Numerical study on a porous material subject to SiC particles deposition, using OpenFOAM and sensitivity analysis technique: Effect of clogging evolution on the thermal performances
•Particles’ deposition effect on the thermal efficiency of porous materials.•Numerical study of the involved phenomena using a homemade solver in OpenFOAM.•Prediction of clogging states using global sensitivity analysis approach.•Heat exchange is mainly affected by solid thermal conductivity and flu...
Saved in:
Published in | Chemical engineering science Vol. 212; p. 115321 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
02.02.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Particles’ deposition effect on the thermal efficiency of porous materials.•Numerical study of the involved phenomena using a homemade solver in OpenFOAM.•Prediction of clogging states using global sensitivity analysis approach.•Heat exchange is mainly affected by solid thermal conductivity and fluid velocity.•Clogging evolution affects substantially the cooling process by transpiration.
The high thermal load endured by scramjets can cause many damages to the combustion chamber walls of the engine which requires an efficient cooling of the latter. The method of transpiration cooling has shown to be an efficient technique of heat management, by sending a cold fluid through the porous walls of the combustion chamber to cool them. Various parameters could affect the hydrodynamic and thermal behaviours involved at the porous wall, such as the thermal conductivities, the material porosity, the velocity of the flow and other inputs. The present work consists of two-dimensional numerical study of the thermal behaviour of bronze-based porous medium (BR30) using an OpenFOAM house-code. The porous matrix is crossed by water as fluid cooling in laminar flow, while, constant temperatures are applied in contact of combustion chamber. The Local Thermal Non-Equilibrium (LTNE) is considered in the internal field. The developed code was validated against both experimental and numerical results from the literature. Afterwards, two clogged porous media (clogging level of 21% and 32%) are investigated from the thermal and hydrodynamic point of view. Then after, both porous mediums are compared to the nominal configuration (without clogging). The results have shown that the clogging of the material affected not only the hydrodynamic behaviour of the flow but also the thermal properties of the material. Moreover, it has been shown that the clogged materials heated quicker and more that the clean one, while the two clogged materials didn’t show a noticeable difference. To understand the effect of different parameters affecting the cooling system efficiency, a global sensitivity analysis is then conducted to determine the most important parameter by varying each one in a range of 10%. The solid thermal conductivity as well as the fluid velocity are the most influencing parameters on the temperature. The interaction of the parameters has also been studied and shown that the interactions of the fluid velocity, solid thermal conductivity as well as the porosity with other parameters have more effect on the resulting temperature. |
---|---|
AbstractList | •Particles’ deposition effect on the thermal efficiency of porous materials.•Numerical study of the involved phenomena using a homemade solver in OpenFOAM.•Prediction of clogging states using global sensitivity analysis approach.•Heat exchange is mainly affected by solid thermal conductivity and fluid velocity.•Clogging evolution affects substantially the cooling process by transpiration.
The high thermal load endured by scramjets can cause many damages to the combustion chamber walls of the engine which requires an efficient cooling of the latter. The method of transpiration cooling has shown to be an efficient technique of heat management, by sending a cold fluid through the porous walls of the combustion chamber to cool them. Various parameters could affect the hydrodynamic and thermal behaviours involved at the porous wall, such as the thermal conductivities, the material porosity, the velocity of the flow and other inputs. The present work consists of two-dimensional numerical study of the thermal behaviour of bronze-based porous medium (BR30) using an OpenFOAM house-code. The porous matrix is crossed by water as fluid cooling in laminar flow, while, constant temperatures are applied in contact of combustion chamber. The Local Thermal Non-Equilibrium (LTNE) is considered in the internal field. The developed code was validated against both experimental and numerical results from the literature. Afterwards, two clogged porous media (clogging level of 21% and 32%) are investigated from the thermal and hydrodynamic point of view. Then after, both porous mediums are compared to the nominal configuration (without clogging). The results have shown that the clogging of the material affected not only the hydrodynamic behaviour of the flow but also the thermal properties of the material. Moreover, it has been shown that the clogged materials heated quicker and more that the clean one, while the two clogged materials didn’t show a noticeable difference. To understand the effect of different parameters affecting the cooling system efficiency, a global sensitivity analysis is then conducted to determine the most important parameter by varying each one in a range of 10%. The solid thermal conductivity as well as the fluid velocity are the most influencing parameters on the temperature. The interaction of the parameters has also been studied and shown that the interactions of the fluid velocity, solid thermal conductivity as well as the porosity with other parameters have more effect on the resulting temperature. |
ArticleNumber | 115321 |
Author | Gascoin, N. El Tabach, E. Akridiss Abed, S. Chetehouna, K. Kadiri, M.S. Settar, A. |
Author_xml | – sequence: 1 givenname: S. surname: Akridiss Abed fullname: Akridiss Abed, S. email: safaa.akridiss-abed@utc.fr organization: INSA Centre Val de Loire, Univ. Orléans, PRISME EA 4229, F-18020 Bourges, France – sequence: 2 givenname: A. surname: Settar fullname: Settar, A. organization: INSA Centre Val de Loire, Univ. Orléans, PRISME EA 4229, F-18020 Bourges, France – sequence: 3 givenname: K. surname: Chetehouna fullname: Chetehouna, K. organization: INSA Centre Val de Loire, Univ. Orléans, PRISME EA 4229, F-18020 Bourges, France – sequence: 4 givenname: M.S. surname: Kadiri fullname: Kadiri, M.S. organization: LIPIM Laboratory, ENSA Khouribga, University of Sultan Moulay Slimane, Khouribga, Morocco – sequence: 5 givenname: E. surname: El Tabach fullname: El Tabach, E. organization: IUT of Bourges, Univ. Orléans, PRISME EA 4229, F-18020 Bourges, France – sequence: 6 givenname: N. surname: Gascoin fullname: Gascoin, N. organization: INSA Centre Val de Loire, Univ. Orléans, PRISME EA 4229, F-18020 Bourges, France |
BackLink | https://univ-orleans.hal.science/hal-02347787$$DView record in HAL |
BookMark | eNp9kc1uGyEQx1GVSnXSPkBvXCt1Hdgv2PZkWfmS3PqQ9IxYdrCx1rAF1pIfrO9XkNtLDjkgGGZ-M_OfuUZX1llA6DMlS0poe3tYKgjLktBuSWlTlfQdWlDOqqKuSXOFFoSQrigb0n1A1yEckskYJQv05-d8BG-UHHGI83DGzmKJJ-fdHPBRxuTLrrk_gIo4Ovxs1niSPho1QsADTC6YaJz9iudg7A5vJ7D329UPLO2AA9jsPZl4TrYcz8EEHEHtrfk9wzd8p3VO6zRWo9vtMg8nN845Ye4k7iEff0w9TOC1Sy-bhH5E77UcA3z6d9-gX_d3L-vHYrN9eFqvNoWqWB0LzRsuadmzgTZtQ1ote6oU57ymtFeaME3KivR9VVZDz3nbq5byWsu2U3XfNbq6QV8uefdyFJM3R-nPwkkjHlcbkf8SXzPG2YmmWHaJVd6F4EELZaLMSqKXZhSUiLwpcRBJgMibEpdNJZK-Iv-Xeov5fmEgyT8Z8CIoA2k2g_FppGJw5g36LyISsYk |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2024_124067 crossref_primary_10_1016_j_ces_2021_116924 crossref_primary_10_3390_fire5060176 crossref_primary_10_1016_j_paerosci_2020_100646 crossref_primary_10_1016_j_applthermaleng_2020_115526 crossref_primary_10_1016_j_applthermaleng_2024_124633 crossref_primary_10_1016_j_ces_2020_115994 crossref_primary_10_1016_j_csite_2022_102465 crossref_primary_10_1016_j_petsci_2022_10_008 crossref_primary_10_1016_j_applthermaleng_2024_124619 crossref_primary_10_1016_j_applthermaleng_2025_125571 |
Cites_doi | 10.1177/002199838702100602 10.1016/j.enconman.2013.10.047 10.1016/j.crte.2007.07.012 10.1016/j.ijthermalsci.2015.03.007 10.1016/j.ijhydene.2018.04.215 10.1016/j.ijhydene.2015.04.100 10.1016/S1359-4311(03)00145-5 10.1016/j.ast.2018.05.006 10.1016/j.crte.2013.09.001 10.1016/j.csfs.2015.05.003 10.1016/j.enconman.2012.12.023 10.1016/j.ijheatmasstransfer.2010.01.041 10.2514/1.T4262 10.1016/j.ijthermalsci.2011.07.008 10.1016/S0196-8904(96)00142-2 10.1615/AtoZ.f.flow_of_fluids 10.1051/meca/2015035 10.1615/JPorMedia.v10.i6.30 10.1016/j.ijmultiphaseflow.2010.09.001 10.1088/1742-6596/877/1/012056 10.1115/1.2826001 10.1016/j.fuproc.2008.07.004 10.1088/0143-0807/32/6/011 10.1016/j.ijheatmasstransfer.2016.11.074 10.1016/j.ijthermalsci.2017.07.008 10.1016/j.enconman.2014.05.074 10.1016/j.expthermflusci.2018.05.017 10.1016/j.ijthermalsci.2011.10.018 10.1080/10407782.2011.549081 10.1016/j.ces.2018.09.045 10.1016/j.applthermaleng.2017.03.010 10.2514/1.J050698 10.1002/tal.214 10.1007/978-94-007-0753-5_2651 10.1615/JPorMedia.v15.i8.10 10.12732/ijpam.v96i2.7 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Attribution - NonCommercial |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.ces.2019.115321 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4405 |
ExternalDocumentID | oai_HAL_hal_02347787v1 10_1016_j_ces_2019_115321 S0009250919308115 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- RIG SC5 SEW SSH T9H VH1 WUQ Y6R ZY4 1XC VOOES |
ID | FETCH-LOGICAL-c374t-f858a12b7d156506fab1cc888411bcf07f0230bb323db886bc6184fa69c4b95f3 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Wed May 07 08:53:06 EDT 2025 Tue Jul 01 03:14:14 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 23 02:49:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous media OpenFOAM Global sensitivity analysis Numerical heat transfer Particle clogging Transpiration cooling |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-f858a12b7d156506fab1cc888411bcf07f0230bb323db886bc6184fa69c4b95f3 |
ORCID | 0000-0002-6434-5716 |
OpenAccessLink | https://univ-orleans.hal.science/hal-02347787 |
ParticipantIDs | hal_primary_oai_HAL_hal_02347787v1 crossref_citationtrail_10_1016_j_ces_2019_115321 crossref_primary_10_1016_j_ces_2019_115321 elsevier_sciencedirect_doi_10_1016_j_ces_2019_115321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-02 |
PublicationDateYYYYMMDD | 2020-02-02 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Pavlyukevich, N.V., Polezhaev, Y.V., 2011. Transpiration cooling [WWW Document]. Akridiss, El Tabach, Chetehouna, Gascoin, Kadiri (b0010) 2018; 98 Taddeo, Gascoin, Fedioun, Chetehouna, Lamoot, Fau (b0240) 2015 Calmidi, Mahajan (b0050) 1999; 121 Langener, Von Wolfersdorf, Selzer, Hald (b0135) 2012; 54 Zhou, Lin (b0280) 2013 Vu (b0255) 2012 Settar, Abboudi, Lebaal (b0220) 2018 Mohamed, D., 2014. Un modèle de propagation de feux de végétation à grande échelle. UNIVERSITE D’AIX-MARSEILLE. Kasaeian, Danesh, Mahian, Kolsi, Chamkha, Wongwises, Pop (b0120) 2017; 107 Akridiss, El Tabach, Chetehouna, Gascoin, Kadiri (b0015) 2018; 78 Xu, Xing, Wang, Cheng (b0275) 2019; 195 Alomar, Mendes, Trimis, Ray (b0025) 2015; 94 Feng, Jiang, Li, Zhang, Qin, Cao, Huang (b0065) 2017; 119 Settar, Nebbali, Madani, Abboudi (b0230) 2015; 40 Feng, Yu, Zou, Xu (b0070) 2007; 10 Saltelli, A., 2014. Global sensitivity analysis : An introduction Global Sensitivity Analysis : An Introduction. Jopek, Strek (b0115) 2012 Milani Shirvan, Mirzakhanlari, Kalogirou, Öztop, Mamourian (b0155) 2017; 121 Xin, Rao, You, Song, Han (b0270) 2014; 78 . Rahli, O., 1997. Etude des milieux poreux constitués de fibres rigides : Empilements, écoulements et transferts de chaleur. Rahli, Bennacer, Bouhadef, Ameziani (b0190) 2011; 59 Das, Mukherjee, Muralidhar (b0055) 2018 Saltelli, Tarantola, Campolongo, Ratto (b0215) 2004 Alem, A., Abdul-ghadie Elkawafi, A., Benamar, A., Wang, H., Ahfir, N.-D., 2009. Transport et rétention de particules d’argile dans un milieu poreux saturé. In: Colloque International Sols Non Saturés et Environnement « UNSATlemcen09 ». Tlemcen. Polezhaev (b0180) 1997; 38 Boudenne, A., 2003. Étude expérimentale et théorique des propriétés thermophysiques de matériaux composites à matrice polymère. Paris XII Val de Marne. Soulaine, C., 2013. Initiation à la CFD open-source avec le code OpenFOAM® -Tome I : Présentation générale du code, premières simulations et premiers programmes [WWW Document]. URL Settar, Nebbali, Madani, Abboudi (b0225) 2015; 16 Zukauskas (b0285) 1987; vol. 18 Andoh, Lips (b0030) 2003; 23 Nield, Bejan (b0170) 2006 Ikni, Benamar, Kadri, Ahfir, Wang (b0105) 2013; 345 Greenshields, C.J., 2017. OpenFOAM User Guide Version 6. OpenFOAM Foundation Ltd. Mahmoudi, Maerefat (b0145) 2011; 50 Langener, Wolfersdorf, Steelant (b0140) 2012; 49 Goupy, J., 2006. Tutoriel les plans d’expériences. Gascoin (b0075) 2011; 1 Hasselman, Johnson (b0100) 1987; 21 Lachaud, Mansour (b0130) 2014; 28 Gascoin, Fau, Gillard, Kuhn, Bouchez, Steelant (b0080) 2012; 15 Saito, de Lemos (b0205) 2010; 53 Tosun (b0245) 2007 Martin, H., n.d. The Generalized Leveque equation (GLE) and its use to predict heat and mass transfer from fluid friction. In: 20th National Heat Transfer Conference. pp. 21–29. Jasak, Jemcov, Tukovic (b0110) 2007 Romagnosi, Gascoin, El-Tabach, Fedioun, Bouchez, Steelant (b0200) 2013; 68 Wijaya, Purqon (b0260) 2017; 877 Biasi, Leplat, Feyel (b0040) 2013 Gascoin, Gillard, Bernard, Bouchez (b0085) 2008; 89 Benamar, Ahfir, Wang, Alem (b0035) 2007; 339 Khan, Yousafzai, Chohan, Zeb, Zaman, Jung (b0125) 2014; 96 Dehghan, Jamal-Abad, Rashidi (b0060) 2014; 85 Adou, Brou, Porterie (b0005) 2015; 4 Richardson, S.M., n.d. Flow of fluids, in: A-to-Z Guide to Thermodynamics. Heat and Mass Transfer, and Fluids Engineering. Begellhouse. Vadasz (b0250) 2015; 1–78 Wong, Ghojel (b0265) 2003; 12 Morio (b0165) 2011; 32 Adou (10.1016/j.ces.2019.115321_b0005) 2015; 4 Wijaya (10.1016/j.ces.2019.115321_b0260) 2017; 877 Ikni (10.1016/j.ces.2019.115321_b0105) 2013; 345 Xu (10.1016/j.ces.2019.115321_b0275) 2019; 195 Jopek (10.1016/j.ces.2019.115321_b0115) 2012 Saito (10.1016/j.ces.2019.115321_b0205) 2010; 53 Akridiss (10.1016/j.ces.2019.115321_b0015) 2018; 78 Morio (10.1016/j.ces.2019.115321_b0165) 2011; 32 10.1016/j.ces.2019.115321_b0195 Settar (10.1016/j.ces.2019.115321_b0225) 2015; 16 Das (10.1016/j.ces.2019.115321_b0055) 2018 10.1016/j.ces.2019.115321_b0235 Gascoin (10.1016/j.ces.2019.115321_b0075) 2011; 1 10.1016/j.ces.2019.115321_b0150 Romagnosi (10.1016/j.ces.2019.115321_b0200) 2013; 68 Polezhaev (10.1016/j.ces.2019.115321_b0180) 1997; 38 Settar (10.1016/j.ces.2019.115321_b0230) 2015; 40 Alomar (10.1016/j.ces.2019.115321_b0025) 2015; 94 Dehghan (10.1016/j.ces.2019.115321_b0060) 2014; 85 Langener (10.1016/j.ces.2019.115321_b0140) 2012; 49 Hasselman (10.1016/j.ces.2019.115321_b0100) 1987; 21 Mahmoudi (10.1016/j.ces.2019.115321_b0145) 2011; 50 10.1016/j.ces.2019.115321_b0045 Settar (10.1016/j.ces.2019.115321_b0220) 2018 Feng (10.1016/j.ces.2019.115321_b0065) 2017; 119 Kasaeian (10.1016/j.ces.2019.115321_b0120) 2017; 107 10.1016/j.ces.2019.115321_b0160 Vadasz (10.1016/j.ces.2019.115321_b0250) 2015; 1–78 Gascoin (10.1016/j.ces.2019.115321_b0085) 2008; 89 Wong (10.1016/j.ces.2019.115321_b0265) 2003; 12 Zukauskas (10.1016/j.ces.2019.115321_b0285) 1987; vol. 18 Benamar (10.1016/j.ces.2019.115321_b0035) 2007; 339 Calmidi (10.1016/j.ces.2019.115321_b0050) 1999; 121 Khan (10.1016/j.ces.2019.115321_b0125) 2014; 96 10.1016/j.ces.2019.115321_b0175 Gascoin (10.1016/j.ces.2019.115321_b0080) 2012; 15 10.1016/j.ces.2019.115321_b0210 Taddeo (10.1016/j.ces.2019.115321_b0240) 2015 Andoh (10.1016/j.ces.2019.115321_b0030) 2003; 23 Milani Shirvan (10.1016/j.ces.2019.115321_b0155) 2017; 121 Nield (10.1016/j.ces.2019.115321_b0170) 2006 Saltelli (10.1016/j.ces.2019.115321_b0215) 2004 Lachaud (10.1016/j.ces.2019.115321_b0130) 2014; 28 10.1016/j.ces.2019.115321_b0090 Jasak (10.1016/j.ces.2019.115321_b0110) 2007 Feng (10.1016/j.ces.2019.115321_b0070) 2007; 10 Xin (10.1016/j.ces.2019.115321_b0270) 2014; 78 10.1016/j.ces.2019.115321_b0095 Vu (10.1016/j.ces.2019.115321_b0255) 2012 Zhou (10.1016/j.ces.2019.115321_b0280) 2013 Rahli (10.1016/j.ces.2019.115321_b0190) 2011; 59 Tosun (10.1016/j.ces.2019.115321_b0245) 2007 Akridiss (10.1016/j.ces.2019.115321_b0010) 2018; 98 Langener (10.1016/j.ces.2019.115321_b0135) 2012; 54 10.1016/j.ces.2019.115321_b0020 10.1016/j.ces.2019.115321_b0185 Biasi (10.1016/j.ces.2019.115321_b0040) 2013 |
References_xml | – volume: 32 start-page: 1577 year: 2011 end-page: 1583 ident: b0165 article-title: Global and local sensitivity analysis methods for a physical system publication-title: Eur. J. Phys. – volume: 59 start-page: 349 year: 2011 end-page: 371 ident: b0190 article-title: Three-dimensional mixed convection heat and mass transfer in a rectangular duct: Case of longitudinal rolls publication-title: Num. Heat Transfer – reference: Soulaine, C., 2013. Initiation à la CFD open-source avec le code OpenFOAM® -Tome I : Présentation générale du code, premières simulations et premiers programmes [WWW Document]. URL – year: 2012 ident: b0115 article-title: Optimization of the effective thermal conductivity of a composite publication-title: Convect. Conduct. Heat Transfer – volume: 121 start-page: 466 year: 1999 end-page: 471 ident: b0050 article-title: The effective thermal conductivity of high porosity fibrous metal foams publication-title: J. Heat Transfer – volume: 195 start-page: 462 year: 2019 end-page: 483 ident: b0275 article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications publication-title: Chem. Eng. Sci. – volume: 121 start-page: 124 year: 2017 end-page: 137 ident: b0155 article-title: Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium publication-title: Int. J. Therm. Sci. – reference: Martin, H., n.d. The Generalized Leveque equation (GLE) and its use to predict heat and mass transfer from fluid friction. In: 20th National Heat Transfer Conference. pp. 21–29. – volume: 78 start-page: 1 year: 2014 end-page: 7 ident: b0270 article-title: Numerical investigation of vapor-liquid heat and mass transfer in porous media publication-title: Energy Convers. Manage. – reference: Mohamed, D., 2014. Un modèle de propagation de feux de végétation à grande échelle. UNIVERSITE D’AIX-MARSEILLE. – volume: 16 start-page: 504 year: 2015 ident: b0225 article-title: Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium publication-title: Mech. Ind. – volume: 53 start-page: 2424 year: 2010 end-page: 2433 ident: b0205 article-title: A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media publication-title: Int. J. Heat Mass Transf. – volume: 21 start-page: 508 year: 1987 end-page: 515 ident: b0100 article-title: Effective thermal conductivity of composites with interfacial thermal barrier resistance publication-title: J. Compos. Mater. – reference: Greenshields, C.J., 2017. OpenFOAM User Guide Version 6. OpenFOAM Foundation Ltd. – volume: 345 start-page: 392 year: 2013 end-page: 400 ident: b0105 article-title: Particle transport within water-saturated porous media: Effect of pore size on retention kinetics and size selection publication-title: C.R. Geosci. – volume: 23 start-page: 1947 year: 2003 end-page: 1958 ident: b0030 article-title: Prediction of porous walls thermal protection by effusion or transpiration cooling. publication-title: An analytical approachAppl. Therm. Eng. – volume: 339 start-page: 674 year: 2007 end-page: 681 ident: b0035 article-title: Particle transport in a saturated porous medium: Pore structure effects publication-title: C.R. Geosci. – start-page: 1 year: 2007 end-page: 20 ident: b0110 article-title: OpenFOAM : A C++ library for complex physics simulations publication-title: International Workshop on Coupled Methods in Numerical Dynamics m – volume: 94 start-page: 228 year: 2015 end-page: 241 ident: b0025 article-title: Simulation of complete liquid-vapour phase change process inside porous evaporator using local thermal non-equilibrium model publication-title: Int. J. Therm. Sci. – volume: 119 start-page: 650 year: 2017 end-page: 658 ident: b0065 article-title: Numerical study on the influences of heat and mass transfers on the pyrolysis of hydrocarbon fuel in mini-channel publication-title: Appl. Therm. Eng. – reference: Goupy, J., 2006. Tutoriel les plans d’expériences. – reference: Rahli, O., 1997. Etude des milieux poreux constitués de fibres rigides : Empilements, écoulements et transferts de chaleur. – year: 2004 ident: b0215 article-title: Sensitivity analysis practice: A guide to assessing scientific models publication-title: Reliability Engineering and System Safety – volume: 54 start-page: 70 year: 2012 end-page: 81 ident: b0135 article-title: Experimental investigations of transpiration cooling applied to C/C material publication-title: Int. J. Therm. Sci. – volume: 78 start-page: 553 year: 2018 end-page: 558 ident: b0015 article-title: Numerical modeling of combustion chamber material permeability change publication-title: Aerosp. Sci. Technol. – volume: 12 start-page: 83 year: 2003 end-page: 92 ident: b0265 article-title: Spreadsheet method for temperature calculation of unprotected steel work subject to fire publication-title: Struct. Des. Tall Special Build. – volume: 89 start-page: 1416 year: 2008 end-page: 1428 ident: b0085 article-title: Characterisation of coking activity during supercritical hydrocarbon pyrolysis publication-title: Fuel Process. Technol. – volume: vol. 18 start-page: 93 year: 1987 end-page: 106 ident: b0285 article-title: Heat transfer from tubes in crossflow publication-title: Advances in heat transfer – volume: 85 start-page: 264 year: 2014 end-page: 271 ident: b0060 article-title: Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers publication-title: Energy Convers. Manage. – volume: 10 start-page: 551 year: 2007 end-page: 568 ident: b0070 article-title: A generalized model for the effective thermal conductivity of unsaturated porous media based on self-similarity publication-title: J. Porous Media – volume: 50 start-page: 2386 year: 2011 end-page: 2401 ident: b0145 article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition publication-title: Int. J. Therm. Sci. – year: 2015 ident: b0240 article-title: High-End Experiments on Regenerative Cooling: Test Bench Design publication-title: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia – reference: Boudenne, A., 2003. Étude expérimentale et théorique des propriétés thermophysiques de matériaux composites à matrice polymère. Paris XII Val de Marne. – volume: 1–78 year: 2015 ident: b0250 article-title: Fluid flow and heat transfer in rotating porous media publication-title: Fluid Flow Heat Transfer Rotat. Porous Media – volume: 4 start-page: 11 year: 2015 end-page: 18 ident: b0005 article-title: Modeling wildland fire propagation using a semi-physical network model publication-title: Case Stud. Fire Saf. – volume: 96 start-page: 235 year: 2014 end-page: 247 ident: b0125 article-title: Exact solutions of Navier Stokes equations in porous media publication-title: Int. J. Pure Appl. Math. – year: 2013 ident: b0280 article-title: Global sensitivity analysis publication-title: Choice Rev. Online – start-page: 15 year: 2018 end-page: 63 ident: b0055 article-title: Equations governing flow and transport in porous media publication-title: Modeling Transport Phenomena in Porous Media with Applications – volume: 38 start-page: 1123 year: 1997 end-page: 1133 ident: b0180 article-title: The transpiration cooling for blades of high temperatures gas turbine publication-title: Energy Convers. Manage. – volume: 49 start-page: 1409 year: 2012 end-page: 1419 ident: b0140 article-title: Experimental investigations on transpiration cooling for scramjet applications using different coolants publication-title: AIAA Journal – reference: Pavlyukevich, N.V., Polezhaev, Y.V., 2011. Transpiration cooling [WWW Document]. – volume: 877 start-page: 1 year: 2017 end-page: 10 ident: b0260 article-title: Simulation of fluid flow and heat transfer in porous medium using Lattice Boltzmann method publication-title: J. Phys. Conf. Ser. – start-page: 137 year: 2006 ident: b0170 article-title: Heat transfer through a porous medium publication-title: J. Heat Transfer – volume: 68 start-page: 63 year: 2013 end-page: 73 ident: b0200 article-title: Pyrolysis in porous media: Part 1. Numerical model and parametric study publication-title: Energy Convers. Manage. – volume: 28 start-page: 191 year: 2014 end-page: 202 ident: b0130 article-title: Porous-material analysis toolbox based on OpenFOAM and applications publication-title: J. Thermodynam. Heat Transfer – start-page: 59 year: 2007 end-page: 115 ident: b0245 article-title: Evaluation of transfer coefficients: Engineering correlations publication-title: Modeling in Transport Phenomena – year: 2013 ident: b0040 article-title: Transferts de chaleur et de masse dans les composites fibres-polymère soumis au feu publication-title: Société Française de La Thermique. – volume: 15 start-page: 705 year: 2012 end-page: 720 ident: b0080 article-title: Comparison of two permeation test benches and two determination methods for Darcy’s and Forchheimer’s permeabilities publication-title: J. Porous Media – year: 2018 ident: b0220 article-title: Effect of inert metal foam matrices on hydrogen production intensification of methane steam reforming process in wall-coated reformer publication-title: Int. J. Hydrogen Energy – reference: . – reference: Richardson, S.M., n.d. Flow of fluids, in: A-to-Z Guide to Thermodynamics. Heat and Mass Transfer, and Fluids Engineering. Begellhouse. – volume: 107 start-page: 778 year: 2017 end-page: 791 ident: b0120 article-title: International Journal of Heat and Mass Transfer Nanofluid flow and heat transfer in porous media : A review of the latest developments publication-title: Int. J. Heat Mass Transf. – reference: Alem, A., Abdul-ghadie Elkawafi, A., Benamar, A., Wang, H., Ahfir, N.-D., 2009. Transport et rétention de particules d’argile dans un milieu poreux saturé. In: Colloque International Sols Non Saturés et Environnement « UNSATlemcen09 ». Tlemcen. – volume: 98 start-page: 112 year: 2018 end-page: 120 ident: b0010 article-title: Experimental transient clogging of brass porous disks by silicium particles publication-title: Exp. Therm Fluid Sci. – volume: 40 start-page: 8966 year: 2015 end-page: 8979 ident: b0230 article-title: Numerical investigation on the wall-coated steam methane reformer improvement: Effects of catalyst layer patterns and metal foam insertion publication-title: Int. J. Hydrogen Energy – reference: Saltelli, A., 2014. Global sensitivity analysis : An introduction Global Sensitivity Analysis : An Introduction. – year: 2012 ident: b0255 article-title: Modélisations et simulations numériques d’écoulements d’air dans des milieux micro poreux publication-title: Paris-Est. – volume: 1 start-page: 24 year: 2011 end-page: 35 ident: b0075 article-title: High temperature and pressure reactive flows through porous media publication-title: Int. J. Multiph. Flow – start-page: 15 year: 2018 ident: 10.1016/j.ces.2019.115321_b0055 article-title: Equations governing flow and transport in porous media – volume: 21 start-page: 508 year: 1987 ident: 10.1016/j.ces.2019.115321_b0100 article-title: Effective thermal conductivity of composites with interfacial thermal barrier resistance publication-title: J. Compos. Mater. doi: 10.1177/002199838702100602 – ident: 10.1016/j.ces.2019.115321_b0160 – volume: 78 start-page: 1 year: 2014 ident: 10.1016/j.ces.2019.115321_b0270 article-title: Numerical investigation of vapor-liquid heat and mass transfer in porous media publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.10.047 – volume: 339 start-page: 674 year: 2007 ident: 10.1016/j.ces.2019.115321_b0035 article-title: Particle transport in a saturated porous medium: Pore structure effects publication-title: C.R. Geosci. doi: 10.1016/j.crte.2007.07.012 – start-page: 137 year: 2006 ident: 10.1016/j.ces.2019.115321_b0170 article-title: Heat transfer through a porous medium publication-title: J. Heat Transfer – volume: 94 start-page: 228 year: 2015 ident: 10.1016/j.ces.2019.115321_b0025 article-title: Simulation of complete liquid-vapour phase change process inside porous evaporator using local thermal non-equilibrium model publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.03.007 – year: 2018 ident: 10.1016/j.ces.2019.115321_b0220 article-title: Effect of inert metal foam matrices on hydrogen production intensification of methane steam reforming process in wall-coated reformer publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.215 – volume: 40 start-page: 8966 year: 2015 ident: 10.1016/j.ces.2019.115321_b0230 article-title: Numerical investigation on the wall-coated steam methane reformer improvement: Effects of catalyst layer patterns and metal foam insertion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.04.100 – volume: 23 start-page: 1947 year: 2003 ident: 10.1016/j.ces.2019.115321_b0030 article-title: Prediction of porous walls thermal protection by effusion or transpiration cooling. publication-title: An analytical approachAppl. Therm. Eng. doi: 10.1016/S1359-4311(03)00145-5 – volume: 78 start-page: 553 year: 2018 ident: 10.1016/j.ces.2019.115321_b0015 article-title: Numerical modeling of combustion chamber material permeability change publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.05.006 – volume: vol. 18 start-page: 93 year: 1987 ident: 10.1016/j.ces.2019.115321_b0285 article-title: Heat transfer from tubes in crossflow – ident: 10.1016/j.ces.2019.115321_b0235 – volume: 345 start-page: 392 year: 2013 ident: 10.1016/j.ces.2019.115321_b0105 article-title: Particle transport within water-saturated porous media: Effect of pore size on retention kinetics and size selection publication-title: C.R. Geosci. doi: 10.1016/j.crte.2013.09.001 – volume: 4 start-page: 11 year: 2015 ident: 10.1016/j.ces.2019.115321_b0005 article-title: Modeling wildland fire propagation using a semi-physical network model publication-title: Case Stud. Fire Saf. doi: 10.1016/j.csfs.2015.05.003 – start-page: 59 year: 2007 ident: 10.1016/j.ces.2019.115321_b0245 article-title: Evaluation of transfer coefficients: Engineering correlations – volume: 68 start-page: 63 year: 2013 ident: 10.1016/j.ces.2019.115321_b0200 article-title: Pyrolysis in porous media: Part 1. Numerical model and parametric study publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2012.12.023 – volume: 53 start-page: 2424 year: 2010 ident: 10.1016/j.ces.2019.115321_b0205 article-title: A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.041 – volume: 28 start-page: 191 year: 2014 ident: 10.1016/j.ces.2019.115321_b0130 article-title: Porous-material analysis toolbox based on OpenFOAM and applications publication-title: J. Thermodynam. Heat Transfer doi: 10.2514/1.T4262 – volume: 1–78 year: 2015 ident: 10.1016/j.ces.2019.115321_b0250 article-title: Fluid flow and heat transfer in rotating porous media publication-title: Fluid Flow Heat Transfer Rotat. Porous Media – volume: 50 start-page: 2386 year: 2011 ident: 10.1016/j.ces.2019.115321_b0145 article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.07.008 – volume: 38 start-page: 1123 year: 1997 ident: 10.1016/j.ces.2019.115321_b0180 article-title: The transpiration cooling for blades of high temperatures gas turbine publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(96)00142-2 – ident: 10.1016/j.ces.2019.115321_b0195 doi: 10.1615/AtoZ.f.flow_of_fluids – volume: 16 start-page: 504 year: 2015 ident: 10.1016/j.ces.2019.115321_b0225 article-title: Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium publication-title: Mech. Ind. doi: 10.1051/meca/2015035 – year: 2013 ident: 10.1016/j.ces.2019.115321_b0040 article-title: Transferts de chaleur et de masse dans les composites fibres-polymère soumis au feu publication-title: Société Française de La Thermique. – year: 2013 ident: 10.1016/j.ces.2019.115321_b0280 article-title: Global sensitivity analysis publication-title: Choice Rev. Online – year: 2012 ident: 10.1016/j.ces.2019.115321_b0115 article-title: Optimization of the effective thermal conductivity of a composite publication-title: Convect. Conduct. Heat Transfer – volume: 10 start-page: 551 year: 2007 ident: 10.1016/j.ces.2019.115321_b0070 article-title: A generalized model for the effective thermal conductivity of unsaturated porous media based on self-similarity publication-title: J. Porous Media doi: 10.1615/JPorMedia.v10.i6.30 – start-page: 1 year: 2007 ident: 10.1016/j.ces.2019.115321_b0110 article-title: OpenFOAM : A C++ library for complex physics simulations – ident: 10.1016/j.ces.2019.115321_b0185 – year: 2012 ident: 10.1016/j.ces.2019.115321_b0255 article-title: Modélisations et simulations numériques d’écoulements d’air dans des milieux micro poreux publication-title: Paris-Est. – ident: 10.1016/j.ces.2019.115321_b0095 – volume: 1 start-page: 24 year: 2011 ident: 10.1016/j.ces.2019.115321_b0075 article-title: High temperature and pressure reactive flows through porous media publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.09.001 – volume: 877 start-page: 1 year: 2017 ident: 10.1016/j.ces.2019.115321_b0260 article-title: Simulation of fluid flow and heat transfer in porous medium using Lattice Boltzmann method publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/877/1/012056 – volume: 121 start-page: 466 year: 1999 ident: 10.1016/j.ces.2019.115321_b0050 article-title: The effective thermal conductivity of high porosity fibrous metal foams publication-title: J. Heat Transfer doi: 10.1115/1.2826001 – volume: 89 start-page: 1416 year: 2008 ident: 10.1016/j.ces.2019.115321_b0085 article-title: Characterisation of coking activity during supercritical hydrocarbon pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2008.07.004 – volume: 32 start-page: 1577 year: 2011 ident: 10.1016/j.ces.2019.115321_b0165 article-title: Global and local sensitivity analysis methods for a physical system publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/32/6/011 – volume: 107 start-page: 778 year: 2017 ident: 10.1016/j.ces.2019.115321_b0120 article-title: International Journal of Heat and Mass Transfer Nanofluid flow and heat transfer in porous media : A review of the latest developments publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.074 – volume: 121 start-page: 124 year: 2017 ident: 10.1016/j.ces.2019.115321_b0155 article-title: Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.07.008 – year: 2004 ident: 10.1016/j.ces.2019.115321_b0215 article-title: Sensitivity analysis practice: A guide to assessing scientific models – volume: 85 start-page: 264 year: 2014 ident: 10.1016/j.ces.2019.115321_b0060 article-title: Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.05.074 – volume: 98 start-page: 112 year: 2018 ident: 10.1016/j.ces.2019.115321_b0010 article-title: Experimental transient clogging of brass porous disks by silicium particles publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2018.05.017 – volume: 54 start-page: 70 year: 2012 ident: 10.1016/j.ces.2019.115321_b0135 article-title: Experimental investigations of transpiration cooling applied to C/C material publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.10.018 – volume: 59 start-page: 349 year: 2011 ident: 10.1016/j.ces.2019.115321_b0190 article-title: Three-dimensional mixed convection heat and mass transfer in a rectangular duct: Case of longitudinal rolls publication-title: Num. Heat Transfer doi: 10.1080/10407782.2011.549081 – ident: 10.1016/j.ces.2019.115321_b0020 – ident: 10.1016/j.ces.2019.115321_b0090 – ident: 10.1016/j.ces.2019.115321_b0150 – ident: 10.1016/j.ces.2019.115321_b0045 – volume: 195 start-page: 462 year: 2019 ident: 10.1016/j.ces.2019.115321_b0275 article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.09.045 – volume: 119 start-page: 650 year: 2017 ident: 10.1016/j.ces.2019.115321_b0065 article-title: Numerical study on the influences of heat and mass transfers on the pyrolysis of hydrocarbon fuel in mini-channel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.010 – volume: 49 start-page: 1409 year: 2012 ident: 10.1016/j.ces.2019.115321_b0140 article-title: Experimental investigations on transpiration cooling for scramjet applications using different coolants publication-title: AIAA Journal doi: 10.2514/1.J050698 – year: 2015 ident: 10.1016/j.ces.2019.115321_b0240 article-title: High-End Experiments on Regenerative Cooling: Test Bench Design – ident: 10.1016/j.ces.2019.115321_b0175 – volume: 12 start-page: 83 year: 2003 ident: 10.1016/j.ces.2019.115321_b0265 article-title: Spreadsheet method for temperature calculation of unprotected steel work subject to fire publication-title: Struct. Des. Tall Special Build. doi: 10.1002/tal.214 – ident: 10.1016/j.ces.2019.115321_b0210 doi: 10.1007/978-94-007-0753-5_2651 – volume: 15 start-page: 705 year: 2012 ident: 10.1016/j.ces.2019.115321_b0080 article-title: Comparison of two permeation test benches and two determination methods for Darcy’s and Forchheimer’s permeabilities publication-title: J. Porous Media doi: 10.1615/JPorMedia.v15.i8.10 – volume: 96 start-page: 235 year: 2014 ident: 10.1016/j.ces.2019.115321_b0125 article-title: Exact solutions of Navier Stokes equations in porous media publication-title: Int. J. Pure Appl. Math. doi: 10.12732/ijpam.v96i2.7 |
SSID | ssj0007710 |
Score | 2.4134135 |
Snippet | •Particles’ deposition effect on the thermal efficiency of porous materials.•Numerical study of the involved phenomena using a homemade solver in... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 115321 |
SubjectTerms | Engineering Sciences Fluid mechanics Global sensitivity analysis Mechanical engineering Mechanics Numerical heat transfer OpenFOAM Particle clogging Physics Porous media Reactive fluid environment Transpiration cooling |
Title | Numerical study on a porous material subject to SiC particles deposition, using OpenFOAM and sensitivity analysis technique: Effect of clogging evolution on the thermal performances |
URI | https://dx.doi.org/10.1016/j.ces.2019.115321 https://univ-orleans.hal.science/hal-02347787 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcKXMYBwTZEx4eeJk5ooYnjxAm3qqLqBnSHDam3yHZi6FSlFf048l_x__FeEpftsB445JDItpy8l_dh__x7jJ3rRKaxzK0nVVR4wmhOm4TCw1ghsqhCRWorlO8wHtyLH6No1GI9dxaGYJWN7a9temWtmyed5mt2ZuMxnfH1U07-Lg3Rr1UHzYWQpOWXz28wDykD31VTo9ZuZ7PCeOGvSOiuFA1HFPLgf75p69GtslZep7_P9ppwEbr1jA5Yqyg_st2_SAQ_sZfhst51mUDFFQvTEhRgWI05PWA8WqkYzJeaVlxgMYVf4x7MHCAO8sLhtr4BgeAfgDAm_Z_dO1BlDnMCuNcVJvC-JjCBNfHrFdTsxzC1YNCKUsUjKFaNOtNMML6kC83_BGZvhxTmn9l9__p3b-A1xRg8E0qx8GwSJSrgWuaY8UV-bJUOjMH8WQSBNtaXlrIZrUMe5jpJYm2olIxVcWqETiMbHrLtcloWRwx8YXIudaB4HFKBO6209eNUhYpr4auozXwnhsw0TOVUMGOSOUjanwwnmpHkslpybXax7jKraTo2NRZOttk_upahG9nU7SvqwXp44uUedG8zeoavLiSavlXw5X1jH7MPnBJ5goPzE7a9eFoWpxjtLPRZpc5nbKf7_WYwfAV6ZgBQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSZ2g7FG0eaNLXoegUVIhEkaLUzTBqKI3jDE2AbARJia0LQzZqO_8s_693kugmQzN00CBCJCjd6R7kx-8Y-2RzVWSq8pEyso6Es5w2CUWEsYL0qEJ14VuU7zQrr8W3G3mzw0bhLAzBKnvb39n01lr3Laf91zxdzmZ0xjcuOPm7IkW_RgfNd4mdSg7Y7vDsvJxuDbJSSRwKqlGHsLnZwrzwbySAV4G2Q6Y8-Zd7evIzLLS2jmf8kr3oI0YYdpN6xXbqZo89v8cjuM_upptu42UOLV0sLBowgJE1pvWAIWmrZbDaWFp0gfUCvs9GsAyYOKjqAN36DISD_wEEMxlfDi_ANBWsCOPeFZnA-47DBLbcr1-gI0CGhQeHhpSKHkF922s0zQRDTLrQA8xh-fecwuqAXY-_Xo3KqK_HELlUiXXkc5mbhFtVYdIn48wbmziHKbRIEut8rDwlNNamPK1snmfWUTUZb7LCCVtInx6yQbNo6tcMYuEqrmxieJZSjTtrrI-zwqSGWxEbecTiIAbterJyqpkx1wGV9kvjRDVJTneSO2In2y7LjqnjsYdFkK1-oG4aPclj3T6iHmyHJ2rucjjR1IavLhRav9vk-P_G_sCellcXEz05m56_Yc845fWEDudv2WD9e1O_w-Bnbd_3yv0HOVADAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+a+porous+material+subject+to+SiC+particles+deposition%2C+using+OpenFOAM+and+sensitivity+analysis+technique%3A+effect+of+clogging+evolution+on+the+thermal+performances&rft.jtitle=Chemical+engineering+science&rft.au=Akridiss%2C+Safaa&rft.au=Settar%2C+Abelhakim&rft.au=Chetehouna%2C+Khaled&rft.au=Kadiri%2C+Moulay+Saddik&rft.date=2020-02-02&rft.pub=Elsevier&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016%2Fj.ces.2019.115321&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02347787v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |