Triboelectric nanogenerator based on degradable materials
Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degrada...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 3; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo.
With the continuous depletion of environmental resources, DB‐TENG, as a green energy, began to be widely used in all fields of society. Here, degradable materials which were used as triboelectric layers were classified into three categories. Besides, DB‐TENG can be used to complete functions such as energy harvesting, signal sensing, and medical care. |
---|---|
AbstractList | Abstract Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. image Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. With the continuous depletion of environmental resources, DB‐TENG, as a green energy, began to be widely used in all fields of society. Here, degradable materials which were used as triboelectric layers were classified into three categories. Besides, DB‐TENG can be used to complete functions such as energy harvesting, signal sensing, and medical care. |
Author | Chao, Shengyu Ouyang, Han Jiang, Dongjie Fan, Yubo Li, Zhou |
Author_xml | – sequence: 1 givenname: Shengyu surname: Chao fullname: Chao, Shengyu organization: School of Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 2 givenname: Han surname: Ouyang fullname: Ouyang, Han organization: School of Biological Science and Medical Engineering, Beihang University – sequence: 3 givenname: Dongjie surname: Jiang fullname: Jiang, Dongjie organization: School of Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 4 givenname: Yubo surname: Fan fullname: Fan, Yubo organization: School of Biological Science and Medical Engineering, Beihang University – sequence: 5 givenname: Zhou orcidid: 0000-0002-9952-7296 surname: Li fullname: Li, Zhou email: zli@binn.cas.cn organization: Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University |
BookMark | eNp9kFFLwzAUhYNMcOpe_AV9FjqTNG3SRxlTB5O9zOdwk9yMjK6RtCD793ariIj4dC6X73wP55pM2tgiIXeMzhml_AHjgc8Zp5JfkCkvK5kXTBaTH_cVmXXdng5wSQUXbErqbQomYoO2T8FmLbRxhy0m6GPKDHTosthmDncJHJgGswP0mAI03S259EPg7CtvyNvTcrt4ydeb59XicZ3bQpY85xUgMhDGKid4WSjm0CsFNfelUZQqZX1tWAVgBePG8Np5KoV31qKzri5uyGr0ugh7_Z7CAdJRRwj6_IhppyH1wTaopQe0FXOSFUKA88qzmpalk456qxQdXPejy6bYdQn9t49RfdpQnzbU5w0HmP6CbeihD7HtE4Tm7wobKx-hweM_cr3cvPKx8wkMhoYl |
CitedBy_id | crossref_primary_10_1016_j_copbio_2021_08_011 crossref_primary_10_1002_eom2_12154 crossref_primary_10_1016_j_jpowsour_2025_236683 crossref_primary_10_1016_j_surfin_2023_103369 crossref_primary_10_34133_2022_9809406 crossref_primary_10_1002_aelm_202200782 crossref_primary_10_1016_j_seta_2023_103251 crossref_primary_10_1021_acs_chemrev_3c00301 crossref_primary_10_1002_er_7082 crossref_primary_10_1007_s12274_023_5804_x crossref_primary_10_1126_sciadv_abl8423 crossref_primary_10_1002_adhm_202100199 crossref_primary_10_1021_acsaelm_2c00909 crossref_primary_10_1021_acsaelm_3c00550 crossref_primary_10_1016_j_nanoen_2023_108717 crossref_primary_10_3390_polym15234562 crossref_primary_10_1016_j_nanoen_2023_108795 crossref_primary_10_1016_j_cej_2022_140494 crossref_primary_10_1016_j_measurement_2023_113261 crossref_primary_10_1016_j_nanoen_2022_108035 crossref_primary_10_1016_j_nanoen_2022_107101 crossref_primary_10_1002_adfm_202400277 crossref_primary_10_1021_acsaem_4c01455 crossref_primary_10_1039_D3TA04879A crossref_primary_10_3390_polym15010222 crossref_primary_10_1002_adfm_202105169 crossref_primary_10_1002_eom2_12145 crossref_primary_10_7498_aps_71_20212022 crossref_primary_10_1007_s13391_025_00553_z crossref_primary_10_1016_j_cej_2024_156711 crossref_primary_10_1002_adma_202203193 crossref_primary_10_1021_acsaelm_2c01782 crossref_primary_10_1016_j_nanoen_2023_108443 crossref_primary_10_1016_j_nanoen_2024_109478 crossref_primary_10_1016_j_mtcomm_2022_103292 crossref_primary_10_1016_j_susmat_2024_e00867 crossref_primary_10_3390_coatings15020149 crossref_primary_10_1016_j_ccr_2023_215527 crossref_primary_10_1002_advs_202414748 crossref_primary_10_1016_j_jclepro_2024_141354 crossref_primary_10_3390_pr11092796 crossref_primary_10_1002_adsu_202100066 crossref_primary_10_3390_polym16060790 crossref_primary_10_3390_polym16101304 crossref_primary_10_1016_j_susmat_2023_e00596 crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_1080_15583724_2022_2158467 crossref_primary_10_1016_j_cej_2023_146208 crossref_primary_10_3390_coatings13081407 crossref_primary_10_1002_ente_202401281 crossref_primary_10_3390_s22062154 crossref_primary_10_1002_adma_202418207 crossref_primary_10_1002_adhm_202303474 crossref_primary_10_1002_sus2_196 crossref_primary_10_1063_5_0236854 crossref_primary_10_1002_smtd_202200830 crossref_primary_10_1002_adfm_202101829 crossref_primary_10_1007_s11431_024_2745_6 crossref_primary_10_1002_admt_202200834 crossref_primary_10_1002_smll_202307620 crossref_primary_10_1016_j_ces_2023_118949 crossref_primary_10_1002_adfm_202313794 crossref_primary_10_1002_adma_202102302 crossref_primary_10_1016_j_matt_2023_09_017 crossref_primary_10_1002_open_202400373 crossref_primary_10_1039_D3EE03520D crossref_primary_10_1016_j_nanoen_2023_109045 crossref_primary_10_1016_j_nanoen_2025_110676 crossref_primary_10_1007_s42114_024_00845_2 crossref_primary_10_1002_eom2_12198 crossref_primary_10_1002_adhm_202100557 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1002_jbm_a_37871 crossref_primary_10_3390_s24082497 crossref_primary_10_1007_s43939_023_00036_8 crossref_primary_10_3390_en15207495 crossref_primary_10_1016_j_bios_2021_113609 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1039_D2TB01475K crossref_primary_10_3390_s23042021 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1080_15435075_2024_2437511 crossref_primary_10_1002_adma_202412671 crossref_primary_10_1016_j_apsusc_2021_150806 crossref_primary_10_1016_j_isci_2022_105494 crossref_primary_10_1021_acsami_3c17241 crossref_primary_10_1021_acsomega_1c03374 crossref_primary_10_1016_j_carbon_2022_03_037 crossref_primary_10_1080_00405000_2023_2201915 crossref_primary_10_1002_chem_202301076 crossref_primary_10_1016_j_nanoen_2024_109310 crossref_primary_10_1088_1402_4896_ac2086 crossref_primary_10_3390_nanoenergyadv3040016 crossref_primary_10_1021_acsnano_1c07614 crossref_primary_10_1002_admi_202300323 crossref_primary_10_1007_s12274_023_5733_8 crossref_primary_10_1021_acssuschemeng_2c07510 crossref_primary_10_3390_nano12081385 crossref_primary_10_1002_admt_202301592 crossref_primary_10_1088_1361_6439_ac7a8f crossref_primary_10_3390_ma17122834 crossref_primary_10_1002_adfm_202418318 crossref_primary_10_1016_j_nanoen_2022_107811 crossref_primary_10_1007_s40684_022_00452_w crossref_primary_10_1016_j_cej_2023_147075 crossref_primary_10_1021_acssuschemeng_3c03025 crossref_primary_10_1002_admt_202201500 crossref_primary_10_1002_adsu_202300280 crossref_primary_10_1002_ente_202301300 crossref_primary_10_1002_advs_202409914 crossref_primary_10_1016_j_enconman_2022_116098 crossref_primary_10_3389_felec_2022_985681 crossref_primary_10_1021_acsmaterialslett_3c01337 crossref_primary_10_1021_acs_langmuir_4c02832 crossref_primary_10_1016_j_ijbiomac_2025_140966 crossref_primary_10_1002_admt_202201310 crossref_primary_10_1021_acssuschemeng_1c08030 crossref_primary_10_1088_1361_665X_adb404 crossref_primary_10_1002_adsu_202400493 crossref_primary_10_1016_j_pmatsci_2023_101206 crossref_primary_10_3390_electronicmat4040014 crossref_primary_10_1088_2632_959X_ad7a90 crossref_primary_10_1039_D3DT02185H crossref_primary_10_1002_inf2_12391 crossref_primary_10_1016_j_nanoen_2024_109785 crossref_primary_10_1021_acsaem_3c01042 crossref_primary_10_1039_D3SE01206A crossref_primary_10_3390_nano14100826 crossref_primary_10_1016_j_nanoen_2024_110082 crossref_primary_10_1016_j_mtcomm_2025_112151 crossref_primary_10_3390_mi16010078 crossref_primary_10_1002_advs_202307369 crossref_primary_10_1021_acsaem_2c01469 crossref_primary_10_3390_app14062396 crossref_primary_10_3390_nano12081366 crossref_primary_10_1002_aelm_202201095 |
Cites_doi | 10.1016/j.nanoen.2018.03.033 10.1016/j.elstat.2018.01.003 10.1002/adfm.201700794 10.1016/j.nanoen.2019.02.058 10.1038/srep45583 10.1126/science.1226325 10.1016/j.nanoen.2017.12.048 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2017.01.053 10.1016/j.progpolymsci.2018.09.002 10.1016/j.nanoen.2019.104016 10.1016/j.joule.2017.09.004 10.1002/adfm.201805540 10.1016/j.nanoen.2014.11.034 10.1016/j.carbpol.2020.117055 10.1016/j.nanoen.2018.08.015 10.1021/acsami.9b19721 10.1016/j.progpolymsci.2011.06.003 10.1002/adma.201305303 10.1002/aenm.201803183 10.1016/j.nanoen.2017.04.026 10.1021/nl400738p 10.1016/S0009-2509(99)00160-8 10.1002/(SICI)1097-4628(19970531)64:9<1849::AID-APP22>3.0.CO;2-R 10.1016/j.nanoen.2019.06.040 10.1002/adma.201801895 10.1021/acs.chemrev.8b00573 10.1016/j.nanoen.2019.103885 10.1016/j.apmt.2018.09.005 10.1021/acsaem.8b00530 10.1021/acsnano.9b02233 10.1016/S0169-409X(97)00125-7 10.1002/adma.201706267 10.1016/j.nanoen.2019.02.073 10.1016/j.foodchem.2019.125513 10.1016/j.colsurfb.2009.09.001 10.1002/(SICI)1099-0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G 10.1039/C7RA13294H 10.1016/j.scib.2019.09.010 10.1021/acsami.5b06059 10.1002/admi.201700651 10.1002/smll.201502906 10.1002/adma.201803968 10.1016/j.polymer.2007.09.020 10.1002/adma.202001307 10.1002/adma.201604961 10.1002/adfm.201900098 10.1002/pol.1971.150091003 10.1021/acsnano.9b08268 10.1039/c3ee42311e 10.1021/nn403838y 10.1016/j.mee.2019.111059 10.1016/j.nanoen.2019.04.043 10.1016/j.progpolymsci.2013.05.008 10.1002/inf2.12008 10.1021/acs.biomac.8b00517 10.1016/S0079-6700(02)00149-1 10.1016/j.nanoen.2018.10.020 10.1016/j.nanoen.2019.104126 10.1039/C7NR05222G 10.1126/sciadv.aaz8693 10.1016/j.nanoen.2019.01.008 10.1039/C6NR07602E 10.1016/j.nanoen.2018.10.075 10.1039/C6TC05104A 10.1039/C7NR04610C 10.1038/s41467-019-09461-x 10.1016/j.nanoen.2020.104837 10.1021/nl503402c 10.1126/sciadv.aba9624 10.1016/j.nanoen.2017.11.080 10.1002/adfm.201604462 10.1021/acsnano.5b01835 10.1016/j.nanoen.2018.04.071 10.1016/j.nanoen.2015.11.036 10.1002/adfm.201303799 10.1039/c3ee40592c 10.1186/s11671-018-2786-9 10.1021/acs.chemmater.5b04931 10.1016/j.nanoen.2017.09.038 10.1002/aenm.201502329 10.1016/j.nanoen.2019.01.077 10.1039/c3ee42571a 10.1007/s12274-019-2443-3 10.1021/acsnano.5b03567 10.1016/j.nanoen.2017.01.035 10.1038/s41467-019-13166-6 10.1021/acsami.0c01061 10.1016/j.jpowsour.2011.12.028 10.1002/admt.201800178 10.1016/j.nanoen.2019.05.078 10.1038/s41569-020-0426-4 10.1002/adfm.202005610 10.1002/ejic.201402610 10.1038/s41467-018-07764-z 10.1126/sciadv.1501478 10.1002/mabi.200600069 10.1002/aenm.201601529 10.1002/aenm.201703133 10.1002/adma.202002878 10.1126/science.aan3997 10.1016/j.carbpol.2005.10.028 10.1002/adma.201805722 10.1002/adma.201400207 10.1016/j.nanoen.2018.04.004 10.3390/s20020506 10.1002/aenm.201700289 10.1038/s41598-017-04969-y 10.1016/j.nanoen.2019.03.050 10.1016/j.nanoen.2018.05.071 10.1016/j.nanoen.2020.104904 10.1016/j.nanoen.2016.09.036 10.1016/j.nanoen.2019.02.052 10.1016/j.cbpa.2015.06.009 10.1039/C6RA28252K 10.1088/1361-6528/28/5/054005 10.1149/07206.0061ecst 10.1002/aenm.201702736 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd |
Copyright_xml | – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/eom2.12072 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7faec61d71344adf8f19055d7d0fc880 10_1002_eom2_12072 EOM212072 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: the 111 Project funderid: B13003 – fundername: National Key R&D Project from Minister of Science and Technology funderid: 2016YFA0202703; 2016YFC1102202 – fundername: National Youth Talent Support Program – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20190026 – fundername: National Natural Science Foundation of China funderid: 61875015 – fundername: China Postdoctoral Science Foundation funderid: 2019M660410 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3752-26aee1a4bc8d425381def88a92f5b80088cf9b16aac412bb29df074fdccedcd93 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:32:22 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Wed Jan 22 16:31:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3752-26aee1a4bc8d425381def88a92f5b80088cf9b16aac412bb29df074fdccedcd93 |
Notes | Funding information National Youth Talent Support Program; China Postdoctoral Science Foundation, Grant/Award Number: 2019M660410; Fundamental Research Funds for the Central Universities; National Key R&D Project from Minister of Science and Technology, Grant/Award Numbers: 2016YFA0202703, 2016YFC1102202; National Natural Science Foundation of China, Grant/Award Number: 61875015; National Postdoctoral Program for Innovative Talents, Grant/Award Number: BX20190026; the 111 Project, Grant/Award Number: B13003 |
ORCID | 0000-0002-9952-7296 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12072 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7faec61d71344adf8f19055d7d0fc880 crossref_primary_10_1002_eom2_12072 crossref_citationtrail_10_1002_eom2_12072 wiley_primary_10_1002_eom2_12072_EOM212072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 5 2017; 7 2017; 41 2017; 1 2017; 4 2020; 20 2019; 55 2019; 10 2019; 13 2019; 57 2019; 12 2019; 59 2014; 26 2016; 30 2020; 14 2014; 24 2016; 72 2020; 12 2013; 7 2018; 45 2018; 44 2012; 204 2013; 6 2017; 9 2019; 365 2018; 48 2020; 18 1971; 9 2020; 6 2018; 9 2018; 8 2018; 3 2019; 60 2006; 64 2019; 62 2019; 61 2019; 64 2017; 36 2019; 63 1986; 9 2013; 13 2019; 66 2018; 1 2019; 65 2017; 33 2014; 14 1978; 28 2019; 29 1999; 54 2018; 30 2019; 119 2012; 337 2015; 14 2018; 28 2010; 75 1997; 64 2017; 27 2019; 1 2010; 447 1997 2006; 6 2017; 29 2012; 37 2020; 32 2015; 9 2015; 7 2016; 12 2020; 309 2018; 19 2016; 6 2016; 2 2012; 1 2015; 29 2013; 38 2020; 75 2020; 30 2020; 74 2019; 88 1997; 35 2015; 2015 2018; 92 2016; 20 2003; 28 2018; 52 2021; 251 2018; 50 2019; 216 2016; 28 2018; 54 1998; 31 2007; 48 2018; 13 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 GHA S (e_1_2_10_73_1) 1997 e_1_2_10_109_1 Zheng Q (e_1_2_10_29_1) 2020; 18 e_1_2_10_93_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_22_1 e_1_2_10_41_1 Tabata Y (e_1_2_10_51_1) 1998; 31 Agostini D (e_1_2_10_74_1) 1971; 9 e_1_2_10_90_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 Liu B (e_1_2_10_71_1) 2010; 447 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_10_1 e_1_2_10_33_1 Katz A (e_1_2_10_18_1) 1978; 28 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Collivignarelli C (e_1_2_10_2_1) 1986; 9 Landi G (e_1_2_10_42_1) 2016; 28 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 Chen C‐H (e_1_2_10_45_1) 2016; 72 Maksimova NI (e_1_2_10_70_1) 1999; 54 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 Wang L (e_1_2_10_83_1) 2018; 9 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Zhu Z (e_1_2_10_85_1) 2018; 13 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 Yang B (e_1_2_10_15_1) 2017; 7 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 Sun Z (e_1_2_10_104_1) 2020; 20 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 447 start-page: 652 year: 2010 end-page: 656 article-title: Effect of mixture of plasticizer on the thermoplastics formability of polyvinyl alcohol (PVA) publication-title: Trans Tech Publ – volume: 28 issue: 5 year: 2016 article-title: Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications publication-title: Nanotechnology – volume: 32 issue: 25 year: 2020 article-title: Contributions of different functional groups to contact electrification of polymers publication-title: Adv Mater – volume: 63 start-page: 103844 year: 2019 end-page: 103853 article-title: Direct muscle stimulation using diode‐amplified triboelectric nanogenerators (TENGs) publication-title: Nano Energy – volume: 50 start-page: 148 year: 2018 end-page: 158 article-title: Battery‐free neuromodulator for peripheral nerve direct stimulation publication-title: Nano Energy – volume: 19 start-page: 2351 issue: 7 year: 2018 end-page: 2376 article-title: Pharmaceutical applications of cellulose ethers and cellulose ether esters publication-title: Biomacromolecules – volume: 30 start-page: 103 year: 2016 end-page: 108 article-title: Triboelectric nanogenerators and power‐boards from cellulose nanofibrils and recycled materials publication-title: Nano Energy – volume: 92 start-page: 1 year: 2018 end-page: 5 article-title: Triboelectric nanogenerator based on immersion precipitation derived highly porous ethyl cellulose publication-title: J Electrostat – volume: 3 start-page: 1800178 issue: 11 year: 2018 end-page: 1800186 article-title: Air‐permeable and washable paper‐based triboelectric nanogenerator based on highly flexible and robust paper electrodes publication-title: Adv Mater Technol – volume: 64 start-page: 60 issue: 1 year: 2006 end-page: 65 article-title: Effect of MW and concentration of chitosan on antibacterial activity of publication-title: Carbohydr Polym – volume: 63 start-page: 103885 year: 2019 article-title: All‐printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi‐functional sensors publication-title: Nano Energy – volume: 74 start-page: 104837 year: 2020 article-title: Pulse‐driven bio‐triboelectric nanogenerator based on silk nanoribbons publication-title: Nano Energy – volume: 62 start-page: 620 year: 2019 end-page: 627 article-title: Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro‐nano structure and dielectric constant publication-title: Nano Energy – volume: 59 start-page: 268 year: 2019 end-page: 276 article-title: All‐electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets publication-title: Nano Energy – volume: 28 start-page: 963 issue: 6 year: 2003 end-page: 1014 article-title: Biodegradation of poly (vinyl alcohol) based materials publication-title: Prog Polym Sci – volume: 54 start-page: 390 year: 2018 end-page: 399 article-title: Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing publication-title: Nano Energy – volume: 1 start-page: 328 issue: 2 year: 2012 end-page: 334 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 7 start-page: 19870 issue: 36 year: 2015 end-page: 19875 article-title: Modulated degradation of transient electronic devices through multilayer silk fibroin pockets publication-title: ACS Appl Mater Interfaces – volume: 65 start-page: 104016 year: 2019 article-title: All edible materials derived biocompatible and biodegradable triboelectric nanogenerator publication-title: Nano Energy – volume: 9 start-page: 14499 issue: 38 year: 2017 end-page: 14505 article-title: A paper triboelectric nanogenerator for self‐powered electronic systems publication-title: Nanoscale – volume: 26 start-page: 3580 issue: 22 year: 2014 end-page: 3591 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv Mater – volume: 20 start-page: 506 issue: 2 year: 2020 end-page: 519 article-title: Green Triboelectric Nano‐generator composite of degradable cellulose, piezoelectric polymers of PVDF/PA6, and nanoparticles of BaTiO3 publication-title: Sensors (Basel) – volume: 14 start-page: 7031 issue: 12 year: 2014 end-page: 7038 article-title: Topographically‐designed triboelectric nanogenerator via block copolymer self‐assembly publication-title: Nano Lett – volume: 26 start-page: 2818 issue: 18 year: 2014 end-page: 2824 article-title: Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes publication-title: Adv Mater – volume: 48 start-page: 6855 issue: 23 year: 2007 end-page: 6866 article-title: Effect of nucleation and plasticization on the crystallization of poly(lactic acid) publication-title: Polymer – volume: 30 year: 2020 article-title: Hierarchically surface‐textured ultrastable hybrid film for large‐scale triboelectric nanogenerators publication-title: Adv Funct Mater – volume: 45 start-page: 193 year: 2018 end-page: 202 article-title: Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films publication-title: Nano Energy – volume: 55 start-page: 260 year: 2019 end-page: 268 article-title: Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting publication-title: Nano Energy – volume: 1 start-page: 480 issue: 3 year: 2017 end-page: 521 article-title: Reviving vibration energy harvesting and self‐powered sensing by a triboelectric nanogenerator publication-title: Joule – volume: 119 start-page: 5461 issue: 8 year: 2019 end-page: 5533 article-title: Bio‐integrated wearable systems: a comprehensive review publication-title: Chem Rev – volume: 30 start-page: 1706267 issue: 11 year: 2018 end-page: 1706274 article-title: Engineered and laser‐processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation publication-title: Adv Mater – volume: 8 start-page: 1703133 issue: 12 year: 2018 end-page: 1703139 article-title: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy publication-title: Adv Energy Mater – volume: 33 start-page: 393 year: 2017 end-page: 401 article-title: Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications publication-title: Nano Energy – volume: 14 start-page: 161 year: 2015 end-page: 192 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 31 start-page: 287 issue: 3 year: 1998 end-page: 301 article-title: Protein release from gelatin matrices publication-title: Adv Drug Deliv Rev – volume: 9 start-page: 13034 issue: 35 year: 2017 end-page: 13041 article-title: Simple and rapid fabrication of pencil‐on‐paper triboelectric nanogenerators with enhanced electrical performance publication-title: Nanoscale – volume: 7 start-page: 9213 issue: 10 year: 2013 end-page: 9222 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self‐powered active tactile sensor system publication-title: ACS Nano – volume: 337 start-page: 1640 issue: 6102 year: 2012 end-page: 1644 article-title: A physically transient form of silicon electronics publication-title: Science – volume: 12 start-page: 6442 issue: 5 year: 2020 end-page: 6450 article-title: Stretchable, biocompatible, and multifunctional silk fibroin‐based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 6719 issue: 12 year: 2018 end-page: 6726 article-title: An alginate film‐based degradable triboelectric nanogenerator publication-title: RSC Adv – volume: 27 issue: 1 year: 2017 article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing publication-title: Adv Funct Mater – volume: 9 start-page: 7867 issue: 8 year: 2015 end-page: 7873 article-title: Implantable self‐powered low‐level laser cure system for mouse embryonic osteoblasts' proliferation and differentiation publication-title: ACS Nano – volume: 41 start-page: 359 year: 2017 end-page: 366 article-title: Toward large‐scale fabrication of triboelectric nanogenerator (TENG) with silk‐fibroin patches film via spray‐coating process publication-title: Nano Energy – volume: 48 start-page: 152 year: 2018 end-page: 160 article-title: All‐fiber hybrid piezoelectric‐enhanced triboelectric nanogenerator for wearable gesture monitoring publication-title: Nano Energy – volume: 14 start-page: 6436 issue: 6 year: 2020 end-page: 6448 article-title: Emerging implantable energy harvesters and self‐powered implantable medical electronics publication-title: ACS Nano – start-page: 473 year: 1997 end-page: 511 – volume: 72 start-page: 61 issue: 6 year: 2016 end-page: 65 article-title: Development of biocompatible triboelectric nanogenerators by using polypeptides as the contact materials publication-title: ECS Trans – volume: 44 start-page: 279 year: 2018 end-page: 287 article-title: Ultrasoft and cuttable paper‐based triboelectric nanogenerators for mechanical energy harvesting publication-title: Nano Energy – volume: 60 start-page: 61 year: 2019 end-page: 71 article-title: A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring publication-title: Nano Energy – volume: 50 start-page: 513 year: 2018 end-page: 520 article-title: A textile‐based triboelectric nanogenerator with humidity‐resistant output characteristic and its applications in self‐powered healthcare sensors publication-title: Nano Energy – volume: 28 start-page: 3527 issue: 11 year: 2016 end-page: 3539 article-title: Transient electronics: materials and devices publication-title: Chem Mater – volume: 35 start-page: 3431 issue: 16 year: 1997 end-page: 3440 article-title: More about the polymerization of lactides in the presence of stannous octoate publication-title: J Polym Sci A Polym Chem – volume: 4 start-page: 1700651 issue: 22 year: 2017 end-page: 1700657 article-title: Transparent, flexible cellulose nanofibril‐phosphorene hybrid paper as triboelectric nanogenerator publication-title: Adv Mater Interfaces – volume: 61 start-page: 69 year: 2019 end-page: 77 article-title: Crepe cellulose paper and nitrocellulose membrane‐based triboelectric nanogenerators for energy harvesting and self‐powered human‐machine interaction publication-title: Nano Energy – volume: 24 start-page: 3332 issue: 22 year: 2014 end-page: 3340 article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators publication-title: Adv Funct Mater – volume: 12 start-page: 2715 issue: 20 year: 2016 end-page: 2719 article-title: Physically transient resistive switching memory based on silk protein publication-title: Small – volume: 59 start-page: 237 year: 2019 end-page: 257 article-title: Progress on triboelectric nanogenerator with stretchability, self‐healability and bio‐compatibility publication-title: Nano Energy – volume: 29 start-page: 1900098 issue: 41 year: 2019 end-page: 1900124 article-title: Progress in triboelectric materials: toward high performance and widespread applications publication-title: Advanced Functional Materials – volume: 1 start-page: 116 issue: 1 year: 2019 end-page: 125 article-title: Chitosan biopolymer‐derived self‐powered triboelectric sensor with optimized performance through molecular surface engineering and data‐driven learning publication-title: InfoMat – volume: 2 issue: 3 year: 2016 article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source publication-title: Sci Adv – volume: 33 start-page: 130 year: 2017 end-page: 137 article-title: Bacterial nano‐cellulose triboelectric nanogenerator publication-title: Nano Energy – volume: 88 start-page: 241 year: 2019 end-page: 264 article-title: Recent advances in surface‐modified cellulose nanofibrils publication-title: Prog Polym Sci – volume: 9 start-page: 8801 issue: 9 year: 2015 end-page: 8810 article-title: Transparent stretchable self‐powered patchable sensor platform with ultrasensitive recognition of human activities publication-title: ACS Nano – volume: 28 start-page: 383 year: 1978 article-title: Studies in boundary theory: three essays in adjudication and politics publication-title: Buff L Rev – volume: 2015 start-page: 1192 issue: 7 year: 2015 end-page: 1197 article-title: Preparation of alginate/graphene oxide hybrid films and their integration in Triboelectric generators publication-title: European Journal of Inorganic Chemistry – volume: 10 start-page: 5147 issue: 1 year: 2019 article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics publication-title: Nat Commun – volume: 12 start-page: 16442 issue: 14 year: 2020 end-page: 16450 article-title: Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self‐powered sensing of human physiological signals publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 3235 issue: 11 year: 2013 end-page: 3240 article-title: A transparent single‐friction‐surface triboelectric generator and self‐powered touch sensor publication-title: Energy Environ Sci – volume: 30 issue: 32 year: 2018 article-title: fully bioabsorbable natural‐materials‐based triboelectric nanogenerators publication-title: Adv Mater – volume: 66 start-page: 104126 year: 2019 article-title: Chemically functionalized cellulose nanofibrils‐based gear‐like triboelectric nanogenerator for energy harvesting and sensing publication-title: Nano Energy – volume: 64 start-page: 1565 issue: 21 year: 2019 end-page: 1566 article-title: The first technology can compete with piezoelectricity to harvest ultrasound energy for powering medical implants publication-title: Science Bulletin – volume: 10 start-page: 1427 issue: 1 year: 2019 article-title: Quantifying the triboelectric series publication-title: Nat Commun – volume: 36 start-page: 250 year: 2017 end-page: 259 article-title: Spontaneous occurrence of liquid‐solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf publication-title: Nano Energy – volume: 9 start-page: 1428 issue: 4 year: 2017 end-page: 1433 article-title: A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance publication-title: Nanoscale – volume: 7 start-page: 45583 year: 2017 article-title: Corrugated textile based Triboelectric generator for wearable energy harvesting publication-title: Sci Rep – volume: 309 year: 2020 article-title: Cinnamyl alcohol modified chitosan oligosaccharide for enhancing antimicrobial activity publication-title: Food Chem – volume: 75 start-page: 1 issue: 1 year: 2010 end-page: 18 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf B Biointerfaces – volume: 6 start-page: eaba9624 issue: 26 year: 2020 article-title: A breathable, biodegradable, antibacterial, and self‐powered electronic skin based on all‐nanofiber triboelectric nanogenerators publication-title: Science Advances – volume: 5 start-page: 1810 issue: 7 year: 2017 end-page: 1815 article-title: A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self‐powered locomotion detector publication-title: J Mater Chem C – volume: 9 start-page: 1803183 issue: 5 year: 2018 article-title: Highly flexible and transparent polyionic‐skin triboelectric nanogenerator for biomechanical motion harvesting publication-title: Adv Energy Mater – volume: 12 start-page: 1831 issue: 8 year: 2019 end-page: 1835 article-title: All‐in‐one cellulose based hybrid tribo/piezoelectric nanogenerator publication-title: Nano Research – volume: 38 start-page: 1629 issue: 10–11 year: 2013 end-page: 1652 article-title: Bio‐nanocomposites for food packaging applications publication-title: Prog Polym Sci – volume: 216 start-page: 111059 year: 2019 article-title: Rice paper‐based biodegradable triboelectric nanogenerator publication-title: Microelect Eng – volume: 29 start-page: 1604961 issue: 5 year: 2017 end-page: 1604967 article-title: Recyclable and green triboelectric nanogenerator publication-title: Adv Mater – volume: 28 start-page: 1805540 issue: 45 year: 2018 end-page: 1805547 article-title: A hierarchically nanostructured cellulose fiber‐based triboelectric nanogenerator for self‐powered healthcare products publication-title: Adv Funct Mater – volume: 54 start-page: 4351 issue: 20 year: 1999 end-page: 4357 article-title: Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady‐state Fe‐containing catalyst publication-title: Chem Eng Sci – volume: 7 start-page: 1700289 issue: 17 year: 2017 end-page: 1700295 article-title: High‐performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions publication-title: Adv Energy Mater – volume: 6 start-page: 1502329 issue: 8 year: 2016 end-page: 1502334 article-title: Silk Nanofiber‐networked bio‐Triboelectric generator: silk bio‐TEG publication-title: Advanced Energy Materials – volume: 7 start-page: 1601529 issue: 1 year: 2017 end-page: 11601536 article-title: Environmentally friendly hydrogel‐based triboelectric nanogenerators for versatile energy harvesting and self‐powered sensors publication-title: Advanced Energy Materials – volume: 7 start-page: 4936 issue: 1 year: 2017 article-title: Nature degradable, flexible, and transparent conductive substrates from green and earth‐abundant materials publication-title: Sci Rep – volume: 365 start-page: 491 issue: 6452 year: 2019 end-page: 494 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science – volume: 32 issue: 32 year: 2020 article-title: Holistically engineered polymer‐polymer and polymer‐ion interactions in biocompatible polyvinyl alcohol blends for high‐performance Triboelectric devices in self‐powered wearable cardiovascular Monitorings publication-title: Adv Mater – volume: 13 start-page: 6017 issue: 5 year: 2019 end-page: 6024 article-title: Body‐integrated self‐powered system for wearable and implantable applications publication-title: ACS Nano – volume: 9 start-page: 5349 issue: 1 year: 2018 article-title: Effective weight control via an implanted self‐powered vagus nerve stimulation device publication-title: Nat Commun – volume: 37 start-page: 106 issue: 1 year: 2012 end-page: 126 article-title: Alginate: properties and biomedical applications publication-title: Prog Polym Sci – volume: 75 start-page: 104904 year: 2020 article-title: Skin‐attachable and biofriendly chitosan‐diatom triboelectric nanogenerator publication-title: Nano Energy – volume: 18 start-page: 7 year: 2020 end-page: 21 article-title: Self‐powered cardiovascular electronic devices and systems publication-title: Nat Rev Cardiol – volume: 1 start-page: 2891 issue: 6 year: 2018 end-page: 2897 article-title: High‐performance triboelectric nanogenerator with a rationally designed friction layer structure publication-title: ACS Appl Energy Mater – volume: 30 issue: 38 year: 2018 article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact‐electrification publication-title: Adv Mater – volume: 8 start-page: 1702736 issue: 10 year: 2018 end-page: 1702742 article-title: Wireless triboelectric nanogenerator publication-title: Adv Energy Mater – volume: 251 start-page: 117055 year: 2021 end-page: 117071 article-title: Polysaccharide‐based triboelectric nanogenerators: a review publication-title: Carbohydrate Polymers – volume: 6 start-page: eaaz8693 issue: 19 year: 2020 article-title: Haptic‐feedback smart glove as a creative human‐machine interface (HMI) for virtual/augmented reality applications publication-title: Sci Adv – volume: 6 start-page: 1779 issue: 6 year: 2013 end-page: 1784 article-title: A paper‐based nanogenerator as a power source and active sensor publication-title: Energy & Environmental Science – volume: 20 start-page: 37 year: 2016 end-page: 47 article-title: A silk‐fibroin‐based transparent triboelectric generator suitable for autonomous sensor network publication-title: Nano Energy – volume: 6 start-page: 3576 issue: 12 year: 2013 end-page: 3583 article-title: Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source publication-title: Energy & Environmental Science – volume: 59 start-page: 705 year: 2019 end-page: 714 article-title: Self‐powered implantable electrical stimulator for osteoblasts' proliferation and differentiation publication-title: Nano Energy – volume: 13 start-page: 190 year: 2018 end-page: 197 article-title: Sliding‐mode triboelectric nanogenerator based on paper and as a self‐powered velocity and force sensor publication-title: Appl Mater Today – volume: 29 start-page: 10 year: 2015 end-page: 17 article-title: Enzymatic conversion of lignin into renewable chemicals publication-title: Curr Opin Chem Biol – volume: 9 start-page: 2775 issue: 10 year: 1971 end-page: 2787 article-title: Synthesis and characterization of poly‐β‐hydroxybutyrate. I. Synthesis of crystalline DL‐poly‐β‐hydroxybutyrate from DL‐β‐butyrolactone publication-title: J Polym Science Part A‐1: Polym Chem – volume: 7 start-page: 6772 issue: 11 year: 2017 end-page: 6779 article-title: Triboelectric nanogenerator based on 317L stainless steel and ethyl cellulose for biomedical applications publication-title: RSC Adv – volume: 204 start-page: 149 year: 2012 end-page: 154 article-title: Rice paper as a separator membrane in lithium‐ion batteries publication-title: J Power Sources – volume: 57 start-page: 737 year: 2019 end-page: 745 article-title: Vertically aligned cyclo‐phenylalanine peptide nanowire‐based high‐performance triboelectric energy generator publication-title: Nano Energy – volume: 59 start-page: 412 year: 2019 end-page: 421 article-title: An eco‐friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper publication-title: Nano Energy – volume: 30 issue: 50 year: 2018 article-title: "Genetically engineered" biofunctional triboelectric nanogenerators using recombinant spider silk publication-title: Adv Mater – volume: 64 start-page: 1849 issue: 9 year: 1997 end-page: 1859 article-title: Survey on transport properties of liquids, vapors, and gases in biodegradable poly (3‐hydroxybutyrate)(PHB) publication-title: J Appl Polym Sci – volume: 13 start-page: 365 issue: 1 year: 2018 article-title: Starch paper‐based triboelectric nanogenerator for human perspiration sensing publication-title: Nanoscale Res Lett – volume: 9 start-page: 111 issue: 1 year: 1986 end-page: 125 article-title: Recycling. Battery lead recycling and environmental pollution hazards publication-title: Conservation – volume: 52 start-page: 517 year: 2018 end-page: 523 article-title: Theory of contact electrification: optical transitions in two‐level systems publication-title: Nano Energy – volume: 27 start-page: 1700794 issue: 30 year: 2017 end-page: 1700800 article-title: Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development publication-title: Adv Funct Mater – volume: 50 start-page: 126 year: 2018 end-page: 132 article-title: 3D printing individualized triboelectric nanogenerator with macro‐pattern publication-title: Nano Energy – volume: 6 start-page: 623 issue: 8 year: 2006 end-page: 633 article-title: Alginate hydrogels as biomaterials publication-title: Macromol Biosci – volume: 13 start-page: 2226 issue: 5 year: 2013 end-page: 2233 article-title: Sliding‐triboelectric nanogenerators based on in‐plane charge‐separation mechanism publication-title: Nano Lett – ident: e_1_2_10_84_1 doi: 10.1016/j.nanoen.2018.03.033 – ident: e_1_2_10_110_1 doi: 10.1016/j.elstat.2018.01.003 – ident: e_1_2_10_105_1 doi: 10.1002/adfm.201700794 – ident: e_1_2_10_117_1 doi: 10.1016/j.nanoen.2019.02.058 – ident: e_1_2_10_76_1 doi: 10.1038/srep45583 – ident: e_1_2_10_43_1 doi: 10.1126/science.1226325 – ident: e_1_2_10_102_1 doi: 10.1016/j.nanoen.2017.12.048 – ident: e_1_2_10_8_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_10_22_1 doi: 10.1016/j.nanoen.2017.01.053 – ident: e_1_2_10_60_1 doi: 10.1016/j.progpolymsci.2018.09.002 – ident: e_1_2_10_119_1 doi: 10.1016/j.nanoen.2019.104016 – ident: e_1_2_10_97_1 doi: 10.1016/j.joule.2017.09.004 – ident: e_1_2_10_65_1 doi: 10.1002/adfm.201805540 – ident: e_1_2_10_10_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_10_27_1 doi: 10.1016/j.carbpol.2020.117055 – ident: e_1_2_10_95_1 doi: 10.1016/j.nanoen.2018.08.015 – ident: e_1_2_10_101_1 doi: 10.1021/acsami.9b19721 – ident: e_1_2_10_55_1 doi: 10.1016/j.progpolymsci.2011.06.003 – ident: e_1_2_10_36_1 doi: 10.1002/adma.201305303 – volume: 9 start-page: 1803183 issue: 5 year: 2018 ident: e_1_2_10_83_1 article-title: Highly flexible and transparent polyionic‐skin triboelectric nanogenerator for biomechanical motion harvesting publication-title: Adv Energy Mater doi: 10.1002/aenm.201803183 – ident: e_1_2_10_23_1 doi: 10.1016/j.nanoen.2017.04.026 – ident: e_1_2_10_33_1 doi: 10.1021/nl400738p – volume: 54 start-page: 4351 issue: 20 year: 1999 ident: e_1_2_10_70_1 article-title: Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady‐state Fe‐containing catalyst publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(99)00160-8 – ident: e_1_2_10_75_1 doi: 10.1002/(SICI)1097-4628(19970531)64:9<1849::AID-APP22>3.0.CO;2-R – ident: e_1_2_10_89_1 doi: 10.1016/j.nanoen.2019.06.040 – ident: e_1_2_10_17_1 doi: 10.1002/adma.201801895 – ident: e_1_2_10_99_1 doi: 10.1021/acs.chemrev.8b00573 – ident: e_1_2_10_87_1 doi: 10.1016/j.nanoen.2019.103885 – ident: e_1_2_10_116_1 doi: 10.1016/j.apmt.2018.09.005 – ident: e_1_2_10_123_1 doi: 10.1021/acsaem.8b00530 – ident: e_1_2_10_31_1 doi: 10.1021/acsnano.9b02233 – volume: 31 start-page: 287 issue: 3 year: 1998 ident: e_1_2_10_51_1 article-title: Protein release from gelatin matrices publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(97)00125-7 – ident: e_1_2_10_16_1 doi: 10.1002/adma.201706267 – ident: e_1_2_10_91_1 doi: 10.1016/j.nanoen.2019.02.073 – ident: e_1_2_10_49_1 doi: 10.1016/j.foodchem.2019.125513 – ident: e_1_2_10_69_1 doi: 10.1016/j.colsurfb.2009.09.001 – ident: e_1_2_10_68_1 doi: 10.1002/(SICI)1099-0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G – ident: e_1_2_10_63_1 doi: 10.1039/C7RA13294H – ident: e_1_2_10_3_1 doi: 10.1016/j.scib.2019.09.010 – ident: e_1_2_10_39_1 doi: 10.1021/acsami.5b06059 – ident: e_1_2_10_113_1 doi: 10.1002/admi.201700651 – ident: e_1_2_10_40_1 doi: 10.1002/smll.201502906 – ident: e_1_2_10_38_1 doi: 10.1002/adma.201803968 – ident: e_1_2_10_67_1 doi: 10.1016/j.polymer.2007.09.020 – ident: e_1_2_10_96_1 doi: 10.1002/adma.202001307 – ident: e_1_2_10_122_1 doi: 10.1002/adma.201604961 – ident: e_1_2_10_28_1 doi: 10.1002/adfm.201900098 – volume: 9 start-page: 2775 issue: 10 year: 1971 ident: e_1_2_10_74_1 article-title: Synthesis and characterization of poly‐β‐hydroxybutyrate. I. Synthesis of crystalline DL‐poly‐β‐hydroxybutyrate from DL‐β‐butyrolactone publication-title: J Polym Science Part A‐1: Polym Chem doi: 10.1002/pol.1971.150091003 – ident: e_1_2_10_11_1 doi: 10.1021/acsnano.9b08268 – ident: e_1_2_10_35_1 doi: 10.1039/c3ee42311e – ident: e_1_2_10_37_1 doi: 10.1021/nn403838y – ident: e_1_2_10_118_1 doi: 10.1016/j.mee.2019.111059 – volume: 28 start-page: 383 year: 1978 ident: e_1_2_10_18_1 article-title: Studies in boundary theory: three essays in adjudication and politics publication-title: Buff L Rev – volume: 447 start-page: 652 year: 2010 ident: e_1_2_10_71_1 article-title: Effect of mixture of plasticizer on the thermoplastics formability of polyvinyl alcohol (PVA) publication-title: Trans Tech Publ – ident: e_1_2_10_82_1 doi: 10.1016/j.nanoen.2019.04.043 – ident: e_1_2_10_66_1 doi: 10.1016/j.progpolymsci.2013.05.008 – ident: e_1_2_10_48_1 doi: 10.1002/inf2.12008 – ident: e_1_2_10_59_1 doi: 10.1021/acs.biomac.8b00517 – ident: e_1_2_10_72_1 doi: 10.1016/S0079-6700(02)00149-1 – ident: e_1_2_10_14_1 doi: 10.1016/j.nanoen.2018.10.020 – ident: e_1_2_10_109_1 doi: 10.1016/j.nanoen.2019.104126 – ident: e_1_2_10_114_1 doi: 10.1039/C7NR05222G – ident: e_1_2_10_30_1 doi: 10.1126/sciadv.aaz8693 – ident: e_1_2_10_103_1 doi: 10.1016/j.nanoen.2019.01.008 – ident: e_1_2_10_107_1 doi: 10.1039/C6NR07602E – ident: e_1_2_10_79_1 doi: 10.1016/j.nanoen.2018.10.075 – ident: e_1_2_10_106_1 doi: 10.1039/C6TC05104A – ident: e_1_2_10_115_1 doi: 10.1039/C7NR04610C – ident: e_1_2_10_98_1 doi: 10.1038/s41467-019-09461-x – ident: e_1_2_10_100_1 doi: 10.1016/j.nanoen.2020.104837 – ident: e_1_2_10_6_1 doi: 10.1021/nl503402c – ident: e_1_2_10_25_1 doi: 10.1126/sciadv.aba9624 – ident: e_1_2_10_61_1 doi: 10.1016/j.nanoen.2017.11.080 – ident: e_1_2_10_12_1 doi: 10.1002/adfm.201604462 – ident: e_1_2_10_5_1 doi: 10.1021/acsnano.5b01835 – ident: e_1_2_10_120_1 doi: 10.1016/j.nanoen.2018.04.071 – ident: e_1_2_10_44_1 doi: 10.1016/j.nanoen.2015.11.036 – ident: e_1_2_10_34_1 doi: 10.1002/adfm.201303799 – ident: e_1_2_10_54_1 doi: 10.1039/c3ee40592c – volume: 13 start-page: 365 issue: 1 year: 2018 ident: e_1_2_10_85_1 article-title: Starch paper‐based triboelectric nanogenerator for human perspiration sensing publication-title: Nanoscale Res Lett doi: 10.1186/s11671-018-2786-9 – ident: e_1_2_10_41_1 doi: 10.1021/acs.chemmater.5b04931 – ident: e_1_2_10_53_1 doi: 10.1016/j.nanoen.2017.09.038 – ident: e_1_2_10_20_1 doi: 10.1002/aenm.201502329 – ident: e_1_2_10_26_1 doi: 10.1016/j.nanoen.2019.01.077 – ident: e_1_2_10_32_1 doi: 10.1039/c3ee42571a – ident: e_1_2_10_112_1 doi: 10.1007/s12274-019-2443-3 – ident: e_1_2_10_90_1 doi: 10.1021/acsnano.5b03567 – ident: e_1_2_10_24_1 doi: 10.1016/j.nanoen.2017.01.035 – ident: e_1_2_10_81_1 doi: 10.1038/s41467-019-13166-6 – ident: e_1_2_10_52_1 doi: 10.1021/acsami.0c01061 – ident: e_1_2_10_57_1 doi: 10.1016/j.jpowsour.2011.12.028 – ident: e_1_2_10_77_1 doi: 10.1002/admt.201800178 – start-page: 473 volume-title: Handbook of Biodegradable Polymers year: 1997 ident: e_1_2_10_73_1 – ident: e_1_2_10_111_1 doi: 10.1016/j.nanoen.2019.05.078 – volume: 18 start-page: 7 year: 2020 ident: e_1_2_10_29_1 article-title: Self‐powered cardiovascular electronic devices and systems publication-title: Nat Rev Cardiol doi: 10.1038/s41569-020-0426-4 – ident: e_1_2_10_7_1 doi: 10.1002/adfm.202005610 – ident: e_1_2_10_19_1 doi: 10.1002/ejic.201402610 – ident: e_1_2_10_92_1 doi: 10.1038/s41467-018-07764-z – ident: e_1_2_10_13_1 doi: 10.1126/sciadv.1501478 – ident: e_1_2_10_56_1 doi: 10.1002/mabi.200600069 – ident: e_1_2_10_21_1 doi: 10.1002/aenm.201601529 – ident: e_1_2_10_62_1 doi: 10.1002/aenm.201703133 – ident: e_1_2_10_86_1 doi: 10.1002/adma.202002878 – ident: e_1_2_10_4_1 doi: 10.1126/science.aan3997 – ident: e_1_2_10_50_1 doi: 10.1016/j.carbpol.2005.10.028 – ident: e_1_2_10_94_1 doi: 10.1002/adma.201805722 – ident: e_1_2_10_9_1 doi: 10.1002/adma.201400207 – volume: 9 start-page: 111 issue: 1 year: 1986 ident: e_1_2_10_2_1 article-title: Recycling. Battery lead recycling and environmental pollution hazards publication-title: Conservation – ident: e_1_2_10_93_1 doi: 10.1016/j.nanoen.2018.04.004 – volume: 20 start-page: 506 issue: 2 year: 2020 ident: e_1_2_10_104_1 article-title: Green Triboelectric Nano‐generator composite of degradable cellulose, piezoelectric polymers of PVDF/PA6, and nanoparticles of BaTiO3 publication-title: Sensors (Basel) doi: 10.3390/s20020506 – ident: e_1_2_10_121_1 doi: 10.1002/aenm.201700289 – volume: 7 start-page: 4936 issue: 1 year: 2017 ident: e_1_2_10_15_1 article-title: Nature degradable, flexible, and transparent conductive substrates from green and earth‐abundant materials publication-title: Sci Rep doi: 10.1038/s41598-017-04969-y – ident: e_1_2_10_80_1 doi: 10.1016/j.nanoen.2019.03.050 – ident: e_1_2_10_46_1 doi: 10.1016/j.nanoen.2018.05.071 – ident: e_1_2_10_47_1 doi: 10.1016/j.nanoen.2020.104904 – ident: e_1_2_10_64_1 doi: 10.1016/j.nanoen.2016.09.036 – ident: e_1_2_10_88_1 doi: 10.1016/j.nanoen.2019.02.052 – ident: e_1_2_10_58_1 doi: 10.1016/j.cbpa.2015.06.009 – ident: e_1_2_10_108_1 doi: 10.1039/C6RA28252K – volume: 28 start-page: 054005 issue: 5 year: 2016 ident: e_1_2_10_42_1 article-title: Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications publication-title: Nanotechnology doi: 10.1088/1361-6528/28/5/054005 – volume: 72 start-page: 61 issue: 6 year: 2016 ident: e_1_2_10_45_1 article-title: Development of biocompatible triboelectric nanogenerators by using polypeptides as the contact materials publication-title: ECS Trans doi: 10.1149/07206.0061ecst – ident: e_1_2_10_78_1 doi: 10.1002/aenm.201702736 |
SSID | ssj0002504241 |
Score | 2.531001 |
SecondaryResourceType | review_article |
Snippet | Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an... Abstract Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | bioelectronics degradable materials energy harvester implantable self‐powered triboelectric nanogenerator |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_COhFITa7ySabo0pLEaoXC72F3Z1dETSRUv-_M5tYWhC9eAthYMPMZN5bmHnD2KXXYH0JeVwmqYszleexLqyMHeYOFkPJVUHzzpPHfDzNHmZytrLqi3rCWnng1nGDwmtncw4085hp8MojhEkJBSTeYvJR9UXMW7lMUQ0mYS7EpqUeqRi45l3ccJEUYg2BglD_OjENyDLaYdsdJYxu20_ZZRuu3mNbK0KB-6wkgY-mXVnzaqNa181L0IvGG3NEQARRU0dAwg9As1AR8tA2tQ7YdDR8vh_H3dKD2KaFFLHItXNcZ8YqwP8JARWcV0qXwkuD7E4p9K3hudY248IYUYJHGuDBWgcWyvSQ9eqmdkcsSktkAyrjSKKR9RiuEqOlTgufpYqWffbZ1bcjKtspgtNiireq1TIWFTmtCk7rs4ul7Uerg_Gj1R35c2lB2tXhBUa06iJa_RXRPrsO0fjlnGr4NBHh6fg_Tjxhm4JaVUIz9inrLeaf7gy5xsKch7T6AoPX0Gk priority: 102 providerName: Directory of Open Access Journals |
Title | Triboelectric nanogenerator based on degradable materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12072 https://doaj.org/article/7faec61d71344adf8f19055d7d0fc880 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeXUi96EJ9YHyWgF4XY7iabbMCLSksRqh4s9Bb2WQRNpNarn92ZTUwtiOAlhDAhMLuz88-y8xtCzpw02mUmCbN-ZMNYJEkoU81DC3MHFkNORYr1zuP7ZDSJ76Z82iJX37UwFR-i2XDDyPDrNQa4VO-9JTTUlq_skrJ-CgvwGtbWIjmfxY_NDgvCuZhvXQlpHTfj0qjhk7Le8vWVjOTB_atC1Wea4RbZrCVicF2N6TZp2WKHbPwAB-6SDIEfZdXC5lkHhSzKmedHwx90gInJBGURGARBGKyNCkCXVlNtj0yGg6fbUVg3QQh1lHIWskRaS2WstDAQX5BgjXVCyIw5rkDtCQG-VjSRUseUKcUy40AWOKO1Ndpk0T5pF2VhD0gQZaAORExBVIMKUlT0leQySl0cCWz-2SHn347IdU0Ix0YVL3nFNmY5Oi33TuuQ08b2reJi_Gp1g_5sLJBl7R-U81leh0aeOml1Qg1WtcbSOOFApHBuUtN3GpaXDrnwo_HHd_LBw5j5u8P_GB-RdYZHVPwh7GPSXsw_7AlojIXq-qnU9X_ocB1_Dr4AEtjL_g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBfGJ9BvSiEJtsNtnNUaWlals9tNBb2OyjCJpIqf_fmU1MLYjgLYRZArPz-DLMfEPIpZVa2VQnfhpExmciSXzJVewbsB0IhnEoOM47D4ZJb8weJ_Gk7s3BWZiKH6IpuKFnuHiNDo4F6faCNdSU7_QmpAGHCLzGEsrRLyl7aUosyM5F3e5KyOtYjeNRQ1BK24vjSynJMfcvI1WXarrbZKvGiN5tdak7ZMUUu2TzB3PgHkmR8aOsdti8Kq-QRTl1BNLwC-1hZtJeWXgamSA0Dkd5AEwrW9sn425ndN_z6y0Ivop4TH2aSGNCyXIlNDgYZFhtrBAypTbOAe4JAcrOw0RKxUKa5zTVFnCB1UoZrXQaHZDVoizMIfGiFOCBYCGgaoBBeSiCXMYy4pZFArd_tsjVtyIyVVOE46aKt6wiN6YZKi1zSmuRi0b2oyLG-FXqDvXZSCCZtXtRzqZZ7RsZt9KoJNQ41sqktsICSoljzXVgFcSXFrl2t_HHd7LO84C6p6P_CJ-T9d5o0M_6D8OnY7JBsV_FdWSfkNX57NOcAuCY52fOrL4AiLfNRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeX0oLoQXxifQb0ohDbbF4b8FK1pT5aPRgpXsJmH0XQpJT6_Z3ZpKkFEbyFMCQwmcc_y-5vCDnTXAodycCO2q6yPRYENg-FbyuIHSiGvsNCPO88GAb92Lsf-aMauZqfhSn4ENWCG2aGqdeY4BOpWwtoqMo_6aVD2yEU4AZi8iCmG53X-C2u1lgQz0XN8Epo7LgcF7oVoZS2Fg9Y6kkG3b8sVU2v6W2Q9VIkWp3iq26Smsq2yNoPdOA2iRD5kRdDbN6FlfEsHxuCNPxDW9iapJVnlkQUhMTTURYo0yLYdkjc677c9O1yDIIt3NCnNg24Ug73UsEkZBi0WKk0Yzyi2k9B7zEG3k6dgHPhOTRNaSQ1CAMthVBSyMjdJfUsz9QesdwI9AHzHJDVoINSh7VT7nM31J7LcPxnk5zPHZGIkhGOoyo-koJuTBN0WmKc1iSnle2kIGP8anWN_qwskGZtbuTTcVImRxJqrkTgSDzX6nGpmQaZ4vsylG0toMA0yYX5Gn-8J-k-Dai52v-P8QlZeb7tJY93w4cDskpxv4rZkX1I6rPplzoCwTFLj8u4-gZqOs48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerator+based+on+degradable+materials&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Chao%2C+Shengyu&rft.au=Ouyang%2C+Han&rft.au=Jiang%2C+Dongjie&rft.au=Fan%2C+Yubo&rft.date=2021-02-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |