A scientometric review of research on traffic forecasting in transportation

Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSv...

Full description

Saved in:
Bibliographic Details
Published inIET intelligent transport systems Vol. 15; no. 1; pp. 1 - 16
Main Authors Liu, Jin, Wu, Naiqi, Qiao, Yan, Li, Zhiwu
Format Journal Article
LanguageEnglish
Published Wiley 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field.
AbstractList Abstract Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field.
Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on traffic forecasting, few of them explore the research advancement in this field from a visual perspective. With the help of CiteSpace and VOSviewer, this study uses scientometric review to identify the evolution and emerging trends of the research in the field. Totally, 1536 bibliographic records with references are extracted from Web of Science and used as the datasets to form the author network, institutional network, keyword network, and co‐citation network. The visualization of the results characterizes the research progress in the field. It can be found that Eleni I. Vlahogianni receives the highest citation frequency, China and the United States contribute most of the journal articles. Some influential institutions and articles are also identified. With the author keyword network, the words “recurrent neural network”, “convolutional neural network”, “spatio‐temporal correlation”, “traffic pattern”, and “feature selection” are identified as the emerging trends. Also, the document citation bursts reveal that the applications of combined models and the study of traffic flow forecasting in atypical situations are becoming the emerging trends. This study provides a valuable reference for the research community in this field.
Author Qiao, Yan
Liu, Jin
Wu, Naiqi
Li, Zhiwu
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-3781-5927
  surname: Liu
  fullname: Liu, Jin
  organization: Macau University of Science and Technology
– sequence: 2
  givenname: Naiqi
  surname: Wu
  fullname: Wu, Naiqi
  email: nqwu@must.edu.mo
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Yan
  surname: Qiao
  fullname: Qiao, Yan
  organization: Macau University of Science and Technology
– sequence: 4
  givenname: Zhiwu
  surname: Li
  fullname: Li, Zhiwu
  organization: Macau University of Science and Technology
BookMark eNp9kEtrwzAQhEVJoUnaS3-BzwWnelr2MYQ-TAOFkkJvQpZXqUJiBUk05N_XiUuOPe2wM_stzASNOt8BQvcEzwjm1aNLgc4IxZRfoTGRguSVkOXooouvGzSJcYOxKCglY_Q2z6Jx0CW_gxScyQL8ODhk3vYqgg7mO_NdloK2tnetD2B0TK5bZ-687uLeh6ST890turZ6G-Hub07R5_PTavGaL99f6sV8mRsmBc9li0vdsLbSpRW4YRYLYkE2ErhlkrRNgxnjlDUtYKZ7w4qCaWsKSSuBK8KmqB64rdcbtQ9up8NRee3UeeHDWumQnNmC4oKJApv-I1S8R1UEWwHUclKYUhjoWQ8DywQfYwB74RGsTpWqU6XqXGkfJkP44LZw_Cep6tUHHW5-ATuFez4
CitedBy_id crossref_primary_10_1109_TITS_2022_3184082
crossref_primary_10_1049_itr2_12416
crossref_primary_10_3390_su16020751
crossref_primary_10_1109_TITS_2023_3327266
crossref_primary_10_1016_j_eswa_2021_115992
crossref_primary_10_1016_j_envsoft_2023_105788
crossref_primary_10_3390_su141912437
crossref_primary_10_1109_MITS_2023_3284059
crossref_primary_10_1680_jtran_23_00081
crossref_primary_10_1080_03081060_2023_2245389
crossref_primary_10_1016_j_ins_2024_120482
crossref_primary_10_1007_s10489_024_05346_9
crossref_primary_10_1007_s10489_022_03189_w
crossref_primary_10_1109_JAS_2020_1003405
crossref_primary_10_1109_TITS_2021_3064085
crossref_primary_10_1109_TITS_2022_3179391
crossref_primary_10_1155_2022_7754961
crossref_primary_10_1155_2022_6888115
crossref_primary_10_1007_s11831_024_10077_8
crossref_primary_10_1155_2021_2977998
crossref_primary_10_2478_sbe_2023_0019
crossref_primary_10_1080_01441647_2023_2171151
crossref_primary_10_3390_app11146248
Cites_doi 10.1002/asi.21419
10.1016/j.trc.2014.02.006
10.1061/(ASCE)0733-947X(1995)121:3(249)
10.1109/TITS.2008.915649
10.1093/oso/9780198538493.001.0001
10.1109/MITS.2018.2806634
10.1002/asi.20317
10.1109/WSC.2017.8247826
10.1016/j.trb.2004.03.003
10.3390/su10010166
10.1109/ICSMC.1994.400094
10.1016/S0968-090X(97)82903-8
10.1080/15389588.2018.1511896
10.1109/TITS.2006.869623
10.1016/S0968-090X(01)00004-3
10.1016/j.engappai.2003.09.011
10.1061/(ASCE)0733-947X(1991)117:2(178)
10.1016/j.eswa.2008.07.069
10.1111/0885-9507.00219
10.1517/21678707.2014.920251
10.3141/1617-23
10.1016/S0968-090X(03)00026-3
10.1007/s11192-015-1595-5
10.1016/0191-2615(84)90002-X
10.1016/S0377-2217(00)00125-9
10.1002/int.21894
10.1049/iet-its.2018.0064
10.1080/0144164042000195072
10.1016/j.jclepro.2018.02.162
10.1038/s42003-018-0261-x
10.1016/j.trc.2014.01.005
10.1016/j.autcon.2017.04.002
10.1016/j.trc.2010.10.004
10.1109/TITS.2004.837813
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1007/s11192-009-0146-3
10.3141/1678-22
10.1016/j.trc.2015.03.014
10.1007/s11192-015-1695-2
10.1109/TITS.2014.2311123
10.1111/j.1467-8667.2008.00558.x
10.1061/(ASCE)0733-947X(2003)129:2(161)
10.1016/j.trc.2005.04.007
10.1007/s11192-016-1918-1
10.1061/(ASCE)0733-947X(2005)131:10(771)
10.1016/0968-090X(95)00009-8
10.3141/1776-25
10.1007/s11192-014-1517-y
10.1109/TITS.2008.2011693
10.1016/S0968-090X(03)00004-4
10.1016/0041-1647(76)90059-9
10.1016/S0968-090X(02)00009-8
10.1016/j.trc.2010.10.002
10.1061/(ASCE)0733-947X(2006)132:2(114)
10.1016/j.trc.2011.12.006
10.1016/j.trc.2005.03.001
10.1061/(ASCE)0733-947X(1997)123:4(261)
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1049/itr2.12024
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9578
EndPage 16
ExternalDocumentID oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce
10_1049_itr2_12024
ITR212024
Genre reviewArticle
GroupedDBID .DC
0R~
1OC
24P
29I
29J
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
MCNEO
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RIG
RNS
ROL
RUI
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3754-7d08ab3d9a8f50b3f051fe7b7e4f371dbb033423bde03ae7bf563afc672950913
IEDL.DBID DOA
ISSN 1751-956X
IngestDate Tue Oct 22 15:10:08 EDT 2024
Thu Sep 26 21:18:58 EDT 2024
Sat Aug 24 01:05:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3754-7d08ab3d9a8f50b3f051fe7b7e4f371dbb033423bde03ae7bf563afc672950913
ORCID 0000-0003-3781-5927
OpenAccessLink https://doaj.org/article/453560cd08e94e7b910f5e2f416c85ce
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce
crossref_primary_10_1049_itr2_12024
wiley_primary_10_1049_itr2_12024_ITR212024
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle IET intelligent transport systems
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 80
2005; 131
2015; 104
2015; 105
2016; 107
2015; 103
2002; 10
2004; 24
2008; 9
2006; 132
2004; 5
2003; 16
1991; 117
2011; 19
1979
2003; 11
2010; 61
2003; 129
2001; 131
2009; 10
2014; 2
2019; 20
2001
2017; 32
2014; 15
2008; 23
1984; 18
2001; 16
1996; 4
1995; 121
2005; 39
2012; 22
2015; 16
2018; 183
2006; 57
2019; 2
2015; 54
2006; 7
1998
1995
1994
1995; 3
2010; 84
2014; 43
1976; 10
2009; 36
1999; 1678
1997; 123
2017
2018; 12
2018; 10
2005; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Lv Y. (e_1_2_9_33_1) 2015; 16
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Miglani A. (e_1_2_9_14_1) 2019; 20
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Williams B.M. (e_1_2_9_51_1) 1998
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Bishop C.M. (e_1_2_9_56_1) 1995
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 84
  start-page: 523
  issue: 2
  year: 2010
  end-page: 538
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
– volume: 20
  year: 2019
  article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges
  publication-title: Veh. Commun.
– volume: 20
  start-page: 64
  issue: 1
  year: 2019
  end-page: 71
  article-title: Bibliometric analysis of simulated driving research from 1997 to 2016
  publication-title: Traffic Inj. Prev.
– volume: 107
  start-page: 1111
  issue: 3
  year: 2016
  end-page: 1147
  article-title: A review of emerging trends in global PPP research: Analysis and visualization
  publication-title: Scientometrics
– volume: 15
  start-page: 2191
  issue: 5
  year: 2014
  end-page: 2201
  article-title: Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 22
  start-page: 103
  year: 2012
  end-page: 118
  article-title: The retrieval of intra‐day trend and its influence on traffic prediction
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 11
  start-page: 187
  issue: 3–4
  year: 2003
  end-page: 210
  article-title: Short‐term travel time prediction
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  article-title: Long short‐term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 80
  start-page: 37
  year: 2017
  end-page: 47
  article-title: A scientometric review of global BIM research: Analysis and visualization
  publication-title: Autom. Constr.
– volume: 43
  start-page: 50
  year: 2014
  end-page: 64
  article-title: Adaptive Kalman filter approach for stochastic short‐term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– year: 1979
– volume: 12
  start-page: 998
  issue: 9
  year: 2018
  end-page: 1004
  article-title: Deep learning methods in transportation domain: A review
  publication-title: IET Intell. Transp. Syst.
– volume: 121
  start-page: 249
  issue: 3
  year: 1995
  end-page: 254
  article-title: Short‐term prediction of traffic volume in urban arterials
  publication-title: J. Transp. Eng.‐ASCE
– volume: 18
  start-page: 1
  issue: 1
  year: 1984
  end-page: 11
  article-title: Dynamic prediction of traffic volume through Kalman filtering theory
  publication-title: Transp. Res. Part B‐Methodol.
– start-page: 1706
  year: 1994
  end-page: 1709
  article-title: Short‐term traffic flow prediction models—A comparison of neural network and nonparametric regression approaches
– volume: 10
  start-page: 60
  issue: 1
  year: 2009
  end-page: 69
  article-title: An aggregation approach to short‐term traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 3
  start-page: 247
  issue: 4
  year: 1995
  end-page: 260
  article-title: A review of neural networks applied to transport
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 32
  start-page: 1151
  issue: 11
  year: 2017
  end-page: 1166
  article-title: Exploring the ordered weighted averaging operator knowledge domain: A bibliometric analysis
  publication-title: Int. J. Intell. Syst.
– volume: 23
  start-page: 521
  issue: 7
  year: 2008
  end-page: 535
  article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow
  publication-title: Comput.‐Aided Civil Infrastruct. Eng.
– start-page: 132
  year: 1998
  end-page: 141
– start-page: 705
  year: 2017
  end-page: 719
  article-title: Advanced tutorial on microscopic discrete‐event traffic simulation
– volume: 7
  start-page: 124
  issue: 1
  year: 2006
  end-page: 132
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 117
  start-page: 178
  issue: 2
  year: 1991
  end-page: 188
  article-title: Nonparametric regression and short‐term freeway traffic forecasting
  publication-title: J. Transp. Eng.‐ASCE
– volume: 2
  start-page: 9
  year: 2019
  article-title: A scientometric review of genome‐wide association studies
  publication-title: Commun. Biol.
– volume: 9
  start-page: 38
  issue: 1
  year: 2008
  end-page: 47
  article-title: Online learning solutions for freeway travel time prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 123
  start-page: 261
  issue: 4
  year: 1997
  end-page: 266
  article-title: Traffic flow forecasting: Comparison of modeling approaches
  publication-title: J. Transp. Eng.‐ASCE
– volume: 183
  start-page: 231
  year: 2018
  end-page: 250
  article-title: Ascientometric review of global research on sustainability and sustainable development
  publication-title: J. Clean Prod.
– volume: 10
  start-page: 85
  issue: 2
  year: 2002
  end-page: 98
  article-title: Urban traffic flow prediction using a fuzzy‐neural approach
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– start-page: 194
  year: 2001
  end-page: 200
– volume: 1678
  start-page: 179
  issue: 1
  year: 1999
  end-page: 188
  article-title: Application of subset autoregressive integrated moving average model for short‐term freeway traffic volume forecasting
  publication-title: Transp. Res. Rec.
– volume: 131
  start-page: 771
  issue: 10
  year: 2005
  end-page: 779
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: J. Transp. Eng.
– volume: 131
  start-page: 253
  issue: 2
  year: 2001
  end-page: 261
  article-title: An object‐oriented neural network approach to short‐term traffic forecasting
  publication-title: Eur. J. Oper. Res.
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 142
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Comput.‐Aided Civil Infrastruct. Eng.
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  end-page: 672
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
– volume: 104
  start-page: 239
  issue: 1
  year: 2015
  end-page: 263
  article-title: A scientometric review of emerging trends and new developments in recommendation systems
  publication-title: Scientometrics
– volume: 57
  start-page: 359
  issue: 3
  year: 2006
  end-page: 377
  article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– volume: 4
  start-page: 307
  issue: 5
  year: 1996
  end-page: 318
  article-title: Combining Kohonen maps with arima time series models to forecast traffic flow
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 132
  start-page: 114
  issue: 2
  year: 2006
  end-page: 121
  article-title: Short‐term freeway traffic flow prediction: Bayesian combined neural network approach
  publication-title: J. Transp. Eng.
– volume: 10
  start-page: 166
  issue: 1
  year: 2018
  article-title: A bibliometric analysis and visualization of medical big data research
  publication-title: Sustainability
– volume: 36
  start-page: 6164
  issue: 3
  year: 2009
  end-page: 6173
  article-title: Online‐SVR for short‐term traffic flow prediction under typical and atypical traffic conditions
  publication-title: Expert Syst. Appl.
– volume: 105
  start-page: 115
  issue: 1
  year: 2015
  end-page: 133
  article-title: A scientometrics review on aggregation operator research
  publication-title: Scientometrics
– volume: 2
  start-page: 709
  issue: 7
  year: 2014
  end-page: 724
  article-title: Orphan drugs and rare diseases: A scientometric review (2000‐2014)
  publication-title: Expert Opin. Orphan Drugs
– volume: 19
  start-page: 606
  issue: 4
  year: 2011
  end-page: 616
  article-title: Real‐time road traffic prediction with spatio‐temporal correlations
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 10
  start-page: 303
  issue: 4
  year: 2002
  end-page: 321
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  end-page: 873
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 163
  year: 1998
  end-page: 170
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  article-title: Short‐term traffic forecasting: Where we are and where we're going
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 10
  start-page: 263
  issue: 4
  year: 1976
  end-page: 265
  article-title: Estimation of parameters in models for traffic prediction: A non‐linear regression approach
  publication-title: Transp. Res.
– volume: 5
  start-page: 276
  issue: 4
  year: 2004
  end-page: 281
  article-title: Travel‐time prediction with support vector regression
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 16
  start-page: 607
  issue: 7–8
  year: 2003
  end-page: 613
  article-title: Neural network model for rapid forecasting of freeway link travel time
  publication-title: Eng. Appl. Artif. Intell.
– volume: 103
  start-page: 135
  issue: 1
  year: 2015
  end-page: 158
  article-title: Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis
  publication-title: Scientometrics
– volume: 19
  start-page: 387
  issue: 3
  year: 2011
  end-page: 399
  article-title: Statistical methods versus neural networks in transportation research: Differences, similarities and some insights
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 11
  start-page: 121
  issue: 2
  year: 2003
  end-page: 135
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– year: 1995
– volume: 61
  start-page: 2389
  issue: 12
  year: 2010
  end-page: 2404
  article-title: Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– volume: 13
  start-page: 211
  issue: 3
  year: 2005
  end-page: 234
  article-title: Optimized and meta‐optimized neural networks for short‐term traffic flow prediction: A genetic approach
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– volume: 24
  start-page: 533
  issue: 5
  year: 2004
  end-page: 557
  article-title: Short‐term traffic forecasting: Overview of objectives and methods
  publication-title: Transp. Rev.
– volume: 129
  start-page: 161
  issue: 2
  year: 2003
  end-page: 168
  article-title: Traffic prediction using multivariate nonparametric regression
  publication-title: J. Transp. Eng.
– volume: 39
  start-page: 141
  issue: 2
  year: 2005
  end-page: 167
  article-title: Real‐time freeway traffic state estimation based on extended Kalman filter: A general approach
  publication-title: Transp. Res. Part B‐Methodol.
– volume: 10
  start-page: 93
  issue: 2
  year: 2018
  end-page: 109
  article-title: Road traffic forecasting: Recent advances and new challenges
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 13
  start-page: 347
  issue: 5–6
  year: 2005
  end-page: 369
  article-title: Accurate freeway travel time prediction with state‐space neural networks under missing data
  publication-title: Transp. Res. Part C‐Emerg. Technol.
– ident: e_1_2_9_29_1
  doi: 10.1002/asi.21419
– ident: e_1_2_9_47_1
  doi: 10.1016/j.trc.2014.02.006
– ident: e_1_2_9_38_1
  doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
– ident: e_1_2_9_62_1
  doi: 10.1109/TITS.2008.915649
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: e_1_2_9_56_1
  doi: 10.1093/oso/9780198538493.001.0001
  contributor:
    fullname: Bishop C.M.
– ident: e_1_2_9_12_1
  doi: 10.1109/MITS.2018.2806634
– ident: e_1_2_9_20_1
  doi: 10.1002/asi.20317
– ident: e_1_2_9_31_1
  doi: 10.1109/WSC.2017.8247826
– ident: e_1_2_9_49_1
  doi: 10.1016/j.trb.2004.03.003
– ident: e_1_2_9_25_1
  doi: 10.3390/su10010166
– ident: e_1_2_9_39_1
  doi: 10.1109/ICSMC.1994.400094
– ident: e_1_2_9_46_1
  doi: 10.1016/S0968-090X(97)82903-8
– ident: e_1_2_9_22_1
  doi: 10.1080/15389588.2018.1511896
– ident: e_1_2_9_2_1
– ident: e_1_2_9_41_1
  doi: 10.1109/TITS.2006.869623
– ident: e_1_2_9_52_1
  doi: 10.1016/S0968-090X(01)00004-3
– ident: e_1_2_9_57_1
  doi: 10.1016/j.engappai.2003.09.011
– ident: e_1_2_9_48_1
  doi: 10.1061/(ASCE)0733-947X(1991)117:2(178)
– ident: e_1_2_9_55_1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.eswa.2008.07.069
– ident: e_1_2_9_11_1
  doi: 10.1111/0885-9507.00219
– ident: e_1_2_9_27_1
  doi: 10.1517/21678707.2014.920251
– ident: e_1_2_9_59_1
  doi: 10.3141/1617-23
– ident: e_1_2_9_61_1
  doi: 10.1016/S0968-090X(03)00026-3
– ident: e_1_2_9_17_1
  doi: 10.1007/s11192-015-1595-5
– ident: e_1_2_9_30_1
  doi: 10.1016/0191-2615(84)90002-X
– ident: e_1_2_9_8_1
  doi: 10.1016/S0377-2217(00)00125-9
– ident: e_1_2_9_26_1
  doi: 10.1002/int.21894
– ident: e_1_2_9_13_1
  doi: 10.1049/iet-its.2018.0064
– ident: e_1_2_9_9_1
  doi: 10.1080/0144164042000195072
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jclepro.2018.02.162
– ident: e_1_2_9_19_1
  doi: 10.1038/s42003-018-0261-x
– ident: e_1_2_9_10_1
  doi: 10.1016/j.trc.2014.01.005
– ident: e_1_2_9_15_1
  doi: 10.1016/j.autcon.2017.04.002
– volume: 20
  start-page: UNSP 100184
  year: 2019
  ident: e_1_2_9_14_1
  article-title: Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges
  publication-title: Veh. Commun.
  contributor:
    fullname: Miglani A.
– ident: e_1_2_9_37_1
  doi: 10.1016/j.trc.2010.10.004
– ident: e_1_2_9_7_1
– ident: e_1_2_9_50_1
  doi: 10.1109/TITS.2004.837813
– ident: e_1_2_9_3_1
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: e_1_2_9_21_1
  doi: 10.1007/s11192-009-0146-3
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: e_1_2_9_33_1
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
  contributor:
    fullname: Lv Y.
– ident: e_1_2_9_60_1
  doi: 10.3141/1678-22
– ident: e_1_2_9_6_1
  doi: 10.1016/j.trc.2015.03.014
– ident: e_1_2_9_16_1
  doi: 10.1007/s11192-015-1695-2
– ident: e_1_2_9_43_1
  doi: 10.1109/TITS.2014.2311123
– ident: e_1_2_9_63_1
  doi: 10.1111/j.1467-8667.2008.00558.x
– ident: e_1_2_9_42_1
  doi: 10.1061/(ASCE)0733-947X(2003)129:2(161)
– start-page: 132
  volume-title: Traffic Flow Theory: Simulation Models, Macroscopic Flow Relationships, and Flow Estimation and Prediction
  year: 1998
  ident: e_1_2_9_51_1
  contributor:
    fullname: Williams B.M.
– ident: e_1_2_9_34_1
  doi: 10.1016/j.trc.2005.04.007
– ident: e_1_2_9_24_1
  doi: 10.1007/s11192-016-1918-1
– ident: e_1_2_9_45_1
  doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
– ident: e_1_2_9_58_1
  doi: 10.1016/0968-090X(95)00009-8
– ident: e_1_2_9_53_1
  doi: 10.3141/1776-25
– ident: e_1_2_9_28_1
  doi: 10.1007/s11192-014-1517-y
– ident: e_1_2_9_64_1
  doi: 10.1109/TITS.2008.2011693
– ident: e_1_2_9_5_1
  doi: 10.1016/S0968-090X(03)00004-4
– ident: e_1_2_9_23_1
  doi: 10.1016/0041-1647(76)90059-9
– ident: e_1_2_9_4_1
  doi: 10.1016/S0968-090X(02)00009-8
– ident: e_1_2_9_44_1
  doi: 10.1016/j.trc.2010.10.002
– ident: e_1_2_9_54_1
  doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
– ident: e_1_2_9_32_1
  doi: 10.1016/j.trc.2011.12.006
– ident: e_1_2_9_35_1
  doi: 10.1016/j.trc.2005.03.001
– ident: e_1_2_9_40_1
  doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
SSID ssj0056221
Score 2.4036293
Snippet Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review studies on...
Abstract Research on traffic forecasting in transportation has received worldwide concern over the past three decades. While there are comprehensive review...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Graphics techniques
Information analysis and indexing
Information networks
Other topics in statistics
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9zvuiD-Inzi4A-CdWuSdoUfJnimIoissHeStIkugdbqfX_9y7tpnsRfCtpSsPdJfe7JPc7Qs5SJhLHtQyEkibg4GMCGSsdhKE1EuC_YwYDxceneDTh91Mx7ZCreS5Mww-x2HDDmeHXa5zgSjdVSADUghJndRVd9CF25ytkFSlj0L4j_jxfh8GxN1lXCRaSF_F0Tk7K08ufb5fckWftX0ap3s0MN8lGiw_poFHoFunYYpus_2IN3CEPA9qkMZbvWA4rp036CS0dbal73mhZ0LpSSA9BAZXaXH3i9WY6880Nm7lXyS6ZDG_HN6OgrYkQ5FisNkhMKJVmJlXSiVAzB5PK2UQnFsSa9I3WIUNSP21syBS8cCJmyuUxgGjEBmyPdIuysPuEAnIwop_I2IdJiZGKpSGGPyLV2nDTI6dz0WQfDfVF5o-seZqhADMvwB65RqkteiBdtW8oq9estf6MCwbIKoex25TDoACjOGEjB2gwlyK3PXLuZf7Hf7K78Uvknw7-0_mQrEV4C8VvmhyRbl192WOAEbU-8dbyDewqwP4
  priority: 102
  providerName: Wiley-Blackwell
Title A scientometric review of research on traffic forecasting in transportation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12024
https://doaj.org/article/453560cd08e94e7b910f5e2f416c85ce
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA66kx7Enzh_jICehLquSZrkOMUxFUVkg91K0iS4g63M-v_7knSyXfTiraSFlO-1-b7X5n0PoUtJGHdUi4QpYRIKHJOIXOkkTa0RIP8dMT5RfHrOx1P6MGOzlVZffk9YtAeOwPUpI0DKpUmFldRyDfTmmM0cCIlSsNKG1TeVy2QqrsFA6rHiivsm8iyfLY1JqezPm0V2PYCcn65RUXDsX1eogWJGu2in1YZ4GO9pD23Yah9trzgGHqDHIY4ljPW7b4VV4lh6gmuHW9ueN1xXuFkobw2BQZHaUn36rc14Hoajk3kIxyGaju4mt-Ok7YeQlL5RbcIBBKWJkUo4lmri4IVyAAm3ACkfGK1T4g39tLEpUXDCsZwoV-YgoL0uIEeoU9WVPUYYVINhAy7ykCJxIxSRqU99mNTaUNNFF0toio9oe1GE39VUFh7AIgDYRTcetZ8rvFV1GIAAFm0Ai78C2EVXAfNf5inuJ69ZODr5jxlP0Vbmd6aEDylnqNMsvuw5SItG99BmRl964Vn6BpdsyU0
link.rule.ids 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gOwAHxFOMZyQ4IRW6JWnT40BMG3sc0IYmLlXSJLADKxrj_2On3WAXJG5VmqqRU8efXfszIVcJE7HjWgZCSRNwsDGBjJQOwtAaCfDfMYOOYn8QtUf8cSzGZW4O1sIU_BDLgBtqhj-vUcExIF04nBxJMifzWeOmDs47XydVsHsMfK9q83n0MlocxWDbi8KrGHvJi2i84Cflye3P0ysWyRP3rwJVb2laO2S7hIi0WezpLlmz0z2y9Ys4cJ90m7SoZMzfsSNWRosKFJo7WrL3vNF8SuczhQwRFICpzdQnZjjTiR8uCM39rhyQUetheN8OyrYIQYb9aoPYhFJpZhIlnQg1c6BXzsY6tiDZuG60Dhny-mljQ6bghhMRUy6LAEcjPGCHpDLNp_aIUAAPRtRjGXlPKTZSsSRED0gkWhtuauRyIZr0o2C_SP1fa56kKMDUC7BG7lBqyxnIWO0H8tlrWipAygUDcJXB2m3CYVEAU5ywDQeAMJMiszVy7WX-x3vSzvCp4a-O_zP5gmy0h_1e2usMuidks4FJKT6Gckoq89mXPQNUMdfn5bfzDUBQxjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MCaIP4hXnNaBPQrVbkjYFX-ZlbE7HkAl7K0mT6B5sx5z_35x0m-5F8K2kKQ1fLuc7Sc53AC4SymPLlAi4FDpgzsYEIpIqCEOjhaP_lmp0FJ97UfuVPQ75sAI381iYUh9iseGGM8Ov1zjBx9qW_iZDjczRdNK4qjvfna3AKkMejrrOrD9fh51hL6OuYkwkz6PhXJyUJdc_3y6ZI6_av8xSvZlpbcHmjB-SZtmh21Ax-Q5s_FIN3IVuk5RhjMUHpsPKSBl-QgpLZtI976TIyXQiUR6COFZqMvmJ15vJyBeXaua-S_bgtfUwuGsHs5wIQYbJaoNYh0IqqhMpLA8VtW5SWROr2DhY47pWKqQo6qe0Cal0LyyPqLRZ5Eg0cgO6D9W8yM0BEMccNK_HIvJuUqyFpEmI7g9PlNJM1-B8Dk06LqUvUn9kzZIUAUw9gDW4RdQWNVCu2hcUk7d0NvpTxqljVplru0mYa5TjKJabhnVsMBM8MzW49Jj_8Z-0M3hp-KfD_1Q-g7X-fSt96vS6R7DewAspfv_kGKrTyZc5cYxiqk79wPkGYDHDkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scientometric+review+of+research+on+traffic+forecasting+in+transportation&rft.jtitle=IET+intelligent+transport+systems&rft.au=Jin+Liu&rft.au=Naiqi+Wu&rft.au=Yan+Qiao&rft.au=Zhiwu+Li&rft.date=2021-01-01&rft.pub=Wiley&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1049%2Fitr2.12024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_453560cd08e94e7b910f5e2f416c85ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon