A study on electron-wave filters using barrier height modulated multiple barrier structures

The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control the behavior of the electrons in electron‐wave devices. Recently, many theoretical and experimental reports on the subject have been presented. Since...

Full description

Saved in:
Bibliographic Details
Published inElectronics & communications in Japan. Part 2, Electronics Vol. 86; no. 9; pp. 11 - 19
Main Authors Sanada, Hirofumi, Watanabe, Kazuhisa
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control the behavior of the electrons in electron‐wave devices. Recently, many theoretical and experimental reports on the subject have been presented. Since the electron‐wave filter characteristics are directly affected by the potential shape, it is important to systematically understand the relationship between the potential shape and the realizable characteristics so that desired characteristics can be realized. In this paper, the circuit‐theoretical design of a potential barrier height modulated electron‐wave filter is discussed. It is shown that an electron‐wave filter with a bandpass characteristic can be realized. Also, the designed electron‐wave filter is shown to be superior in terms of the transmission coefficients and group delay in the passband in comparison to the periodic multiple barrier structures. © 2003 Wiley Periodicals, Inc. Electron Comm Jpn Pt 2, 86(9): 11–19, 2003; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecjb.10133
AbstractList Abstract The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control the behavior of the electrons in electron‐wave devices. Recently, many theoretical and experimental reports on the subject have been presented. Since the electron‐wave filter characteristics are directly affected by the potential shape, it is important to systematically understand the relationship between the potential shape and the realizable characteristics so that desired characteristics can be realized. In this paper, the circuit‐theoretical design of a potential barrier height modulated electron‐wave filter is discussed. It is shown that an electron‐wave filter with a bandpass characteristic can be realized. Also, the designed electron‐wave filter is shown to be superior in terms of the transmission coefficients and group delay in the passband in comparison to the periodic multiple barrier structures. © 2003 Wiley Periodicals, Inc. Electron Comm Jpn Pt 2, 86(9): 11–19, 2003; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecjb.10133
The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control the behavior of the electrons in electron‐wave devices. Recently, many theoretical and experimental reports on the subject have been presented. Since the electron‐wave filter characteristics are directly affected by the potential shape, it is important to systematically understand the relationship between the potential shape and the realizable characteristics so that desired characteristics can be realized. In this paper, the circuit‐theoretical design of a potential barrier height modulated electron‐wave filter is discussed. It is shown that an electron‐wave filter with a bandpass characteristic can be realized. Also, the designed electron‐wave filter is shown to be superior in terms of the transmission coefficients and group delay in the passband in comparison to the periodic multiple barrier structures. © 2003 Wiley Periodicals, Inc. Electron Comm Jpn Pt 2, 86(9): 11–19, 2003; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/ecjb.10133
Author Watanabe, Kazuhisa
Sanada, Hirofumi
Author_xml – sequence: 1
  givenname: Hirofumi
  surname: Sanada
  fullname: Sanada, Hirofumi
  organization: Hokkaido Institute of Technology, Sapporo, 006-8585 Japan
– sequence: 2
  givenname: Kazuhisa
  surname: Watanabe
  fullname: Watanabe, Kazuhisa
  organization: Hokkaido Institute of Technology, Sapporo, 006-8585 Japan
BookMark eNp9kMtOAjEUQBuDiYBu_IKuTUbbKW2HJRJECT4WGk1cNH1CcZghbUfk7wVRlq7uXZxzk3s6oFXVlQXgHKNLjFB-ZfVCbTdMyBFoY5qjjPVI3gLtglOWMUbeTkAnxgVCqM9o3gbvAxhTYzawrqAtrU6hrrK1_LTQ-TLZEGETfTWDSobgbYBz62fzBJe1aUqZrIHLpkx-VdoDEVNodGqCjafg2Mky2rPf2QUvN6Pn4W02fRzfDQfTTBNOScapVlwh1yNSMe2Uc5xLwxgmfckLg5g2DjFnNCV5oVxhKKbKEGOIUqSXS9IFF_u7OtQxBuvEKvilDBuBkdhlEbss4ifLFsZ7eO1Lu_mHFKPh5PrPyfaOj8l-HRwZPgTj2x_E68NYTCm5xxOOxBP5BtgEeKw
CitedBy_id crossref_primary_10_1587_transele_E96_C_1440
crossref_primary_10_4028_p_i71cq3
Cites_doi 10.1063/1.342775
10.1126/science.276.5313.773
10.1063/1.113391
10.1016/S0038-1101(97)00169-X
10.1109/3.485395
10.1063/1.345116
10.1016/S1386-9477(00)00071-0
10.1016/S0026-2692(99)00058-0
10.1063/1.369764
10.1088/0022-3727/32/2/011
10.1088/0268-1242/16/5/305
10.1063/1.372121
10.1109/3.544758
10.1103/PhysRevB.55.9340
10.1209/epl/i1997-00125-0
10.1063/1.354119
10.1063/1.355857
10.1063/1.352078
10.1109/3.485403
10.1063/1.350984
ContentType Journal Article
Copyright Copyright © 2003 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2003 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/ecjb.10133
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6432
EndPage 19
ExternalDocumentID 10_1002_ecjb_10133
ECJB10133
ark_67375_WNG_L53M1J70_P
Genre article
GrantInformation_xml – fundername: Supported in part by a Scientific Research Grant from the Japan Society for the Promotion of Science (A) (No. 12750254).
GroupedDBID .GA
.Y3
10A
1OB
1OC
31~
4.4
51W
51X
52N
52P
52S
52X
5VS
7PT
8-1
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCUV
ABDBF
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
BY8
CMOOK
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
ESX
FEDTE
G-S
GNP
GODZA
HF~
HGLYW
HVGLF
I-F
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
M59
MEWTI
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
PALCI
QB0
RIWAO
ROL
RWI
RYL
SAMSI
SUPJJ
TUS
UB1
VH1
W99
WH7
WIH
WIK
WQJ
WWI
WXSBR
XG1
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3753-75cb7b0f43ab6cfbff77ad66139a78d06cdf06fdc5328bf8d515bd3dd3bb342a3
IEDL.DBID DR2
ISSN 8756-663X
IngestDate Fri Aug 23 03:47:05 EDT 2024
Sat Aug 24 00:57:32 EDT 2024
Wed Oct 30 09:55:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3753-75cb7b0f43ab6cfbff77ad66139a78d06cdf06fdc5328bf8d515bd3dd3bb342a3
Notes Supported in part by a Scientific Research Grant from the Japan Society for the Promotion of Science (A) (No. 12750254).
istex:FD09612F095D55746FDB08CE1C551A9C56A1627B
ark:/67375/WNG-L53M1J70-P
ArticleID:ECJB10133
PageCount 9
ParticipantIDs crossref_primary_10_1002_ecjb_10133
wiley_primary_10_1002_ecjb_10133_ECJB10133
istex_primary_ark_67375_WNG_L53M1J70_P
PublicationCentury 2000
PublicationDate September 2003
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 09
  year: 2003
  text: September 2003
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Electronics & communications in Japan. Part 2, Electronics
PublicationTitleAlternate Electron. Comm. Jpn. Pt. II
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Tung HH, Lee CP. An energy band-pass filter using superlattice structures. IEEE J Quantum Electron 1996;32:507-512.
Scamarco G, Capasso F, Sirtori C, Faist J, Hutchinson AL, Sivco DL, Cho AY. High-power infrared (8-micrometer wavelength) superlattice lasers. Science 1997;276:773-776.
Diez E, Gomez I, Dominguez-Adame F, Hey R, Bellani V, Parravicini GB. Gaussian semiconductor superlattices. Physica E 2000;7:832-835.
Chang CC, Kou CS. Electron-wave quantum well energy band-pass filters. J Phys D 1999;32:139-146.
Asakura K, Suzuki M, Sanada H, Nagai N. Band structure of modulated super lattice with a symmetric Gaussian potential envelope. Trans IEICE 2001;J84-C:574-583.
Bessis D, Mantica G, Mezincescu GA, Vrinceanu. Electron wave filters from inverse scattering theory. Eur Phys Lett 1997;37:151-156.
Harness PC, Pritchard RE, Khamsehpour B, Truscott WS, Singer KE. Double-barrier resonant tunneling structures incorporating superlattice energy filter. J Appl Phys 1992;71:3019-3024.
Khondker AN. A model for resonant and sequential tunneling in the presence of scattering. J Appl Phys 1990;67:6432-6437.
Chyi JI, Wang SK, Gau JH, Shieh JL, Pan JW. Characteristics of multitask multiquantum barrier and its application to graded-index separate confinement heterostructure lasers. IEEE J Quantum Electron 1996;32:442-447.
Wang X, Gu B, Yang G. Coupling between the transverse and longitudinal components of an electron in resonant tunneling. Phys Rev 1997;55:9340-9343.
Cheng S, Liu W, Lin W. Investigation of an AlInAs/GaInAs long-period-superlattice resonant-tunneling transistor. Solid-State Electron 1997;41:1707-1713.
Ma T, NambaY. Design of an iris coupled waveguide bandpass filter by mode matching method. Tech Rep IEICE 1999;MW99-26.
Yang RQ, Xu JM. Analysis of transmission in polytype interband tunneling heterostructures. J Appl Phys 1992;72:4714-4726.
Banifi F, Bellani V, Gomez I, Diez E, Dominguez-Adame F. Interface roughness effects in Gaussian superlattices. Semicond. Sci Technol 2001;16:304.
Gaylord TK, Glytsis EN, Brennan KF. Semiconductor superlattice interference filter design. J Appl Phys 1989;65:2535-2540.
Sirtori C, Faist J, Capasso F, Sivco DL. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength. Appl Phys Lett 1995;66:3242.
Guthrie TK, First PN, Gaylord TK, Glytsis EN, Leibenguth RE. Measurement of quasibound states in semiconductor heterostructures using ballistic electron emission spectroscopy. Microelectron J 1999;30:975-983.
Kan'an AM, Puri A. Transmission of obliquely incident electron wave through GaAs-AlGaAs structures: Application to an electron wave filter. J Appl Phys 1993;74:370-374.
Gomez I, Dominguez-Adame F. Electron transport across a Gaussian superlattice. J Appl Phys 1999;85:3916-3918.
Matthaei GL, Young L, Jones EMT. Microwave filters impedance-matching networks, and coupling structures. McGraw-Hill; 1964.
Ohtani T, Nagai N, Suzuki M, Miki N. Circuit theoretical treatment of resonant tunneling effect considering the effect of electron-wave scattering by uncertain factors. Tech Rep IEICE 1993;CAS-93-5.
Tung HH, Lee CP. A novel energy filter using semiconductor superlattice and its application to tunneling time calculations. IEEE J Quantum Electron 1996;32:2122-2127.
Rauch C, Strasser G, Unterrainer K, Baxleitner W, Gornik E. Transition between coherent and incoherent electron transport in GaAs/GaAlAs superlattices. Phys Rev 1998;81:3495-3498.
Kaji R, Hayata K, Koshiba M. Circuit theoretical treatment of electron wave propagation and its applications. Trans IEICE 1992;J75-C-I:134-140.
Kan'an AM, Puri A. The generalized transmission matrix for electron-wave-optics through biased heterostructures: Quantum device applications. J Appl Phys 1994;75:351-356.
Yang QK, Li AZ. Energy filters using modulated superlattices. J Appl Phys 2000;87:1963-1967.
Sanada H, Asakura K, Suzuki M, Nagai N. A circuit theoretical approach for design of a bandpass electron-wave energy filter. Trans IEICE 1997;J84-C:1090-1099.
1989; 65
1997; 41
2000; 87
1997; 276
2000; 7
2001; J84‐C
1998; 81
1999; 85
1997; J84‐C
1992; 71
1996; 32
1992; 72
1999; MW99‐26
1990; 67
1997; 55
1997; 37
1995; 66
1993; CAS‐93‐5
1993; 74
1964
1999; 32
2001; 16
1999; 30
1992; J75‐C‐I
1994; 75
Rauch C (e_1_2_1_19_2) 1998; 81
Matthaei GL (e_1_2_1_20_2) 1964
e_1_2_1_23_2
e_1_2_1_21_2
Ohtani T (e_1_2_1_24_2) 1993; 93
e_1_2_1_26_2
e_1_2_1_27_2
Ma T (e_1_2_1_22_2) 1999; 99
e_1_2_1_28_2
Sanada H (e_1_2_1_18_2) 1997; 84
Kaji R (e_1_2_1_25_2) 1992; 75
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
Asakura K (e_1_2_1_13_2) 2001; 84
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
References_xml – volume: 81
  start-page: 3495
  year: 1998
  end-page: 3498
  article-title: Transition between coherent and incoherent electron transport in GaAs/GaAlAs superlattices
  publication-title: Phys Rev
– volume: 66
  start-page: 3242
  year: 1995
  article-title: Quantum cascade laser with plasmon‐enhanced waveguide operating at 8.4 µm wavelength
  publication-title: Appl Phys Lett
– year: 1964
– volume: J75‐C‐I
  start-page: 134
  year: 1992
  end-page: 140
  article-title: Circuit theoretical treatment of electron wave propagation and its applications
  publication-title: Trans IEICE
– volume: J84‐C
  start-page: 1090
  year: 1997
  end-page: 1099
  article-title: A circuit theoretical approach for design of a bandpass electron‐wave energy filter
  publication-title: Trans IEICE
– volume: 55
  start-page: 9340
  year: 1997
  end-page: 9343
  article-title: Coupling between the transverse and longitudinal components of an electron in resonant tunneling
  publication-title: Phys Rev
– volume: 37
  start-page: 151
  year: 1997
  end-page: 156
  article-title: Vrinceanu. Electron wave filters from inverse scattering theory
  publication-title: Eur Phys Lett
– volume: 85
  start-page: 3916
  year: 1999
  end-page: 3918
  article-title: Electron transport across a Gaussian superlattice
  publication-title: J Appl Phys
– volume: 67
  start-page: 6432
  year: 1990
  end-page: 6437
  article-title: A model for resonant and sequential tunneling in the presence of scattering
  publication-title: J Appl Phys
– volume: 32
  start-page: 442
  year: 1996
  end-page: 447
  article-title: Characteristics of multitask multiquantum barrier and its application to graded‐index separate confinement heterostructure lasers
  publication-title: IEEE J Quantum Electron
– volume: 72
  start-page: 4714
  year: 1992
  end-page: 4726
  article-title: Analysis of transmission in polytype interband tunneling heterostructures
  publication-title: J Appl Phys
– volume: 32
  start-page: 2122
  year: 1996
  end-page: 2127
  article-title: A novel energy filter using semiconductor superlattice and its application to tunneling time calculations
  publication-title: IEEE J Quantum Electron
– volume: MW99‐26
  year: 1999
  article-title: Design of an iris coupled waveguide bandpass filter by mode matching method
  publication-title: Tech Rep IEICE
– volume: 74
  start-page: 370
  year: 1993
  end-page: 374
  article-title: Transmission of obliquely incident electron wave through GaAs‐AlGaAs structures: Application to an electron wave filter
  publication-title: J Appl Phys
– volume: 7
  start-page: 832
  year: 2000
  end-page: 835
  article-title: Gaussian semiconductor superlattices
  publication-title: Physica E
– volume: 75
  start-page: 351
  year: 1994
  end-page: 356
  article-title: The generalized transmission matrix for electron‐wave‐optics through biased heterostructures: Quantum device applications
  publication-title: J Appl Phys
– volume: 16
  start-page: 304
  year: 2001
  article-title: Interface roughness effects in Gaussian superlattices
  publication-title: Semicond. Sci Technol
– volume: 32
  start-page: 139
  year: 1999
  end-page: 146
  article-title: Electron‐wave quantum well energy band‐pass filters
  publication-title: J Phys D
– volume: 32
  start-page: 507
  year: 1996
  end-page: 512
  article-title: An energy band‐pass filter using superlattice structures
  publication-title: IEEE J Quantum Electron
– volume: 65
  start-page: 2535
  year: 1989
  end-page: 2540
  article-title: Semiconductor superlattice interference filter design
  publication-title: J Appl Phys
– volume: CAS‐93‐5
  year: 1993
  article-title: Circuit theoretical treatment of resonant tunneling effect considering the effect of electron‐wave scattering by uncertain factors
  publication-title: Tech Rep IEICE
– volume: 41
  start-page: 1707
  year: 1997
  end-page: 1713
  article-title: Investigation of an AlInAs/GaInAs long‐period‐superlattice resonant‐tunneling transistor
  publication-title: Solid‐State Electron
– volume: 276
  start-page: 773
  year: 1997
  end-page: 776
  article-title: High‐power infrared (8‐micrometer wavelength) superlattice lasers
  publication-title: Science
– volume: J84‐C
  start-page: 574
  year: 2001
  end-page: 583
  article-title: Band structure of modulated super lattice with a symmetric Gaussian potential envelope
  publication-title: Trans IEICE
– volume: 71
  start-page: 3019
  year: 1992
  end-page: 3024
  article-title: Double‐barrier resonant tunneling structures incorporating superlattice energy filter
  publication-title: J Appl Phys
– volume: 87
  start-page: 1963
  year: 2000
  end-page: 1967
  article-title: Energy filters using modulated superlattices
  publication-title: J Appl Phys
– volume: 30
  start-page: 975
  year: 1999
  end-page: 983
  article-title: Measurement of quasibound states in semiconductor heterostructures using ballistic electron emission spectroscopy
  publication-title: Microelectron J
– volume: 99
  year: 1999
  ident: e_1_2_1_22_2
  article-title: Design of an iris coupled waveguide bandpass filter by mode matching method
  publication-title: Tech Rep IEICE
  contributor:
    fullname: Ma T
– ident: e_1_2_1_14_2
  doi: 10.1063/1.342775
– ident: e_1_2_1_5_2
  doi: 10.1126/science.276.5313.773
– ident: e_1_2_1_6_2
  doi: 10.1063/1.113391
– ident: e_1_2_1_3_2
  doi: 10.1016/S0038-1101(97)00169-X
– ident: e_1_2_1_4_2
  doi: 10.1109/3.485395
– volume: 81
  start-page: 3495
  year: 1998
  ident: e_1_2_1_19_2
  article-title: Transition between coherent and incoherent electron transport in GaAs/GaAlAs superlattices
  publication-title: Phys Rev
  contributor:
    fullname: Rauch C
– ident: e_1_2_1_23_2
  doi: 10.1063/1.345116
– ident: e_1_2_1_10_2
  doi: 10.1016/S1386-9477(00)00071-0
– ident: e_1_2_1_15_2
  doi: 10.1016/S0026-2692(99)00058-0
– volume: 93
  year: 1993
  ident: e_1_2_1_24_2
  article-title: Circuit theoretical treatment of resonant tunneling effect considering the effect of electron‐wave scattering by uncertain factors
  publication-title: Tech Rep IEICE
  contributor:
    fullname: Ohtani T
– ident: e_1_2_1_9_2
  doi: 10.1063/1.369764
– volume: 84
  start-page: 1090
  year: 1997
  ident: e_1_2_1_18_2
  article-title: A circuit theoretical approach for design of a bandpass electron‐wave energy filter
  publication-title: Trans IEICE
  contributor:
    fullname: Sanada H
– ident: e_1_2_1_16_2
  doi: 10.1088/0022-3727/32/2/011
– ident: e_1_2_1_11_2
  doi: 10.1088/0268-1242/16/5/305
– ident: e_1_2_1_12_2
  doi: 10.1063/1.372121
– ident: e_1_2_1_8_2
  doi: 10.1109/3.544758
– ident: e_1_2_1_28_2
  doi: 10.1103/PhysRevB.55.9340
– volume: 84
  start-page: 574
  year: 2001
  ident: e_1_2_1_13_2
  article-title: Band structure of modulated super lattice with a symmetric Gaussian potential envelope
  publication-title: Trans IEICE
  contributor:
    fullname: Asakura K
– ident: e_1_2_1_17_2
  doi: 10.1209/epl/i1997-00125-0
– ident: e_1_2_1_26_2
  doi: 10.1063/1.354119
– ident: e_1_2_1_27_2
  doi: 10.1063/1.355857
– ident: e_1_2_1_21_2
  doi: 10.1063/1.352078
– volume: 75
  start-page: 134
  year: 1992
  ident: e_1_2_1_25_2
  article-title: Circuit theoretical treatment of electron wave propagation and its applications
  publication-title: Trans IEICE
  contributor:
    fullname: Kaji R
– ident: e_1_2_1_7_2
  doi: 10.1109/3.485403
– volume-title: Microwave filters impedance‐matching networks, and coupling structures
  year: 1964
  ident: e_1_2_1_20_2
  contributor:
    fullname: Matthaei GL
– ident: e_1_2_1_2_2
  doi: 10.1063/1.350984
SSID ssj0009652
Score 1.585471
Snippet The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control the...
Abstract The one‐dimensional semiconductor multiple barrier structure playing a role of a filter for electron waves is important as a configuration to control...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 11
SubjectTerms electron wave
electron-wave filter
multiple barrier structure
Schrödinger equation with effective mass approximation
Title A study on electron-wave filters using barrier height modulated multiple barrier structures
URI https://api.istex.fr/ark:/67375/WNG-L53M1J70-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecjb.10133
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL2I3ejCt1gfZUBxIaQmmWQmBTd9WKVoEVHspoR5-sJWfOPKT_Ab_RJnJqa1LgTdZXETkjMzuedOTs4F2JA44gH1mSeCCvciw6m9RCfES1SsFJXCcFQnkG2T_dOo1Yk7Y7CT_wuT-UMMNtzsynDva7vAGb_fHpqGKnHFbe2JrdVngKnVczWOh95RFeLa7Rg-TjyTVjsDb9Jwe3jqSDYqWGBfRlmqSzPNaejmN5ipS67Ljw-8LF5_eDf-9wlmYOqLf6JqNmFmYUz15mDymyvhPHSryJnOon4P5V1yPt7en9mTQvrSfl2_R1Yuf444u7MN79CF219FN31pm4EpiXKZ4iAis6l9NLX9Apw2d0_q-95XFwZPYFPLeDQWnHJfR5hxIjTXmlImTVrHFUYT6RMhtU-0FDEOE64TaRgSl1hKzDmOQoYXYbzX76klQNqUvgnxsTS0NGI0YJoauuwoYkgJJ0VYz0cjvc3MNtLMVjlMLVipA6sIm26gBiHs7trK02icnrX30oMYHwYt6qdHRdhy8P9yrXS33qq5o-W_BK_AhBP1Oa3ZKowbDNWaIScPvASFaq1Ra5bcZPwE8F3i7A
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwFLSgHIADO6KslkAckELTOLHTY1lKKW2FUBG9IMsrS0WLaAuIE5_AN_Il2E4XygEJbjk4kfLslzfPGc8AsCNRyLPEZ57I5rgXGkztxTrGXqwipYgUBqM6gmwVFy_DUj2q97g59ixMog8x2HCzmeG-1zbB7YZ0ZqgaqsQ9t80nQuNgwuQ7sgYGRxdD9agcdoY7BpFjzxTW-kCdNMgM7x2pRxM2tK-jONUVmsJs4qbadvqEll_S2O92-L54-6He-O93mAMzPQgK88mamQdjqrkApr8JEy6C6zx0urOw1YR9o5zP948X9qygvrM_2NvQMuZvIGdP1vMO3rotVvjQktYPTEnYZyoORiRKtV3T3i-By8Jx7bDo9YwYPIFMO-ORSHDCfR0ixrHQXGtCmDSVHeUYiaWPhdQ-1lJEKIi5jqUBSVwiKRHnKAwYWgapZqupVgDUpvuNsY-kQaYhI1mmiUHMDiUGBHOcBtv96aCPid4GTZSVA2qDRV2w0mDXzdRgCHtqWIYaiehV9YSWI1TJlohPz9Ngz8X_l2fR48PSgbta_cvgLTBZrFXKtHxaPVsDU47j56hn6yBl4qk2DFbp8E23Ir8A8OrllA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSAgO7IiyWgJxQAqkcWKnEhe2AgUqhED0giyvbKJFpSzixCfwjXwJtkNa4IAEtxwmUfJsZ944L28AFhWORZGGPJDFkghiy6mD1KQkSHWiNVXSclQvkK2S3dO4UktqXbCW_wuT-UO0N9zcyvDva7fA75RZ7ZiGanktXO2JcTf0xgSHTtC1ddwxjyoR32_HEnIS2Lxaa5uTRqudc7-lo16H7PN3murzTHkIzvM7zOQlNysPLbEiX36YN_73EYZh8JOAovVsxoxAl66PwsAXW8IxOF9H3nUWNeoob5Pz_vr2xB81Mlfu8_o9cnr5CyR403W8Q5d-gxXdNpTrBqYVynWK7YjMp_bBFvfjcFrePtncDT7bMAQS22ImoIkUVIQmxlwQaYQxlHJl8zoucZqqkEhlQmKUTHCUCpMqS5GEwkphIXAccTwBPfVGXU8CMrb2TUmIleWlMadFbqjly54jRpQIUoCFfDTYXea2wTJf5Yg5sJgHqwBLfqDaIbx54_RpNGFn1R12kODDYoWG7KgAyx7-X67FtjcrG_5o6i_B89B3tFVmB3vV_Wno9wI_rzubgR4Lp561RKUl5vx8_ABgKORD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+electron%E2%80%90wave+filters+using+barrier+height+modulated+multiple+barrier+structures&rft.jtitle=Electronics+%26+communications+in+Japan.+Part+2%2C+Electronics&rft.au=Sanada%2C+Hirofumi&rft.au=Watanabe%2C+Kazuhisa&rft.date=2003-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=8756-663X&rft.eissn=1520-6432&rft.volume=86&rft.issue=9&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1002%2Fecjb.10133&rft.externalDBID=10.1002%252Fecjb.10133&rft.externalDocID=ECJB10133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-663X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-663X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-663X&client=summon