9BPIZXWKS_SifkJOxm-_Dg-DdUqHQGGu3cByY5MoMogrTKh6MhRKarCPQrLUZGkq4GKmU8uU1TqzVsSGgZT1EiaLGFagp2SnhGfvEWq14sxKg7vaHHCkjMH5Sk1sQysYNOyQYDOjuVrznWPajbO8YWpmOY553o55h7xp668apo8_1tzfCEi-1vg6Zz5QF3BA3CHMz_Rfesn7o_GkLT37l0avyJ3paJx_PDr-8JzcZRht46Pj9smOO78wLwAuueKl14hfjvcNjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Photothermal+3D%E2%80%90Printing+Scaffold+and+Checkpoint+Blockade+Inhibits+Growth%2FMetastasis+of+Breast+Cancer+to+Bone+and+Accelerates+Osteogenesis&rft.jtitle=Advanced+functional+materials&rft.au=He%2C+Chao&rft.au=Yu%2C+Luodan&rft.au=Yao%2C+Heliang&rft.au=Chen%2C+Yu&rft.date=2021-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202006214&rft.externalDBID=10.1002%252Fadfm.202006214&rft.externalDocID=ADFM202006214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |