Spatial‐temporal correlation graph convolutional networks for traffic forecasting
Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers. Nevertheless, accurate traffic forecasting still exists some problems due to the complex spatial‐temporal dependencies and irregularities of traffic fl...
Saved in:
Published in | IET intelligent transport systems Vol. 17; no. 7; pp. 1380 - 1394 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-956X 1751-9578 |
DOI | 10.1049/itr2.12330 |
Cover
Loading…
Abstract | Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers. Nevertheless, accurate traffic forecasting still exists some problems due to the complex spatial‐temporal dependencies and irregularities of traffic flows. Most of the existing methods typically use the spatial adjacency matrix and complicated mechanism to model spatial‐temporal relationships separately, while ignoring the latent spatial‐temporal correlations. In this paper, a novel architecture is proposed named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, an informative fused graph structure is constructed to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, spatial‐temporal correlation graph convolution and gated temporal convolution are performed in parallel and they are integrated into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting.
In this paper, we propose a novel architecture named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, we construct an informative fused graph structure to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, we perform spatial‐temporal correlation graph convolution and gated temporal convolution in parallel and integrate them into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting. |
---|---|
AbstractList | Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers. Nevertheless, accurate traffic forecasting still exists some problems due to the complex spatial‐temporal dependencies and irregularities of traffic flows. Most of the existing methods typically use the spatial adjacency matrix and complicated mechanism to model spatial‐temporal relationships separately, while ignoring the latent spatial‐temporal correlations. In this paper, a novel architecture is proposed named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, an informative fused graph structure is constructed to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, spatial‐temporal correlation graph convolution and gated temporal convolution are performed in parallel and they are integrated into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting.
In this paper, we propose a novel architecture named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, we construct an informative fused graph structure to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, we perform spatial‐temporal correlation graph convolution and gated temporal convolution in parallel and integrate them into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting. Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers. Nevertheless, accurate traffic forecasting still exists some problems due to the complex spatial‐temporal dependencies and irregularities of traffic flows. Most of the existing methods typically use the spatial adjacency matrix and complicated mechanism to model spatial‐temporal relationships separately, while ignoring the latent spatial‐temporal correlations. In this paper, a novel architecture is proposed named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, an informative fused graph structure is constructed to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, spatial‐temporal correlation graph convolution and gated temporal convolution are performed in parallel and they are integrated into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting. Abstract Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers. Nevertheless, accurate traffic forecasting still exists some problems due to the complex spatial‐temporal dependencies and irregularities of traffic flows. Most of the existing methods typically use the spatial adjacency matrix and complicated mechanism to model spatial‐temporal relationships separately, while ignoring the latent spatial‐temporal correlations. In this paper, a novel architecture is proposed named spatial‐temporal correlation graph convolutional networks (STCGCN) for traffic prediction. First, an informative fused graph structure is constructed to better learn the complex spatial‐temporal correlations, which breaks the limitation that the general spatial adjacency matrix cannot reflect temporal correlations. Moreover, spatial‐temporal correlation graph convolution and gated temporal convolution are performed in parallel and they are integrated into a unified layer, which enables capturing both local and global spatial‐temporal dependencies simultaneously. By stacking multiple layers, STCGCN can learn more long‐range spatial‐temporal dependencies. Experimental results on five public traffic datasets demonstrate the effectiveness and robustness of the proposed STCGCN in urban traffic forecasting. |
Author | Chu, Xiaoli Chen, Zijian Huang, Ru He, Jianhua Zhai, Guangtao |
Author_xml | – sequence: 1 givenname: Ru orcidid: 0000-0001-7545-0987 surname: Huang fullname: Huang, Ru email: huangrabbit@ecust.edu.cn organization: East China University of Science and Technology – sequence: 2 givenname: Zijian surname: Chen fullname: Chen, Zijian organization: East China University of Science and Technology – sequence: 3 givenname: Guangtao surname: Zhai fullname: Zhai, Guangtao organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jianhua surname: He fullname: He, Jianhua organization: University of Essex – sequence: 5 givenname: Xiaoli surname: Chu fullname: Chu, Xiaoli organization: University of Sheffield |
BookMark | eNp9kE9LwzAYxoNMcJte_AQ9C51J06TtUYZ_BgPBKXgL79JkZnZNSaNjNz-Cn9FPYrrKDiKe8vDkfX6H3wgNalsrhM4JnhCcFpfGu2RCEkrxERqSjJG4YFk-OGT-fIJGbbvGmPEkIUO0WDTgDVRfH59ebRrroIqkdU5VobZ1tHLQvISmfrfVW9eE_1r5rXWvbaSti7wDrY3sspLQelOvTtGxhqpVZz_vGD3dXD9O7-L5_e1sejWPJc0YjiHHqpRKF2lZJJSlWcq4puWSccYJDZFByjBAUdJS5rJgeZnlMtGYMaY4KegYzXpuaWEtGmc24HbCghH7wrqVAOeNrJTgRGnN8TJJiUplnoHGXPHATIGrZZkF1kXPks62rVP6wCNYdGpFp1bs1YZj_OtYGr_3FWyY6u8J6SdbU6ndP3Axe3xI-s03gLSQXQ |
CitedBy_id | crossref_primary_10_1007_s42421_023_00083_w crossref_primary_10_1002_ett_5021 crossref_primary_10_1007_s41965_024_00167_8 |
Cites_doi | 10.1109/ACCESS.2020.3011186 10.1007/s10489-020-01716-1 10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D 10.1109/ACCESS.2020.3038380 10.1152/ajpheart.1994.266.4.H1643 10.1109/CVIDL51233.2020.00-70 10.1016/j.neucom.2020.06.001 10.1145/3340531.3411941 10.1109/CVPR.2016.90 10.1080/15472450902858368 10.1109/TITS.2021.3078187 10.1109/TITS.2019.2935152 10.1109/TITS.2020.3025076 10.1063/1.166092 10.1061/(ASCE)0733-947X(1997)123:4(261) 10.1016/j.ins.2020.01.043 10.1109/ACCESS.2021.3083412 10.1073/pnas.93.5.2083 10.1016/j.trc.2015.03.014 10.1109/ITSC.2019.8916778 10.3390/s17040818 10.1016/j.physa.2022.127762 10.1609/aaai.v34i01.5438 10.1609/aaai.v34i04.5758 10.1109/TITS.2021.3055258 10.1109/TII.2021.3055283 10.1061/(ASCE)0733-947X(1995)121:3(249) 10.1109/TITS.2015.2498408 10.1016/j.trc.2020.102951 10.1007/978-3-030-75762-5_22 10.1007/978-1-4612-4380-9_35 10.1016/j.ijforecast.2003.09.015 10.1145/3274895.3274896 10.24963/ijcai.2019/264 10.1109/ICTAI50040.2020.00114 10.1109/TITS.2020.2983651 10.1016/j.neucom.2010.12.032 10.1073/pnas.88.6.2297 10.1145/3308558.3313730 10.1061/(ASCE)0733-947X(1991)117:2(178) 10.24963/ijcai.2018/505 10.1609/aaai.v34i01.5477 10.1109/ACCESS.2021.3062114 10.1049/itr2.12044 10.1016/j.trc.2020.102671 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/itr2.12330 |
DatabaseName | Wiley Online Library Open Access CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9578 |
EndPage | 1394 |
ExternalDocumentID | oai_doaj_org_article_61eff60b241e4c87af06e6c954a6ebd7 10_1049_itr2_12330 ITR212330 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61673178; 61922063 – fundername: Marie Sklodowska‐Curie Actions funderid: 101022280; 824019 – fundername: Natural Science Foundation of Shanghai funderid: 20ZR1413800 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF L6V LAI M43 M7S MCNEO O9- OCL OK1 P2P P62 PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c3750-a80edcef94d923547456f3db5656136f35a450aa9d3dc8c958d78c2f0555e6193 |
IEDL.DBID | DOA |
ISSN | 1751-956X |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Sun Jul 06 05:07:38 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:18:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3750-a80edcef94d923547456f3db5656136f35a450aa9d3dc8c958d78c2f0555e6193 |
ORCID | 0000-0001-7545-0987 |
OpenAccessLink | https://doaj.org/article/61eff60b241e4c87af06e6c954a6ebd7 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61eff60b241e4c87af06e6c954a6ebd7 crossref_primary_10_1049_itr2_12330 crossref_citationtrail_10_1049_itr2_12330 wiley_primary_10_1049_itr2_12330_ITR212330 |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | IET intelligent transport systems |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2021; 9 2004; 20 2015; 17 2021; 22 2021; 124 1979; 722 2015; 54 2022; 23 2014; 27 2011; 74 1996; 93 2020; 34 2020; 521 1992 1991; 117 1996; 15 1997; 9 1995; 5 2020; 8 1994; 266 2021; 15 2009; 13 2017; 30 2017; 17 2021 2020 2019; 21 1991; 88 2020; 50 2021; 17 1997; 123 2019 2018 2020; 117 2016 2020; 410 2022; 603 1995; 121 1994; 10 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 Ahmed M.S. (e_1_2_11_22_1) 1979; 722 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 27 year: 2014 article-title: Sequence to sequence learning with neural networks – volume: 21 start-page: 3848 issue: 9 year: 2019 end-page: 3858 article-title: T‐gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 34 start-page: 914 year: 2020 end-page: 921 article-title: Spatial‐temporal synchronous graph convolutional networks: A new framework for spatial‐temporal network data forecasting – volume: 5 start-page: 110 issue: 1 year: 1995 end-page: 117 article-title: Approximate entropy (apen) as a complexity measure publication-title: Chaos: Interdisciplin. J. Nonlinear Sci. – volume: 17 start-page: 1146 issue: 4 year: 2015 end-page: 1156 article-title: Improvement of search strategy with k‐nearest neighbors approach for traffic state prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 17 start-page: 818 issue: 4 year: 2017 article-title: Learning traffic as images: a deep convolutional neural network for large‐scale transportation network speed prediction publication-title: Sensors – volume: 20 start-page: 5 issue: 1 year: 2004 end-page: 10 article-title: Forecasting seasonals and trends by exponentially weighted moving averages publication-title: Int. J. Forecast. – volume: 8 start-page: 209296 year: 2020 end-page: 209307 article-title: Dynamic global‐local spatial‐temporal network for traffic speed prediction publication-title: IEEE Access – volume: 9 start-page: 77359 year: 2021 end-page: 77370 article-title: Ast‐mtl: An attention‐based multi‐task learning strategy for traffic forecasting publication-title: IEEE Access – volume: 30 year: 2017 article-title: Attention is all you need – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 266 start-page: H1643 issue: 4 year: 1994 end-page: H1656 article-title: Physiological time‐series analysis: what does regularity quantify? publication-title: Am. J. Physiol.‐Heart. Circulatory Physiol. – volume: 124 year: 2021 article-title: Multi‐community passenger demand prediction at region level based on spatio‐temporal graph convolutional network publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 22 start-page: 4909 issue: 8 year: 2021 end-page: 4918 article-title: A spatial–temporal attention approach for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 603 year: 2022 article-title: St‐mgat: Spatio‐temporal multi‐head graph attention network for traffic prediction publication-title: Phys. A – volume: 23 start-page: 5615 issue: 6 year: 2022 end-page: 5624 article-title: Short‐term traffic flow prediction for urban road sections based on time series analysis and lstm_bilstm method publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2019 article-title: Graph wavenet for deep spatial‐temporal graph modeling – volume: 54 start-page: 187 year: 2015 end-page: 197 article-title: Long short‐term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transport. Res. Part C: Emerg. Technolog. – volume: 117 year: 2020 article-title: Graph markov network for traffic forecasting with missing data publication-title: Transport. Res. Part C: Emerg. Technolog. – volume: 521 start-page: 277 year: 2020 end-page: 290 article-title: Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting publication-title: Inf. Sci. – volume: 93 start-page: 2083 issue: 5 year: 1996 end-page: 2088 article-title: Randomness and degrees of irregularity publication-title: Proc. Natl. Acad. Sci. – volume: 50 start-page: 3252 issue: 10 year: 2020 end-page: 3265 article-title: A recurrent neural network for urban long‐term traffic flow forecasting publication-title: Appl. Intell. – volume: 74 start-page: 2096 issue: 12‐13 year: 2011 end-page: 2107 article-title: Traffic flow forecasting by seasonal svr with chaotic simulated annealing algorithm publication-title: Neurocomputing – volume: 9 start-page: 35973 year: 2021 end-page: 35983 article-title: Ast‐gcn: Attribute‐augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access – year: 2018 article-title: Diffusion convolutional recurrent neural network: Data‐driven traffic forecasting – volume: 17 start-page: 8464 issue: 12 year: 2021 end-page: 8474 article-title: Fastgnn: A topological information protected federated learning approach for traffic speed forecasting publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 134363 year: 2020 end-page: 134372 article-title: Stgat: spatial‐temporal graph attention networks for traffic flow forecasting publication-title: IEEE Access – start-page: 717 year: 2019 end-page: 728 article-title: Mist: A multiview and multimodal spatial‐temporal learning framework for citywide abnormal event forecasting – start-page: 1853 year: 2020 end-page: 1862 article-title: Spatial‐temporal convolutional graph attention networks for citywide traffic flow forecasting – volume: 34 start-page: 3529 year: 2020 end-page: 3536 article-title: Multi‐range attentive bicomponent graph convolutional network for traffic forecasting – start-page: 1929 year: 2019 end-page: 1933 article-title: A hybrid deep learning approach with gcn and lstm for traffic flow prediction – volume: 410 start-page: 387 year: 2020 end-page: 393 article-title: Short‐term traffic speed forecasting based on graph attention temporal convolutional networks publication-title: Neurocomputing – start-page: 3634 year: 2018 end-page: 3640 article-title: Spatio‐temporal graph convolutional networks: a deep learning framework for traffic forecasting – start-page: 263 year: 2021 end-page: 276 article-title: Adaptive graph co‐attention networks for traffic forecasting – volume: 121 start-page: 249 issue: 3 year: 1995 end-page: 254 article-title: Short‐term prediction of traffic volume in urban arterials publication-title: J. Transp. Eng. – volume: 13 start-page: 53 issue: 2 year: 2009 end-page: 72 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: J. Intell. Transp. Syst. – volume: 88 start-page: 2297 issue: 6 year: 1991 end-page: 2301 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 107 issue: 2 year: 1996 end-page: 125 article-title: Model selection and forecasting for long‐range dependent processes publication-title: J. Forecast. – volume: 34 start-page: 1234 year: 2020 end-page: 1241 article-title: Gman: A graph multi‐attention network for traffic prediction – start-page: 364 year: 2020 end-page: 368 article-title: A method for short‐term traffic flow forecasting based on gcn‐lstm – volume: 117 start-page: 178 issue: 2 year: 1991 end-page: 188 article-title: Nonparametric regression and short‐term freeway traffic forecasting publication-title: J. Transp. Eng. – volume: 23 start-page: 8337 issue: 7 year: 2022 end-page: 8345 article-title: Spatiotemporal attention‐based graph convolution network for segment‐level traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 722 start-page: 1 year: 1979 end-page: 9 article-title: Analysis of freeway traffic time‐series data by using Box‐Jenkins techniques publication-title: Transport. Res. Rec. – volume: 10 start-page: 359 year: 1994 end-page: 370 article-title: Using dynamic time warping to find patterns in time series – start-page: 714 year: 2020 end-page: 721 article-title: St‐mgat: Spatial‐temporal multi‐head graph attention networks for traffic forecasting – volume: 9 start-page: 155 year: 1997 end-page: 161 article-title: Support vector regression machines – volume: 15 start-page: 549 issue: 4 year: 2021 end-page: 561 article-title: Spatial‐temporal attention wavenet: A deep learning framework for traffic prediction considering spatial‐temporal dependencies publication-title: IET Intel. Transport Syst. – start-page: 397 year: 2018 end-page: 400 article-title: Bike flow prediction with multi‐graph convolutional networks – start-page: 492 year: 1992 end-page: 518 article-title: Robust estimation of a location parameter – volume: 123 start-page: 261 issue: 4 year: 1997 end-page: 266 article-title: Traffic flow forecasting: comparison of modeling approaches publication-title: J. Transp. Eng. – volume: 23 start-page: 1578 issue: 2 year: 2022 end-page: 1584 article-title: Global‐local temporal convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – ident: e_1_2_11_35_1 doi: 10.1109/ACCESS.2020.3011186 – ident: e_1_2_11_27_1 doi: 10.1007/s10489-020-01716-1 – ident: e_1_2_11_42_1 doi: 10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D – ident: e_1_2_11_16_1 doi: 10.1109/ACCESS.2020.3038380 – ident: e_1_2_11_39_1 doi: 10.1152/ajpheart.1994.266.4.H1643 – ident: e_1_2_11_47_1 doi: 10.1109/CVIDL51233.2020.00-70 – ident: e_1_2_11_34_1 doi: 10.1016/j.neucom.2020.06.001 – ident: e_1_2_11_5_1 doi: 10.1145/3340531.3411941 – volume: 722 start-page: 1 year: 1979 ident: e_1_2_11_22_1 article-title: Analysis of freeway traffic time‐series data by using Box‐Jenkins techniques publication-title: Transport. Res. Rec. – ident: e_1_2_11_46_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_11_23_1 doi: 10.1080/15472450902858368 – ident: e_1_2_11_9_1 doi: 10.1109/TITS.2021.3078187 – ident: e_1_2_11_8_1 doi: 10.1109/TITS.2019.2935152 – ident: e_1_2_11_17_1 doi: 10.1109/TITS.2020.3025076 – ident: e_1_2_11_41_1 doi: 10.1063/1.166092 – ident: e_1_2_11_20_1 doi: 10.1061/(ASCE)0733-947X(1997)123:4(261) – ident: e_1_2_11_32_1 doi: 10.1016/j.ins.2020.01.043 – ident: e_1_2_11_38_1 doi: 10.1109/ACCESS.2021.3083412 – ident: e_1_2_11_25_1 – ident: e_1_2_11_40_1 doi: 10.1073/pnas.93.5.2083 – ident: e_1_2_11_26_1 doi: 10.1016/j.trc.2015.03.014 – ident: e_1_2_11_48_1 doi: 10.1109/ITSC.2019.8916778 – ident: e_1_2_11_33_1 – ident: e_1_2_11_29_1 doi: 10.3390/s17040818 – ident: e_1_2_11_11_1 doi: 10.1016/j.physa.2022.127762 – ident: e_1_2_11_15_1 doi: 10.1609/aaai.v34i01.5438 – ident: e_1_2_11_44_1 – ident: e_1_2_11_14_1 doi: 10.1609/aaai.v34i04.5758 – ident: e_1_2_11_28_1 doi: 10.1109/TITS.2021.3055258 – ident: e_1_2_11_6_1 doi: 10.1109/TII.2021.3055283 – ident: e_1_2_11_21_1 doi: 10.1061/(ASCE)0733-947X(1995)121:3(249) – ident: e_1_2_11_3_1 doi: 10.1109/TITS.2015.2498408 – ident: e_1_2_11_4_1 doi: 10.1016/j.trc.2020.102951 – ident: e_1_2_11_37_1 doi: 10.1007/978-3-030-75762-5_22 – ident: e_1_2_11_49_1 doi: 10.1007/978-1-4612-4380-9_35 – ident: e_1_2_11_43_1 doi: 10.1016/j.ijforecast.2003.09.015 – ident: e_1_2_11_13_1 doi: 10.1145/3274895.3274896 – ident: e_1_2_11_51_1 – ident: e_1_2_11_18_1 doi: 10.24963/ijcai.2019/264 – ident: e_1_2_11_52_1 doi: 10.1109/ICTAI50040.2020.00114 – ident: e_1_2_11_36_1 doi: 10.1109/TITS.2020.2983651 – ident: e_1_2_11_2_1 doi: 10.1016/j.neucom.2010.12.032 – ident: e_1_2_11_19_1 doi: 10.1073/pnas.88.6.2297 – ident: e_1_2_11_45_1 doi: 10.1145/3308558.3313730 – ident: e_1_2_11_24_1 doi: 10.1061/(ASCE)0733-947X(1991)117:2(178) – ident: e_1_2_11_50_1 – ident: e_1_2_11_7_1 doi: 10.24963/ijcai.2018/505 – ident: e_1_2_11_10_1 doi: 10.1609/aaai.v34i01.5477 – ident: e_1_2_11_30_1 doi: 10.1109/ACCESS.2021.3062114 – ident: e_1_2_11_12_1 doi: 10.1049/itr2.12044 – ident: e_1_2_11_31_1 doi: 10.1016/j.trc.2020.102671 |
SSID | ssj0056221 |
Score | 2.3114173 |
Snippet | Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers.... Abstract Traffic forecasting, as a fundamental and challenging problem of intelligent transportation systems (ITS), has always been the focus of researchers.... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1380 |
SubjectTerms | management and control network topology neural net architecture traffic modeling |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KXvQgPrG-COhFIZpkN5sseFGxVEERbaG3sNmHCCWVNN79Cf5Gf4kzm6RaEMFLWJIJITP7-DaZ-T5CjkwQmjDV-Icxh4PNtS9jy3xheaI4NZy7-oq7e94fsttRPOqQ87YWpuaHmH1ww5Hh5msc4DKvVUgA1EIQX6oyOoV5l8KGfRFra1G_IGIP7TwMC3tddZWgkHzMRy05KRNn3_fOLUeOtX8epbplprdKVhp86F3UAV0jHVOsk-UfrIEb5AllhKHbfL5_NMRSY0-hyEad1uY5DmoP08mbbgXXizrbe-oBRvWqUiJxBLaNklNMfN4kw9714KrvN9oIvqKwyPsyDTB_0wqmAaLFLAEgZKnOEZ-FFJqxZHEgpdBUq1SJONVJqiKL_F4GNk10iywUk8JsE0_L1DABYWIiYEh-Q41IjNaU5inKJXTJceuiTDXE4ahfMc7cD2wmMnRn5tzZJYcz29eaLuNXq0v09MwCKa7diUn5nDUjJuOhsZYHOUAMw1SaSBtww-FNmOQm10mXnLg4_fGc7GbwGLnWzn-Md8kSisrXSbl7ZKEq38w-QI8qP3A97AsSuNVS priority: 102 providerName: Wiley-Blackwell |
Title | Spatial‐temporal correlation graph convolutional networks for traffic forecasting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fitr2.12330 https://doaj.org/article/61eff60b241e4c87af06e6c954a6ebd7 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1aN7oQn1gfZUA3CqMzTSYzWdZHacUX2kJ3QyYPEMoobd37CX6jX-K9ybRUEN24GcJMIMO9IfeEnJxDyJGJYhNnGk8YC3jYQocysSwUlqeKU8O5u19xe8c7fXY9SAZzVl_ICfPywD5wZzw21vKogEpjmMpSaSNuuBIJk9wU2t0jh5o33Uz5NRiKur9xlaKJfMIHU2FSJs6eJ6PmKazXyHueK0VOsf87QnUlpr1GVitsGLT8P62TBVNukJU5xcBN8oQWwjBlPt8_KlGpYaDQYMNT2gKnPx0glbyaUvC99EzvcQD4NJiMJIpGYNsoOUbS8xbpt696F52w8kUIFYUCH8osQu6mFUwDPEtYCiDIUl0gNospNBPJkkhKoalWGYQq02mmmha1vQxsmOg2qZUvpdkhgZaZYQJSxETEUPiGGpEarSktMrRKqJPjaYhyVYmGo3fFMHeH10zkGM7chbNODmd9X71Uxo-9zjHSsx4ob-1eQNLzKun5X0mvkxOXp1_Gybu9x6Zr7f7HiHtkGY3mPVF3n9QmozdzAHBkUjTIYpM9NNz8a5Cl7uXNfesLU9zgTQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSD-MT6DOhFIZpkN5vsUUVptS2iLfQWNvsQoaTS1rs_wd_oL3Fmk1YLIngJSzIhZHZ255vd2W8IOTFBaMJU4w5jDheba1_GlvnC8kRxajh35yvaHd7osbt-3K9yc_AsTMkPMVtww5Hh5msc4LggXQacDEkyXyaj6BwmXgoR-yIDYI5GHbGH6UQMnr08dpVgJfmY96fspExcfL87548cbf88THV-5naNrFYA0bsse3SdLJhig6z8oA3cJE9YRxjs5vP9o2KWGngKq2yUeW2eI6H2MJ-8sit4XpTp3mMPQKo3GUlkjsC2UXKMmc9bpHd7071u-FVxBF9R8PK-TANM4LSCacBoMUsACVmqcwRoIYVmLFkcSCk01SpVIk51kqrIIsGXgaiJbpNaMSzMDvG0TA0T0E9MBAzZb6gRidGa0jzFegl1cjpVUaYq5nAsYDHI3A42ExmqM3PqrJPjmexryZfxq9QVanomgRzX7sZw9JxVQybjobGWBzlgDMNUmkgbcMPhT5jkJtdJnZy5fvrjO1mz-xi51u5_hI_IUqPbbmWtZud-jyxjhfkyQ3ef1CajN3MAOGSSHzpr-wK1sNjH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bSsNAEF1KC6IP4hXrNaAvCtG0u9lkwZd6Ka2XItpK8SVs9iJCaUtb3_0Ev9EvcWaTVgURfAlLMiFk9jJnktlzCDkwQcVUYo1_GFM42FT7MrTMF5ZHilPDudtfcdvijQ676obdAjmd7oXJ-CFmH9xwZrj1Gif4UNss32TIkfkyGVWPYd2lkLCXkCYPUq9S7bHz1JmuxBDas31XEUrJh7w7pSdl4uTr7h8ByfH2_8SpLtDUl8hijhC9Wtaly6Rg-itk4Rtv4Cp5QCFhGDgfb-85tVTPUyizkRW2eY6F2sOC8nxgwfV-Vu899gClepORROoIbBslx1j6vEY69cv2ecPP1RF8RSHM-zIOsILTCqYBpIUsAihkqU4RoVUoNEPJwkBKoalWsRJhrKNYVS0yfBlIm-g6KfYHfbNBPC1jwwR0FBMBQ_obakRktKY0jVEwoUwOpy5KVE4djgoWvcT9wmYiQXcmzp1lsj-zHWaEGb9anaGnZxZIcu1ODEbPST5nEl4x1vIgBZBhmIojaQNuOLwJk9ykOiqTI9dPfzwnabbvq661-R_jPTJ3d1FPbpqt6y0yjwrzWYXuNilORq9mB3DIJN3Nh9snlq_Ztg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%90temporal+correlation+graph+convolutional+networks+for+traffic+forecasting&rft.jtitle=IET+intelligent+transport+systems&rft.au=Huang%2C+Ru&rft.au=Chen%2C+Zijian&rft.au=Zhai%2C+Guangtao&rft.au=He%2C+Jianhua&rft.date=2023-07-01&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=17&rft.issue=7&rft.spage=1380&rft.epage=1394&rft_id=info:doi/10.1049%2Fitr2.12330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_itr2_12330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |