Triboelectric nanogenerator based on degradable materials

Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degrada...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 3; no. 1
Main Authors Chao, Shengyu, Ouyang, Han, Jiang, Dongjie, Fan, Yubo, Li, Zhou
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. With the continuous depletion of environmental resources, DB‐TENG, as a green energy, began to be widely used in all fields of society. Here, degradable materials which were used as triboelectric layers were classified into three categories. Besides, DB‐TENG can be used to complete functions such as energy harvesting, signal sensing, and medical care.
AbstractList Abstract Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo.
Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. image
Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an emergency green energy technology, which can get the energy from the surrounding environment and organism. The development of TENG based on degradable materials strongly promote the next‐generation green energy technologies that will effectively avoid pollution and hazards caused by metal and hardly degradable plastic materials. In this review, we summarize the TENG based on degradable materials and its applications. The typical degradable materials for TENG are animal‐based degradable material, plant‐based degradable material, and artificial degradable material. We provide perspectives on the challenges and potential solutions associated with the next‐generation degradable TENG. Beyond the material issue, we highlight the full biodegradable devices that show the healthcare function in vivo. With the continuous depletion of environmental resources, DB‐TENG, as a green energy, began to be widely used in all fields of society. Here, degradable materials which were used as triboelectric layers were classified into three categories. Besides, DB‐TENG can be used to complete functions such as energy harvesting, signal sensing, and medical care.
Author Chao, Shengyu
Ouyang, Han
Jiang, Dongjie
Fan, Yubo
Li, Zhou
Author_xml – sequence: 1
  givenname: Shengyu
  surname: Chao
  fullname: Chao, Shengyu
  organization: School of Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Han
  surname: Ouyang
  fullname: Ouyang, Han
  organization: School of Biological Science and Medical Engineering, Beihang University
– sequence: 3
  givenname: Dongjie
  surname: Jiang
  fullname: Jiang, Dongjie
  organization: School of Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yubo
  surname: Fan
  fullname: Fan, Yubo
  organization: School of Biological Science and Medical Engineering, Beihang University
– sequence: 5
  givenname: Zhou
  orcidid: 0000-0002-9952-7296
  surname: Li
  fullname: Li, Zhou
  email: zli@binn.cas.cn
  organization: Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University
BookMark eNp9kFFLwzAUhYNMcOpe_AV9FjqTNG3SRxlTB5O9zOdwk9yMjK6RtCD793ariIj4dC6X73wP55pM2tgiIXeMzhml_AHjgc8Zp5JfkCkvK5kXTBaTH_cVmXXdng5wSQUXbErqbQomYoO2T8FmLbRxhy0m6GPKDHTosthmDncJHJgGswP0mAI03S259EPg7CtvyNvTcrt4ydeb59XicZ3bQpY85xUgMhDGKid4WSjm0CsFNfelUZQqZX1tWAVgBePG8Np5KoV31qKzri5uyGr0ugh7_Z7CAdJRRwj6_IhppyH1wTaopQe0FXOSFUKA88qzmpalk456qxQdXPejy6bYdQn9t49RfdpQnzbU5w0HmP6CbeihD7HtE4Tm7wobKx-hweM_cr3cvPKx8wkMhoYl
CitedBy_id crossref_primary_10_1016_j_copbio_2021_08_011
crossref_primary_10_1002_eom2_12154
crossref_primary_10_1016_j_jpowsour_2025_236683
crossref_primary_10_1016_j_surfin_2023_103369
crossref_primary_10_34133_2022_9809406
crossref_primary_10_1002_aelm_202200782
crossref_primary_10_1016_j_seta_2023_103251
crossref_primary_10_1021_acs_chemrev_3c00301
crossref_primary_10_1002_er_7082
crossref_primary_10_1007_s12274_023_5804_x
crossref_primary_10_1126_sciadv_abl8423
crossref_primary_10_1002_adhm_202100199
crossref_primary_10_1021_acsaelm_2c00909
crossref_primary_10_1021_acsaelm_3c00550
crossref_primary_10_1016_j_nanoen_2023_108717
crossref_primary_10_3390_polym15234562
crossref_primary_10_1016_j_nanoen_2023_108795
crossref_primary_10_1016_j_cej_2022_140494
crossref_primary_10_1016_j_measurement_2023_113261
crossref_primary_10_1016_j_nanoen_2022_108035
crossref_primary_10_1016_j_nanoen_2022_107101
crossref_primary_10_1002_adfm_202400277
crossref_primary_10_1021_acsaem_4c01455
crossref_primary_10_1039_D3TA04879A
crossref_primary_10_3390_polym15010222
crossref_primary_10_1002_adfm_202105169
crossref_primary_10_1002_eom2_12145
crossref_primary_10_7498_aps_71_20212022
crossref_primary_10_1007_s13391_025_00553_z
crossref_primary_10_1016_j_cej_2024_156711
crossref_primary_10_1002_adma_202203193
crossref_primary_10_1021_acsaelm_2c01782
crossref_primary_10_1016_j_nanoen_2023_108443
crossref_primary_10_1016_j_nanoen_2024_109478
crossref_primary_10_1016_j_mtcomm_2022_103292
crossref_primary_10_1016_j_susmat_2024_e00867
crossref_primary_10_3390_coatings15020149
crossref_primary_10_1016_j_ccr_2023_215527
crossref_primary_10_1002_advs_202414748
crossref_primary_10_1016_j_jclepro_2024_141354
crossref_primary_10_3390_pr11092796
crossref_primary_10_1002_adsu_202100066
crossref_primary_10_3390_polym16060790
crossref_primary_10_3390_polym16101304
crossref_primary_10_1016_j_susmat_2023_e00596
crossref_primary_10_1007_s40820_022_00806_8
crossref_primary_10_1080_15583724_2022_2158467
crossref_primary_10_1016_j_cej_2023_146208
crossref_primary_10_3390_coatings13081407
crossref_primary_10_1002_ente_202401281
crossref_primary_10_3390_s22062154
crossref_primary_10_1002_adma_202418207
crossref_primary_10_1002_adhm_202303474
crossref_primary_10_1002_sus2_196
crossref_primary_10_1063_5_0236854
crossref_primary_10_1002_smtd_202200830
crossref_primary_10_1002_adfm_202101829
crossref_primary_10_1007_s11431_024_2745_6
crossref_primary_10_1002_admt_202200834
crossref_primary_10_1002_smll_202307620
crossref_primary_10_1016_j_ces_2023_118949
crossref_primary_10_1002_adfm_202313794
crossref_primary_10_1002_adma_202102302
crossref_primary_10_1016_j_matt_2023_09_017
crossref_primary_10_1002_open_202400373
crossref_primary_10_1039_D3EE03520D
crossref_primary_10_1016_j_nanoen_2023_109045
crossref_primary_10_1016_j_nanoen_2025_110676
crossref_primary_10_1007_s42114_024_00845_2
crossref_primary_10_1002_eom2_12198
crossref_primary_10_1002_adhm_202100557
crossref_primary_10_1002_advs_202103694
crossref_primary_10_1002_jbm_a_37871
crossref_primary_10_3390_s24082497
crossref_primary_10_1007_s43939_023_00036_8
crossref_primary_10_3390_en15207495
crossref_primary_10_1016_j_bios_2021_113609
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1039_D2TB01475K
crossref_primary_10_3390_s23042021
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1080_15435075_2024_2437511
crossref_primary_10_1002_adma_202412671
crossref_primary_10_1016_j_apsusc_2021_150806
crossref_primary_10_1016_j_isci_2022_105494
crossref_primary_10_1021_acsami_3c17241
crossref_primary_10_1021_acsomega_1c03374
crossref_primary_10_1016_j_carbon_2022_03_037
crossref_primary_10_1080_00405000_2023_2201915
crossref_primary_10_1002_chem_202301076
crossref_primary_10_1016_j_nanoen_2024_109310
crossref_primary_10_1088_1402_4896_ac2086
crossref_primary_10_3390_nanoenergyadv3040016
crossref_primary_10_1021_acsnano_1c07614
crossref_primary_10_1002_admi_202300323
crossref_primary_10_1007_s12274_023_5733_8
crossref_primary_10_1021_acssuschemeng_2c07510
crossref_primary_10_3390_nano12081385
crossref_primary_10_1002_admt_202301592
crossref_primary_10_1088_1361_6439_ac7a8f
crossref_primary_10_3390_ma17122834
crossref_primary_10_1002_adfm_202418318
crossref_primary_10_1016_j_nanoen_2022_107811
crossref_primary_10_1007_s40684_022_00452_w
crossref_primary_10_1016_j_cej_2023_147075
crossref_primary_10_1021_acssuschemeng_3c03025
crossref_primary_10_1002_admt_202201500
crossref_primary_10_1002_adsu_202300280
crossref_primary_10_1002_ente_202301300
crossref_primary_10_1002_advs_202409914
crossref_primary_10_1016_j_enconman_2022_116098
crossref_primary_10_3389_felec_2022_985681
crossref_primary_10_1021_acsmaterialslett_3c01337
crossref_primary_10_1021_acs_langmuir_4c02832
crossref_primary_10_1016_j_ijbiomac_2025_140966
crossref_primary_10_1002_admt_202201310
crossref_primary_10_1021_acssuschemeng_1c08030
crossref_primary_10_1088_1361_665X_adb404
crossref_primary_10_1002_adsu_202400493
crossref_primary_10_1016_j_pmatsci_2023_101206
crossref_primary_10_3390_electronicmat4040014
crossref_primary_10_1088_2632_959X_ad7a90
crossref_primary_10_1039_D3DT02185H
crossref_primary_10_1002_inf2_12391
crossref_primary_10_1016_j_nanoen_2024_109785
crossref_primary_10_1021_acsaem_3c01042
crossref_primary_10_1039_D3SE01206A
crossref_primary_10_3390_nano14100826
crossref_primary_10_1016_j_nanoen_2024_110082
crossref_primary_10_1016_j_mtcomm_2025_112151
crossref_primary_10_3390_mi16010078
crossref_primary_10_1002_advs_202307369
crossref_primary_10_1021_acsaem_2c01469
crossref_primary_10_3390_app14062396
crossref_primary_10_3390_nano12081366
crossref_primary_10_1002_aelm_202201095
Cites_doi 10.1016/j.nanoen.2018.03.033
10.1016/j.elstat.2018.01.003
10.1002/adfm.201700794
10.1016/j.nanoen.2019.02.058
10.1038/srep45583
10.1126/science.1226325
10.1016/j.nanoen.2017.12.048
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2017.01.053
10.1016/j.progpolymsci.2018.09.002
10.1016/j.nanoen.2019.104016
10.1016/j.joule.2017.09.004
10.1002/adfm.201805540
10.1016/j.nanoen.2014.11.034
10.1016/j.carbpol.2020.117055
10.1016/j.nanoen.2018.08.015
10.1021/acsami.9b19721
10.1016/j.progpolymsci.2011.06.003
10.1002/adma.201305303
10.1002/aenm.201803183
10.1016/j.nanoen.2017.04.026
10.1021/nl400738p
10.1016/S0009-2509(99)00160-8
10.1002/(SICI)1097-4628(19970531)64:9<1849::AID-APP22>3.0.CO;2-R
10.1016/j.nanoen.2019.06.040
10.1002/adma.201801895
10.1021/acs.chemrev.8b00573
10.1016/j.nanoen.2019.103885
10.1016/j.apmt.2018.09.005
10.1021/acsaem.8b00530
10.1021/acsnano.9b02233
10.1016/S0169-409X(97)00125-7
10.1002/adma.201706267
10.1016/j.nanoen.2019.02.073
10.1016/j.foodchem.2019.125513
10.1016/j.colsurfb.2009.09.001
10.1002/(SICI)1099-0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G
10.1039/C7RA13294H
10.1016/j.scib.2019.09.010
10.1021/acsami.5b06059
10.1002/admi.201700651
10.1002/smll.201502906
10.1002/adma.201803968
10.1016/j.polymer.2007.09.020
10.1002/adma.202001307
10.1002/adma.201604961
10.1002/adfm.201900098
10.1002/pol.1971.150091003
10.1021/acsnano.9b08268
10.1039/c3ee42311e
10.1021/nn403838y
10.1016/j.mee.2019.111059
10.1016/j.nanoen.2019.04.043
10.1016/j.progpolymsci.2013.05.008
10.1002/inf2.12008
10.1021/acs.biomac.8b00517
10.1016/S0079-6700(02)00149-1
10.1016/j.nanoen.2018.10.020
10.1016/j.nanoen.2019.104126
10.1039/C7NR05222G
10.1126/sciadv.aaz8693
10.1016/j.nanoen.2019.01.008
10.1039/C6NR07602E
10.1016/j.nanoen.2018.10.075
10.1039/C6TC05104A
10.1039/C7NR04610C
10.1038/s41467-019-09461-x
10.1016/j.nanoen.2020.104837
10.1021/nl503402c
10.1126/sciadv.aba9624
10.1016/j.nanoen.2017.11.080
10.1002/adfm.201604462
10.1021/acsnano.5b01835
10.1016/j.nanoen.2018.04.071
10.1016/j.nanoen.2015.11.036
10.1002/adfm.201303799
10.1039/c3ee40592c
10.1186/s11671-018-2786-9
10.1021/acs.chemmater.5b04931
10.1016/j.nanoen.2017.09.038
10.1002/aenm.201502329
10.1016/j.nanoen.2019.01.077
10.1039/c3ee42571a
10.1007/s12274-019-2443-3
10.1021/acsnano.5b03567
10.1016/j.nanoen.2017.01.035
10.1038/s41467-019-13166-6
10.1021/acsami.0c01061
10.1016/j.jpowsour.2011.12.028
10.1002/admt.201800178
10.1016/j.nanoen.2019.05.078
10.1038/s41569-020-0426-4
10.1002/adfm.202005610
10.1002/ejic.201402610
10.1038/s41467-018-07764-z
10.1126/sciadv.1501478
10.1002/mabi.200600069
10.1002/aenm.201601529
10.1002/aenm.201703133
10.1002/adma.202002878
10.1126/science.aan3997
10.1016/j.carbpol.2005.10.028
10.1002/adma.201805722
10.1002/adma.201400207
10.1016/j.nanoen.2018.04.004
10.3390/s20020506
10.1002/aenm.201700289
10.1038/s41598-017-04969-y
10.1016/j.nanoen.2019.03.050
10.1016/j.nanoen.2018.05.071
10.1016/j.nanoen.2020.104904
10.1016/j.nanoen.2016.09.036
10.1016/j.nanoen.2019.02.052
10.1016/j.cbpa.2015.06.009
10.1039/C6RA28252K
10.1088/1361-6528/28/5/054005
10.1149/07206.0061ecst
10.1002/aenm.201702736
ContentType Journal Article
Copyright 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/eom2.12072
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7faec61d71344adf8f19055d7d0fc880
10_1002_eom2_12072
EOM212072
Genre reviewArticle
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: the 111 Project
  funderid: B13003
– fundername: National Key R&D Project from Minister of Science and Technology
  funderid: 2016YFA0202703; 2016YFC1102202
– fundername: National Youth Talent Support Program
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20190026
– fundername: National Natural Science Foundation of China
  funderid: 61875015
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M660410
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3752-26aee1a4bc8d425381def88a92f5b80088cf9b16aac412bb29df074fdccedcd93
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Wed Aug 27 01:32:22 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Wed Jan 22 16:31:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3752-26aee1a4bc8d425381def88a92f5b80088cf9b16aac412bb29df074fdccedcd93
Notes Funding information
National Youth Talent Support Program; China Postdoctoral Science Foundation, Grant/Award Number: 2019M660410; Fundamental Research Funds for the Central Universities; National Key R&D Project from Minister of Science and Technology, Grant/Award Numbers: 2016YFA0202703, 2016YFC1102202; National Natural Science Foundation of China, Grant/Award Number: 61875015; National Postdoctoral Program for Innovative Talents, Grant/Award Number: BX20190026; the 111 Project, Grant/Award Number: B13003
ORCID 0000-0002-9952-7296
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12072
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_7faec61d71344adf8f19055d7d0fc880
crossref_primary_10_1002_eom2_12072
crossref_citationtrail_10_1002_eom2_12072
wiley_primary_10_1002_eom2_12072_EOM212072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2017; 7
2017; 41
2017; 1
2017; 4
2020; 20
2019; 55
2019; 10
2019; 13
2019; 57
2019; 12
2019; 59
2014; 26
2016; 30
2020; 14
2014; 24
2016; 72
2020; 12
2013; 7
2018; 45
2018; 44
2012; 204
2013; 6
2017; 9
2019; 365
2018; 48
2020; 18
1971; 9
2020; 6
2018; 9
2018; 8
2018; 3
2019; 60
2006; 64
2019; 62
2019; 61
2019; 64
2017; 36
2019; 63
1986; 9
2013; 13
2019; 66
2018; 1
2019; 65
2017; 33
2014; 14
1978; 28
2019; 29
1999; 54
2018; 30
2019; 119
2012; 337
2015; 14
2018; 28
2010; 75
1997; 64
2017; 27
2019; 1
2010; 447
1997
2006; 6
2017; 29
2012; 37
2020; 32
2015; 9
2015; 7
2016; 12
2020; 309
2018; 19
2016; 6
2016; 2
2012; 1
2015; 29
2013; 38
2020; 75
2020; 30
2020; 74
2019; 88
1997; 35
2015; 2015
2018; 92
2016; 20
2003; 28
2018; 52
2021; 251
2018; 50
2019; 216
2016; 28
2018; 54
1998; 31
2007; 48
2018; 13
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
GHA S (e_1_2_10_73_1) 1997
e_1_2_10_109_1
Zheng Q (e_1_2_10_29_1) 2020; 18
e_1_2_10_93_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_22_1
e_1_2_10_41_1
Tabata Y (e_1_2_10_51_1) 1998; 31
Agostini D (e_1_2_10_74_1) 1971; 9
e_1_2_10_90_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
Liu B (e_1_2_10_71_1) 2010; 447
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_10_1
e_1_2_10_33_1
Katz A (e_1_2_10_18_1) 1978; 28
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
Collivignarelli C (e_1_2_10_2_1) 1986; 9
Landi G (e_1_2_10_42_1) 2016; 28
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
Chen C‐H (e_1_2_10_45_1) 2016; 72
Maksimova NI (e_1_2_10_70_1) 1999; 54
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
Wang L (e_1_2_10_83_1) 2018; 9
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
Zhu Z (e_1_2_10_85_1) 2018; 13
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
Yang B (e_1_2_10_15_1) 2017; 7
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
Sun Z (e_1_2_10_104_1) 2020; 20
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 447
  start-page: 652
  year: 2010
  end-page: 656
  article-title: Effect of mixture of plasticizer on the thermoplastics formability of polyvinyl alcohol (PVA)
  publication-title: Trans Tech Publ
– volume: 28
  issue: 5
  year: 2016
  article-title: Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications
  publication-title: Nanotechnology
– volume: 32
  issue: 25
  year: 2020
  article-title: Contributions of different functional groups to contact electrification of polymers
  publication-title: Adv Mater
– volume: 63
  start-page: 103844
  year: 2019
  end-page: 103853
  article-title: Direct muscle stimulation using diode‐amplified triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
– volume: 50
  start-page: 148
  year: 2018
  end-page: 158
  article-title: Battery‐free neuromodulator for peripheral nerve direct stimulation
  publication-title: Nano Energy
– volume: 19
  start-page: 2351
  issue: 7
  year: 2018
  end-page: 2376
  article-title: Pharmaceutical applications of cellulose ethers and cellulose ether esters
  publication-title: Biomacromolecules
– volume: 30
  start-page: 103
  year: 2016
  end-page: 108
  article-title: Triboelectric nanogenerators and power‐boards from cellulose nanofibrils and recycled materials
  publication-title: Nano Energy
– volume: 92
  start-page: 1
  year: 2018
  end-page: 5
  article-title: Triboelectric nanogenerator based on immersion precipitation derived highly porous ethyl cellulose
  publication-title: J Electrostat
– volume: 3
  start-page: 1800178
  issue: 11
  year: 2018
  end-page: 1800186
  article-title: Air‐permeable and washable paper‐based triboelectric nanogenerator based on highly flexible and robust paper electrodes
  publication-title: Adv Mater Technol
– volume: 64
  start-page: 60
  issue: 1
  year: 2006
  end-page: 65
  article-title: Effect of MW and concentration of chitosan on antibacterial activity of
  publication-title: Carbohydr Polym
– volume: 63
  start-page: 103885
  year: 2019
  article-title: All‐printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi‐functional sensors
  publication-title: Nano Energy
– volume: 74
  start-page: 104837
  year: 2020
  article-title: Pulse‐driven bio‐triboelectric nanogenerator based on silk nanoribbons
  publication-title: Nano Energy
– volume: 62
  start-page: 620
  year: 2019
  end-page: 627
  article-title: Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro‐nano structure and dielectric constant
  publication-title: Nano Energy
– volume: 59
  start-page: 268
  year: 2019
  end-page: 276
  article-title: All‐electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets
  publication-title: Nano Energy
– volume: 28
  start-page: 963
  issue: 6
  year: 2003
  end-page: 1014
  article-title: Biodegradation of poly (vinyl alcohol) based materials
  publication-title: Prog Polym Sci
– volume: 54
  start-page: 390
  year: 2018
  end-page: 399
  article-title: Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  end-page: 334
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 7
  start-page: 19870
  issue: 36
  year: 2015
  end-page: 19875
  article-title: Modulated degradation of transient electronic devices through multilayer silk fibroin pockets
  publication-title: ACS Appl Mater Interfaces
– volume: 65
  start-page: 104016
  year: 2019
  article-title: All edible materials derived biocompatible and biodegradable triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 9
  start-page: 14499
  issue: 38
  year: 2017
  end-page: 14505
  article-title: A paper triboelectric nanogenerator for self‐powered electronic systems
  publication-title: Nanoscale
– volume: 26
  start-page: 3580
  issue: 22
  year: 2014
  end-page: 3591
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv Mater
– volume: 20
  start-page: 506
  issue: 2
  year: 2020
  end-page: 519
  article-title: Green Triboelectric Nano‐generator composite of degradable cellulose, piezoelectric polymers of PVDF/PA6, and nanoparticles of BaTiO3
  publication-title: Sensors (Basel)
– volume: 14
  start-page: 7031
  issue: 12
  year: 2014
  end-page: 7038
  article-title: Topographically‐designed triboelectric nanogenerator via block copolymer self‐assembly
  publication-title: Nano Lett
– volume: 26
  start-page: 2818
  issue: 18
  year: 2014
  end-page: 2824
  article-title: Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes
  publication-title: Adv Mater
– volume: 48
  start-page: 6855
  issue: 23
  year: 2007
  end-page: 6866
  article-title: Effect of nucleation and plasticization on the crystallization of poly(lactic acid)
  publication-title: Polymer
– volume: 30
  year: 2020
  article-title: Hierarchically surface‐textured ultrastable hybrid film for large‐scale triboelectric nanogenerators
  publication-title: Adv Funct Mater
– volume: 45
  start-page: 193
  year: 2018
  end-page: 202
  article-title: Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films
  publication-title: Nano Energy
– volume: 55
  start-page: 260
  year: 2019
  end-page: 268
  article-title: Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting
  publication-title: Nano Energy
– volume: 1
  start-page: 480
  issue: 3
  year: 2017
  end-page: 521
  article-title: Reviving vibration energy harvesting and self‐powered sensing by a triboelectric nanogenerator
  publication-title: Joule
– volume: 119
  start-page: 5461
  issue: 8
  year: 2019
  end-page: 5533
  article-title: Bio‐integrated wearable systems: a comprehensive review
  publication-title: Chem Rev
– volume: 30
  start-page: 1706267
  issue: 11
  year: 2018
  end-page: 1706274
  article-title: Engineered and laser‐processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation
  publication-title: Adv Mater
– volume: 8
  start-page: 1703133
  issue: 12
  year: 2018
  end-page: 1703139
  article-title: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy
  publication-title: Adv Energy Mater
– volume: 33
  start-page: 393
  year: 2017
  end-page: 401
  article-title: Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications
  publication-title: Nano Energy
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 31
  start-page: 287
  issue: 3
  year: 1998
  end-page: 301
  article-title: Protein release from gelatin matrices
  publication-title: Adv Drug Deliv Rev
– volume: 9
  start-page: 13034
  issue: 35
  year: 2017
  end-page: 13041
  article-title: Simple and rapid fabrication of pencil‐on‐paper triboelectric nanogenerators with enhanced electrical performance
  publication-title: Nanoscale
– volume: 7
  start-page: 9213
  issue: 10
  year: 2013
  end-page: 9222
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self‐powered active tactile sensor system
  publication-title: ACS Nano
– volume: 337
  start-page: 1640
  issue: 6102
  year: 2012
  end-page: 1644
  article-title: A physically transient form of silicon electronics
  publication-title: Science
– volume: 12
  start-page: 6442
  issue: 5
  year: 2020
  end-page: 6450
  article-title: Stretchable, biocompatible, and multifunctional silk fibroin‐based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 6719
  issue: 12
  year: 2018
  end-page: 6726
  article-title: An alginate film‐based degradable triboelectric nanogenerator
  publication-title: RSC Adv
– volume: 27
  issue: 1
  year: 2017
  article-title: Single‐thread‐based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth‐based self‐powered human‐interactive and biomedical sensing
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 7867
  issue: 8
  year: 2015
  end-page: 7873
  article-title: Implantable self‐powered low‐level laser cure system for mouse embryonic osteoblasts' proliferation and differentiation
  publication-title: ACS Nano
– volume: 41
  start-page: 359
  year: 2017
  end-page: 366
  article-title: Toward large‐scale fabrication of triboelectric nanogenerator (TENG) with silk‐fibroin patches film via spray‐coating process
  publication-title: Nano Energy
– volume: 48
  start-page: 152
  year: 2018
  end-page: 160
  article-title: All‐fiber hybrid piezoelectric‐enhanced triboelectric nanogenerator for wearable gesture monitoring
  publication-title: Nano Energy
– volume: 14
  start-page: 6436
  issue: 6
  year: 2020
  end-page: 6448
  article-title: Emerging implantable energy harvesters and self‐powered implantable medical electronics
  publication-title: ACS Nano
– start-page: 473
  year: 1997
  end-page: 511
– volume: 72
  start-page: 61
  issue: 6
  year: 2016
  end-page: 65
  article-title: Development of biocompatible triboelectric nanogenerators by using polypeptides as the contact materials
  publication-title: ECS Trans
– volume: 44
  start-page: 279
  year: 2018
  end-page: 287
  article-title: Ultrasoft and cuttable paper‐based triboelectric nanogenerators for mechanical energy harvesting
  publication-title: Nano Energy
– volume: 60
  start-page: 61
  year: 2019
  end-page: 71
  article-title: A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring
  publication-title: Nano Energy
– volume: 50
  start-page: 513
  year: 2018
  end-page: 520
  article-title: A textile‐based triboelectric nanogenerator with humidity‐resistant output characteristic and its applications in self‐powered healthcare sensors
  publication-title: Nano Energy
– volume: 28
  start-page: 3527
  issue: 11
  year: 2016
  end-page: 3539
  article-title: Transient electronics: materials and devices
  publication-title: Chem Mater
– volume: 35
  start-page: 3431
  issue: 16
  year: 1997
  end-page: 3440
  article-title: More about the polymerization of lactides in the presence of stannous octoate
  publication-title: J Polym Sci A Polym Chem
– volume: 4
  start-page: 1700651
  issue: 22
  year: 2017
  end-page: 1700657
  article-title: Transparent, flexible cellulose nanofibril‐phosphorene hybrid paper as triboelectric nanogenerator
  publication-title: Adv Mater Interfaces
– volume: 61
  start-page: 69
  year: 2019
  end-page: 77
  article-title: Crepe cellulose paper and nitrocellulose membrane‐based triboelectric nanogenerators for energy harvesting and self‐powered human‐machine interaction
  publication-title: Nano Energy
– volume: 24
  start-page: 3332
  issue: 22
  year: 2014
  end-page: 3340
  article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators
  publication-title: Adv Funct Mater
– volume: 12
  start-page: 2715
  issue: 20
  year: 2016
  end-page: 2719
  article-title: Physically transient resistive switching memory based on silk protein
  publication-title: Small
– volume: 59
  start-page: 237
  year: 2019
  end-page: 257
  article-title: Progress on triboelectric nanogenerator with stretchability, self‐healability and bio‐compatibility
  publication-title: Nano Energy
– volume: 29
  start-page: 1900098
  issue: 41
  year: 2019
  end-page: 1900124
  article-title: Progress in triboelectric materials: toward high performance and widespread applications
  publication-title: Advanced Functional Materials
– volume: 1
  start-page: 116
  issue: 1
  year: 2019
  end-page: 125
  article-title: Chitosan biopolymer‐derived self‐powered triboelectric sensor with optimized performance through molecular surface engineering and data‐driven learning
  publication-title: InfoMat
– volume: 2
  issue: 3
  year: 2016
  article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source
  publication-title: Sci Adv
– volume: 33
  start-page: 130
  year: 2017
  end-page: 137
  article-title: Bacterial nano‐cellulose triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 88
  start-page: 241
  year: 2019
  end-page: 264
  article-title: Recent advances in surface‐modified cellulose nanofibrils
  publication-title: Prog Polym Sci
– volume: 9
  start-page: 8801
  issue: 9
  year: 2015
  end-page: 8810
  article-title: Transparent stretchable self‐powered patchable sensor platform with ultrasensitive recognition of human activities
  publication-title: ACS Nano
– volume: 28
  start-page: 383
  year: 1978
  article-title: Studies in boundary theory: three essays in adjudication and politics
  publication-title: Buff L Rev
– volume: 2015
  start-page: 1192
  issue: 7
  year: 2015
  end-page: 1197
  article-title: Preparation of alginate/graphene oxide hybrid films and their integration in Triboelectric generators
  publication-title: European Journal of Inorganic Chemistry
– volume: 10
  start-page: 5147
  issue: 1
  year: 2019
  article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics
  publication-title: Nat Commun
– volume: 12
  start-page: 16442
  issue: 14
  year: 2020
  end-page: 16450
  article-title: Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self‐powered sensing of human physiological signals
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 3235
  issue: 11
  year: 2013
  end-page: 3240
  article-title: A transparent single‐friction‐surface triboelectric generator and self‐powered touch sensor
  publication-title: Energy Environ Sci
– volume: 30
  issue: 32
  year: 2018
  article-title: fully bioabsorbable natural‐materials‐based triboelectric nanogenerators
  publication-title: Adv Mater
– volume: 66
  start-page: 104126
  year: 2019
  article-title: Chemically functionalized cellulose nanofibrils‐based gear‐like triboelectric nanogenerator for energy harvesting and sensing
  publication-title: Nano Energy
– volume: 64
  start-page: 1565
  issue: 21
  year: 2019
  end-page: 1566
  article-title: The first technology can compete with piezoelectricity to harvest ultrasound energy for powering medical implants
  publication-title: Science Bulletin
– volume: 10
  start-page: 1427
  issue: 1
  year: 2019
  article-title: Quantifying the triboelectric series
  publication-title: Nat Commun
– volume: 36
  start-page: 250
  year: 2017
  end-page: 259
  article-title: Spontaneous occurrence of liquid‐solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf
  publication-title: Nano Energy
– volume: 9
  start-page: 1428
  issue: 4
  year: 2017
  end-page: 1433
  article-title: A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance
  publication-title: Nanoscale
– volume: 7
  start-page: 45583
  year: 2017
  article-title: Corrugated textile based Triboelectric generator for wearable energy harvesting
  publication-title: Sci Rep
– volume: 309
  year: 2020
  article-title: Cinnamyl alcohol modified chitosan oligosaccharide for enhancing antimicrobial activity
  publication-title: Food Chem
– volume: 75
  start-page: 1
  issue: 1
  year: 2010
  end-page: 18
  article-title: Biodegradable polymeric nanoparticles based drug delivery systems
  publication-title: Colloids Surf B Biointerfaces
– volume: 6
  start-page: eaba9624
  issue: 26
  year: 2020
  article-title: A breathable, biodegradable, antibacterial, and self‐powered electronic skin based on all‐nanofiber triboelectric nanogenerators
  publication-title: Science Advances
– volume: 5
  start-page: 1810
  issue: 7
  year: 2017
  end-page: 1815
  article-title: A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self‐powered locomotion detector
  publication-title: J Mater Chem C
– volume: 9
  start-page: 1803183
  issue: 5
  year: 2018
  article-title: Highly flexible and transparent polyionic‐skin triboelectric nanogenerator for biomechanical motion harvesting
  publication-title: Adv Energy Mater
– volume: 12
  start-page: 1831
  issue: 8
  year: 2019
  end-page: 1835
  article-title: All‐in‐one cellulose based hybrid tribo/piezoelectric nanogenerator
  publication-title: Nano Research
– volume: 38
  start-page: 1629
  issue: 10–11
  year: 2013
  end-page: 1652
  article-title: Bio‐nanocomposites for food packaging applications
  publication-title: Prog Polym Sci
– volume: 216
  start-page: 111059
  year: 2019
  article-title: Rice paper‐based biodegradable triboelectric nanogenerator
  publication-title: Microelect Eng
– volume: 29
  start-page: 1604961
  issue: 5
  year: 2017
  end-page: 1604967
  article-title: Recyclable and green triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 28
  start-page: 1805540
  issue: 45
  year: 2018
  end-page: 1805547
  article-title: A hierarchically nanostructured cellulose fiber‐based triboelectric nanogenerator for self‐powered healthcare products
  publication-title: Adv Funct Mater
– volume: 54
  start-page: 4351
  issue: 20
  year: 1999
  end-page: 4357
  article-title: Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady‐state Fe‐containing catalyst
  publication-title: Chem Eng Sci
– volume: 7
  start-page: 1700289
  issue: 17
  year: 2017
  end-page: 1700295
  article-title: High‐performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 1502329
  issue: 8
  year: 2016
  end-page: 1502334
  article-title: Silk Nanofiber‐networked bio‐Triboelectric generator: silk bio‐TEG
  publication-title: Advanced Energy Materials
– volume: 7
  start-page: 1601529
  issue: 1
  year: 2017
  end-page: 11601536
  article-title: Environmentally friendly hydrogel‐based triboelectric nanogenerators for versatile energy harvesting and self‐powered sensors
  publication-title: Advanced Energy Materials
– volume: 7
  start-page: 4936
  issue: 1
  year: 2017
  article-title: Nature degradable, flexible, and transparent conductive substrates from green and earth‐abundant materials
  publication-title: Sci Rep
– volume: 365
  start-page: 491
  issue: 6452
  year: 2019
  end-page: 494
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
– volume: 32
  issue: 32
  year: 2020
  article-title: Holistically engineered polymer‐polymer and polymer‐ion interactions in biocompatible polyvinyl alcohol blends for high‐performance Triboelectric devices in self‐powered wearable cardiovascular Monitorings
  publication-title: Adv Mater
– volume: 13
  start-page: 6017
  issue: 5
  year: 2019
  end-page: 6024
  article-title: Body‐integrated self‐powered system for wearable and implantable applications
  publication-title: ACS Nano
– volume: 9
  start-page: 5349
  issue: 1
  year: 2018
  article-title: Effective weight control via an implanted self‐powered vagus nerve stimulation device
  publication-title: Nat Commun
– volume: 37
  start-page: 106
  issue: 1
  year: 2012
  end-page: 126
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog Polym Sci
– volume: 75
  start-page: 104904
  year: 2020
  article-title: Skin‐attachable and biofriendly chitosan‐diatom triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 18
  start-page: 7
  year: 2020
  end-page: 21
  article-title: Self‐powered cardiovascular electronic devices and systems
  publication-title: Nat Rev Cardiol
– volume: 1
  start-page: 2891
  issue: 6
  year: 2018
  end-page: 2897
  article-title: High‐performance triboelectric nanogenerator with a rationally designed friction layer structure
  publication-title: ACS Appl Energy Mater
– volume: 30
  issue: 38
  year: 2018
  article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact‐electrification
  publication-title: Adv Mater
– volume: 8
  start-page: 1702736
  issue: 10
  year: 2018
  end-page: 1702742
  article-title: Wireless triboelectric nanogenerator
  publication-title: Adv Energy Mater
– volume: 251
  start-page: 117055
  year: 2021
  end-page: 117071
  article-title: Polysaccharide‐based triboelectric nanogenerators: a review
  publication-title: Carbohydrate Polymers
– volume: 6
  start-page: eaaz8693
  issue: 19
  year: 2020
  article-title: Haptic‐feedback smart glove as a creative human‐machine interface (HMI) for virtual/augmented reality applications
  publication-title: Sci Adv
– volume: 6
  start-page: 1779
  issue: 6
  year: 2013
  end-page: 1784
  article-title: A paper‐based nanogenerator as a power source and active sensor
  publication-title: Energy & Environmental Science
– volume: 20
  start-page: 37
  year: 2016
  end-page: 47
  article-title: A silk‐fibroin‐based transparent triboelectric generator suitable for autonomous sensor network
  publication-title: Nano Energy
– volume: 6
  start-page: 3576
  issue: 12
  year: 2013
  end-page: 3583
  article-title: Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source
  publication-title: Energy & Environmental Science
– volume: 59
  start-page: 705
  year: 2019
  end-page: 714
  article-title: Self‐powered implantable electrical stimulator for osteoblasts' proliferation and differentiation
  publication-title: Nano Energy
– volume: 13
  start-page: 190
  year: 2018
  end-page: 197
  article-title: Sliding‐mode triboelectric nanogenerator based on paper and as a self‐powered velocity and force sensor
  publication-title: Appl Mater Today
– volume: 29
  start-page: 10
  year: 2015
  end-page: 17
  article-title: Enzymatic conversion of lignin into renewable chemicals
  publication-title: Curr Opin Chem Biol
– volume: 9
  start-page: 2775
  issue: 10
  year: 1971
  end-page: 2787
  article-title: Synthesis and characterization of poly‐β‐hydroxybutyrate. I. Synthesis of crystalline DL‐poly‐β‐hydroxybutyrate from DL‐β‐butyrolactone
  publication-title: J Polym Science Part A‐1: Polym Chem
– volume: 7
  start-page: 6772
  issue: 11
  year: 2017
  end-page: 6779
  article-title: Triboelectric nanogenerator based on 317L stainless steel and ethyl cellulose for biomedical applications
  publication-title: RSC Adv
– volume: 204
  start-page: 149
  year: 2012
  end-page: 154
  article-title: Rice paper as a separator membrane in lithium‐ion batteries
  publication-title: J Power Sources
– volume: 57
  start-page: 737
  year: 2019
  end-page: 745
  article-title: Vertically aligned cyclo‐phenylalanine peptide nanowire‐based high‐performance triboelectric energy generator
  publication-title: Nano Energy
– volume: 59
  start-page: 412
  year: 2019
  end-page: 421
  article-title: An eco‐friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper
  publication-title: Nano Energy
– volume: 30
  issue: 50
  year: 2018
  article-title: "Genetically engineered" biofunctional triboelectric nanogenerators using recombinant spider silk
  publication-title: Adv Mater
– volume: 64
  start-page: 1849
  issue: 9
  year: 1997
  end-page: 1859
  article-title: Survey on transport properties of liquids, vapors, and gases in biodegradable poly (3‐hydroxybutyrate)(PHB)
  publication-title: J Appl Polym Sci
– volume: 13
  start-page: 365
  issue: 1
  year: 2018
  article-title: Starch paper‐based triboelectric nanogenerator for human perspiration sensing
  publication-title: Nanoscale Res Lett
– volume: 9
  start-page: 111
  issue: 1
  year: 1986
  end-page: 125
  article-title: Recycling. Battery lead recycling and environmental pollution hazards
  publication-title: Conservation
– volume: 52
  start-page: 517
  year: 2018
  end-page: 523
  article-title: Theory of contact electrification: optical transitions in two‐level systems
  publication-title: Nano Energy
– volume: 27
  start-page: 1700794
  issue: 30
  year: 2017
  end-page: 1700800
  article-title: Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development
  publication-title: Adv Funct Mater
– volume: 50
  start-page: 126
  year: 2018
  end-page: 132
  article-title: 3D printing individualized triboelectric nanogenerator with macro‐pattern
  publication-title: Nano Energy
– volume: 6
  start-page: 623
  issue: 8
  year: 2006
  end-page: 633
  article-title: Alginate hydrogels as biomaterials
  publication-title: Macromol Biosci
– volume: 13
  start-page: 2226
  issue: 5
  year: 2013
  end-page: 2233
  article-title: Sliding‐triboelectric nanogenerators based on in‐plane charge‐separation mechanism
  publication-title: Nano Lett
– ident: e_1_2_10_84_1
  doi: 10.1016/j.nanoen.2018.03.033
– ident: e_1_2_10_110_1
  doi: 10.1016/j.elstat.2018.01.003
– ident: e_1_2_10_105_1
  doi: 10.1002/adfm.201700794
– ident: e_1_2_10_117_1
  doi: 10.1016/j.nanoen.2019.02.058
– ident: e_1_2_10_76_1
  doi: 10.1038/srep45583
– ident: e_1_2_10_43_1
  doi: 10.1126/science.1226325
– ident: e_1_2_10_102_1
  doi: 10.1016/j.nanoen.2017.12.048
– ident: e_1_2_10_8_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_10_22_1
  doi: 10.1016/j.nanoen.2017.01.053
– ident: e_1_2_10_60_1
  doi: 10.1016/j.progpolymsci.2018.09.002
– ident: e_1_2_10_119_1
  doi: 10.1016/j.nanoen.2019.104016
– ident: e_1_2_10_97_1
  doi: 10.1016/j.joule.2017.09.004
– ident: e_1_2_10_65_1
  doi: 10.1002/adfm.201805540
– ident: e_1_2_10_10_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_10_27_1
  doi: 10.1016/j.carbpol.2020.117055
– ident: e_1_2_10_95_1
  doi: 10.1016/j.nanoen.2018.08.015
– ident: e_1_2_10_101_1
  doi: 10.1021/acsami.9b19721
– ident: e_1_2_10_55_1
  doi: 10.1016/j.progpolymsci.2011.06.003
– ident: e_1_2_10_36_1
  doi: 10.1002/adma.201305303
– volume: 9
  start-page: 1803183
  issue: 5
  year: 2018
  ident: e_1_2_10_83_1
  article-title: Highly flexible and transparent polyionic‐skin triboelectric nanogenerator for biomechanical motion harvesting
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803183
– ident: e_1_2_10_23_1
  doi: 10.1016/j.nanoen.2017.04.026
– ident: e_1_2_10_33_1
  doi: 10.1021/nl400738p
– volume: 54
  start-page: 4351
  issue: 20
  year: 1999
  ident: e_1_2_10_70_1
  article-title: Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady‐state Fe‐containing catalyst
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(99)00160-8
– ident: e_1_2_10_75_1
  doi: 10.1002/(SICI)1097-4628(19970531)64:9<1849::AID-APP22>3.0.CO;2-R
– ident: e_1_2_10_89_1
  doi: 10.1016/j.nanoen.2019.06.040
– ident: e_1_2_10_17_1
  doi: 10.1002/adma.201801895
– ident: e_1_2_10_99_1
  doi: 10.1021/acs.chemrev.8b00573
– ident: e_1_2_10_87_1
  doi: 10.1016/j.nanoen.2019.103885
– ident: e_1_2_10_116_1
  doi: 10.1016/j.apmt.2018.09.005
– ident: e_1_2_10_123_1
  doi: 10.1021/acsaem.8b00530
– ident: e_1_2_10_31_1
  doi: 10.1021/acsnano.9b02233
– volume: 31
  start-page: 287
  issue: 3
  year: 1998
  ident: e_1_2_10_51_1
  article-title: Protein release from gelatin matrices
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(97)00125-7
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.201706267
– ident: e_1_2_10_91_1
  doi: 10.1016/j.nanoen.2019.02.073
– ident: e_1_2_10_49_1
  doi: 10.1016/j.foodchem.2019.125513
– ident: e_1_2_10_69_1
  doi: 10.1016/j.colsurfb.2009.09.001
– ident: e_1_2_10_68_1
  doi: 10.1002/(SICI)1099-0518(19971130)35:16<3431::AID-POLA10>3.0.CO;2-G
– ident: e_1_2_10_63_1
  doi: 10.1039/C7RA13294H
– ident: e_1_2_10_3_1
  doi: 10.1016/j.scib.2019.09.010
– ident: e_1_2_10_39_1
  doi: 10.1021/acsami.5b06059
– ident: e_1_2_10_113_1
  doi: 10.1002/admi.201700651
– ident: e_1_2_10_40_1
  doi: 10.1002/smll.201502906
– ident: e_1_2_10_38_1
  doi: 10.1002/adma.201803968
– ident: e_1_2_10_67_1
  doi: 10.1016/j.polymer.2007.09.020
– ident: e_1_2_10_96_1
  doi: 10.1002/adma.202001307
– ident: e_1_2_10_122_1
  doi: 10.1002/adma.201604961
– ident: e_1_2_10_28_1
  doi: 10.1002/adfm.201900098
– volume: 9
  start-page: 2775
  issue: 10
  year: 1971
  ident: e_1_2_10_74_1
  article-title: Synthesis and characterization of poly‐β‐hydroxybutyrate. I. Synthesis of crystalline DL‐poly‐β‐hydroxybutyrate from DL‐β‐butyrolactone
  publication-title: J Polym Science Part A‐1: Polym Chem
  doi: 10.1002/pol.1971.150091003
– ident: e_1_2_10_11_1
  doi: 10.1021/acsnano.9b08268
– ident: e_1_2_10_35_1
  doi: 10.1039/c3ee42311e
– ident: e_1_2_10_37_1
  doi: 10.1021/nn403838y
– ident: e_1_2_10_118_1
  doi: 10.1016/j.mee.2019.111059
– volume: 28
  start-page: 383
  year: 1978
  ident: e_1_2_10_18_1
  article-title: Studies in boundary theory: three essays in adjudication and politics
  publication-title: Buff L Rev
– volume: 447
  start-page: 652
  year: 2010
  ident: e_1_2_10_71_1
  article-title: Effect of mixture of plasticizer on the thermoplastics formability of polyvinyl alcohol (PVA)
  publication-title: Trans Tech Publ
– ident: e_1_2_10_82_1
  doi: 10.1016/j.nanoen.2019.04.043
– ident: e_1_2_10_66_1
  doi: 10.1016/j.progpolymsci.2013.05.008
– ident: e_1_2_10_48_1
  doi: 10.1002/inf2.12008
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.biomac.8b00517
– ident: e_1_2_10_72_1
  doi: 10.1016/S0079-6700(02)00149-1
– ident: e_1_2_10_14_1
  doi: 10.1016/j.nanoen.2018.10.020
– ident: e_1_2_10_109_1
  doi: 10.1016/j.nanoen.2019.104126
– ident: e_1_2_10_114_1
  doi: 10.1039/C7NR05222G
– ident: e_1_2_10_30_1
  doi: 10.1126/sciadv.aaz8693
– ident: e_1_2_10_103_1
  doi: 10.1016/j.nanoen.2019.01.008
– ident: e_1_2_10_107_1
  doi: 10.1039/C6NR07602E
– ident: e_1_2_10_79_1
  doi: 10.1016/j.nanoen.2018.10.075
– ident: e_1_2_10_106_1
  doi: 10.1039/C6TC05104A
– ident: e_1_2_10_115_1
  doi: 10.1039/C7NR04610C
– ident: e_1_2_10_98_1
  doi: 10.1038/s41467-019-09461-x
– ident: e_1_2_10_100_1
  doi: 10.1016/j.nanoen.2020.104837
– ident: e_1_2_10_6_1
  doi: 10.1021/nl503402c
– ident: e_1_2_10_25_1
  doi: 10.1126/sciadv.aba9624
– ident: e_1_2_10_61_1
  doi: 10.1016/j.nanoen.2017.11.080
– ident: e_1_2_10_12_1
  doi: 10.1002/adfm.201604462
– ident: e_1_2_10_5_1
  doi: 10.1021/acsnano.5b01835
– ident: e_1_2_10_120_1
  doi: 10.1016/j.nanoen.2018.04.071
– ident: e_1_2_10_44_1
  doi: 10.1016/j.nanoen.2015.11.036
– ident: e_1_2_10_34_1
  doi: 10.1002/adfm.201303799
– ident: e_1_2_10_54_1
  doi: 10.1039/c3ee40592c
– volume: 13
  start-page: 365
  issue: 1
  year: 2018
  ident: e_1_2_10_85_1
  article-title: Starch paper‐based triboelectric nanogenerator for human perspiration sensing
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-018-2786-9
– ident: e_1_2_10_41_1
  doi: 10.1021/acs.chemmater.5b04931
– ident: e_1_2_10_53_1
  doi: 10.1016/j.nanoen.2017.09.038
– ident: e_1_2_10_20_1
  doi: 10.1002/aenm.201502329
– ident: e_1_2_10_26_1
  doi: 10.1016/j.nanoen.2019.01.077
– ident: e_1_2_10_32_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_10_112_1
  doi: 10.1007/s12274-019-2443-3
– ident: e_1_2_10_90_1
  doi: 10.1021/acsnano.5b03567
– ident: e_1_2_10_24_1
  doi: 10.1016/j.nanoen.2017.01.035
– ident: e_1_2_10_81_1
  doi: 10.1038/s41467-019-13166-6
– ident: e_1_2_10_52_1
  doi: 10.1021/acsami.0c01061
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jpowsour.2011.12.028
– ident: e_1_2_10_77_1
  doi: 10.1002/admt.201800178
– start-page: 473
  volume-title: Handbook of Biodegradable Polymers
  year: 1997
  ident: e_1_2_10_73_1
– ident: e_1_2_10_111_1
  doi: 10.1016/j.nanoen.2019.05.078
– volume: 18
  start-page: 7
  year: 2020
  ident: e_1_2_10_29_1
  article-title: Self‐powered cardiovascular electronic devices and systems
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-020-0426-4
– ident: e_1_2_10_7_1
  doi: 10.1002/adfm.202005610
– ident: e_1_2_10_19_1
  doi: 10.1002/ejic.201402610
– ident: e_1_2_10_92_1
  doi: 10.1038/s41467-018-07764-z
– ident: e_1_2_10_13_1
  doi: 10.1126/sciadv.1501478
– ident: e_1_2_10_56_1
  doi: 10.1002/mabi.200600069
– ident: e_1_2_10_21_1
  doi: 10.1002/aenm.201601529
– ident: e_1_2_10_62_1
  doi: 10.1002/aenm.201703133
– ident: e_1_2_10_86_1
  doi: 10.1002/adma.202002878
– ident: e_1_2_10_4_1
  doi: 10.1126/science.aan3997
– ident: e_1_2_10_50_1
  doi: 10.1016/j.carbpol.2005.10.028
– ident: e_1_2_10_94_1
  doi: 10.1002/adma.201805722
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.201400207
– volume: 9
  start-page: 111
  issue: 1
  year: 1986
  ident: e_1_2_10_2_1
  article-title: Recycling. Battery lead recycling and environmental pollution hazards
  publication-title: Conservation
– ident: e_1_2_10_93_1
  doi: 10.1016/j.nanoen.2018.04.004
– volume: 20
  start-page: 506
  issue: 2
  year: 2020
  ident: e_1_2_10_104_1
  article-title: Green Triboelectric Nano‐generator composite of degradable cellulose, piezoelectric polymers of PVDF/PA6, and nanoparticles of BaTiO3
  publication-title: Sensors (Basel)
  doi: 10.3390/s20020506
– ident: e_1_2_10_121_1
  doi: 10.1002/aenm.201700289
– volume: 7
  start-page: 4936
  issue: 1
  year: 2017
  ident: e_1_2_10_15_1
  article-title: Nature degradable, flexible, and transparent conductive substrates from green and earth‐abundant materials
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04969-y
– ident: e_1_2_10_80_1
  doi: 10.1016/j.nanoen.2019.03.050
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nanoen.2018.05.071
– ident: e_1_2_10_47_1
  doi: 10.1016/j.nanoen.2020.104904
– ident: e_1_2_10_64_1
  doi: 10.1016/j.nanoen.2016.09.036
– ident: e_1_2_10_88_1
  doi: 10.1016/j.nanoen.2019.02.052
– ident: e_1_2_10_58_1
  doi: 10.1016/j.cbpa.2015.06.009
– ident: e_1_2_10_108_1
  doi: 10.1039/C6RA28252K
– volume: 28
  start-page: 054005
  issue: 5
  year: 2016
  ident: e_1_2_10_42_1
  article-title: Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/28/5/054005
– volume: 72
  start-page: 61
  issue: 6
  year: 2016
  ident: e_1_2_10_45_1
  article-title: Development of biocompatible triboelectric nanogenerators by using polypeptides as the contact materials
  publication-title: ECS Trans
  doi: 10.1149/07206.0061ecst
– ident: e_1_2_10_78_1
  doi: 10.1002/aenm.201702736
SSID ssj0002504241
Score 2.531001
SecondaryResourceType review_article
Snippet Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as an...
Abstract Green and eco‐friendly energy technology are crucial to reduce environmental pollution caused by fossil fuels. Triboelectric nanogenerator (TENG), as...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms bioelectronics
degradable materials
energy harvester
implantable
self‐powered
triboelectric nanogenerator
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2In1i_COhFITa7ySabo0pLEaoXC72F3Z1dETSRUv-_M5tYWhC9eAthYMPMZN5bmHnD2KXXYH0JeVwmqYszleexLqyMHeYOFkPJVUHzzpPHfDzNHmZytrLqi3rCWnng1nGDwmtncw4085hp8MojhEkJBSTeYvJR9UXMW7lMUQ0mYS7EpqUeqRi45l3ccJEUYg2BglD_OjENyDLaYdsdJYxu20_ZZRuu3mNbK0KB-6wkgY-mXVnzaqNa181L0IvGG3NEQARRU0dAwg9As1AR8tA2tQ7YdDR8vh_H3dKD2KaFFLHItXNcZ8YqwP8JARWcV0qXwkuD7E4p9K3hudY248IYUYJHGuDBWgcWyvSQ9eqmdkcsSktkAyrjSKKR9RiuEqOlTgufpYqWffbZ1bcjKtspgtNiireq1TIWFTmtCk7rs4ul7Uerg_Gj1R35c2lB2tXhBUa06iJa_RXRPrsO0fjlnGr4NBHh6fg_Tjxhm4JaVUIz9inrLeaf7gy5xsKch7T6AoPX0Gk
  priority: 102
  providerName: Directory of Open Access Journals
Title Triboelectric nanogenerator based on degradable materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12072
https://doaj.org/article/7faec61d71344adf8f19055d7d0fc880
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeXUi96EJ9YHyWgF4XY7iabbMCLSksRqh4s9Bb2WQRNpNarn92ZTUwtiOAlhDAhMLuz88-y8xtCzpw02mUmCbN-ZMNYJEkoU81DC3MHFkNORYr1zuP7ZDSJ76Z82iJX37UwFR-i2XDDyPDrNQa4VO-9JTTUlq_skrJ-CgvwGtbWIjmfxY_NDgvCuZhvXQlpHTfj0qjhk7Le8vWVjOTB_atC1Wea4RbZrCVicF2N6TZp2WKHbPwAB-6SDIEfZdXC5lkHhSzKmedHwx90gInJBGURGARBGKyNCkCXVlNtj0yGg6fbUVg3QQh1lHIWskRaS2WstDAQX5BgjXVCyIw5rkDtCQG-VjSRUseUKcUy40AWOKO1Ndpk0T5pF2VhD0gQZaAORExBVIMKUlT0leQySl0cCWz-2SHn347IdU0Ix0YVL3nFNmY5Oi33TuuQ08b2reJi_Gp1g_5sLJBl7R-U81leh0aeOml1Qg1WtcbSOOFApHBuUtN3GpaXDrnwo_HHd_LBw5j5u8P_GB-RdYZHVPwh7GPSXsw_7AlojIXq-qnU9X_ocB1_Dr4AEtjL_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBfGJ9BvSiEJtsNtnNUaWlals9tNBb2OyjCJpIqf_fmU1MLYjgLYRZArPz-DLMfEPIpZVa2VQnfhpExmciSXzJVewbsB0IhnEoOM47D4ZJb8weJ_Gk7s3BWZiKH6IpuKFnuHiNDo4F6faCNdSU7_QmpAGHCLzGEsrRLyl7aUosyM5F3e5KyOtYjeNRQ1BK24vjSynJMfcvI1WXarrbZKvGiN5tdak7ZMUUu2TzB3PgHkmR8aOsdti8Kq-QRTl1BNLwC-1hZtJeWXgamSA0Dkd5AEwrW9sn425ndN_z6y0Ivop4TH2aSGNCyXIlNDgYZFhtrBAypTbOAe4JAcrOw0RKxUKa5zTVFnCB1UoZrXQaHZDVoizMIfGiFOCBYCGgaoBBeSiCXMYy4pZFArd_tsjVtyIyVVOE46aKt6wiN6YZKi1zSmuRi0b2oyLG-FXqDvXZSCCZtXtRzqZZ7RsZt9KoJNQ41sqktsICSoljzXVgFcSXFrl2t_HHd7LO84C6p6P_CJ-T9d5o0M_6D8OnY7JBsV_FdWSfkNX57NOcAuCY52fOrL4AiLfNRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeX0oLoQXxifQb0ohDbbF4b8FK1pT5aPRgpXsJmH0XQpJT6_Z3ZpKkFEbyFMCQwmcc_y-5vCDnTXAodycCO2q6yPRYENg-FbyuIHSiGvsNCPO88GAb92Lsf-aMauZqfhSn4ENWCG2aGqdeY4BOpWwtoqMo_6aVD2yEU4AZi8iCmG53X-C2u1lgQz0XN8Epo7LgcF7oVoZS2Fg9Y6kkG3b8sVU2v6W2Q9VIkWp3iq26Smsq2yNoPdOA2iRD5kRdDbN6FlfEsHxuCNPxDW9iapJVnlkQUhMTTURYo0yLYdkjc677c9O1yDIIt3NCnNg24Ug73UsEkZBi0WKk0Yzyi2k9B7zEG3k6dgHPhOTRNaSQ1CAMthVBSyMjdJfUsz9QesdwI9AHzHJDVoINSh7VT7nM31J7LcPxnk5zPHZGIkhGOoyo-koJuTBN0WmKc1iSnle2kIGP8anWN_qwskGZtbuTTcVImRxJqrkTgSDzX6nGpmQaZ4vsylG0toMA0yYX5Gn-8J-k-Dai52v-P8QlZeb7tJY93w4cDskpxv4rZkX1I6rPplzoCwTFLj8u4-gZqOs48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerator+based+on+degradable+materials&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Chao%2C+Shengyu&rft.au=Ouyang%2C+Han&rft.au=Jiang%2C+Dongjie&rft.au=Fan%2C+Yubo&rft.date=2021-02-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon