A high step‐up DC‐DC converter based on three‐winding coupled inductor and voltage multiplier for renewable energy applications

A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppre...

Full description

Saved in:
Bibliographic Details
Published inIET power electronics Vol. 16; no. 6; pp. 961 - 974
Main Authors Luo, Peng, He, Jie, Ji, Huansheng, Li, Fuwei, Jiang, Haoyu, Shi, Limei, Chen, Guanghao
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively. A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled.
AbstractList Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively.
A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively. A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled.
Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively.
Author He, Jie
Li, Fuwei
Chen, Guanghao
Luo, Peng
Ji, Huansheng
Shi, Limei
Jiang, Haoyu
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-4667-3975
  surname: Luo
  fullname: Luo, Peng
  organization: Guangdong Ocean University
– sequence: 2
  givenname: Jie
  surname: He
  fullname: He, Jie
  organization: Guangdong Ocean University
– sequence: 3
  givenname: Huansheng
  surname: Ji
  fullname: Ji, Huansheng
  organization: Guangdong Ocean University
– sequence: 4
  givenname: Fuwei
  surname: Li
  fullname: Li, Fuwei
  organization: Guangdong Ocean University
– sequence: 5
  givenname: Haoyu
  surname: Jiang
  fullname: Jiang, Haoyu
  organization: Guangdong Ocean University
– sequence: 6
  givenname: Limei
  surname: Shi
  fullname: Shi, Limei
  email: shilimei@gdou.edu.cn
  organization: Guangdong Ocean University
– sequence: 7
  givenname: Guanghao
  surname: Chen
  fullname: Chen, Guanghao
  organization: Guangdong Ocean University
BookMark eNp9kb1u2zAUhYkiAer8LHkCzgWc6lIkLY6Gk6YGDLRDMhMUdSkzYEiBkmN469K9z5gnKWMXGbvcv3Put5wLchZTREJuoLqFiquvAwZ2C4zz-hOZwUKIORe8PvuYa_GZXIzjc1VJ4KKZkd9LuvX9lo4TDm-__uwGercq_W5FbYqvmCfMtDUjdjRFOm0zYlH3PnY-9sWyG0KRyrqzU8rUxI6-pjCZHunLLkx-CL4AXJEyRtybNiAtQ-4P1AxFtGbyKY5X5NyZMOL1v35Jnr7dP66-zzc_Htar5WZu64WoSzWqM046JSRH2VixqJwQjvMGXCNFa1B1baVgAVZZwSxYrBU0DhqFLVP1JVmfuF0yz3rI_sXkg07G6-Mh5V6bPHkbUIOwUrZd3XAAziRTLTAmwTLXCCUlK6wvJ5bNaRwzug8eVPo9DP0ehj6GUcxwMu99wMN_nPrn_Yadfv4C4ZWRsw
CitedBy_id crossref_primary_10_1049_pel2_12646
crossref_primary_10_1049_pel2_12585
crossref_primary_10_1109_TPEL_2023_3313796
Cites_doi 10.1109/TIE.2021.3123683
10.1109/TIE.2018.2860550
10.1109/TPEL.2018.2810884
10.1109/TIE.2018.2840496
10.1109/TPEL.2013.2273977
10.1109/TPEL.2017.2689806
10.1109/TPEL.2012.2229393
10.1049/el.2014.2190
10.1109/TPEL.2012.2213270
10.1049/ip-epa:20040511
10.1109/TIE.2018.2863214
10.1049/iet-pel.2014.0066
10.1109/TIE.2014.2364797
10.1109/TPEL.2017.2740843
10.1109/TPEL.2018.2890437
10.1109/TIE.2017.2733476
10.1109/TIE.2007.903925
10.1049/iet-pel.2014.0899
10.1049/iet-pel.2019.0123
10.1109/TPEL.2017.2746750
10.1049/iet-pel.2018.6044
10.1049/iet-pel.2019.0450
10.1109/TPEL.2016.2609501
10.1109/TIE.2020.3007110
10.1109/TPEL.2016.2626383
10.1049/iet-pel.2014.0165
10.1109/TIE.2018.2803731
10.1109/TIE.2019.2949535
10.1109/TIE.2017.2733440
10.1109/TPEL.2014.2309793
10.1109/TPEL.2018.2878340
10.1109/TPEL.2021.3138493
10.1109/TIE.2011.2177789
10.1109/TPEL.2016.2615303
10.1109/TPEL.2013.2243845
10.1109/TPEL.2007.915762
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1049/pel2.12443
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley-Blackwell Backfiles (Open access)
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1755-4543
EndPage 974
ExternalDocumentID oai_doaj_org_article_15c66bd3841142629b12261c2f859662
10_1049_pel2_12443
PEL212443
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61803136; 62272109
– fundername: Undergraduate Teaching Quality and Teaching Reform Project of Guangdong Ocean University
  funderid: 010301112107
GroupedDBID 0R~
0ZK
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IFIPE
IGS
IPLJI
JAVBF
LXU
NADUK
NXXTH
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
UNMZH
WIN
~ZZ
4.4
8FE
8FG
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
ITC
L6V
M43
M7S
MCNEO
P62
PTHSS
ID FETCH-LOGICAL-c3753-c3a9daf6f9564e68c570f55f4481f865bae9db09171c9c52c1ce3918f189eb293
IEDL.DBID DOA
ISSN 1755-4535
IngestDate Tue Oct 22 15:11:33 EDT 2024
Thu Sep 26 17:27:38 EDT 2024
Sat Aug 24 00:59:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3753-c3a9daf6f9564e68c570f55f4481f865bae9db09171c9c52c1ce3918f189eb293
ORCID 0000-0003-4667-3975
OpenAccessLink https://doaj.org/article/15c66bd3841142629b12261c2f859662
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_15c66bd3841142629b12261c2f859662
crossref_primary_10_1049_pel2_12443
wiley_primary_10_1049_pel2_12443_PEL212443
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IET power electronics
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 68
2013; 28
2022
2019; 66
2015; 62
2015; 31
2017; 32
2015; 30
2019; 12
2004; 151
2019; 34
2013; 60
2008; 23
2022; 69
2022; 37
2022; 15
2020; 67
2008; 55
2014; 29
2018; 33
2018; 65
2015; 8
2014; 50
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Rahimi R. (e_1_2_9_25_1) 2022
Liu H. (e_1_2_9_34_1) 2015; 31
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
Li H. (e_1_2_9_37_1) 2022; 15
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 1
  year: 2022
  end-page: 1
  article-title: A three‐winding coupled inductor‐based dual‐switch high step‐up dc‐dc converter for photovoltaic systems
  publication-title: IEEE Trans. Emerg. Sel. Topics Power Electron.
– volume: 33
  start-page: 5967
  issue: 7
  year: 2018
  end-page: 5982
  article-title: High‐efficiency high step‐up dc–dc converter with dual coupled inductors for grid‐connected photovoltaic systems
  publication-title: IEEE Trans. Power Electron.
– volume: 33
  start-page: 1453
  issue: 2
  year: 2018
  end-page: 1462
  article-title: A three‐winding coupled‐inductor dc–dc converter topology with high voltage gain and reduced switch stress
  publication-title: IEEE Trans. Power Electron.
– volume: 32
  start-page: 6896
  issue: 9
  year: 2017
  end-page: 6903
  article-title: Ultralarge gain step‐up coupled‐inductor dc–dc converter with an asymmetric voltage multiplier network for a sustainable energy system
  publication-title: IEEE Trans. Power Electron.
– volume: 8
  start-page: 213
  issue: 2
  year: 2015
  end-page: 220
  article-title: Coupled‐inductor boost integrated flyback converter with high‐voltage gain and ripple‐free input current
  publication-title: IET Power Electron
– volume: 62
  start-page: 1480
  issue: 3
  year: 2015
  end-page: 1490
  article-title: Hybrid switched‐inductor converters for high step‐up conversion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 60
  start-page: 1483
  issue: 4
  year: 2013
  end-page: 1491
  article-title: Novel isolated high‐step‐up dc–dc converter with voltage lift
  publication-title: IEEE Trans. Ind. Electron.
– volume: 15
  start-page: 1
  issue: 00
  year: 2022
  end-page: 11
  article-title: High step‐up combined boost‐cuk converter with switched‐inductor
  publication-title: IET Power Electron
– volume: 55
  start-page: 154
  issue: 1
  year: 2008
  end-page: 162
  article-title: Boost converter with coupled inductors and buck–boost type of active clamp
  publication-title: IEEE Trans. Ind. Electron.
– volume: 34
  start-page: 9732
  issue: 10
  year: 2019
  end-page: 9742
  article-title: High‐voltage‐gain dc–dc step‐up converter with bifold dickson voltage multiplier cells
  publication-title: IEEE Trans. Power Electron.
– volume: 32
  start-page: 5323
  issue: 7
  year: 2017
  end-page: 5340
  article-title: Generation of the large dc gain step‐up nonisolated converters in conjunction with renewable energy sources starting from a proposed geometric structure
  publication-title: IEEE Trans. Power Electron.
– volume: 34
  start-page: 7603
  issue: 8
  year: 2019
  end-page: 7616
  article-title: A plug‐play active resonant soft switching for current‐auto‐balance interleaved high step‐up dc/dc converter
  publication-title: IEEE Trans. Power Electron.
– volume: 33
  start-page: 10563
  issue: 12
  year: 2018
  end-page: 10571
  article-title: High step‐up quasi‐z source dc–dc converter
  publication-title: IEEE Trans. Power Electron.
– volume: 28
  start-page: 1764
  issue: 4
  year: 2013
  end-page: 1772
  article-title: Design, analysis, and implementation of solar power optimizer for dc distribution system
  publication-title: IEEE Trans. Power Electron.
– volume: 33
  start-page: 5917
  issue: 7
  year: 2018
  end-page: 5926
  article-title: Voltage‐lift technique based nonisolated boost dc–dc converter: Analysis and design
  publication-title: IEEE Trans. Power Electron.
– volume: 66
  start-page: 4414
  issue: 6
  year: 2019
  end-page: 4423
  article-title: A multiple‐input cascaded dc–dc converter for very small wind turbines
  publication-title: IEEE Trans. Ind. Electron.
– volume: 12
  start-page: 2942
  issue: 11
  year: 2019
  end-page: 2952
  article-title: High step‐up isolated dc–dc converter with single input and double output and soft‐switching performance for renewable energy applications
  publication-title: IET Power Electron
– volume: 69
  start-page: 10249
  issue: 10
  year: 2022
  end-page: 10258
  article-title: A high step‐up dc–dc converter with three‐winding coupled inductor for sustainable energy systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 28
  start-page: 5323
  issue: 11
  year: 2013
  end-page: 5332
  article-title: State‐plane analysis of regenerative snubber for flyback converters
  publication-title: IEEE Trans. Ind. Electron.
– volume: 151
  start-page: 590
  issue: 5
  year: 2004
  end-page: 606
  article-title: Positive output cascade boost converters
  publication-title: IEE Proc. Electr. Power Appl.
– volume: 37
  start-page: 6939
  issue: 6
  year: 2022
  end-page: 6950
  article-title: Analysis and design of an isolated high step‐up converter without voltage‐drop
  publication-title: IEEE Trans. Power Electron.
– volume: 12
  start-page: 3351
  issue: 13
  year: 2019
  end-page: 3358
  article-title: Dual input–dual output dc–dc converter for solar pv/battery/ultra‐capacitor powered electric vehicle application
  publication-title: IET Power Electron
– volume: 12
  start-page: 2245
  issue: 9
  year: 2019
  end-page: 2255
  article-title: Implementation of a common grounded z‐source dc–dc converter with improved operation factors
  publication-title: IET Power Electron
– volume: 32
  start-page: 6170
  issue: 8
  year: 2017
  end-page: 6177
  article-title: Zero‐ripple input‐current high‐step‐up boost–sepic dc–dc converter with reduced switch‐voltage stress
  publication-title: IEEE Trans. Power Electron.
– volume: 68
  start-page: 6390
  issue: 8
  year: 2021
  end-page: 6400
  article-title: A new sepic‐based step‐up dc‐dc converter with wide conversion ratio for fuel cell vehicles: Analysis and design
  publication-title: IEEE Trans. Ind. Electron.
– volume: 67
  start-page: 8506
  issue: 10
  year: 2020
  end-page: 8516
  article-title: Nonisolated high‐step‐up dc–dc converter derived from switched‐inductors and switched‐capacitors
  publication-title: IEEE Trans. Ind. Electron.
– volume: 66
  start-page: 3860
  issue: 5
  year: 2019
  end-page: 3868
  article-title: Analysis and design of high‐efficiency hybrid high step‐up dc–dc converter for distributed pv generation systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 29
  start-page: 2829
  issue: 6
  year: 2014
  end-page: 2836
  article-title: High step‐up interleaved converter with built‐in transformer voltage multiplier cells for sustainable energy applications
  publication-title: IEEE Trans. Power Electron.
– volume: 65
  start-page: 7753
  issue: 10
  year: 2018
  end-page: 7761
  article-title: High step‐up coupled‐inductor cascade boost dc–dc converter with lossless passive snubber
  publication-title: IEEE Trans. Ind. Electron.
– volume: 50
  start-page: 1626
  issue: 22
  year: 2014
  end-page: 1628
  article-title: Derivation of a family of high step‐up tapped inductor sepic converters
  publication-title: Electron. Lett.
– volume: 65
  start-page: 1254
  issue: 2
  year: 2018
  end-page: 1262
  article-title: Isolated sepic dc–dc converter with ripple‐free input current and lossless snubber
  publication-title: IEEE Trans. Ind. Electron.
– volume: 30
  start-page: 574
  issue: 2
  year: 2015
  end-page: 581
  article-title: High step‐up converter with three‐winding coupled inductor for fuel cell energy source applications
  publication-title: IEEE Trans. Power Electron.
– volume: 8
  start-page: 2184
  issue: 11
  year: 2015
  end-page: 2194
  article-title: Non‐isolated high step‐up dc–dc converter based on coupled inductor with reduced voltage stress
  publication-title: IET Power Electron
– volume: 23
  start-page: 871
  issue: 2
  year: 2008
  end-page: 887
  article-title: Voltage multiplier cells applied to non‐isolated dc–dc converters
  publication-title: IEEE Trans. Power Electron.
– volume: 66
  start-page: 4387
  issue: 6
  year: 2019
  end-page: 4397
  article-title: A single switch quadratic boost high step up dc–dc converter
  publication-title: IEEE Trans. Ind. Electron.
– volume: 8
  start-page: 175
  issue: 2
  year: 2015
  end-page: 189
  article-title: Interleaved high step‐up dc–dc converter based on three‐winding high‐frequency coupled inductor and voltage multiplier cell
  publication-title: IET Power Electron
– volume: 31
  start-page: 4974
  issue: 7
  year: 2015
  end-page: 4983
  article-title: A novel high step‐up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system
  publication-title: IEEE Trans. Power Electron.
– volume: 65
  start-page: 1306
  issue: 2
  year: 2018
  end-page: 1315
  article-title: A novel high step‐up dc–dc converter with continuous input current integrating coupled inductor for renewable energy applications
  publication-title: IEEE Trans. Ind. Electron.
– volume: 28
  start-page: 3788
  issue: 8
  year: 2013
  end-page: 3797
  article-title: Reconfigurable solar converter: A single‐stage power conversion pv‐battery system
  publication-title: IEEE Trans. Power Electron.
– ident: e_1_2_9_40_1
  doi: 10.1109/TIE.2021.3123683
– ident: e_1_2_9_18_1
  doi: 10.1109/TIE.2018.2860550
– ident: e_1_2_9_36_1
  doi: 10.1109/TPEL.2018.2810884
– ident: e_1_2_9_24_1
  doi: 10.1109/TIE.2018.2840496
– ident: e_1_2_9_26_1
  doi: 10.1109/TPEL.2013.2273977
– volume: 15
  start-page: 1
  issue: 00
  year: 2022
  ident: e_1_2_9_37_1
  article-title: High step‐up combined boost‐cuk converter with switched‐inductor
  publication-title: IET Power Electron
  contributor:
    fullname: Li H.
– ident: e_1_2_9_33_1
  doi: 10.1109/TPEL.2017.2689806
– ident: e_1_2_9_8_1
  doi: 10.1109/TPEL.2012.2229393
– ident: e_1_2_9_39_1
  doi: 10.1049/el.2014.2190
– start-page: 1
  year: 2022
  ident: e_1_2_9_25_1
  article-title: A three‐winding coupled inductor‐based dual‐switch high step‐up dc‐dc converter for photovoltaic systems
  publication-title: IEEE Trans. Emerg. Sel. Topics Power Electron.
  contributor:
    fullname: Rahimi R.
– ident: e_1_2_9_3_1
  doi: 10.1109/TPEL.2012.2213270
– ident: e_1_2_9_17_1
  doi: 10.1049/ip-epa:20040511
– ident: e_1_2_9_5_1
  doi: 10.1109/TIE.2018.2863214
– ident: e_1_2_9_28_1
  doi: 10.1049/iet-pel.2014.0066
– ident: e_1_2_9_12_1
  doi: 10.1109/TIE.2014.2364797
– ident: e_1_2_9_16_1
  doi: 10.1109/TPEL.2017.2740843
– ident: e_1_2_9_21_1
  doi: 10.1109/TPEL.2018.2890437
– ident: e_1_2_9_23_1
  doi: 10.1109/TIE.2017.2733476
– ident: e_1_2_9_30_1
  doi: 10.1109/TIE.2007.903925
– ident: e_1_2_9_27_1
  doi: 10.1049/iet-pel.2014.0899
– ident: e_1_2_9_7_1
  doi: 10.1049/iet-pel.2019.0123
– ident: e_1_2_9_6_1
  doi: 10.1109/TPEL.2017.2746750
– volume: 31
  start-page: 4974
  issue: 7
  year: 2015
  ident: e_1_2_9_34_1
  article-title: A novel high step‐up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system
  publication-title: IEEE Trans. Power Electron.
  contributor:
    fullname: Liu H.
– ident: e_1_2_9_35_1
  doi: 10.1049/iet-pel.2018.6044
– ident: e_1_2_9_10_1
  doi: 10.1049/iet-pel.2019.0450
– ident: e_1_2_9_14_1
  doi: 10.1109/TPEL.2016.2609501
– ident: e_1_2_9_38_1
  doi: 10.1109/TIE.2020.3007110
– ident: e_1_2_9_2_1
  doi: 10.1109/TPEL.2016.2626383
– ident: e_1_2_9_22_1
  doi: 10.1049/iet-pel.2014.0165
– ident: e_1_2_9_29_1
  doi: 10.1109/TIE.2018.2803731
– ident: e_1_2_9_13_1
  doi: 10.1109/TIE.2019.2949535
– ident: e_1_2_9_9_1
  doi: 10.1109/TIE.2017.2733440
– ident: e_1_2_9_4_1
  doi: 10.1109/TPEL.2014.2309793
– ident: e_1_2_9_20_1
  doi: 10.1109/TPEL.2018.2878340
– ident: e_1_2_9_11_1
  doi: 10.1109/TPEL.2021.3138493
– ident: e_1_2_9_15_1
  doi: 10.1109/TIE.2011.2177789
– ident: e_1_2_9_19_1
  doi: 10.1109/TPEL.2016.2615303
– ident: e_1_2_9_31_1
  doi: 10.1109/TPEL.2013.2243845
– ident: e_1_2_9_32_1
  doi: 10.1109/TPEL.2007.915762
SSID ssj0061458
Score 2.3981345
Snippet A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the...
Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier...
Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 961
SubjectTerms DC‐DC power convertors
power electronics
renewable energy sources
SummonAdditionalLinks – databaseName: Wiley-Blackwell Titles (Open access)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61XvQgPrG-COhJWG02m-wGvNQ-KKLSg4Xelmw2EaFsS2np1Yt3f6O_xJlsW-tF8LKvZFmYSWa-yWa-IeRKhCY2MHgCYx0PwODlgYrr9UDHQjonwQfmuA759Cy7_ehhIAYVcrfMhSn5IVYLbjgzvL3GCa6zsgoJgFqsTGuH4Q16J75BNpEyBsd3GPWWdhj8jq_OCf5RBJHgYklOGqnbn3d_uSPP2v8bpXo309klOwt8SBulQvdIxRb7ZHuNNfCAfDQokgxT0M_46_1zNqatJpxbTeq3kOMeTYrOKaejgk5BVxZa528-fQW6zMZDaILbGa7XU13kFEzUFOwKXewuBE9JActSZLucY2oVtT5DkK7_7T4k_U77pdkNFtUUAsMhJoGjVrl20kFEFFmZGBHXnRAO4jPmEikybVWeAXyImVEGdMiM5YoljiUKwm_Fj0i1GBX2mFBrmLSWZYprRIQJtEY8i0OIpZw2WtfI5VKo6bgkzUj9z-5IpSj61Iu-Ru5R3qseSHTtH4wmr-li3qRMGCmznCcRJv3KUGUMACMzoUsERGphjVx7bf3xnbTXfgz91cl_Op-SLSwtX25uPCPV6WRmzwGATLMLP86-ATqz2G8
  priority: 102
  providerName: Wiley-Blackwell
Title A high step‐up DC‐DC converter based on three‐winding coupled inductor and voltage multiplier for renewable energy applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fpel2.12443
https://doaj.org/article/15c66bd3841142629b12261c2f859662
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9ZHCehJWNtsHrs51j4ootKDhd6WbDYBoayL7NKrF-_-Rn-Jk-xW2otevOwrgSzzhZlvkpkJQtc81JGGyRNoY2kACi8LZNTrBSriwloBNjBz65CPT2IyY_dzPl876svFhNXlgWvBdQnXQqQZjZnL-hShTAkwBqJDG3Og6rX27cmVM1XrYLA5_mROsI08YJzyVWFSJruFWYS3zqrRDVPkK_ZvMlRvYsb7aK_hhrhf_9MB2jL5Idpdqxh4hD762BUYxoBN8fX-WRV4OID7cIB9-LiLz8TOMGX4Nccl4GSgdfniU1egS1UsoAleK7dWj1WeYVBPJegU3EQWgpXEwGOxq3S5dGlV2PjsQLy-032MZuPR82ASNCcpBJqCPwJXJTNlhQVviBkRax71LOcWfDNiY8FTZWSWAnWIiJYa8CPaUEliS2IJrrekJ6iVv-bmFGGjiTCGpJIqxwZjaGU0jQAZbpVWqo2uVkJNirpgRuI3uplMnOgTL_o2unPy_unhilz7DwB90kCf_AV9G914tH4ZJ5mOHkL_dPYfI56jHXfcfB3weIFa5VtlLoGUlGkHbYds2vGz8BuPh97j
link.rule.ids 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMCAeIrytAQTUqCOYyceSykqUBADRYglchwbIaE0Qq1YWdj5jfwS7py0wILEkpcdRfLF992d7z4TciBCExv4eQJjHQ9A4eWBipvNQMdCOicBA3OMQ15dy24_urgX93VuDtbCVPwQk4Abzgyvr3GCY0C6cjgjJMks7XN4hPDEp8ks4B4H32u2ddd_6I9VMUCP36ATIFIEkeBizE8aqePvt38hkifu_22oeqQ5WyKLtYlIW5VMl8mULVbIwg_iwFXy3qLIM0xBROXn28eopKdtOJ-2qc8ixzRNiviU00FBhyAuC62vT76CBbqMymdogtsRhuypLnIKWmoIqoXWCYYAlhTMWYqEl69YXUWtLxKkPxe810j_rHPb7gb1hgqB4eCWwFGrXDvpwCmKrEyMiJtOCAcuGnOJFJm2Ks_AgoiZUQbEyIzliiWOJQo8cMXXyUwxKOwGodYwaS3LFNdoFCbQGvEsDsGdctpo3SD740FNy4o3I_Xr3ZFKcehTP_QNcoLjPemBXNf-weDlMa2nTsqEkTLLeRJh3a8MVcbAZmQmdIkAZy1skEMvrT--k950eqG_2vxP5z0y17296qW98-vLLTKPO81XuY7bZGb4MrI7YI8Ms936r_sCKJLdqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58wOIeRFcXZ30F1pPQ7qTz6A540RkH3VWZwwremnQ6EUF6GpnB61727m_0l1iVnvFxEbz0K2kaqjr1VSVVXwD2VOoyhz9P4nwQCRq8KjFZt5vYTOkQNGJgRfOQF5f69Er-vlbXc3A4q4Vp-SFeJtxoZER7TQO8qUIbb0riyGz8XXpA6CTmYVGSH068znI4s8OIO3F3TsRHlUgl1IycVJpfr---g6PI2v_eS40wM1iB5al_yI5aha7CnK-_wdc3rIFr8P-IEckwQ_00T_8eJw3r9_Dc77GYQk45mozAqWKjmo1RVx5bH25j-Qp2mTR32IS3E5qvZ7auGJqoMdoVNs0uRKRk6MsyYrt8oNIq5mOFIHu72r0OV4OTv73TZLqbQuIExiR4tKayQQeMiKTXuVNZNygVMD7jIdeqtN5UJboPGXfGoQ6588LwPPDcYPhtxHdYqEe13wDmHdfe89IISx5hjq1SlFmKsVSwztoO_JwJtWha0owiLnZLU5Doiyj6DhyTvF96ENF1fDC6vymm46bgymldViKXVPSrU1NydBi5S0OuMFJLO7AftfXBd4rhyXkar358pvMufBn2B8X52eWfTViiXebbPMctWBjfT_w2-iLjcif-cs-xr9sD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+step%E2%80%90up+DC%E2%80%90DC+converter+based+on+three%E2%80%90winding+coupled+inductor+and+voltage+multiplier+for+renewable+energy+applications&rft.jtitle=IET+power+electronics&rft.au=Luo%2C+Peng&rft.au=He%2C+Jie&rft.au=Ji%2C+Huansheng&rft.au=Li%2C+Fuwei&rft.date=2023-05-01&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=16&rft.issue=6&rft.spage=961&rft.epage=974&rft_id=info:doi/10.1049%2Fpel2.12443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_pel2_12443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon