Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing this she...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 48; no. 9; pp. 1255 - 1267
Main Authors Nielsen, Kim Lau, Tvergaard, Viggo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0020-7683
1879-2146
DOI10.1016/j.ijsolstr.2011.01.008

Cover

Loading…
Abstract Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations, subject to shear dominated loading. To account for both length scales involved in this study, a continuum model that includes the softening effect of damage evolution in shear is used to represent the matrix material surrounding the primary voids. Here, a recently extended Gurson-type model is used, which represents the effect of the small secondary voids under the low triaxiality loading conditions considered. This work suggests a failure mechanism for materials that contain voids on two different length scales, subject to intense shearing, in terms of; (i) the interaction of the primary voids, and (ii) the material softening of the ligaments due to the evolution of secondary damage. It is found that coalescence of primary voids under shear loading is severely affected by the presence of smaller secondary voids or defects in the ligaments. The change in overall ductility is presented for a wide range of initial material conditions, and an empirical correlation with the peak load is reported.
AbstractList Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations, subject to shear dominated loading. To account for both length scales involved in this study, a continuum model that includes the softening effect of damage evolution in shear is used to represent the matrix material surrounding the primary voids. Here, a recently extended Gurson-type model is used, which represents the effect of the small secondary voids under the low triaxiality loading conditions considered. This work suggests a failure mechanism for materials that contain voids on two different length scales, subject to intense shearing, in terms of; (i) the interaction of the primary voids, and (ii) the material softening of the ligaments due to the evolution of secondary damage. It is found that coalescence of primary voids under shear loading is severely affected by the presence of smaller secondary voids or defects in the ligaments. The change in overall ductility is presented for a wide range of initial material conditions, and an empirical correlation with the peak load is reported.
Author Tvergaard, Viggo
Nielsen, Kim Lau
Author_xml – sequence: 1
  givenname: Kim Lau
  surname: Nielsen
  fullname: Nielsen, Kim Lau
  email: kin@mek.dtu.dk
– sequence: 2
  givenname: Viggo
  surname: Tvergaard
  fullname: Tvergaard, Viggo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23942925$$DView record in Pascal Francis
BookMark eNqFkU9rHSEUxaUk0Jc_X6G4KV3NizpGHeiiJSRtIdBNsxZ17rQO8zT1-gL59nX6XrvIJnBBxN85cs85IycpJyDkHWdbzri6mrdxxrxgLVvBON-yNsy8IRtu9NAJLtUJ2TAmWKeV6d-SM8SZMSb7gW1IvXNx2Reg_pk-5TjSkN0CGCAFoDHRHVS3LDHQnatQoluwEam6mGL6SR9L3LnyTF0aKUJ7GNfb6oMU936GUGnNzadCQqD4C1xpugtyOjUnuDye5-Th7vbHzdfu_vuXbzef77vQa1m7iSvPjRrFoIe2qJ_41DOttPLX3mvujQli1K6Xo5aGOy2F0b2aglfDAFyK_px8OPg-lvx7D1jtLrbVlsUlyHu0RkkpWzCmke-PpMPglqm4FCLa435W9IMUg7hunDpwoWTEAtN_hDO7tmFn-68Nu7ZhWZu_H3x8IQyxuhpblqU18Lr800EOLa6nCMViiGtHYywtZDvm-JrFHyzyrsg
CODEN IJSOAD
CitedBy_id crossref_primary_10_1016_j_engfracmech_2017_10_035
crossref_primary_10_1016_j_tafmec_2015_10_007
crossref_primary_10_1007_s11831_020_09444_y
crossref_primary_10_1016_j_ijplas_2013_03_012
crossref_primary_10_1016_j_physe_2017_03_014
crossref_primary_10_1016_j_mechmat_2020_103605
crossref_primary_10_3390_ma16144998
crossref_primary_10_1111_ffe_12046
crossref_primary_10_1007_s00707_015_1466_4
crossref_primary_10_1088_1361_651X_ac11ba
crossref_primary_10_1016_j_ijsolstr_2012_02_030
crossref_primary_10_1016_j_euromechsol_2014_09_001
crossref_primary_10_1016_j_msea_2022_144531
crossref_primary_10_1016_j_microrel_2017_04_013
crossref_primary_10_1016_j_ijplas_2019_07_002
crossref_primary_10_1016_j_engfracmech_2022_108232
crossref_primary_10_1016_j_engfracmech_2025_111027
crossref_primary_10_1016_j_mechrescom_2014_11_007
crossref_primary_10_1016_j_engfracmech_2018_06_008
crossref_primary_10_1016_j_euromechsol_2024_105238
crossref_primary_10_1016_j_msea_2016_10_106
crossref_primary_10_1115_1_4005565
crossref_primary_10_4028_www_scientific_net_AMM_275_277_77
crossref_primary_10_1016_j_euromechsol_2021_104329
crossref_primary_10_1016_j_jmps_2021_104493
crossref_primary_10_1016_j_engfracmech_2015_03_008
crossref_primary_10_1016_j_euromechsol_2018_04_017
crossref_primary_10_1016_j_engfracmech_2022_108635
crossref_primary_10_1016_j_ijplas_2019_10_004
crossref_primary_10_1016_j_mechrescom_2022_103862
crossref_primary_10_1016_j_msea_2016_08_029
crossref_primary_10_1016_j_ijsolstr_2014_01_014
crossref_primary_10_1002_zamm_201700188
crossref_primary_10_1016_j_jmps_2014_10_007
crossref_primary_10_3390_met9030292
crossref_primary_10_1016_j_ijsolstr_2014_09_001
crossref_primary_10_1016_j_euromechsol_2019_103909
crossref_primary_10_1007_s10704_012_9757_4
crossref_primary_10_1016_j_jmps_2022_105153
crossref_primary_10_1080_14786435_2017_1352108
crossref_primary_10_1016_j_engfracmech_2015_07_004
crossref_primary_10_1016_j_scriptamat_2024_116403
crossref_primary_10_1007_s11665_017_2545_6
crossref_primary_10_1016_j_engfracmech_2023_109045
crossref_primary_10_1016_j_euromechsol_2023_105114
crossref_primary_10_3390_buildings13020283
crossref_primary_10_1016_j_ijsolstr_2017_02_025
crossref_primary_10_1007_s11340_013_9788_4
crossref_primary_10_1016_j_ijpvp_2013_07_004
crossref_primary_10_1080_08927022_2012_690874
crossref_primary_10_1115_1_4030329
crossref_primary_10_1016_j_ijsolstr_2017_04_014
crossref_primary_10_1016_j_jmps_2013_11_002
crossref_primary_10_1016_j_ijplas_2020_102881
crossref_primary_10_1016_j_jmps_2012_02_006
crossref_primary_10_1016_j_engfracmech_2015_06_057
crossref_primary_10_1016_j_ijplas_2023_103674
Cites_doi 10.1016/j.euromechsol.2007.07.001
10.1016/0022-5096(82)90025-4
10.1016/j.ijsolstr.2008.09.011
10.1016/S0022-5096(00)00019-3
10.1016/j.ijsolstr.2006.09.031
10.1016/j.commatsci.2009.12.004
10.1115/1.3443401
10.1016/S0065-2156(08)70195-9
10.1016/j.ijsolstr.2007.01.010
10.1016/j.euromechsol.2007.08.002
10.1016/0001-6160(84)90213-X
10.1016/j.crme.2007.11.008
10.1016/j.ijmecsci.2008.08.007
10.1016/0001-6160(86)90086-6
10.1007/s10704-009-9364-1
10.1016/0022-5096(90)90028-3
10.1016/j.jmps.2007.07.008
10.1016/S0022-5096(03)00037-1
10.1016/0022-5096(82)90033-3
10.1029/JB087iB08p06805
10.1016/S0749-6419(02)00022-0
10.1016/j.engfracmech.2009.10.007
10.1016/S0022-5096(96)00078-6
10.1016/j.jmps.2010.06.006
10.1016/j.engfracmech.2010.02.031
10.1098/rspa.1965.0153
10.1016/j.engfracmech.2010.06.008
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijsolstr.2011.01.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2146
EndPage 1267
ExternalDocumentID 23942925
10_1016_j_ijsolstr_2011_01_008
S0020768311000175
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
VH1
WUQ
XFK
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c374t-f16b186d2979016bf1f307676b5bb71b88c2d7a34d7481a7428736fcb699e1423
IEDL.DBID IXB
ISSN 0020-7683
IngestDate Fri Jul 11 11:52:48 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Tue Jul 01 01:19:49 EDT 2025
Fri Feb 23 02:27:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Voids
Low triaxiality
Shear deformation
Plasticity
Extended Gurson model
Nucleation
Modeling
Continuum
Inelasticity
Cavity
Ductile material
Matrix materials
Damaging
Initial condition
Strain softening
Rupture
Void fraction
Experimental study
Gurson model
Cavitation
Shearing
Triaxial stress
Fracture surface
Coalescence
Effective medium model
Fractography
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-f16b186d2979016bf1f307676b5bb71b88c2d7a34d7481a7428736fcb699e1423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0020768311000175
PQID 864440208
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_864440208
pascalfrancis_primary_23942925
crossref_primary_10_1016_j_ijsolstr_2011_01_008
crossref_citationtrail_10_1016_j_ijsolstr_2011_01_008
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2011_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of solids and structures
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Scheyvaerts, F., 2008. Multiscale modeling of ductile fracture in heterogeneous metallic alloys. Ph.D. thesis, École polytechnique de Louvain, Université catholique de Louvain.
Xue, Pontin, Zok, Hutchinson (b0175) 2010; 77
Barsoum, Faleskog (b0015) 2007; 44
Niordson (b0105) 2008; 27
Pardoen, Hutchinson (b0110) 2000; 48
Gologanu, Leblond, Perrin, Devauz (b0045) 1997
Nielsen, K.L., Hutchinson J.W., 2010. Cohesive traction-separation laws for tearing of ductile metal plates, submitted for publication.
Tvergaard (b0145) 1989; 25
Thomason (b0130) 1990
Tvergaard (b0150) 1990; 27
Nielsen (b0085) 2010; 48
Tvergaard, Nielsen (b0170) 2010; 58
Barsoum, Faleskog (b0020) 2007; 44
Nielsen, Tvergaard (b0095) 2009; 46
Simar, Nielsen, de Meester, Tvergaard, Pardoen (b0125) 2010; 77
Tvergaard (b0140) 1982; 30
Fabrègue, Pardoen (b0035) 2008; 56
Tvergaard, Needleman (b0165) 1984; 38
Tvergaard (b0160) 2009; 158
Zienkiewicz, Taylor (b0180) 2000; vol. 1
Nahshon, Hutchinson (b0075) 2008; 27
Nemat-Nasser, Horii (b0080) 1982; 87
Jodlowski, T., 2009. Mechanics of growth and coalescence of preexisting voids. In: Proceedings for the 12th International Conference on Fracture (ICF12), Ottawa, Canada.
Sewell (b0120) 1965; 286
Ashby, Hallam (b0010) 1986; 34
Budiansky (b0030) 1964
Faleskog, Shih (b0040) 1997; 45
Liu, Qiu, Huang, Hwang, Li, Liu (b0070) 2003; 51
Leblond, Mottet (b0065) 2008; 336
Nielsen, Tvergaard (b0100) 2010; 77
Tvergaard (b0135) 1982; 30
Gurson (b0050) 1977; 99
Besson, Steglich, Brocks (b0025) 2003; 19
Hutchinson (b0055) 1973; vol. 6
Tvergaard (b0155) 2008; 50
Anderson, Fleck, Johnson (b0005) 1990; 38
Simar (10.1016/j.ijsolstr.2011.01.008_b0125) 2010; 77
Nielsen (10.1016/j.ijsolstr.2011.01.008_b0085) 2010; 48
10.1016/j.ijsolstr.2011.01.008_b0090
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0140) 1982; 30
Zienkiewicz (10.1016/j.ijsolstr.2011.01.008_b0180) 2000; vol. 1
Thomason (10.1016/j.ijsolstr.2011.01.008_b0130) 1990
Liu (10.1016/j.ijsolstr.2011.01.008_b0070) 2003; 51
Barsoum (10.1016/j.ijsolstr.2011.01.008_b0020) 2007; 44
Budiansky (10.1016/j.ijsolstr.2011.01.008_b0030) 1964
Gurson (10.1016/j.ijsolstr.2011.01.008_b0050) 1977; 99
Fabrègue (10.1016/j.ijsolstr.2011.01.008_b0035) 2008; 56
Gologanu (10.1016/j.ijsolstr.2011.01.008_b0045) 1997
Hutchinson (10.1016/j.ijsolstr.2011.01.008_b0055) 1973; vol. 6
Nielsen (10.1016/j.ijsolstr.2011.01.008_b0095) 2009; 46
10.1016/j.ijsolstr.2011.01.008_b0115
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0155) 2008; 50
Besson (10.1016/j.ijsolstr.2011.01.008_b0025) 2003; 19
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0135) 1982; 30
Sewell (10.1016/j.ijsolstr.2011.01.008_b0120) 1965; 286
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0160) 2009; 158
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0170) 2010; 58
Nahshon (10.1016/j.ijsolstr.2011.01.008_b0075) 2008; 27
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0150) 1990; 27
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0145) 1989; 25
Leblond (10.1016/j.ijsolstr.2011.01.008_b0065) 2008; 336
Tvergaard (10.1016/j.ijsolstr.2011.01.008_b0165) 1984; 38
Nielsen (10.1016/j.ijsolstr.2011.01.008_b0100) 2010; 77
10.1016/j.ijsolstr.2011.01.008_b0060
Barsoum (10.1016/j.ijsolstr.2011.01.008_b0015) 2007; 44
Nemat-Nasser (10.1016/j.ijsolstr.2011.01.008_b0080) 1982; 87
Faleskog (10.1016/j.ijsolstr.2011.01.008_b0040) 1997; 45
Niordson (10.1016/j.ijsolstr.2011.01.008_b0105) 2008; 27
Pardoen (10.1016/j.ijsolstr.2011.01.008_b0110) 2000; 48
Xue (10.1016/j.ijsolstr.2011.01.008_b0175) 2010; 77
Anderson (10.1016/j.ijsolstr.2011.01.008_b0005) 1990; 38
Ashby (10.1016/j.ijsolstr.2011.01.008_b0010) 1986; 34
References_xml – volume: 58
  start-page: 1243
  year: 2010
  end-page: 1252
  ident: b0170
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J. Mech. Phys. Solids
– volume: 44
  start-page: 5481
  year: 2007
  end-page: 5498
  ident: b0020
  article-title: Rupture mechanisms in combined tension and shear – Micromechanics
  publication-title: Int. J. Solids Struct.
– volume: 25
  start-page: 1143
  year: 1989
  end-page: 1156
  ident: b0145
  article-title: Numerical study of localization in a void sheet
  publication-title: J. Mech. Phys.
– volume: vol. 1
  year: 2000
  ident: b0180
  publication-title: The Finite Element Method – The Basis
– reference: Jodlowski, T., 2009. Mechanics of growth and coalescence of preexisting voids. In: Proceedings for the 12th International Conference on Fracture (ICF12), Ottawa, Canada.
– volume: 77
  start-page: 1031
  year: 2010
  end-page: 1047
  ident: b0100
  article-title: Ductile shear failure or plug failure of spot welds modeled by modified Gurson model
  publication-title: Eng. Frac. Mech.
– volume: 50
  start-page: 1439
  year: 2008
  end-page: 1465
  ident: b0155
  article-title: Shear deformation of voids with contact modeled by internal pressure
  publication-title: Int. J. Mech. Sci.
– volume: 30
  start-page: 265
  year: 1982
  end-page: 286
  ident: b0135
  article-title: Ductile fracture by cavity nucleation between larger voids
  publication-title: J. Mech. Phys. Solids
– volume: 30
  start-page: 399
  year: 1982
  end-page: 425
  ident: b0140
  article-title: Influence of void nucleation on ductile shear facture at a free surface
  publication-title: J. Mech. Phys. Solids
– volume: 38
  start-page: 681
  year: 1990
  end-page: 699
  ident: b0005
  article-title: Localization of plastic deformation in shear due to microcracks
  publication-title: Mech. Phys. Solids
– volume: 158
  start-page: 41
  year: 2009
  end-page: 49
  ident: b0160
  article-title: Behaviour of voids in a shear field
  publication-title: Int. J. Frac.
– year: 1964
  ident: b0030
  article-title: Remarks on Theories of solid and structural mechanics
– volume: 45
  start-page: 21
  year: 1997
  end-page: 50
  ident: b0040
  article-title: Micromechanics of coalescence – I. Synergistic effects of elasticity, plastic yielding and multi-size-scale voids
  publication-title: Mech. Phys. Solids
– reference: Nielsen, K.L., Hutchinson J.W., 2010. Cohesive traction-separation laws for tearing of ductile metal plates, submitted for publication.
– volume: 27
  start-page: 83
  year: 1990
  end-page: 151
  ident: b0150
  article-title: Material failure by void growth to coalescence
  publication-title: Adv. Appl. Mech.
– volume: 51
  start-page: 1171
  year: 2003
  end-page: 1187
  ident: b0070
  article-title: The size effect on void growth in ductile materials
  publication-title: J. Mech. Phys. Solids
– volume: 19
  start-page: 1517
  year: 2003
  end-page: 1541
  ident: b0025
  article-title: Modelling of plane strain ductile rupture
  publication-title: Int. J. Plast.
– volume: 34
  start-page: 497
  year: 1986
  end-page: 510
  ident: b0010
  article-title: The failure of brittle solids containing small cracks under compressive stress states
  publication-title: Acta Metall.
– volume: 336
  start-page: 176
  year: 2008
  end-page: 189
  ident: b0065
  article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials
  publication-title: C.R. Mecanique
– volume: 48
  start-page: 71
  year: 2010
  end-page: 82
  ident: b0085
  article-title: Predicting failure response of spot welded joints using recent extensions to the Gurson model
  publication-title: Comput. Mater. Sci.
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: b0050
  article-title: Continuum theory of ductile rupture by void nucleation and growth – Part I: yield criteria and flow rules for porous ductile media
  publication-title: ASME J. Eng. Mater. Technol.
– reference: Scheyvaerts, F., 2008. Multiscale modeling of ductile fracture in heterogeneous metallic alloys. Ph.D. thesis, École polytechnique de Louvain, Université catholique de Louvain.
– year: 1990
  ident: b0130
  article-title: Ductile Fracture of Metals
– volume: 27
  start-page: 222
  year: 2008
  end-page: 233
  ident: b0105
  article-title: Void growth to coalescence in a non-local material
  publication-title: Euro. J. Mech. A/Solids
– volume: 87
  start-page: 6805
  year: 1982
  end-page: 6821
  ident: b0080
  article-title: Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 492
  year: 2010
  end-page: 509
  ident: b0175
  article-title: Calibration procedures for a computational model of ductile fracture
  publication-title: Eng. Frac. Mech.
– volume: 48
  start-page: 2467
  year: 2000
  end-page: 2512
  ident: b0110
  article-title: An extended model for void growth and coalescence
  publication-title: J. Mech. Phys. Solids
– volume: 56
  start-page: 719
  year: 2008
  end-page: 741
  ident: b0035
  article-title: A constitutive model for elastoplastic solids containing primary and secondary voids
  publication-title: Mech. Phys. Solids
– volume: 38
  start-page: 157
  year: 1984
  end-page: 169
  ident: b0165
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
– start-page: 61
  year: 1997
  end-page: 130
  ident: b0045
  article-title: Recent extensions of Gurson’s model for porous ductile metals
  publication-title: Continuum Micromechanics
– volume: 27
  start-page: 1
  year: 2008
  end-page: 17
  ident: b0075
  article-title: Modification of the Gurson model for shear
  publication-title: Euro. J. Mech. A/Solids
– volume: 44
  start-page: 1768
  year: 2007
  end-page: 1786
  ident: b0015
  article-title: Rupture mechanisms in combined tension and shear – Experiments
  publication-title: Int. J. Solids Struct.
– volume: 77
  start-page: 2491
  year: 2010
  end-page: 2503
  ident: b0125
  article-title: Micro-mechanical modeling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV
  publication-title: Eng. Frac. Mech.
– volume: 46
  start-page: 587
  year: 2009
  end-page: 603
  ident: b0095
  article-title: Effect of a shear modified Gurson model on damage development in a FSW tensile specimen
  publication-title: Int. J. Solids Struct.
– volume: vol. 6
  year: 1973
  ident: b0055
  publication-title: Finite strain analysis of elastic-plastic solids and structures
– volume: 286
  start-page: 402
  year: 1965
  end-page: 411
  ident: b0120
  article-title: On the calculation of potential functions defined on curved boundaries
  publication-title: Proc. R. Soc. London A
– volume: 27
  start-page: 222
  year: 2008
  ident: 10.1016/j.ijsolstr.2011.01.008_b0105
  article-title: Void growth to coalescence in a non-local material
  publication-title: Euro. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2007.07.001
– year: 1964
  ident: 10.1016/j.ijsolstr.2011.01.008_b0030
– volume: 30
  start-page: 399
  year: 1982
  ident: 10.1016/j.ijsolstr.2011.01.008_b0140
  article-title: Influence of void nucleation on ductile shear facture at a free surface
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(82)90025-4
– volume: 46
  start-page: 587
  year: 2009
  ident: 10.1016/j.ijsolstr.2011.01.008_b0095
  article-title: Effect of a shear modified Gurson model on damage development in a FSW tensile specimen
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.09.011
– year: 1990
  ident: 10.1016/j.ijsolstr.2011.01.008_b0130
– volume: 48
  start-page: 2467
  year: 2000
  ident: 10.1016/j.ijsolstr.2011.01.008_b0110
  article-title: An extended model for void growth and coalescence
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(00)00019-3
– volume: 44
  start-page: 1768
  year: 2007
  ident: 10.1016/j.ijsolstr.2011.01.008_b0015
  article-title: Rupture mechanisms in combined tension and shear – Experiments
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.09.031
– volume: 48
  start-page: 71
  year: 2010
  ident: 10.1016/j.ijsolstr.2011.01.008_b0085
  article-title: Predicting failure response of spot welded joints using recent extensions to the Gurson model
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.12.004
– volume: 99
  start-page: 2
  year: 1977
  ident: 10.1016/j.ijsolstr.2011.01.008_b0050
  article-title: Continuum theory of ductile rupture by void nucleation and growth – Part I: yield criteria and flow rules for porous ductile media
  publication-title: ASME J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– volume: 27
  start-page: 83
  year: 1990
  ident: 10.1016/j.ijsolstr.2011.01.008_b0150
  article-title: Material failure by void growth to coalescence
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70195-9
– volume: 44
  start-page: 5481
  year: 2007
  ident: 10.1016/j.ijsolstr.2011.01.008_b0020
  article-title: Rupture mechanisms in combined tension and shear – Micromechanics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2007.01.010
– volume: 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.ijsolstr.2011.01.008_b0075
  article-title: Modification of the Gurson model for shear
  publication-title: Euro. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2007.08.002
– volume: 38
  start-page: 157
  year: 1984
  ident: 10.1016/j.ijsolstr.2011.01.008_b0165
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(84)90213-X
– volume: 336
  start-page: 176
  year: 2008
  ident: 10.1016/j.ijsolstr.2011.01.008_b0065
  article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials
  publication-title: C.R. Mecanique
  doi: 10.1016/j.crme.2007.11.008
– ident: 10.1016/j.ijsolstr.2011.01.008_b0115
– volume: 50
  start-page: 1439
  year: 2008
  ident: 10.1016/j.ijsolstr.2011.01.008_b0155
  article-title: Shear deformation of voids with contact modeled by internal pressure
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2008.08.007
– volume: 34
  start-page: 497
  year: 1986
  ident: 10.1016/j.ijsolstr.2011.01.008_b0010
  article-title: The failure of brittle solids containing small cracks under compressive stress states
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90086-6
– volume: 158
  start-page: 41
  year: 2009
  ident: 10.1016/j.ijsolstr.2011.01.008_b0160
  article-title: Behaviour of voids in a shear field
  publication-title: Int. J. Frac.
  doi: 10.1007/s10704-009-9364-1
– volume: vol. 6
  year: 1973
  ident: 10.1016/j.ijsolstr.2011.01.008_b0055
– volume: 38
  start-page: 681
  year: 1990
  ident: 10.1016/j.ijsolstr.2011.01.008_b0005
  article-title: Localization of plastic deformation in shear due to microcracks
  publication-title: Mech. Phys. Solids
  doi: 10.1016/0022-5096(90)90028-3
– volume: 56
  start-page: 719
  year: 2008
  ident: 10.1016/j.ijsolstr.2011.01.008_b0035
  article-title: A constitutive model for elastoplastic solids containing primary and secondary voids
  publication-title: Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.07.008
– ident: 10.1016/j.ijsolstr.2011.01.008_b0090
– volume: 51
  start-page: 1171
  year: 2003
  ident: 10.1016/j.ijsolstr.2011.01.008_b0070
  article-title: The size effect on void growth in ductile materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(03)00037-1
– volume: 30
  start-page: 265
  year: 1982
  ident: 10.1016/j.ijsolstr.2011.01.008_b0135
  article-title: Ductile fracture by cavity nucleation between larger voids
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(82)90033-3
– start-page: 61
  year: 1997
  ident: 10.1016/j.ijsolstr.2011.01.008_b0045
  article-title: Recent extensions of Gurson’s model for porous ductile metals
– volume: 87
  start-page: 6805
  year: 1982
  ident: 10.1016/j.ijsolstr.2011.01.008_b0080
  article-title: Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB087iB08p06805
– volume: vol. 1
  year: 2000
  ident: 10.1016/j.ijsolstr.2011.01.008_b0180
– volume: 19
  start-page: 1517
  year: 2003
  ident: 10.1016/j.ijsolstr.2011.01.008_b0025
  article-title: Modelling of plane strain ductile rupture
  publication-title: Int. J. Plast.
  doi: 10.1016/S0749-6419(02)00022-0
– volume: 77
  start-page: 492
  year: 2010
  ident: 10.1016/j.ijsolstr.2011.01.008_b0175
  article-title: Calibration procedures for a computational model of ductile fracture
  publication-title: Eng. Frac. Mech.
  doi: 10.1016/j.engfracmech.2009.10.007
– volume: 45
  start-page: 21
  year: 1997
  ident: 10.1016/j.ijsolstr.2011.01.008_b0040
  article-title: Micromechanics of coalescence – I. Synergistic effects of elasticity, plastic yielding and multi-size-scale voids
  publication-title: Mech. Phys. Solids
  doi: 10.1016/S0022-5096(96)00078-6
– volume: 58
  start-page: 1243
  year: 2010
  ident: 10.1016/j.ijsolstr.2011.01.008_b0170
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.06.006
– ident: 10.1016/j.ijsolstr.2011.01.008_b0060
– volume: 77
  start-page: 1031
  year: 2010
  ident: 10.1016/j.ijsolstr.2011.01.008_b0100
  article-title: Ductile shear failure or plug failure of spot welds modeled by modified Gurson model
  publication-title: Eng. Frac. Mech.
  doi: 10.1016/j.engfracmech.2010.02.031
– volume: 25
  start-page: 1143
  year: 1989
  ident: 10.1016/j.ijsolstr.2011.01.008_b0145
  article-title: Numerical study of localization in a void sheet
  publication-title: J. Mech. Phys.
– volume: 286
  start-page: 402
  year: 1965
  ident: 10.1016/j.ijsolstr.2011.01.008_b0120
  article-title: On the calculation of potential functions defined on curved boundaries
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1965.0153
– volume: 77
  start-page: 2491
  year: 2010
  ident: 10.1016/j.ijsolstr.2011.01.008_b0125
  article-title: Micro-mechanical modeling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV
  publication-title: Eng. Frac. Mech.
  doi: 10.1016/j.engfracmech.2010.06.008
SSID ssj0004390
Score 2.271092
Snippet Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1255
SubjectTerms Coalescence
Coalescing
Damage
Exact sciences and technology
Extended Gurson model
Failure
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Ligaments
Low triaxiality
Physics
Plasticity
Shear
Shear deformation
Shearing
Softening
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Voids
Title Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing
URI https://dx.doi.org/10.1016/j.ijsolstr.2011.01.008
https://www.proquest.com/docview/864440208
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7S9NISSvqi28eiQ6_OrvyQ5GMaumxamlMDexN6Gbyk9hJ7C7n0t3fGstOEUnIo-OLHWLZmNJqRZr4B-IgqryyKYBNjM5vknvtEGfRaq4KwRLj36VAO6NuFWF_mXzbF5gDOplwYCqscdX_U6YO2Hq8sxt5c7OqacnxT2kbKCPQM5YoSzbNcDUl8m09_ciOzuM5CbhI9fSdLeHtSb5HBXX89QnlyAjv91wR1tDMddlsV6138pbqH-Wh1DM9GQ5Kdxm99DgeheQFP78ALvoR-ZWqKOmf2hv1sa89cayJ8kwusbtiPgJb3Ve0YWq1REBlFrseaEWwXcSiYaTzryG32dEbv6Vi3t7R-w_qW1UMMfGAdlcZGuldwufr8_WydjFUWEpfJvE8qLixXwqelRNtA2IpXOO6FFLawVnKrlEu9NFnuZa64keRjZaJyVpRl4GiNvYbDpm3CG2A8tcLhOPbkcUu8nwkjl1Ullo7nPjczKKau1W6EIKdKGFd6ijXb6oklmliil3gs1QwWt3Tjzz9IUU6c0_fESeNM8SDt_B6rb5ukKvJpmRYzYBPvNQ5G2mExTWj3nVZoXZJDrt7-R_vv4ElcuKaoyvdw2F_vwwe0fHo7h0cnv_gcHp-ef11fzAdB_w2YMgak
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RemgRQn2KbQv1odd013nYyZGirhYKnEDam-VXpKxosiJZJP59Z-KEgqqKA1IueUyceMbjb-x5AHxDlVdkmTeRNomJUsddlGu0WsuMcolw5-K-HND5hVhcpafLbLkFx2MsDLlVDro_6PReWw9XpkNvTtdVRTG-MW0jJZT0DOUqewEvEQ1Iqt9wsvzxNzgyCQstZCfR4w_ChFffqxVyuO1uhlyenLKd_m-G2l3rFvutDAUv_tHd_YQ0fwN7A5JkR-Fj38KWr9_BzoP8gu-hm-uK3M6ZuWO3TeWYbXTI32Q9q2r22yP0vq4sQ9gaJJGR63ooGsHWIREF07VjLdnNjs7oPS1rN4YWcFjXsKp3gvespdrYSPcBruY_L48X0VBmIbKJTLuo5MLwXLi4kAgOhCl5iQNfSGEyYyQ3eW5jJ3WSOpnmXEsyshJRWiOKwnOEYx9hu25qvw-Mx0ZYHMiOTG6J9xOh5awsxczy1KV6AtnYtcoOOcipFMa1Gp3NVmpkiSKWqBkes3wC03u64eefpChGzqlH8qRwqniS9vARq--bpDLycRFnE2Aj7xWORtpi0bVvNq3KEV6SRZ5_ekb7X-HV4vL8TJ2dXPz6DK_DKja5WH6B7e5m4w8QBnXmsBfzP18tBzc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+by+void+coalescence+in+metallic+materials+containing+primary+and+secondary+voids+subject+to+intense+shearing&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Nielsen%2C+Kim+Lau&rft.au=Tvergaard%2C+Viggo&rft.date=2011-05-01&rft.issn=0020-7683&rft.volume=48&rft.issue=9&rft.spage=1255&rft.epage=1267&rft_id=info:doi/10.1016%2Fj.ijsolstr.2011.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon