A scientometric review of research on traffic forecasting in transportation
Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSv...
Saved in:
Published in | IET intelligent transport systems Vol. 15; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It
can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field. |
---|---|
AbstractList | Abstract Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field. Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field. |
Author | Qiao, Yan Liu, Jin Wu, Naiqi Li, Zhiwu |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0003-3781-5927 surname: Liu fullname: Liu, Jin organization: Macau University of Science and Technology – sequence: 2 givenname: Naiqi surname: Wu fullname: Wu, Naiqi email: nqwu@must.edu.mo organization: Guangdong University of Technology – sequence: 3 givenname: Yan surname: Qiao fullname: Qiao, Yan organization: Macau University of Science and Technology – sequence: 4 givenname: Zhiwu surname: Li fullname: Li, Zhiwu organization: Macau University of Science and Technology |
BookMark | eNp9kEtrwzAQhEVJoUnaS3-BzwWnelr2MYQ-TAOFkkJvQpZXqUJiBUk05N_XiUuOPe2wM_stzASNOt8BQvcEzwjm1aNLgc4IxZRfoTGRguSVkOXooouvGzSJcYOxKCglY_Q2z6Jx0CW_gxScyQL8ODhk3vYqgg7mO_NdloK2tnetD2B0TK5bZ-687uLeh6ST890turZ6G-Hub07R5_PTavGaL99f6sV8mRsmBc9li0vdsLbSpRW4YRYLYkE2ErhlkrRNgxnjlDUtYKZ7w4qCaWsKSSuBK8KmqB64rdcbtQ9up8NRee3UeeHDWumQnNmC4oKJApv-I1S8R1UEWwHUclKYUhjoWQ8DywQfYwB74RGsTpWqU6XqXGkfJkP44LZw_Cep6tUHHW5-ATuFez4 |
CitedBy_id | crossref_primary_10_1109_TITS_2022_3184082 crossref_primary_10_1049_itr2_12416 crossref_primary_10_3390_su16020751 crossref_primary_10_1109_TITS_2023_3327266 crossref_primary_10_1016_j_eswa_2021_115992 crossref_primary_10_1016_j_envsoft_2023_105788 crossref_primary_10_3390_su141912437 crossref_primary_10_1109_MITS_2023_3284059 crossref_primary_10_1680_jtran_23_00081 crossref_primary_10_1080_03081060_2023_2245389 crossref_primary_10_1016_j_ins_2024_120482 crossref_primary_10_1007_s10489_024_05346_9 crossref_primary_10_1007_s10489_022_03189_w crossref_primary_10_1109_JAS_2020_1003405 crossref_primary_10_1109_TITS_2021_3064085 crossref_primary_10_1109_TITS_2022_3179391 crossref_primary_10_1155_2022_7754961 crossref_primary_10_1155_2022_6888115 crossref_primary_10_1007_s11831_024_10077_8 crossref_primary_10_1155_2021_2977998 crossref_primary_10_2478_sbe_2023_0019 crossref_primary_10_1080_01441647_2023_2171151 crossref_primary_10_3390_app11146248 |
Cites_doi | 10.1002/asi.21419 10.1016/j.trc.2014.02.006 10.1061/(ASCE)0733-947X(1995)121:3(249) 10.1109/TITS.2008.915649 10.1093/oso/9780198538493.001.0001 10.1109/MITS.2018.2806634 10.1002/asi.20317 10.1109/WSC.2017.8247826 10.1016/j.trb.2004.03.003 10.3390/su10010166 10.1109/ICSMC.1994.400094 10.1016/S0968-090X(97)82903-8 10.1080/15389588.2018.1511896 10.1109/TITS.2006.869623 10.1016/S0968-090X(01)00004-3 10.1016/j.engappai.2003.09.011 10.1061/(ASCE)0733-947X(1991)117:2(178) 10.1016/j.eswa.2008.07.069 10.1111/0885-9507.00219 10.1517/21678707.2014.920251 10.3141/1617-23 10.1016/S0968-090X(03)00026-3 10.1007/s11192-015-1595-5 10.1016/0191-2615(84)90002-X 10.1016/S0377-2217(00)00125-9 10.1002/int.21894 10.1049/iet-its.2018.0064 10.1080/0144164042000195072 10.1016/j.jclepro.2018.02.162 10.1038/s42003-018-0261-x 10.1016/j.trc.2014.01.005 10.1016/j.autcon.2017.04.002 10.1016/j.trc.2010.10.004 10.1109/TITS.2004.837813 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1007/s11192-009-0146-3 10.3141/1678-22 10.1016/j.trc.2015.03.014 10.1007/s11192-015-1695-2 10.1109/TITS.2014.2311123 10.1111/j.1467-8667.2008.00558.x 10.1061/(ASCE)0733-947X(2003)129:2(161) 10.1016/j.trc.2005.04.007 10.1007/s11192-016-1918-1 10.1061/(ASCE)0733-947X(2005)131:10(771) 10.1016/0968-090X(95)00009-8 10.3141/1776-25 10.1007/s11192-014-1517-y 10.1109/TITS.2008.2011693 10.1016/S0968-090X(03)00004-4 10.1016/0041-1647(76)90059-9 10.1016/S0968-090X(02)00009-8 10.1016/j.trc.2010.10.002 10.1061/(ASCE)0733-947X(2006)132:2(114) 10.1016/j.trc.2011.12.006 10.1016/j.trc.2005.03.001 10.1061/(ASCE)0733-947X(1997)123:4(261) |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1049/itr2.12024 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Free Archive CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9578 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce 10_1049_itr2_12024 ITR212024 |
Genre | reviewArticle |
GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI WIN AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c3754-7d08ab3d9a8f50b3f051fe7b7e4f371dbb033423bde03ae7bf563afc672950913 |
IEDL.DBID | DOA |
ISSN | 1751-956X |
IngestDate | Tue Oct 22 15:10:08 EDT 2024 Thu Sep 26 21:18:58 EDT 2024 Sat Aug 24 01:05:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3754-7d08ab3d9a8f50b3f051fe7b7e4f371dbb033423bde03ae7bf563afc672950913 |
ORCID | 0000-0003-3781-5927 |
OpenAccessLink | https://doaj.org/article/453560cd08e94e7b910f5e2f416c85ce |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce crossref_primary_10_1049_itr2_12024 wiley_primary_10_1049_itr2_12024_ITR212024 |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | IET intelligent transport systems |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2017; 80 2005; 131 2015; 104 2015; 105 2016; 107 2015; 103 2002; 10 2004; 24 2008; 9 2006; 132 2004; 5 2003; 16 1991; 117 2011; 19 1979 2003; 11 2010; 61 2003; 129 2001; 131 2009; 10 2014; 2 2019; 20 2001 2017; 32 2014; 15 2008; 23 1984; 18 2001; 16 1996; 4 1995; 121 2005; 39 2012; 22 2015; 16 2018; 183 2006; 57 2019; 2 2015; 54 2006; 7 1998 1995 1994 1995; 3 2010; 84 2014; 43 1976; 10 2009; 36 1999; 1678 1997; 123 2017 2018; 12 2018; 10 2005; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Lv Y. (e_1_2_9_33_1) 2015; 16 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Miglani A. (e_1_2_9_14_1) 2019; 20 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Williams B.M. (e_1_2_9_51_1) 1998 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Bishop C.M. (e_1_2_9_56_1) 1995 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 84 start-page: 523 issue: 2 year: 2010 end-page: 538 article-title: Software survey: VOSviewer, a computer program for bibliometric mapping publication-title: Scientometrics – volume: 20 year: 2019 article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges publication-title: Veh. Commun. – volume: 20 start-page: 64 issue: 1 year: 2019 end-page: 71 article-title: Bibliometric analysis of simulated driving research from 1997 to 2016 publication-title: Traffic Inj. Prev. – volume: 107 start-page: 1111 issue: 3 year: 2016 end-page: 1147 article-title: A review of emerging trends in global PPP research: Analysis and visualization publication-title: Scientometrics – volume: 15 start-page: 2191 issue: 5 year: 2014 end-page: 2201 article-title: Deep architecture for traffic flow prediction: Deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 22 start-page: 103 year: 2012 end-page: 118 article-title: The retrieval of intra‐day trend and its influence on traffic prediction publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 11 start-page: 187 issue: 3–4 year: 2003 end-page: 210 article-title: Short‐term travel time prediction publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 54 start-page: 187 year: 2015 end-page: 197 article-title: Long short‐term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 80 start-page: 37 year: 2017 end-page: 47 article-title: A scientometric review of global BIM research: Analysis and visualization publication-title: Autom. Constr. – volume: 43 start-page: 50 year: 2014 end-page: 64 article-title: Adaptive Kalman filter approach for stochastic short‐term traffic flow rate prediction and uncertainty quantification publication-title: Transp. Res. Part C‐Emerg. Technol. – year: 1979 – volume: 12 start-page: 998 issue: 9 year: 2018 end-page: 1004 article-title: Deep learning methods in transportation domain: A review publication-title: IET Intell. Transp. Syst. – volume: 121 start-page: 249 issue: 3 year: 1995 end-page: 254 article-title: Short‐term prediction of traffic volume in urban arterials publication-title: J. Transp. Eng.‐ASCE – volume: 18 start-page: 1 issue: 1 year: 1984 end-page: 11 article-title: Dynamic prediction of traffic volume through Kalman filtering theory publication-title: Transp. Res. Part B‐Methodol. – start-page: 1706 year: 1994 end-page: 1709 article-title: Short‐term traffic flow prediction models—A comparison of neural network and nonparametric regression approaches – volume: 10 start-page: 60 issue: 1 year: 2009 end-page: 69 article-title: An aggregation approach to short‐term traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 3 start-page: 247 issue: 4 year: 1995 end-page: 260 article-title: A review of neural networks applied to transport publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 32 start-page: 1151 issue: 11 year: 2017 end-page: 1166 article-title: Exploring the ordered weighted averaging operator knowledge domain: A bibliometric analysis publication-title: Int. J. Intell. Syst. – volume: 23 start-page: 521 issue: 7 year: 2008 end-page: 535 article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow publication-title: Comput.‐Aided Civil Infrastruct. Eng. – start-page: 132 year: 1998 end-page: 141 – start-page: 705 year: 2017 end-page: 719 article-title: Advanced tutorial on microscopic discrete‐event traffic simulation – volume: 7 start-page: 124 issue: 1 year: 2006 end-page: 132 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 117 start-page: 178 issue: 2 year: 1991 end-page: 188 article-title: Nonparametric regression and short‐term freeway traffic forecasting publication-title: J. Transp. Eng.‐ASCE – volume: 2 start-page: 9 year: 2019 article-title: A scientometric review of genome‐wide association studies publication-title: Commun. Biol. – volume: 9 start-page: 38 issue: 1 year: 2008 end-page: 47 article-title: Online learning solutions for freeway travel time prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 123 start-page: 261 issue: 4 year: 1997 end-page: 266 article-title: Traffic flow forecasting: Comparison of modeling approaches publication-title: J. Transp. Eng.‐ASCE – volume: 183 start-page: 231 year: 2018 end-page: 250 article-title: Ascientometric review of global research on sustainability and sustainable development publication-title: J. Clean Prod. – volume: 10 start-page: 85 issue: 2 year: 2002 end-page: 98 article-title: Urban traffic flow prediction using a fuzzy‐neural approach publication-title: Transp. Res. Part C‐Emerg. Technol. – start-page: 194 year: 2001 end-page: 200 – volume: 1678 start-page: 179 issue: 1 year: 1999 end-page: 188 article-title: Application of subset autoregressive integrated moving average model for short‐term freeway traffic volume forecasting publication-title: Transp. Res. Rec. – volume: 131 start-page: 771 issue: 10 year: 2005 end-page: 779 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: J. Transp. Eng. – volume: 131 start-page: 253 issue: 2 year: 2001 end-page: 261 article-title: An object‐oriented neural network approach to short‐term traffic forecasting publication-title: Eur. J. Oper. Res. – volume: 16 start-page: 126 issue: 2 year: 2001 end-page: 142 article-title: Neural networks in civil engineering: 1989–2000 publication-title: Comput.‐Aided Civil Infrastruct. Eng. – volume: 129 start-page: 664 issue: 6 year: 2003 end-page: 672 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. – volume: 104 start-page: 239 issue: 1 year: 2015 end-page: 263 article-title: A scientometric review of emerging trends and new developments in recommendation systems publication-title: Scientometrics – volume: 57 start-page: 359 issue: 3 year: 2006 end-page: 377 article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature publication-title: J. Am. Soc. Inf. Sci. Technol. – volume: 4 start-page: 307 issue: 5 year: 1996 end-page: 318 article-title: Combining Kohonen maps with arima time series models to forecast traffic flow publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 132 start-page: 114 issue: 2 year: 2006 end-page: 121 article-title: Short‐term freeway traffic flow prediction: Bayesian combined neural network approach publication-title: J. Transp. Eng. – volume: 10 start-page: 166 issue: 1 year: 2018 article-title: A bibliometric analysis and visualization of medical big data research publication-title: Sustainability – volume: 36 start-page: 6164 issue: 3 year: 2009 end-page: 6173 article-title: Online‐SVR for short‐term traffic flow prediction under typical and atypical traffic conditions publication-title: Expert Syst. Appl. – volume: 105 start-page: 115 issue: 1 year: 2015 end-page: 133 article-title: A scientometrics review on aggregation operator research publication-title: Scientometrics – volume: 2 start-page: 709 issue: 7 year: 2014 end-page: 724 article-title: Orphan drugs and rare diseases: A scientometric review (2000‐2014) publication-title: Expert Opin. Orphan Drugs – volume: 19 start-page: 606 issue: 4 year: 2011 end-page: 616 article-title: Real‐time road traffic prediction with spatio‐temporal correlations publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 10 start-page: 303 issue: 4 year: 2002 end-page: 321 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 16 start-page: 865 issue: 2 year: 2015 end-page: 873 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 163 year: 1998 end-page: 170 – volume: 43 start-page: 3 year: 2014 end-page: 19 article-title: Short‐term traffic forecasting: Where we are and where we're going publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 10 start-page: 263 issue: 4 year: 1976 end-page: 265 article-title: Estimation of parameters in models for traffic prediction: A non‐linear regression approach publication-title: Transp. Res. – volume: 5 start-page: 276 issue: 4 year: 2004 end-page: 281 article-title: Travel‐time prediction with support vector regression publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 16 start-page: 607 issue: 7–8 year: 2003 end-page: 613 article-title: Neural network model for rapid forecasting of freeway link travel time publication-title: Eng. Appl. Artif. Intell. – volume: 103 start-page: 135 issue: 1 year: 2015 end-page: 158 article-title: Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis publication-title: Scientometrics – volume: 19 start-page: 387 issue: 3 year: 2011 end-page: 399 article-title: Statistical methods versus neural networks in transportation research: Differences, similarities and some insights publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 11 start-page: 121 issue: 2 year: 2003 end-page: 135 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transp. Res. Part C‐Emerg. Technol. – year: 1995 – volume: 61 start-page: 2389 issue: 12 year: 2010 end-page: 2404 article-title: Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? publication-title: J. Am. Soc. Inf. Sci. Technol. – volume: 13 start-page: 211 issue: 3 year: 2005 end-page: 234 article-title: Optimized and meta‐optimized neural networks for short‐term traffic flow prediction: A genetic approach publication-title: Transp. Res. Part C‐Emerg. Technol. – volume: 24 start-page: 533 issue: 5 year: 2004 end-page: 557 article-title: Short‐term traffic forecasting: Overview of objectives and methods publication-title: Transp. Rev. – volume: 129 start-page: 161 issue: 2 year: 2003 end-page: 168 article-title: Traffic prediction using multivariate nonparametric regression publication-title: J. Transp. Eng. – volume: 39 start-page: 141 issue: 2 year: 2005 end-page: 167 article-title: Real‐time freeway traffic state estimation based on extended Kalman filter: A general approach publication-title: Transp. Res. Part B‐Methodol. – volume: 10 start-page: 93 issue: 2 year: 2018 end-page: 109 article-title: Road traffic forecasting: Recent advances and new challenges publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 13 start-page: 347 issue: 5–6 year: 2005 end-page: 369 article-title: Accurate freeway travel time prediction with state‐space neural networks under missing data publication-title: Transp. Res. Part C‐Emerg. Technol. – ident: e_1_2_9_29_1 doi: 10.1002/asi.21419 – ident: e_1_2_9_47_1 doi: 10.1016/j.trc.2014.02.006 – ident: e_1_2_9_38_1 doi: 10.1061/(ASCE)0733-947X(1995)121:3(249) – ident: e_1_2_9_62_1 doi: 10.1109/TITS.2008.915649 – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: e_1_2_9_56_1 doi: 10.1093/oso/9780198538493.001.0001 contributor: fullname: Bishop C.M. – ident: e_1_2_9_12_1 doi: 10.1109/MITS.2018.2806634 – ident: e_1_2_9_20_1 doi: 10.1002/asi.20317 – ident: e_1_2_9_31_1 doi: 10.1109/WSC.2017.8247826 – ident: e_1_2_9_49_1 doi: 10.1016/j.trb.2004.03.003 – ident: e_1_2_9_25_1 doi: 10.3390/su10010166 – ident: e_1_2_9_39_1 doi: 10.1109/ICSMC.1994.400094 – ident: e_1_2_9_46_1 doi: 10.1016/S0968-090X(97)82903-8 – ident: e_1_2_9_22_1 doi: 10.1080/15389588.2018.1511896 – ident: e_1_2_9_2_1 – ident: e_1_2_9_41_1 doi: 10.1109/TITS.2006.869623 – ident: e_1_2_9_52_1 doi: 10.1016/S0968-090X(01)00004-3 – ident: e_1_2_9_57_1 doi: 10.1016/j.engappai.2003.09.011 – ident: e_1_2_9_48_1 doi: 10.1061/(ASCE)0733-947X(1991)117:2(178) – ident: e_1_2_9_55_1 – ident: e_1_2_9_36_1 doi: 10.1016/j.eswa.2008.07.069 – ident: e_1_2_9_11_1 doi: 10.1111/0885-9507.00219 – ident: e_1_2_9_27_1 doi: 10.1517/21678707.2014.920251 – ident: e_1_2_9_59_1 doi: 10.3141/1617-23 – ident: e_1_2_9_61_1 doi: 10.1016/S0968-090X(03)00026-3 – ident: e_1_2_9_17_1 doi: 10.1007/s11192-015-1595-5 – ident: e_1_2_9_30_1 doi: 10.1016/0191-2615(84)90002-X – ident: e_1_2_9_8_1 doi: 10.1016/S0377-2217(00)00125-9 – ident: e_1_2_9_26_1 doi: 10.1002/int.21894 – ident: e_1_2_9_13_1 doi: 10.1049/iet-its.2018.0064 – ident: e_1_2_9_9_1 doi: 10.1080/0144164042000195072 – ident: e_1_2_9_18_1 doi: 10.1016/j.jclepro.2018.02.162 – ident: e_1_2_9_19_1 doi: 10.1038/s42003-018-0261-x – ident: e_1_2_9_10_1 doi: 10.1016/j.trc.2014.01.005 – ident: e_1_2_9_15_1 doi: 10.1016/j.autcon.2017.04.002 – volume: 20 start-page: UNSP 100184 year: 2019 ident: e_1_2_9_14_1 article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges publication-title: Veh. Commun. contributor: fullname: Miglani A. – ident: e_1_2_9_37_1 doi: 10.1016/j.trc.2010.10.004 – ident: e_1_2_9_7_1 – ident: e_1_2_9_50_1 doi: 10.1109/TITS.2004.837813 – ident: e_1_2_9_3_1 doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: e_1_2_9_21_1 doi: 10.1007/s11192-009-0146-3 – volume: 16 start-page: 865 issue: 2 year: 2015 ident: e_1_2_9_33_1 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. contributor: fullname: Lv Y. – ident: e_1_2_9_60_1 doi: 10.3141/1678-22 – ident: e_1_2_9_6_1 doi: 10.1016/j.trc.2015.03.014 – ident: e_1_2_9_16_1 doi: 10.1007/s11192-015-1695-2 – ident: e_1_2_9_43_1 doi: 10.1109/TITS.2014.2311123 – ident: e_1_2_9_63_1 doi: 10.1111/j.1467-8667.2008.00558.x – ident: e_1_2_9_42_1 doi: 10.1061/(ASCE)0733-947X(2003)129:2(161) – start-page: 132 volume-title: Traffic Flow Theory: Simulation Models, Macroscopic Flow Relationships, and Flow Estimation and Prediction year: 1998 ident: e_1_2_9_51_1 contributor: fullname: Williams B.M. – ident: e_1_2_9_34_1 doi: 10.1016/j.trc.2005.04.007 – ident: e_1_2_9_24_1 doi: 10.1007/s11192-016-1918-1 – ident: e_1_2_9_45_1 doi: 10.1061/(ASCE)0733-947X(2005)131:10(771) – ident: e_1_2_9_58_1 doi: 10.1016/0968-090X(95)00009-8 – ident: e_1_2_9_53_1 doi: 10.3141/1776-25 – ident: e_1_2_9_28_1 doi: 10.1007/s11192-014-1517-y – ident: e_1_2_9_64_1 doi: 10.1109/TITS.2008.2011693 – ident: e_1_2_9_5_1 doi: 10.1016/S0968-090X(03)00004-4 – ident: e_1_2_9_23_1 doi: 10.1016/0041-1647(76)90059-9 – ident: e_1_2_9_4_1 doi: 10.1016/S0968-090X(02)00009-8 – ident: e_1_2_9_44_1 doi: 10.1016/j.trc.2010.10.002 – ident: e_1_2_9_54_1 doi: 10.1061/(ASCE)0733-947X(2006)132:2(114) – ident: e_1_2_9_32_1 doi: 10.1016/j.trc.2011.12.006 – ident: e_1_2_9_35_1 doi: 10.1016/j.trc.2005.03.001 – ident: e_1_2_9_40_1 doi: 10.1061/(ASCE)0733-947X(1997)123:4(261) |
SSID | ssj0056221 |
Score | 2.4036293 |
Snippet | Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on... Abstract Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Graphics techniques Information analysis and indexing Information networks Other topics in statistics |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9zvuiD-Inzi4A-CdWuSdoUfJnimIoissHeStIkugdbqfX_9y7tpnsRfCtpSsPdJfe7JPc7Qs5SJhLHtQyEkibg4GMCGSsdhKE1EuC_YwYDxceneDTh91Mx7ZCreS5Mww-x2HDDmeHXa5zgSjdVSADUghJndRVd9CF25ytkFSlj0L4j_jxfh8GxN1lXCRaSF_F0Tk7K08ufb5fckWftX0ap3s0MN8lGiw_poFHoFunYYpus_2IN3CEPA9qkMZbvWA4rp036CS0dbal73mhZ0LpSSA9BAZXaXH3i9WY6880Nm7lXyS6ZDG_HN6OgrYkQ5FisNkhMKJVmJlXSiVAzB5PK2UQnFsSa9I3WIUNSP21syBS8cCJmyuUxgGjEBmyPdIuysPuEAnIwop_I2IdJiZGKpSGGPyLV2nDTI6dz0WQfDfVF5o-seZqhADMvwB65RqkteiBdtW8oq9estf6MCwbIKoex25TDoACjOGEjB2gwlyK3PXLuZf7Hf7K78Uvknw7-0_mQrEV4C8VvmhyRbl192WOAEbU-8dbyDewqwP4 priority: 102 providerName: Wiley-Blackwell |
Title | A scientometric review of research on traffic forecasting in transportation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12024 https://doaj.org/article/453560cd08e94e7b910f5e2f416c85ce |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA66kx7Enzh_jICehLquSZrkOMUxFUVkg91K0iS4g63M-v_7knSyXfTiraSFlO-1-b7X5n0PoUtJGHdUi4QpYRIKHJOIXOkkTa0RIP8dMT5RfHrOx1P6MGOzlVZffk9YtAeOwPUpI0DKpUmFldRyDfTmmM0cCIlSsNKG1TeVy2QqrsFA6rHiivsm8iyfLY1JqezPm0V2PYCcn65RUXDsX1eogWJGu2in1YZ4GO9pD23Yah9trzgGHqDHIY4ljPW7b4VV4lh6gmuHW9ueN1xXuFkobw2BQZHaUn36rc14Hoajk3kIxyGaju4mt-Ok7YeQlL5RbcIBBKWJkUo4lmri4IVyAAm3ACkfGK1T4g39tLEpUXDCsZwoV-YgoL0uIEeoU9WVPUYYVINhAy7ykCJxIxSRqU99mNTaUNNFF0toio9oe1GE39VUFh7AIgDYRTcetZ8rvFV1GIAAFm0Ai78C2EVXAfNf5inuJ69ZODr5jxlP0Vbmd6aEDylnqNMsvuw5SItG99BmRl964Vn6BpdsyU0 |
link.rule.ids | 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gOwAHxFOMZyQ4IRW6JWnT40BMG3sc0IYmLlXSJLADKxrj_2On3WAXJG5VmqqRU8efXfszIVcJE7HjWgZCSRNwsDGBjJQOwtAaCfDfMYOOYn8QtUf8cSzGZW4O1sIU_BDLgBtqhj-vUcExIF04nBxJMifzWeOmDs47XydVsHsMfK9q83n0MlocxWDbi8KrGHvJi2i84Cflye3P0ysWyRP3rwJVb2laO2S7hIi0WezpLlmz0z2y9Ys4cJ90m7SoZMzfsSNWRosKFJo7WrL3vNF8SuczhQwRFICpzdQnZjjTiR8uCM39rhyQUetheN8OyrYIQYb9aoPYhFJpZhIlnQg1c6BXzsY6tiDZuG60Dhny-mljQ6bghhMRUy6LAEcjPGCHpDLNp_aIUAAPRtRjGXlPKTZSsSRED0gkWhtuauRyIZr0o2C_SP1fa56kKMDUC7BG7lBqyxnIWO0H8tlrWipAygUDcJXB2m3CYVEAU5ywDQeAMJMiszVy7WX-x3vSzvCp4a-O_zP5gmy0h_1e2usMuidks4FJKT6Gckoq89mXPQNUMdfn5bfzDUBQxjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MCaIP4hXnNaBPQrVbkjYFX-ZlbE7HkAl7K0mT6B5sx5z_35x0m-5F8K2kKQ1fLuc7Sc53AC4SymPLlAi4FDpgzsYEIpIqCEOjhaP_lmp0FJ97UfuVPQ75sAI381iYUh9iseGGM8Ov1zjBx9qW_iZDjczRdNK4qjvfna3AKkMejrrOrD9fh51hL6OuYkwkz6PhXJyUJdc_3y6ZI6_av8xSvZlpbcHmjB-SZtmh21Ax-Q5s_FIN3IVuk5RhjMUHpsPKSBl-QgpLZtI976TIyXQiUR6COFZqMvmJ15vJyBeXaua-S_bgtfUwuGsHs5wIQYbJaoNYh0IqqhMpLA8VtW5SWROr2DhY47pWKqQo6qe0Cal0LyyPqLRZ5Eg0cgO6D9W8yM0BEMccNK_HIvJuUqyFpEmI7g9PlNJM1-B8Dk06LqUvUn9kzZIUAUw9gDW4RdQWNVCu2hcUk7d0NvpTxqljVplru0mYa5TjKJabhnVsMBM8MzW49Jj_8Z-0M3hp-KfD_1Q-g7X-fSt96vS6R7DewAspfv_kGKrTyZc5cYxiqk79wPkGYDHDkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scientometric+review+of+research+on+traffic+forecasting+in+transportation&rft.jtitle=IET+intelligent+transport+systems&rft.au=Jin+Liu&rft.au=Naiqi+Wu&rft.au=Yan+Qiao&rft.au=Zhiwu+Li&rft.date=2021-01-01&rft.pub=Wiley&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1049%2Fitr2.12024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |