A high step‐up DC‐DC converter based on three‐winding coupled inductor and voltage multiplier for renewable energy applications
A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppre...
Saved in:
Published in | IET power electronics Vol. 16; no. 6; pp. 961 - 974 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively.
A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. |
---|---|
AbstractList | Abstract
A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively. A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively. A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the proposed converter obtains a high voltage conversion ratio. Through the passive clamp circuit, the voltage stress of the main switch is suppressed and the leakage energy of the coupled inductor is recycled. This leads to utilize a low on‐state power resistance and low voltage‐rating power switch that decreases the conduction losses. Meanwhile, the current stress of the diodes is minimized and the reverse recovery problem is alleviated. Thus, high efficiency can be achieved. Under continuous conduction mode (CCM) and discontinuous conduction mode (DCM), different operating principles and the mathematical derivations of the proposed converter are described in detail. To validate the feasibility of the proposed converter, a 320 W prototype with 25–38 V input voltage and 400 V output voltage is implemented. The measured maximum and full load efficiencies are 95.83 % and 94.96 %, respectively. |
Author | He, Jie Li, Fuwei Chen, Guanghao Luo, Peng Ji, Huansheng Shi, Limei Jiang, Haoyu |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-4667-3975 surname: Luo fullname: Luo, Peng organization: Guangdong Ocean University – sequence: 2 givenname: Jie surname: He fullname: He, Jie organization: Guangdong Ocean University – sequence: 3 givenname: Huansheng surname: Ji fullname: Ji, Huansheng organization: Guangdong Ocean University – sequence: 4 givenname: Fuwei surname: Li fullname: Li, Fuwei organization: Guangdong Ocean University – sequence: 5 givenname: Haoyu surname: Jiang fullname: Jiang, Haoyu organization: Guangdong Ocean University – sequence: 6 givenname: Limei surname: Shi fullname: Shi, Limei email: shilimei@gdou.edu.cn organization: Guangdong Ocean University – sequence: 7 givenname: Guanghao surname: Chen fullname: Chen, Guanghao organization: Guangdong Ocean University |
BookMark | eNp9kb1u2zAUhYkiAer8LHkCzgWc6lIkLY6Gk6YGDLRDMhMUdSkzYEiBkmN469K9z5gnKWMXGbvcv3Put5wLchZTREJuoLqFiquvAwZ2C4zz-hOZwUKIORe8PvuYa_GZXIzjc1VJ4KKZkd9LuvX9lo4TDm-__uwGercq_W5FbYqvmCfMtDUjdjRFOm0zYlH3PnY-9sWyG0KRyrqzU8rUxI6-pjCZHunLLkx-CL4AXJEyRtybNiAtQ-4P1AxFtGbyKY5X5NyZMOL1v35Jnr7dP66-zzc_Htar5WZu64WoSzWqM046JSRH2VixqJwQjvMGXCNFa1B1baVgAVZZwSxYrBU0DhqFLVP1JVmfuF0yz3rI_sXkg07G6-Mh5V6bPHkbUIOwUrZd3XAAziRTLTAmwTLXCCUlK6wvJ5bNaRwzug8eVPo9DP0ehj6GUcxwMu99wMN_nPrn_Yadfv4C4ZWRsw |
CitedBy_id | crossref_primary_10_1049_pel2_12646 crossref_primary_10_1049_pel2_12585 crossref_primary_10_1109_TPEL_2023_3313796 |
Cites_doi | 10.1109/TIE.2021.3123683 10.1109/TIE.2018.2860550 10.1109/TPEL.2018.2810884 10.1109/TIE.2018.2840496 10.1109/TPEL.2013.2273977 10.1109/TPEL.2017.2689806 10.1109/TPEL.2012.2229393 10.1049/el.2014.2190 10.1109/TPEL.2012.2213270 10.1049/ip-epa:20040511 10.1109/TIE.2018.2863214 10.1049/iet-pel.2014.0066 10.1109/TIE.2014.2364797 10.1109/TPEL.2017.2740843 10.1109/TPEL.2018.2890437 10.1109/TIE.2017.2733476 10.1109/TIE.2007.903925 10.1049/iet-pel.2014.0899 10.1049/iet-pel.2019.0123 10.1109/TPEL.2017.2746750 10.1049/iet-pel.2018.6044 10.1049/iet-pel.2019.0450 10.1109/TPEL.2016.2609501 10.1109/TIE.2020.3007110 10.1109/TPEL.2016.2626383 10.1049/iet-pel.2014.0165 10.1109/TIE.2018.2803731 10.1109/TIE.2019.2949535 10.1109/TIE.2017.2733440 10.1109/TPEL.2014.2309793 10.1109/TPEL.2018.2878340 10.1109/TPEL.2021.3138493 10.1109/TIE.2011.2177789 10.1109/TPEL.2016.2615303 10.1109/TPEL.2013.2243845 10.1109/TPEL.2007.915762 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1049/pel2.12443 |
DatabaseName | Wiley-Blackwell Titles (Open access) Wiley-Blackwell Backfiles (Open access) CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Titles (Open access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1755-4543 |
EndPage | 974 |
ExternalDocumentID | oai_doaj_org_article_15c66bd3841142629b12261c2f859662 10_1049_pel2_12443 PEL212443 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61803136; 62272109 – fundername: Undergraduate Teaching Quality and Teaching Reform Project of Guangdong Ocean University funderid: 010301112107 |
GroupedDBID | 0R~ 0ZK 1OC 24P 29I 5GY 6IK AAHHS AAHJG AAJGR ABMDY ABQXS ACCFJ ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IFIPE IGS IPLJI JAVBF LXU NADUK NXXTH O9- OCL OK1 P2P RIE RNS ROL RUI UNMZH WIN ~ZZ 4.4 8FE 8FG AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ ITC L6V M43 M7S MCNEO P62 PTHSS |
ID | FETCH-LOGICAL-c3753-c3a9daf6f9564e68c570f55f4481f865bae9db09171c9c52c1ce3918f189eb293 |
IEDL.DBID | DOA |
ISSN | 1755-4535 |
IngestDate | Tue Oct 22 15:11:33 EDT 2024 Thu Sep 26 17:27:38 EDT 2024 Sat Aug 24 00:59:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3753-c3a9daf6f9564e68c570f55f4481f865bae9db09171c9c52c1ce3918f189eb293 |
ORCID | 0000-0003-4667-3975 |
OpenAccessLink | https://doaj.org/article/15c66bd3841142629b12261c2f859662 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15c66bd3841142629b12261c2f859662 crossref_primary_10_1049_pel2_12443 wiley_primary_10_1049_pel2_12443_PEL212443 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET power electronics |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 68 2013; 28 2022 2019; 66 2015; 62 2015; 31 2017; 32 2015; 30 2019; 12 2004; 151 2019; 34 2013; 60 2008; 23 2022; 69 2022; 37 2022; 15 2020; 67 2008; 55 2014; 29 2018; 33 2018; 65 2015; 8 2014; 50 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Rahimi R. (e_1_2_9_25_1) 2022 Liu H. (e_1_2_9_34_1) 2015; 31 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Li H. (e_1_2_9_37_1) 2022; 15 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – start-page: 1 year: 2022 end-page: 1 article-title: A three‐winding coupled inductor‐based dual‐switch high step‐up dc‐dc converter for photovoltaic systems publication-title: IEEE Trans. Emerg. Sel. Topics Power Electron. – volume: 33 start-page: 5967 issue: 7 year: 2018 end-page: 5982 article-title: High‐efficiency high step‐up dc–dc converter with dual coupled inductors for grid‐connected photovoltaic systems publication-title: IEEE Trans. Power Electron. – volume: 33 start-page: 1453 issue: 2 year: 2018 end-page: 1462 article-title: A three‐winding coupled‐inductor dc–dc converter topology with high voltage gain and reduced switch stress publication-title: IEEE Trans. Power Electron. – volume: 32 start-page: 6896 issue: 9 year: 2017 end-page: 6903 article-title: Ultralarge gain step‐up coupled‐inductor dc–dc converter with an asymmetric voltage multiplier network for a sustainable energy system publication-title: IEEE Trans. Power Electron. – volume: 8 start-page: 213 issue: 2 year: 2015 end-page: 220 article-title: Coupled‐inductor boost integrated flyback converter with high‐voltage gain and ripple‐free input current publication-title: IET Power Electron – volume: 62 start-page: 1480 issue: 3 year: 2015 end-page: 1490 article-title: Hybrid switched‐inductor converters for high step‐up conversion publication-title: IEEE Trans. Ind. Electron. – volume: 60 start-page: 1483 issue: 4 year: 2013 end-page: 1491 article-title: Novel isolated high‐step‐up dc–dc converter with voltage lift publication-title: IEEE Trans. Ind. Electron. – volume: 15 start-page: 1 issue: 00 year: 2022 end-page: 11 article-title: High step‐up combined boost‐cuk converter with switched‐inductor publication-title: IET Power Electron – volume: 55 start-page: 154 issue: 1 year: 2008 end-page: 162 article-title: Boost converter with coupled inductors and buck–boost type of active clamp publication-title: IEEE Trans. Ind. Electron. – volume: 34 start-page: 9732 issue: 10 year: 2019 end-page: 9742 article-title: High‐voltage‐gain dc–dc step‐up converter with bifold dickson voltage multiplier cells publication-title: IEEE Trans. Power Electron. – volume: 32 start-page: 5323 issue: 7 year: 2017 end-page: 5340 article-title: Generation of the large dc gain step‐up nonisolated converters in conjunction with renewable energy sources starting from a proposed geometric structure publication-title: IEEE Trans. Power Electron. – volume: 34 start-page: 7603 issue: 8 year: 2019 end-page: 7616 article-title: A plug‐play active resonant soft switching for current‐auto‐balance interleaved high step‐up dc/dc converter publication-title: IEEE Trans. Power Electron. – volume: 33 start-page: 10563 issue: 12 year: 2018 end-page: 10571 article-title: High step‐up quasi‐z source dc–dc converter publication-title: IEEE Trans. Power Electron. – volume: 28 start-page: 1764 issue: 4 year: 2013 end-page: 1772 article-title: Design, analysis, and implementation of solar power optimizer for dc distribution system publication-title: IEEE Trans. Power Electron. – volume: 33 start-page: 5917 issue: 7 year: 2018 end-page: 5926 article-title: Voltage‐lift technique based nonisolated boost dc–dc converter: Analysis and design publication-title: IEEE Trans. Power Electron. – volume: 66 start-page: 4414 issue: 6 year: 2019 end-page: 4423 article-title: A multiple‐input cascaded dc–dc converter for very small wind turbines publication-title: IEEE Trans. Ind. Electron. – volume: 12 start-page: 2942 issue: 11 year: 2019 end-page: 2952 article-title: High step‐up isolated dc–dc converter with single input and double output and soft‐switching performance for renewable energy applications publication-title: IET Power Electron – volume: 69 start-page: 10249 issue: 10 year: 2022 end-page: 10258 article-title: A high step‐up dc–dc converter with three‐winding coupled inductor for sustainable energy systems publication-title: IEEE Trans. Ind. Electron. – volume: 28 start-page: 5323 issue: 11 year: 2013 end-page: 5332 article-title: State‐plane analysis of regenerative snubber for flyback converters publication-title: IEEE Trans. Ind. Electron. – volume: 151 start-page: 590 issue: 5 year: 2004 end-page: 606 article-title: Positive output cascade boost converters publication-title: IEE Proc. Electr. Power Appl. – volume: 37 start-page: 6939 issue: 6 year: 2022 end-page: 6950 article-title: Analysis and design of an isolated high step‐up converter without voltage‐drop publication-title: IEEE Trans. Power Electron. – volume: 12 start-page: 3351 issue: 13 year: 2019 end-page: 3358 article-title: Dual input–dual output dc–dc converter for solar pv/battery/ultra‐capacitor powered electric vehicle application publication-title: IET Power Electron – volume: 12 start-page: 2245 issue: 9 year: 2019 end-page: 2255 article-title: Implementation of a common grounded z‐source dc–dc converter with improved operation factors publication-title: IET Power Electron – volume: 32 start-page: 6170 issue: 8 year: 2017 end-page: 6177 article-title: Zero‐ripple input‐current high‐step‐up boost–sepic dc–dc converter with reduced switch‐voltage stress publication-title: IEEE Trans. Power Electron. – volume: 68 start-page: 6390 issue: 8 year: 2021 end-page: 6400 article-title: A new sepic‐based step‐up dc‐dc converter with wide conversion ratio for fuel cell vehicles: Analysis and design publication-title: IEEE Trans. Ind. Electron. – volume: 67 start-page: 8506 issue: 10 year: 2020 end-page: 8516 article-title: Nonisolated high‐step‐up dc–dc converter derived from switched‐inductors and switched‐capacitors publication-title: IEEE Trans. Ind. Electron. – volume: 66 start-page: 3860 issue: 5 year: 2019 end-page: 3868 article-title: Analysis and design of high‐efficiency hybrid high step‐up dc–dc converter for distributed pv generation systems publication-title: IEEE Trans. Ind. Electron. – volume: 29 start-page: 2829 issue: 6 year: 2014 end-page: 2836 article-title: High step‐up interleaved converter with built‐in transformer voltage multiplier cells for sustainable energy applications publication-title: IEEE Trans. Power Electron. – volume: 65 start-page: 7753 issue: 10 year: 2018 end-page: 7761 article-title: High step‐up coupled‐inductor cascade boost dc–dc converter with lossless passive snubber publication-title: IEEE Trans. Ind. Electron. – volume: 50 start-page: 1626 issue: 22 year: 2014 end-page: 1628 article-title: Derivation of a family of high step‐up tapped inductor sepic converters publication-title: Electron. Lett. – volume: 65 start-page: 1254 issue: 2 year: 2018 end-page: 1262 article-title: Isolated sepic dc–dc converter with ripple‐free input current and lossless snubber publication-title: IEEE Trans. Ind. Electron. – volume: 30 start-page: 574 issue: 2 year: 2015 end-page: 581 article-title: High step‐up converter with three‐winding coupled inductor for fuel cell energy source applications publication-title: IEEE Trans. Power Electron. – volume: 8 start-page: 2184 issue: 11 year: 2015 end-page: 2194 article-title: Non‐isolated high step‐up dc–dc converter based on coupled inductor with reduced voltage stress publication-title: IET Power Electron – volume: 23 start-page: 871 issue: 2 year: 2008 end-page: 887 article-title: Voltage multiplier cells applied to non‐isolated dc–dc converters publication-title: IEEE Trans. Power Electron. – volume: 66 start-page: 4387 issue: 6 year: 2019 end-page: 4397 article-title: A single switch quadratic boost high step up dc–dc converter publication-title: IEEE Trans. Ind. Electron. – volume: 8 start-page: 175 issue: 2 year: 2015 end-page: 189 article-title: Interleaved high step‐up dc–dc converter based on three‐winding high‐frequency coupled inductor and voltage multiplier cell publication-title: IET Power Electron – volume: 31 start-page: 4974 issue: 7 year: 2015 end-page: 4983 article-title: A novel high step‐up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system publication-title: IEEE Trans. Power Electron. – volume: 65 start-page: 1306 issue: 2 year: 2018 end-page: 1315 article-title: A novel high step‐up dc–dc converter with continuous input current integrating coupled inductor for renewable energy applications publication-title: IEEE Trans. Ind. Electron. – volume: 28 start-page: 3788 issue: 8 year: 2013 end-page: 3797 article-title: Reconfigurable solar converter: A single‐stage power conversion pv‐battery system publication-title: IEEE Trans. Power Electron. – ident: e_1_2_9_40_1 doi: 10.1109/TIE.2021.3123683 – ident: e_1_2_9_18_1 doi: 10.1109/TIE.2018.2860550 – ident: e_1_2_9_36_1 doi: 10.1109/TPEL.2018.2810884 – ident: e_1_2_9_24_1 doi: 10.1109/TIE.2018.2840496 – ident: e_1_2_9_26_1 doi: 10.1109/TPEL.2013.2273977 – volume: 15 start-page: 1 issue: 00 year: 2022 ident: e_1_2_9_37_1 article-title: High step‐up combined boost‐cuk converter with switched‐inductor publication-title: IET Power Electron contributor: fullname: Li H. – ident: e_1_2_9_33_1 doi: 10.1109/TPEL.2017.2689806 – ident: e_1_2_9_8_1 doi: 10.1109/TPEL.2012.2229393 – ident: e_1_2_9_39_1 doi: 10.1049/el.2014.2190 – start-page: 1 year: 2022 ident: e_1_2_9_25_1 article-title: A three‐winding coupled inductor‐based dual‐switch high step‐up dc‐dc converter for photovoltaic systems publication-title: IEEE Trans. Emerg. Sel. Topics Power Electron. contributor: fullname: Rahimi R. – ident: e_1_2_9_3_1 doi: 10.1109/TPEL.2012.2213270 – ident: e_1_2_9_17_1 doi: 10.1049/ip-epa:20040511 – ident: e_1_2_9_5_1 doi: 10.1109/TIE.2018.2863214 – ident: e_1_2_9_28_1 doi: 10.1049/iet-pel.2014.0066 – ident: e_1_2_9_12_1 doi: 10.1109/TIE.2014.2364797 – ident: e_1_2_9_16_1 doi: 10.1109/TPEL.2017.2740843 – ident: e_1_2_9_21_1 doi: 10.1109/TPEL.2018.2890437 – ident: e_1_2_9_23_1 doi: 10.1109/TIE.2017.2733476 – ident: e_1_2_9_30_1 doi: 10.1109/TIE.2007.903925 – ident: e_1_2_9_27_1 doi: 10.1049/iet-pel.2014.0899 – ident: e_1_2_9_7_1 doi: 10.1049/iet-pel.2019.0123 – ident: e_1_2_9_6_1 doi: 10.1109/TPEL.2017.2746750 – volume: 31 start-page: 4974 issue: 7 year: 2015 ident: e_1_2_9_34_1 article-title: A novel high step‐up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system publication-title: IEEE Trans. Power Electron. contributor: fullname: Liu H. – ident: e_1_2_9_35_1 doi: 10.1049/iet-pel.2018.6044 – ident: e_1_2_9_10_1 doi: 10.1049/iet-pel.2019.0450 – ident: e_1_2_9_14_1 doi: 10.1109/TPEL.2016.2609501 – ident: e_1_2_9_38_1 doi: 10.1109/TIE.2020.3007110 – ident: e_1_2_9_2_1 doi: 10.1109/TPEL.2016.2626383 – ident: e_1_2_9_22_1 doi: 10.1049/iet-pel.2014.0165 – ident: e_1_2_9_29_1 doi: 10.1109/TIE.2018.2803731 – ident: e_1_2_9_13_1 doi: 10.1109/TIE.2019.2949535 – ident: e_1_2_9_9_1 doi: 10.1109/TIE.2017.2733440 – ident: e_1_2_9_4_1 doi: 10.1109/TPEL.2014.2309793 – ident: e_1_2_9_20_1 doi: 10.1109/TPEL.2018.2878340 – ident: e_1_2_9_11_1 doi: 10.1109/TPEL.2021.3138493 – ident: e_1_2_9_15_1 doi: 10.1109/TIE.2011.2177789 – ident: e_1_2_9_19_1 doi: 10.1109/TPEL.2016.2615303 – ident: e_1_2_9_31_1 doi: 10.1109/TPEL.2013.2243845 – ident: e_1_2_9_32_1 doi: 10.1109/TPEL.2007.915762 |
SSID | ssj0061458 |
Score | 2.3981345 |
Snippet | A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier cells, the... Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier... Abstract A high step‐up DC‐DC converter for renewable energy applications is proposed. Based on a three‐winding coupled inductor and two voltage multiplier... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 961 |
SubjectTerms | DC‐DC power convertors power electronics renewable energy sources |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Titles (Open access) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61XvQgPrG-COhJWG02m-wGvNQ-KKLSg4Xelmw2EaFsS2np1Yt3f6O_xJlsW-tF8LKvZFmYSWa-yWa-IeRKhCY2MHgCYx0PwODlgYrr9UDHQjonwQfmuA759Cy7_ehhIAYVcrfMhSn5IVYLbjgzvL3GCa6zsgoJgFqsTGuH4Q16J75BNpEyBsd3GPWWdhj8jq_OCf5RBJHgYklOGqnbn3d_uSPP2v8bpXo309klOwt8SBulQvdIxRb7ZHuNNfCAfDQokgxT0M_46_1zNqatJpxbTeq3kOMeTYrOKaejgk5BVxZa528-fQW6zMZDaILbGa7XU13kFEzUFOwKXewuBE9JActSZLucY2oVtT5DkK7_7T4k_U77pdkNFtUUAsMhJoGjVrl20kFEFFmZGBHXnRAO4jPmEikybVWeAXyImVEGdMiM5YoljiUKwm_Fj0i1GBX2mFBrmLSWZYprRIQJtEY8i0OIpZw2WtfI5VKo6bgkzUj9z-5IpSj61Iu-Ru5R3qseSHTtH4wmr-li3qRMGCmznCcRJv3KUGUMACMzoUsERGphjVx7bf3xnbTXfgz91cl_Op-SLSwtX25uPCPV6WRmzwGATLMLP86-ATqz2G8 priority: 102 providerName: Wiley-Blackwell |
Title | A high step‐up DC‐DC converter based on three‐winding coupled inductor and voltage multiplier for renewable energy applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fpel2.12443 https://doaj.org/article/15c66bd3841142629b12261c2f859662 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9ZHCehJWNtsHrs51j4ootKDhd6WbDYBoayL7NKrF-_-Rn-Jk-xW2otevOwrgSzzhZlvkpkJQtc81JGGyRNoY2kACi8LZNTrBSriwloBNjBz65CPT2IyY_dzPl876svFhNXlgWvBdQnXQqQZjZnL-hShTAkwBqJDG3Og6rX27cmVM1XrYLA5_mROsI08YJzyVWFSJruFWYS3zqrRDVPkK_ZvMlRvYsb7aK_hhrhf_9MB2jL5Idpdqxh4hD762BUYxoBN8fX-WRV4OID7cIB9-LiLz8TOMGX4Nccl4GSgdfniU1egS1UsoAleK7dWj1WeYVBPJegU3EQWgpXEwGOxq3S5dGlV2PjsQLy-032MZuPR82ASNCcpBJqCPwJXJTNlhQVviBkRax71LOcWfDNiY8FTZWSWAnWIiJYa8CPaUEliS2IJrrekJ6iVv-bmFGGjiTCGpJIqxwZjaGU0jQAZbpVWqo2uVkJNirpgRuI3uplMnOgTL_o2unPy_unhilz7DwB90kCf_AV9G914tH4ZJ5mOHkL_dPYfI56jHXfcfB3weIFa5VtlLoGUlGkHbYds2vGz8BuPh97j |
link.rule.ids | 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMCAeIrytAQTUqCOYyceSykqUBADRYglchwbIaE0Qq1YWdj5jfwS7py0wILEkpcdRfLF992d7z4TciBCExv4eQJjHQ9A4eWBipvNQMdCOicBA3OMQ15dy24_urgX93VuDtbCVPwQk4Abzgyvr3GCY0C6cjgjJMks7XN4hPDEp8ks4B4H32u2ddd_6I9VMUCP36ATIFIEkeBizE8aqePvt38hkifu_22oeqQ5WyKLtYlIW5VMl8mULVbIwg_iwFXy3qLIM0xBROXn28eopKdtOJ-2qc8ixzRNiviU00FBhyAuC62vT76CBbqMymdogtsRhuypLnIKWmoIqoXWCYYAlhTMWYqEl69YXUWtLxKkPxe810j_rHPb7gb1hgqB4eCWwFGrXDvpwCmKrEyMiJtOCAcuGnOJFJm2Ks_AgoiZUQbEyIzliiWOJQo8cMXXyUwxKOwGodYwaS3LFNdoFCbQGvEsDsGdctpo3SD740FNy4o3I_Xr3ZFKcehTP_QNcoLjPemBXNf-weDlMa2nTsqEkTLLeRJh3a8MVcbAZmQmdIkAZy1skEMvrT--k950eqG_2vxP5z0y17296qW98-vLLTKPO81XuY7bZGb4MrI7YI8Ms936r_sCKJLdqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58wOIeRFcXZ30F1pPQ7qTz6A540RkH3VWZwwremnQ6EUF6GpnB61727m_0l1iVnvFxEbz0K2kaqjr1VSVVXwD2VOoyhz9P4nwQCRq8KjFZt5vYTOkQNGJgRfOQF5f69Er-vlbXc3A4q4Vp-SFeJtxoZER7TQO8qUIbb0riyGz8XXpA6CTmYVGSH068znI4s8OIO3F3TsRHlUgl1IycVJpfr---g6PI2v_eS40wM1iB5al_yI5aha7CnK-_wdc3rIFr8P-IEckwQ_00T_8eJw3r9_Dc77GYQk45mozAqWKjmo1RVx5bH25j-Qp2mTR32IS3E5qvZ7auGJqoMdoVNs0uRKRk6MsyYrt8oNIq5mOFIHu72r0OV4OTv73TZLqbQuIExiR4tKayQQeMiKTXuVNZNygVMD7jIdeqtN5UJboPGXfGoQ6588LwPPDcYPhtxHdYqEe13wDmHdfe89IISx5hjq1SlFmKsVSwztoO_JwJtWha0owiLnZLU5Doiyj6DhyTvF96ENF1fDC6vymm46bgymldViKXVPSrU1NydBi5S0OuMFJLO7AftfXBd4rhyXkar358pvMufBn2B8X52eWfTViiXebbPMctWBjfT_w2-iLjcif-cs-xr9sD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+step%E2%80%90up+DC%E2%80%90DC+converter+based+on+three%E2%80%90winding+coupled+inductor+and+voltage+multiplier+for+renewable+energy+applications&rft.jtitle=IET+power+electronics&rft.au=Luo%2C+Peng&rft.au=He%2C+Jie&rft.au=Ji%2C+Huansheng&rft.au=Li%2C+Fuwei&rft.date=2023-05-01&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=16&rft.issue=6&rft.spage=961&rft.epage=974&rft_id=info:doi/10.1049%2Fpel2.12443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_pel2_12443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon |