FIMF score‐CAM: Fast score‐CAM based on local multi‐feature integration for visual interpretation of CNNS
The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good discrimination and gradient free calculation. It is a representative work in this field. However, it has the disadvantages of long calculation time and incomple...
Saved in:
Published in | IET image processing Vol. 17; no. 3; pp. 761 - 772 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good discrimination and gradient free calculation. It is a representative work in this field. However, it has the disadvantages of long calculation time and incomplete heatmap coverage. Therefore, this paper proposes an improved Score‐CAM method named FIMF Score‐CAM, which can fast integrate multiple features. Its contribution is reflected in two aspects: The weight of the feature map is directly calculated by using the feature template. Unlike Score‐CAM, this model greatly saves computation time because it only requires one convolutional calculation. Another contribution is that the feature map used to generate the heatmap integrates various semantic features of the local space, so that the heatmap of the object of interest can be generated with more complete coverage and better interpretation. The FIMF Score‐CAM is superior to the existing mainstream models in interpreting the visual performance and fairness indicators of the decision‐making, having more complete explanations of object classes and the advantage of faster calculation speed. |
---|---|
AbstractList | Abstract The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good discrimination and gradient free calculation. It is a representative work in this field. However, it has the disadvantages of long calculation time and incomplete heatmap coverage. Therefore, this paper proposes an improved Score‐CAM method named FIMF Score‐CAM, which can fast integrate multiple features. Its contribution is reflected in two aspects: The weight of the feature map is directly calculated by using the feature template. Unlike Score‐CAM, this model greatly saves computation time because it only requires one convolutional calculation. Another contribution is that the feature map used to generate the heatmap integrates various semantic features of the local space, so that the heatmap of the object of interest can be generated with more complete coverage and better interpretation. The FIMF Score‐CAM is superior to the existing mainstream models in interpreting the visual performance and fairness indicators of the decision‐making, having more complete explanations of object classes and the advantage of faster calculation speed. The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good discrimination and gradient free calculation. It is a representative work in this field. However, it has the disadvantages of long calculation time and incomplete heatmap coverage. Therefore, this paper proposes an improved Score‐CAM method named FIMF Score‐CAM, which can fast integrate multiple features. Its contribution is reflected in two aspects: The weight of the feature map is directly calculated by using the feature template. Unlike Score‐CAM, this model greatly saves computation time because it only requires one convolutional calculation. Another contribution is that the feature map used to generate the heatmap integrates various semantic features of the local space, so that the heatmap of the object of interest can be generated with more complete coverage and better interpretation. The FIMF Score‐CAM is superior to the existing mainstream models in interpreting the visual performance and fairness indicators of the decision‐making, having more complete explanations of object classes and the advantage of faster calculation speed. |
Author | Meng, Bumin Li, Jing Li, Yongxing Luo, Lufeng Zhang, Dongbo |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-4002-2311 surname: Li fullname: Li, Jing organization: Xiangtan University – sequence: 2 givenname: Dongbo surname: Zhang fullname: Zhang, Dongbo organization: Xiangtan University – sequence: 3 givenname: Bumin orcidid: 0000-0002-1266-6913 surname: Meng fullname: Meng, Bumin email: mengbm@163.com organization: Xiangtan University – sequence: 4 givenname: Yongxing surname: Li fullname: Li, Yongxing organization: Shuozhou Branch of Shanxi Provincial Highway Bureau – sequence: 5 givenname: Lufeng surname: Luo fullname: Luo, Lufeng organization: Foshan University |
BookMark | eNp9kMlKBDEURYMoOG78gqyF1sypcieNrQ1OOKxDknqRSNlpkmrFnZ_gN_olVlsiIuIq4b57z-JsotVZmgFCu5TsUyLqgzjPbJ8ypckK2qBa0lGtlF79_st6HW2W8kCIrEklN1CaTM8nuPiU4f31bXx0fogntnQ_E-xsgQanGW6Tty1-XLRd7E8BbLfIgOOsg_tsu9g3Qsr4KZZFX1vGeZ6hGy4p4PHFxc02Wgu2LbDz9W6hu8nx7fh0dHZ5Mh0fnY0815KMaua0rYIEziwBKbgDrppKC-m49547pZ2rGWs8o6AdVaFRQG0lPVASeMW30HTgNsk-mHmOjza_mGSj-QxSvjc2d9G3YIRUDjThog5cWKJq5aRglROS0N6S6Fl7A8vnVEqG8M2jxCy1m6V286m9L5NfZR8HBV22sf17QofJc2zh5R-4mV5ds2HzAVj7mPQ |
CitedBy_id | crossref_primary_10_3389_fnbot_2024_1490198 crossref_primary_10_2298_CSIS230310047L crossref_primary_10_1007_s42979_024_03542_5 crossref_primary_10_1016_j_heliyon_2024_e30625 crossref_primary_10_1016_j_dsp_2025_105068 crossref_primary_10_1038_s41598_024_63659_8 |
Cites_doi | 10.1109/CVPRW50498.2020.00020 10.1109/WACV48630.2021.00362 10.1109/CVPR.2016.90 10.1109/WACV48630.2021.00047 10.1109/ICCV.2015.9 10.1109/ICCV.2017.74 10.1007/s11263-015-0816-y 10.1109/ICCV.2015.279 10.1007/978-3-319-46448-0_2 10.1109/WACV.2018.00097 10.1109/CVPR.2015.7298594 10.1109/WACV45572.2020.9093360 10.1109/CVPR.2016.494 10.1109/CVPR.2015.7298935 10.1109/ICCV.2017.371 10.1007/978-3-030-01234-2_49 10.1016/j.imavis.2019.03.003 10.1109/CVPR.2016.308 10.1109/TIP.2015.2487833 10.1016/j.tins.2011.02.003 10.1145/2939672.2939778 10.1109/CVPR.2019.00931 10.1109/CVPR.2016.319 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.12670 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 772 |
ExternalDocumentID | oai_doaj_org_article_456be70349f34a0696b5428b45015904 10_1049_ipr2_12670 IPR212670 |
Genre | article |
GrantInformation_xml | – fundername: Joint Fund for Regional Innovation and Development of NSFC funderid: U19A2083 – fundername: Natural Science Foundation of China funderid: 62003288 – fundername: Key Project of Guangdong Provincial Basic and Applied Basic Research Fund Joint Fund funderid: 2020B1515120050 – fundername: Natural Science Foundation of Hunan funderid: 2020JJ4090; 2020JJ5553 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PHGZM PHGZT PTHSS S0W WIN |
ID | FETCH-LOGICAL-c3750-92b7a8f5e32a0e543be36d8745b3ccc3b67bb922dc21e7b16fd6e1a85ce10f383 |
IEDL.DBID | 24P |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Tue Jul 01 04:55:45 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Wed Jan 22 16:16:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3750-92b7a8f5e32a0e543be36d8745b3ccc3b67bb922dc21e7b16fd6e1a85ce10f383 |
ORCID | 0000-0002-1266-6913 0000-0003-4002-2311 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12670 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_456be70349f34a0696b5428b45015904 crossref_primary_10_1049_ipr2_12670 crossref_citationtrail_10_1049_ipr2_12670 wiley_primary_10_1049_ipr2_12670_IPR212670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2015; 24 2012 2019; 86 2015; 115 2021 2020 2019 2018 2017 2016 2015 2011; 34 2014 2013 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Dabkowski P. (e_1_2_10_8_1) 2017 Krizhevsky A. (e_1_2_10_2_1) 2012 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – start-page: 618 year: 2017 end-page: 626 article-title: Grad‐cam: Visual explanations from deep networks via gradient‐based localization – volume: 86 start-page: 38 year: 2019 end-page: 44 article-title: Image caption model of double LSTM with scene factors publication-title: Image Vision Comput. – start-page: 21 year: 2016 end-page: 37 article-title: Single shot multi‐box detector – start-page: 6967 year: 2017 end-page: 6976 – volume: 24 start-page: 5706 issue: 12 year: 2015 end-page: 5722 article-title: Salient object detection: A benchmark publication-title: IEEE Trans. Image Process. – start-page: 801 year: 2018 end-page: 818 article-title: Encoder‐decoder with atrous separable convolution for semantic image segmentation – start-page: 9097 year: 2019 end-page: 9107 article-title: Interpretable and fine‐grained visual explanations for convolutional neural networks – start-page: 423 year: 2021 end-page: 432 article-title: Superpixels weighted by average gradients for explanations of cnns – year: 2018 – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – year: 2014 – start-page: 1135 year: 2016 end-page: 1144 article-title: Why should I trust you?”: Explaining the predictions of any classifier – volume: 34 start-page: 210 issue: 4 year: 2011 end-page: 224 article-title: Mechanisms of top‐down attention publication-title: Trends Neurosci. – year: 2012 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vision – start-page: 24 year: 2020 end-page: 25 article-title: Score‐cam: Score‐weighted visual explanations for convolutional neural networks – start-page: 972 year: 2020 end-page: 980 article-title: Ablation‐cam: Visual explanations for deep convolutional network via gradient‐free localization – start-page: 1 year: 2015 end-page: 9 article-title: Going deeper with convolutions – start-page: 1 year: 2015 end-page: 9 article-title: Ask your neurons: A neural‐based approach to answering questions about images – start-page: 2818 year: 2016 end-page: 2826 article-title: Rethinking the inception architecture for computer vision – start-page: 2296 year: 2015 end-page: 2304 – year: 2020 – start-page: 2921 year: 2016 end-page: 2929 article-title: Learning deep features for discriminative localization – start-page: 2425 year: 2015 end-page: 2433 article-title: VQA: Visual question answering – start-page: 3156 year: 2015 end-page: 3164 article-title: Show and tell: A neural image caption generator – year: 2014 article-title: Very deep convolutional networks for large‐scale image recognition – start-page: 3429 year: 2017 end-page: 3437 article-title: Interpretable explanations of black boxes by meaningful perturbation – start-page: 4565 year: 2016 end-page: 4574 article-title: DenseCap: Fully convolutional localization networks for dense captioning – start-page: 839 year: 2018 end-page: 847 article-title: Grad‐cam++: Generalized gradient‐based visual explanations for deep convolutional networks – start-page: 3579 year: 2021 end-page: 3587 article-title: EVET: Enhancing visual explanations of deep neural networks using image transformations – year: 2013 – start-page: 6967 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_10_8_1 – ident: e_1_2_10_16_1 doi: 10.1109/CVPRW50498.2020.00020 – ident: e_1_2_10_19_1 doi: 10.1109/WACV48630.2021.00362 – ident: e_1_2_10_5_1 – ident: e_1_2_10_30_1 – ident: e_1_2_10_31_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_20_1 doi: 10.1109/WACV48630.2021.00047 – ident: e_1_2_10_26_1 doi: 10.1109/ICCV.2015.9 – ident: e_1_2_10_10_1 – ident: e_1_2_10_14_1 doi: 10.1109/ICCV.2017.74 – ident: e_1_2_10_28_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_10_24_1 doi: 10.1109/ICCV.2015.279 – ident: e_1_2_10_3_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_10_15_1 doi: 10.1109/WACV.2018.00097 – ident: e_1_2_10_32_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_10_17_1 doi: 10.1109/WACV45572.2020.9093360 – ident: e_1_2_10_22_1 doi: 10.1109/CVPR.2016.494 – ident: e_1_2_10_23_1 doi: 10.1109/CVPR.2015.7298935 – ident: e_1_2_10_9_1 doi: 10.1109/ICCV.2017.371 – ident: e_1_2_10_18_1 – ident: e_1_2_10_4_1 doi: 10.1007/978-3-030-01234-2_49 – ident: e_1_2_10_21_1 doi: 10.1016/j.imavis.2019.03.003 – ident: e_1_2_10_33_1 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_10_7_1 – ident: e_1_2_10_29_1 doi: 10.1109/TIP.2015.2487833 – ident: e_1_2_10_25_1 – ident: e_1_2_10_6_1 – start-page: 1097—1105 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: e_1_2_10_2_1 – ident: e_1_2_10_27_1 doi: 10.1016/j.tins.2011.02.003 – ident: e_1_2_10_11_1 doi: 10.1145/2939672.2939778 – ident: e_1_2_10_12_1 doi: 10.1109/CVPR.2019.00931 – ident: e_1_2_10_13_1 doi: 10.1109/CVPR.2016.319 |
SSID | ssj0059085 |
Score | 2.3216817 |
Snippet | The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good discrimination and... Abstract The interpretability of the model is a hot issue in the field of computer vision. Score‐CAM is a kind of interpretable CAM method with good... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 761 |
SubjectTerms | class activation mapping computer vision deep network model interpretation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xfpiQS8Kscm-kvWmxWCFFlELvYV9TKAgbbHVsz_B3-gvcXeTSguiF29hM7BhZrLfDJl8H0KnQJmFkpFIKg6uQVE20szoSDKHBymxNguNYrcnbvvsbsAHC1JffiasogeuHNdyAK8h9SwqJWUqFlJo7kpmzbgDMlkxgTrMmzdT1Rnshbx5-BXSi8gLLufEpEy2hpMXcpEQ4eWJF6AoMPYvV6gBYvINtFbXhviqeqZNtAKjLbRe14m4fgun22icd7o5nnoCys_3j_ZV9xLnajpbXMEenSwej3AAKxzmBt2tEgKRJ56zRLioYFe24rfh9NWZDZdGEPG4xO1e73EH9fObp_ZtVAsnRIa6CiCSRKcqKzlQomLgjGqgwnpie02NMVSLVGtJiDUkgVQnorQCEpVxA0lcup51FzVG4xHsIaxdvABomYFUzNBE88ydkVbFsU1jRUkTnc19WJiaVdyLWzwX4es2k4X3dxH83UQn37aTikvjR6trH4pvC89_HRZcVhR1VhR_ZUUTnYdA_rJP0bl_IOFq_z92PECrXom-Gug-RI3ZyyscuXplpo9Dan4BhTvlqw priority: 102 providerName: Directory of Open Access Journals |
Title | FIMF score‐CAM: Fast score‐CAM based on local multi‐feature integration for visual interpretation of CNNS |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12670 https://doaj.org/article/456be70349f34a0696b5428b45015904 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEF5CcsklbdKUum3MQnppQa20f9KGXBwTkQRsQtpAbmJ_RsFQrGA7PfcR-ox9ks6uJLeGUMhNrEYIdjQz32hnviHkA3DhoRYs0UYCJijGJ1Y4m2iB8SBn3hcxUZxM1cWtuLqTd1vktO-Fafkh1j_cgmVEfx0M3Nh2CgmCWlTi7GHBPmdM5Ziw74Te2lDQx8R174fDMG8Z2yHDIHkldU9OKvSXv89uhKPI2r-JUmOYKV-SvQ4f0lGr0H2yBfMD8qLDirSzxOUr0pSXk5IuAwnl75-_xqPJCS3NcvXvCg0RytNmTmPAorF2EG_VEMk8ac8UgZqhCF3pj9nyEcVmG2WItKnpeDr9ekhuy_Nv44ukG56QOI4oINHM5qaoJXBmUpCCW-DKB3J7y51z3KrcWs2YdyyD3Gaq9goyU0gHWVpj3vqabM-bObwh1KLOAHhdgDbC8czKAv2kN2nq89RwNiAf-z2sXMcsHgZcfK_iCbfQVdjvKu73gByvZR9aPo0npc6CKtYSgQM7LjSL-6ozqQqhn4U88OvUXJhUaWUlJlNWSIQ4OhUD8ikq8j_vqS6vb1i8evsc4XdkN0ydb4u335Pt1eIRjhCbrOwwfoLDmNn_AVTr4R4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5V7aFcgBYQAVpWggtIBnv_7O0tjWol0EQIGlRxsfZnjCKhuEpSzjwCz8iTsLN2ApGqSr1Z67Es7ezMfLM7-w0hr4ELD7VgiTYSQoJifGKFs4kWIR7kzPsiJorjiRpOxYdLednV5uBdmJYfYrPhhpYR_TUaOG5ItwmnQJLM2dWCvcuYykPGvoewJizqvf7X6bfp2hVjP28Zb0RiL3kl9ZqfVOj3_77eikiRuH8bqMZIUz4k9zuISPutTg_IDswPyYMOLtLOGJePSFOOxiVdIg_ln1-_B_3xCS3NcvX_CMUg5WkzpzFm0Vg-GF7VEPk86ZosIiiHBvRKf86W10FstlWJSJuaDiaTL4_JtDy7GAyTrn9C4ngAAolmNjdFLYEzk4IU3AJXHvntLXfOcatyazVj3rEMcpup2ivITCEdZGkdUtcnZHfezOEpoTaoDYDXBWgjHM-sLIKr9CZNfZ4aznrkzXoOK9eRi2OPix9VPOQWusL5ruJ898irjexVS6lxo9QpqmIjgTTYcaBZfK86q6oC-rOQI8VOzYVJlVZWhnzKChlQjk5Fj7yNirzlP9Xo02cWn57dRfgl2R9ejM-r89Hk43NyD5vQt7XcL8juanENRwGqrOxxtyD_ApW85WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFcQXtVbx_KgL9kUhmuxXstKX62no2d5R1JPiS9hPOZDLcXf12T_Bv7F_ibub5OyBFPoWNhMCM5mZ32RnfwNwaAk11lGcCMmsL1CkSRTVKhHU54McG1PEQnE84SdT-umCXezAUXcWpuGH2PxwC54R43Vw8IVxTb1JA0fmbLHEbzPMc1-w7zKfltIe7A6-Tb9Pu0gcxnmzeCAyjJLnTHT0pFS8-_f0VkKKvP3bODUmmvIB3GsRIho0Jt2DHTt_CPdbtIhaX1ztQ12OxiVaBRrKq99_hoPxe1TK1fr6Cgo5yqB6jmLKQrF70N9yNtJ5oo4rwtsGefCKfs1Wl15sttWIiGqHhpPJl0cwLT9-HZ4k7fiERBOPAxKBVS4LxyzBMrWMEmUJN4HeXhGtNVE8V0pgbDTObK4y7gy3mSyYtlnqfOX6GHrzem6fAFLeatYSV1ghqSaZYoWPlEamqclTSXAfXnc6rHTLLR5GXPys4h43FVXQdxX13YdXG9lFw6jxX6njYIqNRGDBjgv18kfVOlXlwZ-yeWDYcYTKlAuumC-nFGUe5IiU9uFNNOQN76lG559xvHp6G-GXcOf8Q1mdjSanz-BuGEHfdHI_h956eWlfeKCyVgft9_gXKhzkhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FIMF+score%E2%80%90CAM%3A+Fast+score%E2%80%90CAM+based+on+local+multi%E2%80%90feature+integration+for+visual+interpretation+of+CNNS&rft.jtitle=IET+image+processing&rft.au=Li%2C+Jing&rft.au=Zhang%2C+Dongbo&rft.au=Meng%2C+Bumin&rft.au=Li%2C+Yongxing&rft.date=2023-02-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=3&rft.spage=761&rft.epage=772&rft_id=info:doi/10.1049%2Fipr2.12670&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |