Large amplitude inversion tunneling motion in ammonia, methylamine, hydrazine, and secondary amines: From structure determination to coordination chemistry

[Display omitted] •Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to deter...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 436; p. 213797
Main Authors Nguyen, Ha Vinh Lam, Gulaczyk, Iwona, Kręglewski, Marek, Kleiner, Isabelle
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0010-8545
1873-3840
0010-8545
DOI10.1016/j.ccr.2021.213797

Cover

Abstract [Display omitted] •Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to determine the structure of complexes. Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered.
AbstractList [Display omitted] •Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to determine the structure of complexes. Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered.
Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered.
ArticleNumber 213797
Author Gulaczyk, Iwona
Kręglewski, Marek
Kleiner, Isabelle
Nguyen, Ha Vinh Lam
Author_xml – sequence: 1
  givenname: Ha Vinh Lam
  surname: Nguyen
  fullname: Nguyen, Ha Vinh Lam
  email: lam.nguyen@lisa.ipsl.fr
  organization: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 avenue du Général de Gaulle, 94010 Créteil, France
– sequence: 2
  givenname: Iwona
  surname: Gulaczyk
  fullname: Gulaczyk, Iwona
  organization: Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
– sequence: 3
  givenname: Marek
  surname: Kręglewski
  fullname: Kręglewski, Marek
  organization: Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
– sequence: 4
  givenname: Isabelle
  orcidid: 0000-0002-8715-9764
  surname: Kleiner
  fullname: Kleiner, Isabelle
  organization: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 avenue du Général de Gaulle, 94010 Créteil, France
BackLink https://hal.u-pec.fr/hal-03182344$$DView record in HAL
BookMark eNp9kctKAzEUhoMoWC8P4C5bwanJXJxEVyJqhYIbXYfT5IxNmUkkSQv1VXxZ09ZuXLg6t_87OeE_IYfOOyTkgrMxZ_zmejHWOoxLVvJxyatWtgdkxEVbFZWo2SEZMcZZIZq6OSYnMS5yeSNlOSLfUwgfSGH47G1aGqTWrTBE6x1NS-ewt-6DDj5tGtZl3eCdhSs6YJqvexiswys6X5sAX9sUnKERtXcGwppu5_GWPgU_0JjCUqdlQGowYcgj2K5Nnmrvg9nXeo6DzeL1GTnqoI94_htPyfvT49vDpJi-Pr883E8LXbV1KlA2ArWUUDdoBKtLwbDqBJcNA82QsVmDbQe6hk5IY2aczxh0GkuD2IKE6pRc7vbOoVefwQ75dOXBqsn9VG16rOKirOp6xbO23Wl18DEG7JS2aXt3CmB7xZna-KEWKvuhNn6onR-Z5H_I_VP_MXc7BvP3VxaDitqi02hsQJ2U8fYf-gcgL6pX
CitedBy_id crossref_primary_10_1021_acs_jpclett_4c02914
crossref_primary_10_3390_molecules27165275
crossref_primary_10_1103_PhysRevLett_130_083001
crossref_primary_10_1063_5_0166657
crossref_primary_10_1021_acs_jpca_1c05093
crossref_primary_10_1021_acs_jpca_3c00811
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1016_j_molstruc_2021_131337
crossref_primary_10_1021_acs_jpclett_2c02081
crossref_primary_10_3390_molecules27123948
crossref_primary_10_1088_1361_6595_acca46
crossref_primary_10_1039_D4CP03338H
crossref_primary_10_1002_cphc_202100514
crossref_primary_10_1016_j_saa_2022_121505
crossref_primary_10_1063_5_0049418
crossref_primary_10_3390_molecules27092730
crossref_primary_10_1063_5_0185005
crossref_primary_10_3389_fchem_2021_751203
crossref_primary_10_1016_j_cplett_2022_139488
Cites_doi 10.1086/430106
10.1006/jmsp.1999.7937
10.1086/181570
10.1016/0022-2852(82)90243-0
10.1146/annurev.physchem.48.1.69
10.1063/1.449634
10.1006/icar.1997.5868
10.1016/j.jms.2017.06.009
10.1038/ncomms2225
10.1016/0022-2852(89)90239-7
10.1021/j100207a007
10.1006/jmsp.1995.1224
10.1016/0022-2852(82)90085-6
10.1016/0022-2852(92)90239-K
10.1007/s10762-007-9309-6
10.1016/S0166-1280(03)00020-4
10.1039/D0TA02494E
10.1016/j.jms.2020.111255
10.1016/S0022-2852(03)00106-1
10.1063/1.450788
10.1006/jmsp.1997.7402
10.1006/jmsp.2001.8406
10.1103/PhysRev.32.812
10.1038/s41467-019-12453-6
10.1246/bcsj.59.853
10.1038/nrm1243
10.1080/014423597230208
10.1016/j.jms.2011.04.005
10.1002/anie.200600201
10.1021/acsearthspacechem.9b00079
10.1002/qua.21564
10.1051/0004-6361/200912850
10.1021/acs.jpclett.8b02339
10.1038/452030a
10.1038/d41586-020-00909-5
10.1086/319491
10.1002/9781118693599
10.1016/0009-2614(92)85946-8
10.1063/1.1668177
10.1021/jp406668w
10.1038/27790
10.1038/nature11990
10.1016/0022-2852(91)90125-T
10.1006/jmsp.1993.1258
10.1039/C6CP04580D
10.1103/PhysRev.94.1184
10.1063/1.1744598
10.1021/jp9029425
10.1021/jacs.9b05830
10.1016/j.jms.2017.07.009
10.1039/B304566H
10.1016/0022-2852(92)90231-C
10.1016/j.jms.2004.08.022
10.1006/jmsp.1997.7271
10.1016/0022-1902(71)80386-X
10.1002/anie.201300653
10.1086/181192
10.1016/0022-2852(67)90173-7
10.1016/j.jms.2007.07.009
10.1143/JPSJ.12.668
10.1021/ja104950w
10.1038/491186a
10.1021/acs.jpca.9b03196
10.1051/0004-6361/201833676
10.1063/1.4961656
10.1016/S0020-1693(00)94903-X
10.1038/38633
10.1016/0022-2852(88)90113-0
10.1016/S0009-2614(00)00603-5
10.5194/acp-6-897-2006
10.1109/JQE.1973.1077762
10.1021/acs.organomet.9b00053
10.1016/0039-6028(94)91116-9
10.1080/00268976.2014.924653
10.1021/acs.joc.8b02550
10.1063/1.468526
10.1063/1.1740473
10.1080/00268976300100501
10.1021/ja055333g
10.1016/0022-2852(73)90017-9
10.1021/j100245a017
10.1006/jmsp.2000.8182
10.1143/JPSJ.30.1145
10.1038/362735a0
10.1016/0022-2852(81)90025-4
10.1016/S0039-6028(99)00280-0
10.1016/j.jms.2016.03.005
10.3847/1538-4357/aa615a
10.1016/0009-2614(93)89137-7
10.1063/1.3624889
10.1016/j.jqsrt.2018.06.008
10.1038/171737a0
10.1038/ncomms9169
10.1021/jp0757255
10.1016/j.ccr.2020.213587
10.1051/0004-6361/201117096
10.1063/5.0025650
10.1007/s10973-010-0720-1
10.1021/acs.jpca.9b00029
10.1038/s41570-019-0127-x
10.1016/0022-1902(68)80219-2
10.1016/0022-2852(91)90207-Q
10.1016/0022-4073(96)00041-6
10.1023/A:1016696526207
10.1039/b712447c
10.1016/S0020-1693(00)91704-3
10.1016/j.jms.2006.11.001
10.1016/j.jqsrt.2009.02.013
10.1088/0004-637X/697/1/428
10.1051/0004-6361/201323190
10.1016/j.jqsrt.2020.107097
10.1016/S0009-2614(01)01434-8
10.1016/0022-2852(73)90097-0
10.1038/ngeo551
10.1016/0022-2852(73)90132-X
10.1038/s41586-018-0747-1
10.1016/0022-2852(89)90266-X
10.1063/1.451562
10.1006/jmsp.1995.1038
10.1002/anie.201205990
10.1016/0009-2614(94)01504-O
10.1039/c1dt10585j
10.1063/1.462054
10.1088/2041-8205/770/1/L13
10.1002/anie.200461860
10.1016/0022-2852(84)90189-9
10.1016/0022-4073(94)90113-9
10.1135/cccc19710890
10.1063/1.4794157
10.1007/BF02881241
10.1063/1.2776334
10.1086/508708
10.1063/1.472125
10.1143/JPSJ.11.334
10.1063/1.1357439
10.1021/cm0523891
10.1016/0022-2852(88)90072-0
10.1139/cjp-2019-0469
10.1016/S0022-2852(03)00124-3
10.1111/j.1365-2966.2011.18261.x
10.1139/v77-444
10.1016/0022-2852(74)90117-9
10.1063/1.472126
10.1016/0022-2852(89)90197-5
10.1002/anie.201308459
10.1143/JPSJ.9.974
10.1016/0022-2860(78)87259-7
10.1021/ic50035a011
10.1016/0022-2852(85)90170-5
10.1143/JPSJ.18.364
10.1038/srep34270
10.1016/0022-2852(87)90249-9
10.1016/S0371-1951(60)80022-7
10.1038/s41578-018-0044-5
10.1016/j.cplett.2018.06.048
10.1016/j.jms.2009.02.013
10.1063/1.3633699
10.1006/jmsp.1998.7626
10.1007/BF00749387
10.1063/1.444904
10.1016/j.molliq.2008.05.010
10.1515/zna-1988-0607
10.1016/S0022-4073(02)00354-0
10.1016/j.jms.2016.12.007
10.1063/1.4705267
10.1063/1.449139
10.1016/0022-2852(70)90183-9
10.1006/jmsp.1996.0118
10.1016/j.jms.2006.03.013
10.1111/j.1945-5100.2008.tb00629.x
10.1016/j.jms.2017.04.017
10.1021/cr60320a001
10.1016/0022-2852(87)90064-6
10.1007/s12010-018-2715-5
10.1016/0022-1902(63)80408-X
10.1016/j.cplett.2005.08.127
10.1016/0301-0104(88)85004-3
10.1002/anie.201300707
10.1016/j.jms.2011.09.003
10.1002/jcc.20885
10.1063/1.2769382
10.1002/qua.22585
10.1038/ncomms2574
10.1016/j.jqsrt.2011.03.015
10.1038/nmat4661
10.1088/0004-637X/731/1/16
10.1016/0022-2852(76)90123-5
10.1021/ja0542587
10.1016/j.jms.2004.04.009
10.1002/anie.201709966
10.1039/c003974h
10.1063/1.465783
10.1038/185416a0
10.1016/0022-2852(86)90096-2
10.1016/0039-6028(95)00727-X
10.1021/j100364a035
10.1080/01442350310001616896
10.1002/1521-3773(20010302)40:5<935::AID-ANIE935>3.0.CO;2-O
10.1016/j.jqsrt.2013.05.027
10.1021/j100055a014
10.1016/0022-2852(90)90292-X
10.1021/acs.jpclett.5b01220
10.1016/0022-2852(92)90070-5
10.1038/nrm766
10.1086/305002
10.1126/science.1199003
10.1016/0010-8545(96)01285-4
10.1029/2012JD017751
10.1016/0022-2852(89)90114-8
10.1063/1.446878
10.1021/acs.jpca.5b08437
10.1002/anie.201812754
10.1016/S0924-2031(02)00039-5
10.1039/b802050g
10.1006/jmsp.1998.7728
10.1063/1.3604934
10.1080/00268976.2010.499114
10.1063/1.1700155
10.1063/1.2047572
10.1016/0022-2852(78)90038-3
10.1016/j.jms.2008.02.012
10.1086/181569
10.1364/AO.34.006067
10.1063/1.461698
10.1016/0022-2852(89)90338-X
10.1038/nchem.2045
ContentType Journal Article
Copyright 2021 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ccr.2021.213797
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3840
0010-8545
ExternalDocumentID oai_HAL_hal_03182344v1
10_1016_j_ccr_2021_213797
S001085452100031X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
RIG
SCB
SEW
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c374t-e958ec99a45ed804280e3f81950ac0e00b5e7fac4af89ddb11b0afce2dee7a9a3
IEDL.DBID AIKHN
ISSN 0010-8545
IngestDate Thu Aug 21 07:04:35 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 02:43:49 EDT 2025
Fri Feb 23 02:47:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Inversion tunneling
High resolution spectroscopy
Large amplitude motion
Coordination complexes
Molecular structures
Language English
License This is an open access article under the CC BY-NC-ND license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-e958ec99a45ed804280e3f81950ac0e00b5e7fac4af89ddb11b0afce2dee7a9a3
ORCID 0000-0002-8715-9764
0000-0002-5493-8905
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S001085452100031X
ParticipantIDs hal_primary_oai_HAL_hal_03182344v1
crossref_citationtrail_10_1016_j_ccr_2021_213797
crossref_primary_10_1016_j_ccr_2021_213797
elsevier_sciencedirect_doi_10_1016_j_ccr_2021_213797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
2021-06
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Duncan (b0200) 1997; 48
Plant, Coleman, de Temple (b0850) 1973; QE-9
Kleiner, Hougen (b0810) 2020; 368
Senent (b0930) 2018; 343
Brown, Margolis (b0490) 1996; 56
Ciampolini, Sparoni (b0235) 1966; 5
Davies, Clarke, Clarkson, Shipman, Tucker (b0295) 2007; 47
Penn, Boggs (b1155) 1973; 47
Ohashi, Olson (b1010) 1991; 145
Longuet-Higgins (b0670) 1963; 6
Kasuja (b0145) 1962; 56
Gulaczyk, Kręglewski (b0800) 2020; 252
Tsunekawa, Kojima, Hougen (b0995) 1982; 95
Gulaczyk, Pyka, Kręglewski (b1055) 2007; 241
Gulaczyk, Kręglewski, Valentin (b1040) 1997; 186
Bogachuk, Wagner, Mastroianni, Daub (b0955) 2020; 8
Kim, Zeroka (b0905) 2008; 108
Cottaz, Kleiner, Tarrago, Brown (b0415) 2000; 203
Guinet, Jeseck, Mondelain, Pepin (b0430) 2011; 112
Gulaczyk, Łodyga, Kręglewski, Horneman (b0825) 2010; 108
Kleiner (b1200) 2019; 3
Frantz (b0090) 2002; 3
Nicolls, Swindells (b1115) 1968; 30
Ozeki, Takahashi, Okuyama, Kimura (b0330) 1993; 99
Lees, Sun, Xu (b0855) 2008; 29
Papoušek, Sarka, Špirko, Jordanov (b0970) 1971; 36
Schilter (b0015) 2019; 3
Dawadi, Bhatta, Perry (b0870) 2013; 117
Ohashi, Takagi, Hougen, Olson, Lafferty (b0770) 1988; 132
Rodham, Suzuki, Suenram, Lovas (b0555) 1993; 632
Gulaczyk, Kręglewski, Horneman (b0795) 2018; 217
Giuliano, Caminati (b0185) 2005; 44
Kleibömer, Sutter (b0315) 1988; 43a
Nishikawa (b0730) 1957; 12
Ohashi, Inoue, Iino, Sasaki (b0590) 2009; 147
Giguere, Liu (b0990) 1952; 20
Ohashi, Henry, Chazelas, Valentin (b1035) 1993; 161
A. Weber, Academic Press, Inc., 1st edition, 2 (1992).
Łodyga, Makarewicz (b1075) 2012; 136
Fraser, Leopold, Klemperer (b0560) 1984; 80
Tomioka, Ito, Mikami (b0345) 1983; 87
Csonka, Sztraka (b0885) 2000; 233
Benedict, Plyler, Tidwell (b0485) 1958; 29
Fuke, Hashimoto, Iwata (b0205) 1999; 110
Imamura, Ohashi, Sasaki, Inoue (b0600) 2010; 12
Merer, Watson (b0975) 1973; 47
Inokuma, Yoshioka, Ariyoshi, Arai (b0055) 2013; 495
Perutz, Rossmann, Cullis, Muirhead (b0080) 1960; 185
Meirer, Weckhuysen (b0045) 2018; 3
Burrows, Marley, Hubbard, Lunine (b0380) 1997; 491
Müller, Christen (b1210) 2004; 228
Holtom, Bennett, Osamura, Mason, Kaiser (b0610) 2005; 626
Takagi, Kojima (b0690) 1971; 30
Surin, Tarabukin, Schlemmer, Breier (b0580) 2017; 838
Albert, Lerch, Prentner, Quack (b0155) 2013; 52
Thompson (b0250) 1976
Kasuya, Kojima (b0965) 1963; 18
Rothman, Gordon, Barbe, Benner (b0455) 2009; 110
Ferres, Mouhib, Stahl, Schwell, Nguyen (b0150) 2017; 337
Herbine, Dyke (b0540) 1985; 83
Swaddle (b0240) 1977; 55
Gunther-Mohr, White, Schawlow, Good, Coles (b0135) 1954; 94
Gawas, Mojumdar, Verenkar (b1140) 2010; 100
Ducati, Custodito, Rittner (b0910) 2010; 110
Knitsch, Han, Anke, Ibing, Jiao, Hansen (b1130) 2019; 38
Gulaczyk, Kręglewski, Horneman (b0835) 2011; 270
Kleiner, Hougen (b0805) 2015; 119
Stockman, Bumgarner, Suzuki, Blake (b0545) 1992; 96
Chu, Chen, Cheo (b0450) 1994; 51
Bertolotti, Dirin, Ibáñez, Krumeich (b0050) 2016; 15
Sharp, Burrows (b0385) 2007; 168
Holmes (b0085) 1997; 389
Yurchenko, Barber, Tennyson (b0510) 2011; 413
Abe, Mikami, Ito (b0340) 1982; 86
Jones, Takami (b1025) 1983; 78
Oda, Ohashi (b0785) 1989; 138
Tomić, Kovačević, Tomić (b0300) 2016; 18
Tsuboi, Overend (b1020) 1974; 52
Thomas, Sukhorukov, Jäger, Xu (b0120) 2013; 52
Otte (b0005) 2020; 580
Aroui, Nouri, Bouanich (b0445) 2003; 220
Kowal (b1080) 2003; 625
Hamada, Hirakawa, Tamagake, Tsuboi (b1015) 1970; 35
Bloch, Burgun, Coghlan, Lee (b0020) 2014; 6
Hess, Sasaki, Villevieille, Novák (b0035) 2015; 6
Dyubko, Svich, Fesenko (b0845) 1972; 16
Farrar (b0210) 2003; 22
Sacconi, Sabatini (b1110) 1963; 25
Thomas (b0060) 2012; 491
Marstokk, Møllendal (b0140) 1978; 49
Lisy (b0215) 1997; 16
Durig, Zheng (b1095) 2002; 30
Machado, Roberto-Neto (b1090) 2002; 352
Sandmeier, Goetzke, Krautwald, Carreira (b1125) 2019; 141
Zhu, Kong, Okamura, Fan, Sun, Ueyama (b0245) 2004; 1465
Bunker, Jensen (b0395) 2006
Ohashi, Hougen (b0665) 1987; 121
Pelegrini, Roberto-Neto, Machado (b0895) 2005; 414
Tey, Reddy, Rao, Chowdari (b0275) 2006; 18
Kręglewski (b0310) 1989; 133
The 1964 Nobel Prize for Chemistry: Prof. Dorothy Crowfoot Hodgkin, F.R.S., Nature 204, 922 (1964).
Merke, Coudert (b0305) 2006; 237
Ohashi, Masue (b1045) 1991; 150
Koziol, Stahl, Nguyen (b1160) 2020; 153
Ohashi, Shimada, Olson, Kawaguchi (b0790) 1992; 152
Kręglewski, Winther (b0815) 1992; 156
Ghosh, Thomas, Huang, Xu, Jäger (b0180) 2015; 6
Omae (b0230) 1979; 79
Aruna, Patil (b0280) 1996; 4
Papoušek, Stone, Spirko (b0480) 1973; 48
Ferres, Cheung, Stahl, Nguyen (bib1217) 2019; 123
Cacciani, Čermák, Cosléou, El Romh (b0495) 2014; 112
Salter, Ellis (b0255) 2007; 127
Abyaneh, Moghadam, Divsalar, Ajloo, Sadr (b0260) 2018; 186
Kręglewski, Stahl, Grabow, Wlodarczak (b0755) 1992; 196
Schnell, Erlekam, Bunker, von Helden (b0165) 2013; 52
Durig, Zheng (b0710) 2001; 12
Urban (b0470) 1988; 131
Ijima (b0700) 1986; 59
Shimoda, Nishikawa, Itoh (b0720) 1954; 9
Wollrab, Laurie (b1150) 1968; 48
Heaton, Jacob, Page (b0285) 1996; 154
Riese, Ploeger, Rap, Vogel (b1175) 2012; 117
Boldyrev, Charkin (b0225) 1985; 26
Lodi, Tennyson, Polyansky (b0535) 2011; 135
Wright, Gerber (b1085) 2001; 114
Tsunekawa, Kojima, Hougen (b0265) 1982; 95
Mimani, Ravindranthan, Patil (b1145) 1987; 99
Lide (b0715) 1954; 22
Gulaczyk, Kręglewski, Horneman (b0780) 2017; 342
Kaifu, Morimoto, Nagane, Akabane (b0635) 1974; 191
Ohashi, Takagi, Hougen, Olson, Lafferty (b0740) 1987; 126
Ohashi, Lafferty, Olson (b1000) 1986; 117
Caminati (b0195) 2011
Pearson, Yu, Pirali (b0425) 2016; 145
Łodyga, Kręglewski, Makarewicz (b1070) 1997; 183
Fraser, Suenram, Lovas, Stevens (b0575) 1988; 12
Kleiner, Tarrago, Brown (b0400) 1995; 173
Fourikis, Takagi, Morimoto (b0630) 1974; 191
Iskander, El Sayed, Lasheen (b1100) 1976; 16
Yurchenko, Barber, Yachmenev, Thiel (b0505) 2009; 113
Christen, Müller (b1205) 2003; 5
Yamaguchi, Ichishima, Simanouchi, Mizushima (b1005) 1960; 16
Podolsky (b0655) 1928; 32
Kreglewski (b0925) 1978; 72
Cruz-Navarro, Hernández-Romero, Flores-Parra, Rivera (b0960) 2021; 427
Li, Evangelisti, Gou, Caminati, Meyer (b0170) 2019; 58
Gulaczyk, Kręglewski, Asselin, Pirali, Kleiner (b0875) 2020; 98
Smeyers, Villa, Senent (b0915) 1996; 177
Levi, Martin, Bar (b0900) 2008; 29
Aggarwal, Narang (b1120) 1973; 74
Drouin (b1215) 2017; 340
Mitsuzuka, Fujii, Ebata, Mikamia (b0355) 1996; 105
Sun, Qi, Lee, Xu (b0860) 2016; 6
Clarisse, Clerbaux, Dentener, Hurtmans, Coheur (b0365) 2009; 2
Takagi, Kojima (b0735) 1973; 181
Papoušek, Stone, Špirko (b0680) 1973; 48
Nguyen, Stahl (b1165) 2011; 135
Tercero, Kleiner, Cernicharo, Nguyen (b1190) 2013; 770
Kozubal, Heck, Metz (b0605) 2019; 123
Kręglewski (b0660) 1993
Sutton, Burrell, Dixon, Garner (b1135) 2011; 331
Suggit, Higginbotham, Hawreliak, Mogni (b0030) 2012; 3
Gulaczyk, Kręglewski (b1050) 2008; 249
Lees, Sun, Billinghurst (b0840) 2011; 135
Dawadi, Lindsay, Chirokolava, Perry, Xu (b0865) 2013; 138
Ehrenfreund, Bernstein, Dworkin, Sandford, Allamandola (b0625) 2001; 550
Erley, Hemminger (b0945) 1994; 316
Brandi-Blanco, Sanz Miguel, Lippert (b0290) 2011; 40
Takada, Nakamura (b0335) 1995; 102
Ohashi, Hougen (b0985) 1985; 112
Fraser, Lovas, Suenram, Nelson, Klemperer (b0565) 1986; 84
Fabian, Yamada (b0435) 1999; 198
Taniguchi, Tsubouchi, Imai, Yuasa, Oguri (b0360) 2018; 83
Albaqami, Ellis (b0585) 2018; 706
Nelson, Fraser, Peterson, Zhao, Klemperer (b0570) 1986; 85
Inoue, Ohashi, Iino, Sasaki (b0595) 2008; 10
Baraban, Martin-Drumel, Changala, Eibenberger (b0160) 2018; 57
Lee, Kim, Moon, Minth, Kang (b0620) 2009; 697
Smeyers, Villa (b0890) 2000; 324
Geulachvili, Abdullah, Tu, Rao (b0410) 1989; 133
Li, Tang, Yusov, Rose (b0025) 2019; 10
Lynas-Gray, Miller, Tennyson (b0530) 1995; 169
Belorgeot, Stern, Goff, Kachamrsky, Möller (b0695) 1982; 92
Caminati, Grabow (b0110) 2006; 128
Łodyga, Kręglewski (b1065) 1993; 210
Huang, Schwenke, Lee (b0500) 2008; 129
Tsuboi, Hamada, Henry, Chazelas, Valentin (b1030) 1984; 108
Feng, Gou, Evangelisti, Caminati (b0175) 2014; 53
Yurchenko, Thiel, Jensen (b0525) 2007; 245
Kroto (b0675) 1975
Frost, Hagemeister, Arrington, Schleppenbach, Zwier, Jordan (b0350) 1996; 105
Gulaczyk, Kręglewski (b0830) 2009; 256
Tsuji, Sekiya, Nishimura, Mori, Takeshita (b0320) 1991; 95
Sztraka, Alanko, Koivusaari (b0820) 1997; 410–411
Smeyers, Villa, Senent (b0920) 1998; 191
Watson, Crick (b0075) 1953; 171
Hougen (b0980) 1981; 89
Endres, Schlemmer, Schilke, Stutzki (b1195) 2016; 327
Lesarri, Shipman, Neill, Brown (b0130) 2010; 132
Down, Hill, Yurchenko, Tennyson (b0460) 2013; 130
Tsuboi, Hirakawa, Tamagake (b0685) 1967; 22
Yurchenko, Zheng, Lin, Jensen, Thiel (b0520) 2005; 123
Glavin, Dworkin, Sandford (b0645) 2008; 43
Baca, Schulz, Shirley (b0935) 1985; 83
Gordy, Cook (b0105) 1984
Blumestock (b1180) 2006; 6
Lara, Bézard, Griffith, Lacy, Owen (b0375) 1998; 131
Kemp (b0010) 1998; 394
Beaulieu, Tinetti, Kipping, Ribas (b0390) 2011; 731
Nobel Prize for Chemistry: Prof. P. Debye, Nature 138, 873 (1936).
Walters, Pillai, Duncan (b0220) 2005; 127
Ohashi, Tsunekawa, Takagi, Hougen (b0775) 1989; 137
Bossa, Duvernay, Theulé (b0615) 2009; 506
Latajka, Scheiner (b0550) 1990; 94
Ilyushin, Lovas (b0760) 2007; 36
K.C. Patil, T.M. Rattan, Inorganic Hydrazine Derivatives, John Wiley & Sons, Ltd., 2014.
Nemtchinov, Sung, Varanasi (b0440) 2004; 83
Muller, Beelen, Guelin, Aalto (b0640) 2011; 535
Motiyenko, Ilyushin, Drouin, Yu, Margulès (b0765) 2014; 563
Hughes (b0065) 2008; 452
Nunney, Birtill, Raval (b0940) 1999; 427–428
Van Damme, Clarisse, Whitburn, Hadji-Lazaro (b0370) 2018; 564
Kręglewski, Wlodarczak (b0745) 1992; 156
Morinaka, Sato, Wakamiya, Nikawa (b0040) 2013; 4
Bogelund, McGuire, Hogerheijde, Dishoeck, Ligterink (b0650) 2019; 624
Oda, Ohashi, Hougen (b0705) 1990; 142
Ilyushin, Alekseev, Dyubko, Motiyenko, Hougen (b0750) 2005; 229
Cottaz, Tarrago, Kleiner, Brown (b0420) 2001; 209
Spirko, Stone, Papoušek (b0465) 1976; 60
Jentz, Trenary, Peng, Stair (b0950) 1995; 341
Schnell, Grabow (b0115) 2006; 45
Kleiner, Brown, Tarrago, Kou (b0405) 1999; 193
Lee, Mhin, Cho, Lee, Kim (b0880) 1994; 98
Hirakawa, Miyahara, Shimoda (b0725) 1956; 11
Gulaczyk, Kręglewski, Valentin (b1060) 2003; 220
El, Sayed (b1105) 1971; 33
Uriarte, Insausti, Cocinero, Jabri (b0125) 2018; 9
Howard (b0100) 2003; 4
Pracna, Spirko, Kraemer (b0475) 1989; 136
Muhleman, Clancy (b1185) 1995; 34
Redington, Redi
Plant (10.1016/j.ccr.2021.213797_b0850) 1973; QE-9
Yurchenko (10.1016/j.ccr.2021.213797_b0510) 2011; 413
Cottaz (10.1016/j.ccr.2021.213797_b0420) 2001; 209
Hughes (10.1016/j.ccr.2021.213797_b0065) 2008; 452
Frost (10.1016/j.ccr.2021.213797_b0350) 1996; 105
Ohashi (10.1016/j.ccr.2021.213797_b0665) 1987; 121
Duncan (10.1016/j.ccr.2021.213797_b0200) 1997; 48
Burrows (10.1016/j.ccr.2021.213797_b0380) 1997; 491
Oda (10.1016/j.ccr.2021.213797_b0705) 1990; 142
Kasuya (10.1016/j.ccr.2021.213797_b0965) 1963; 18
Van Damme (10.1016/j.ccr.2021.213797_b0370) 2018; 564
Yurchenko (10.1016/j.ccr.2021.213797_b0505) 2009; 113
Gulaczyk (10.1016/j.ccr.2021.213797_b0830) 2009; 256
Nicolls (10.1016/j.ccr.2021.213797_b1115) 1968; 30
Muhleman (10.1016/j.ccr.2021.213797_b1185) 1995; 34
Takagi (10.1016/j.ccr.2021.213797_b0735) 1973; 181
Beaulieu (10.1016/j.ccr.2021.213797_b0390) 2011; 731
Surin (10.1016/j.ccr.2021.213797_b0580) 2017; 838
Brown (10.1016/j.ccr.2021.213797_b0490) 1996; 56
Durig (10.1016/j.ccr.2021.213797_b0710) 2001; 12
Gulaczyk (10.1016/j.ccr.2021.213797_b0825) 2010; 108
Inokuma (10.1016/j.ccr.2021.213797_b0055) 2013; 495
Albert (10.1016/j.ccr.2021.213797_b0155) 2013; 52
Papoušek (10.1016/j.ccr.2021.213797_b0480) 1973; 48
Tsunekawa (10.1016/j.ccr.2021.213797_b0995) 1982; 95
Iskander (10.1016/j.ccr.2021.213797_b1100) 1976; 16
Kleiner (10.1016/j.ccr.2021.213797_b0400) 1995; 173
Christen (10.1016/j.ccr.2021.213797_b1205) 2003; 5
Lara (10.1016/j.ccr.2021.213797_b0375) 1998; 131
Tomić (10.1016/j.ccr.2021.213797_b0300) 2016; 18
Lodi (10.1016/j.ccr.2021.213797_b0535) 2011; 135
Tsuboi (10.1016/j.ccr.2021.213797_b0685) 1967; 22
Lide (10.1016/j.ccr.2021.213797_b0715) 1954; 22
Nguyen (10.1016/j.ccr.2021.213797_b1165) 2011; 135
Gulaczyk (10.1016/j.ccr.2021.213797_b0780) 2017; 342
Stockman (10.1016/j.ccr.2021.213797_b0545) 1992; 96
Li (10.1016/j.ccr.2021.213797_b0025) 2019; 10
Fraser (10.1016/j.ccr.2021.213797_b0565) 1986; 84
Riese (10.1016/j.ccr.2021.213797_b1175) 2012; 117
Farrar (10.1016/j.ccr.2021.213797_b0210) 2003; 22
Belorgeot (10.1016/j.ccr.2021.213797_b0695) 1982; 92
Yurchenko (10.1016/j.ccr.2021.213797_b0520) 2005; 123
Clarisse (10.1016/j.ccr.2021.213797_b0365) 2009; 2
Smeyers (10.1016/j.ccr.2021.213797_b0920) 1998; 191
Gulaczyk (10.1016/j.ccr.2021.213797_b1060) 2003; 220
Tsuboi (10.1016/j.ccr.2021.213797_b1020) 1974; 52
Sacconi (10.1016/j.ccr.2021.213797_b1110) 1963; 25
Ciampolini (10.1016/j.ccr.2021.213797_b0235) 1966; 5
Lees (10.1016/j.ccr.2021.213797_b0840) 2011; 135
Dawadi (10.1016/j.ccr.2021.213797_b0865) 2013; 138
Gordy (10.1016/j.ccr.2021.213797_b0105) 1984
Rodham (10.1016/j.ccr.2021.213797_b0555) 1993; 632
Fraser (10.1016/j.ccr.2021.213797_b0560) 1984; 80
Ohashi (10.1016/j.ccr.2021.213797_b0790) 1992; 152
Muller (10.1016/j.ccr.2021.213797_b0640) 2011; 535
Gulaczyk (10.1016/j.ccr.2021.213797_b0795) 2018; 217
Smeyers (10.1016/j.ccr.2021.213797_b0915) 1996; 177
Tercero (10.1016/j.ccr.2021.213797_b1190) 2013; 770
Ferres (10.1016/j.ccr.2021.213797_bib1217) 2019; 123
Cottaz (10.1016/j.ccr.2021.213797_b0415) 2000; 203
Yurchenko (10.1016/j.ccr.2021.213797_b0525) 2007; 245
Abyaneh (10.1016/j.ccr.2021.213797_b0260) 2018; 186
Lynas-Gray (10.1016/j.ccr.2021.213797_b0530) 1995; 169
Caminati (10.1016/j.ccr.2021.213797_b0110) 2006; 128
Kleiner (10.1016/j.ccr.2021.213797_b0405) 1999; 193
Pearson (10.1016/j.ccr.2021.213797_b0425) 2016; 145
Ghosh (10.1016/j.ccr.2021.213797_b0180) 2015; 6
Fuke (10.1016/j.ccr.2021.213797_b0205) 1999; 110
Ilyushin (10.1016/j.ccr.2021.213797_b0760) 2007; 36
Benedict (10.1016/j.ccr.2021.213797_b0485) 1958; 29
Oda (10.1016/j.ccr.2021.213797_b0785) 1989; 138
Gulaczyk (10.1016/j.ccr.2021.213797_b0835) 2011; 270
Boldyrev (10.1016/j.ccr.2021.213797_b0225) 1985; 26
Kleiner (10.1016/j.ccr.2021.213797_b1200) 2019; 3
Tey (10.1016/j.ccr.2021.213797_b0275) 2006; 18
Heaton (10.1016/j.ccr.2021.213797_b0285) 1996; 154
Ohashi (10.1016/j.ccr.2021.213797_b0740) 1987; 126
Schnell (10.1016/j.ccr.2021.213797_b0115) 2006; 45
Glavin (10.1016/j.ccr.2021.213797_b0645) 2008; 43
Shimoda (10.1016/j.ccr.2021.213797_b0720) 1954; 9
Blumestock (10.1016/j.ccr.2021.213797_b1180) 2006; 6
Csonka (10.1016/j.ccr.2021.213797_b0885) 2000; 233
Sutton (10.1016/j.ccr.2021.213797_b1135) 2011; 331
Ehrenfreund (10.1016/j.ccr.2021.213797_b0625) 2001; 550
Nelson (10.1016/j.ccr.2021.213797_b0570) 1986; 85
Hougen (10.1016/j.ccr.2021.213797_b0980) 1981; 89
Hamada (10.1016/j.ccr.2021.213797_b1015) 1970; 35
Howard (10.1016/j.ccr.2021.213797_b0100) 2003; 4
Ohashi (10.1016/j.ccr.2021.213797_b0590) 2009; 147
Li (10.1016/j.ccr.2021.213797_b0170) 2019; 58
Sanz (10.1016/j.ccr.2021.213797_b0190) 2001; 40
Uriarte (10.1016/j.ccr.2021.213797_b0125) 2018; 9
Bossa (10.1016/j.ccr.2021.213797_b0615) 2009; 506
Lee (10.1016/j.ccr.2021.213797_b0880) 1994; 98
Bloch (10.1016/j.ccr.2021.213797_b0020) 2014; 6
Nemtchinov (10.1016/j.ccr.2021.213797_b0440) 2004; 83
Lee (10.1016/j.ccr.2021.213797_b0620) 2009; 697
Baraban (10.1016/j.ccr.2021.213797_b0160) 2018; 57
Tsuji (10.1016/j.ccr.2021.213797_b0320) 1991; 95
Pracna (10.1016/j.ccr.2021.213797_b0475) 1989; 136
Senent (10.1016/j.ccr.2021.213797_b0930) 2018; 343
Caminati (10.1016/j.ccr.2021.213797_b0195) 2011
Kręglewski (10.1016/j.ccr.2021.213797_b0745) 1992; 156
Kręglewski (10.1016/j.ccr.2021.213797_b0660) 1993
Lees (10.1016/j.ccr.2021.213797_b0855) 2008; 29
Ijima (10.1016/j.ccr.2021.213797_b0700) 1986; 59
Ohashi (10.1016/j.ccr.2021.213797_b1035) 1993; 161
Kozubal (10.1016/j.ccr.2021.213797_b0605) 2019; 123
Albaqami (10.1016/j.ccr.2021.213797_b0585) 2018; 706
Müller (10.1016/j.ccr.2021.213797_b1210) 2004; 228
Hirakawa (10.1016/j.ccr.2021.213797_b0725) 1956; 11
Gawas (10.1016/j.ccr.2021.213797_b1140) 2010; 100
Jentz (10.1016/j.ccr.2021.213797_b0950) 1995; 341
Latajka (10.1016/j.ccr.2021.213797_b0550) 1990; 94
Walters (10.1016/j.ccr.2021.213797_b0220) 2005; 127
Inoue (10.1016/j.ccr.2021.213797_b0595) 2008; 10
Merer (10.1016/j.ccr.2021.213797_b0975) 1973; 47
Schilter (10.1016/j.ccr.2021.213797_b0015) 2019; 3
Abe (10.1016/j.ccr.2021.213797_b0340) 1982; 86
Jones (10.1016/j.ccr.2021.213797_b1025) 1983; 78
Guinet (10.1016/j.ccr.2021.213797_b0430) 2011; 112
Thompson (10.1016/j.ccr.2021.213797_b0250) 1976
Brandi-Blanco (10.1016/j.ccr.2021.213797_b0290) 2011; 40
Thomas (10.1016/j.ccr.2021.213797_b0120) 2013; 52
Rothman (10.1016/j.ccr.2021.213797_b0455) 2009; 110
Fourikis (10.1016/j.ccr.2021.213797_b0630) 1974; 191
Ferres (10.1016/j.ccr.2021.213797_b0150) 2017; 337
Kręglewski (10.1016/j.ccr.2021.213797_b0815) 1992; 156
Kim (10.1016/j.ccr.2021.213797_b0905) 2008; 108
Ohashi (10.1016/j.ccr.2021.213797_b1045) 1991; 150
Ozeki (10.1016/j.ccr.2021.213797_b0330) 1993; 99
Ilyushin (10.1016/j.ccr.2021.213797_b0750) 2005; 229
Imamura (10.1016/j.ccr.2021.213797_b0600) 2010; 12
Erley (10.1016/j.ccr.2021.213797_b0945) 1994; 316
Bogelund (10.1016/j.ccr.2021.213797_b0650) 2019; 624
Sun (10.1016/j.ccr.2021.213797_b0860) 2016; 6
Machado (10.1016/j.ccr.2021.213797_b1090) 2002; 352
10.1016/j.ccr.2021.213797_b0270
Gulaczyk (10.1016/j.ccr.2021.213797_b1050) 2008; 249
Kleiner (10.1016/j.ccr.2021.213797_b0810) 2020; 368
Davies (10.1016/j.ccr.2021.213797_b0295) 2007; 47
Zhu (10.1016/j.ccr.2021.213797_b0245) 2004; 1465
Sztraka (10.1016/j.ccr.2021.213797_b0820) 1997; 410–411
Kemp (10.1016/j.ccr.2021.213797_b0010) 1998; 394
Feng (10.1016/j.ccr.2021.213797_b0175) 2014; 53
Ducati (10.1016/j.ccr.2021.213797_b0910) 2010; 110
Ohashi (10.1016/j.ccr.2021.213797_b0985) 1985; 112
Baca (10.1016/j.ccr.2021.213797_b0935) 1985; 83
Gulaczyk (10.1016/j.ccr.2021.213797_b1055) 2007; 241
Tsunekawa (10.1016/j.ccr.2021.213797_b0265) 1982; 95
Sandmeier (10.1016/j.ccr.2021.213797_b1125) 2019; 141
Omae (10.1016/j.ccr.2021.213797_b0230) 1979; 79
Dyubko (10.1016/j.ccr.2021.213797_b0845) 1972; 16
Knitsch (10.1016/j.ccr.2021.213797_b1130) 2019; 38
Gulaczyk (10.1016/j.ccr.2021.213797_b0875) 2020; 98
Tsuboi (10.1016/j.ccr.2021.213797_b1030) 1984; 108
Huang (10.1016/j.ccr.2021.213797_b0500) 2008; 129
Wollrab (10.1016/j.ccr.2021.213797_b1150) 1968; 48
Papoušek (10.1016/j.ccr.2021.213797_b0970) 1971; 36
Łodyga (10.1016/j.ccr.2021.213797_b1075) 2012; 136
Tomioka (10.1016/j.ccr.2021.213797_b0345) 1983; 87
Koziol (10.1016/j.ccr.2021.213797_b1160) 2020; 153
Chu (10.1016/j.ccr.2021.213797_b0450) 1994; 51
Nishikawa (10.1016/j.ccr.2021.213797_b0730) 1957; 12
Takada (10.1016/j.ccr.2021.213797_b0335) 1995; 102
Giuliano (10.1016/j.ccr.2021.213797_b0185) 2005; 44
Kreglewski (10.1016/j.ccr.2021.213797_b0925) 1978; 72
Levi (10.1016/j.ccr.2021.213797_b0900) 2008; 29
Suggit (10.1016/j.ccr.2021.213797_b0030) 2012; 3
10.1016/j.ccr.2021.213797_b0095
Kasuja (10.1016/j.ccr.2021.213797_b0145) 1962; 56
Redington (10.1016/j.ccr.2021.213797_b0325) 2008; 112
Kręglewski (10.1016/j.ccr.2021.213797_b0755) 1992; 196
Geulachvili (10.1016/j.ccr.2021.213797_b0410) 1989; 133
Spirko (10.1016/j.ccr.2021.213797_b0465) 1976; 60
Dawadi (10.1016/j.ccr.2021.213797_b0870) 2013; 117
Bertolotti (10.1016/j.ccr.2021.213797_b0050) 2016; 15
Wright (10.1016/j.ccr.2021.213797_b1085) 2001; 114
Kleibömer (10.1016/j.ccr.2021.213797_b0315) 1988; 43a
Yurchenko (10.1016/j.ccr.2021.213797_b0515) 2011; 268
Ohashi (10.1016/j.ccr.2021.213797_b1000) 1986; 117
Endres (10.1016/j.ccr.2021.213797_b1195) 2016; 327
Kręglewski (10.1016/j.ccr.2021.213797_b0310) 1989; 133
Urban (10.1016/j.ccr.2021.213797_b0470) 1988; 131
Bunker (10.1016/j.ccr.2021.213797_b0395) 2006
Gulaczyk (10.1016/j.ccr.2021.213797_b1040) 1997; 186
Nunney (10.1016/j.ccr.2021.213797_b0940) 1999; 427–428
Kowal (10.1016/j.ccr.2021.213797_b1080) 2003; 625
Hess (10.1016/j.ccr.2021.213797_b0035) 2015; 6
Fraser (10.1016/j.ccr.2021.213797_b0575) 1988; 12
Holmes (10.1016/j.ccr.2021.213797_b0085) 1997; 389
Frantz (10.1016/j.ccr.2021.213797_b0090) 2002; 3
Motiyenko (10.1016/j.ccr.2021.213797_b0765) 2014; 563
Yamaguchi (10.1016/j.ccr.2021.213797_b1005) 1960; 16
Schnell (10.1016/j.ccr.2021.213797_b0165) 2013; 52
Down (10.1016/j.ccr.2021.213797_b0460) 2013; 130
Perutz (10.1016/j.ccr.2021.213797_b0080) 1960; 185
Meirer (10.1016/j.ccr.2021.213797_b0045) 2018; 3
Herbine (10.1016/j.ccr.2021.213797_b0540) 1985; 83
Longuet-Higgins (10.1016/j.ccr.2021.213797_b0670) 1963; 6
Ohashi (10.1016/j.ccr.2021.213797_b1010
References_xml – volume: 141
  start-page: 12212
  year: 2019
  ident: b1125
  publication-title: J. Am. Chem. Soc.
– volume: 624
  start-page: A82
  year: 2019
  ident: b0650
  publication-title: Astronom. Astrophys.
– volume: 12
  start-page: 11647
  year: 2010
  ident: b0600
  publication-title: Phys. Chem. Chem. Phys.
– volume: 171
  start-page: 737
  year: 1953
  ident: b0075
  publication-title: Nature
– volume: 168
  start-page: 140
  year: 2007
  ident: b0385
  publication-title: Astrophys. J.
– volume: 135
  year: 2011
  ident: b1165
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 13356
  year: 2013
  ident: b0870
  publication-title: J. Phys. Chem. A
– volume: 108
  start-page: 2389
  year: 2010
  ident: b0825
  publication-title: Mol. Phys.
– volume: 150
  start-page: 238
  year: 1991
  ident: b1045
  publication-title: J. Mol. Spectrosc.
– reference: A. Weber, Academic Press, Inc., 1st edition, 2 (1992).
– reference: The 1964 Nobel Prize for Chemistry: Prof. Dorothy Crowfoot Hodgkin, F.R.S., Nature 204, 922 (1964).
– volume: 6
  start-page: 3126
  year: 2015
  ident: b0180
  publication-title: J. Phys. Chem. Lett.
– volume: 131
  start-page: 133
  year: 1988
  ident: b0470
  publication-title: J. Mol. Spectrosc.
– volume: 53
  start-page: 530
  year: 2014
  ident: b0175
  publication-title: Angew. Chem. Int. Ed.
– volume: 191
  start-page: L139
  year: 1974
  ident: b0630
  publication-title: Astrophys. J.
– volume: 87
  start-page: 4401
  year: 1983
  ident: b0345
  publication-title: J. Phys. Chem.
– volume: 352
  start-page: 120
  year: 2002
  ident: b1090
  publication-title: Chem. Phys. Lett.
– volume: 138
  year: 2013
  ident: b0865
  publication-title: J. Chem. Phys.
– volume: 626
  start-page: 940
  year: 2005
  ident: b0610
  publication-title: Astrophys. J.
– volume: 92
  start-page: 91
  year: 1982
  ident: b0695
  publication-title: J. Mol. Spectrosc.
– volume: 132
  start-page: 13417
  year: 2010
  ident: b0130
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 431
  year: 1999
  ident: b0205
  publication-title: Adv. Chem. Phys.
– volume: 237
  start-page: 174
  year: 2006
  ident: b0305
  publication-title: J. Mol. Spectrosc.
– volume: 6
  start-page: 34270
  year: 2016
  ident: b0860
  publication-title: Sci. Rep.
– volume: 135
  year: 2011
  ident: b0535
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 384
  year: 1985
  ident: b0985
  publication-title: J. Mol. Spectrosc.
– volume: 99
  start-page: 209
  year: 1987
  ident: b1145
  publication-title: Proc. Indian Acad. Sci., Chem. Sci.
– volume: 15
  start-page: 987
  year: 2016
  ident: b0050
  publication-title: Nat. Mater.
– volume: 156
  start-page: 261
  year: 1992
  ident: b0815
  publication-title: J. Mol. spectrosc.
– volume: 123
  start-page: 4929
  year: 2019
  ident: b0605
  publication-title: J. Phys. Chem. A
– volume: 394
  start-page: 25
  year: 1998
  ident: b0010
  publication-title: Nature
– volume: 43
  start-page: 399
  year: 2008
  ident: b0645
  publication-title: Met. Planet. Sci.
– year: 1975
  ident: b0675
  article-title: Molecular Rotation Spectra
– volume: 38
  start-page: 2714
  year: 2019
  ident: b1130
  publication-title: Organometallics
– volume: 52
  start-page: 4402
  year: 2013
  ident: b0120
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 1821
  year: 2018
  ident: b0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 193
  start-page: 46
  year: 1999
  ident: b0405
  publication-title: J. Mol. Spectrosc.
– volume: 9
  start-page: 974
  year: 1954
  ident: b0720
  publication-title: J. Phys. Soc. Jpn.
– volume: 110
  start-page: 2006
  year: 2010
  ident: b0910
  publication-title: Int. J. Quantum Chem.
– volume: 85
  start-page: 5512
  year: 1986
  ident: b0570
  publication-title: J. Chem. Phys.
– volume: 535
  start-page: A103
  year: 2011
  ident: b0640
  publication-title: Astronom. Astrophys.
– volume: 98
  start-page: 1129
  year: 1994
  ident: b0880
  publication-title: J. Phys. Chem.
– volume: 3
  start-page: 146
  year: 2002
  ident: b0090
  publication-title: Nat. Rev. Mol. Cell. Biol.
– volume: 731
  start-page: 16
  year: 2011
  ident: b0390
  publication-title: Astrophys. J.
– volume: 105
  start-page: 2618
  year: 1996
  ident: b0355
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 1471
  year: 1960
  ident: b1005
  publication-title: Spectrochim. Acta
– volume: 35
  start-page: 420
  year: 1970
  ident: b1015
  publication-title: J. Mol. Spectrosc.
– year: 2011
  ident: b0195
  article-title: Microwave Spectroscopy of Large Molecules and Molecular Complexes, Chapter in book: Handbook of High-resolution Spectroscopy
– volume: 324
  start-page: 273
  year: 2000
  ident: b0890
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 119
  year: 1986
  ident: b1000
  publication-title: J. Mol. Spectrosc.
– volume: 491
  start-page: 856
  year: 1997
  ident: b0380
  publication-title: Astrophys. J.
– volume: 36
  start-page: 1141
  year: 2007
  ident: b0760
  publication-title: J. Phys. Chem. Ref. Data
– volume: 45
  start-page: 3465
  year: 2006
  ident: b0115
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 148
  year: 2008
  ident: b0855
  publication-title: Int. J. Infrared Milli Waves
– volume: 452
  start-page: 30
  year: 2008
  ident: b0065
  publication-title: Nature
– volume: 210
  start-page: 303
  year: 1993
  ident: b1065
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 175
  year: 1996
  ident: b0280
  publication-title: J. Mater. Synth. Process.
– volume: 770
  start-page: L13
  year: 2013
  ident: b1190
  publication-title: Astrophys. J. Lett.
– volume: 114
  start-page: 8763
  year: 2001
  ident: b1085
  publication-title: J. Chem. Phys.
– volume: 183
  start-page: 374
  year: 1997
  ident: b1070
  publication-title: J. Mol. Spectrosc.
– volume: 16
  start-page: 418
  year: 1972
  ident: b0845
  publication-title: J. Exp. Theor. Phys. Lett.
– volume: 126
  start-page: 443
  year: 1987
  ident: b0740
  publication-title: J. Mol. Spectrosc.
– volume: 4
  start-page: 1554
  year: 2013
  ident: b0040
  publication-title: Nat. Commun.
– volume: 83
  start-page: 243
  year: 2004
  ident: b0440
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 138
  start-page: 246
  year: 1989
  ident: b0785
  publication-title: J. Mol. Spectrosc.
– volume: 136
  year: 2012
  ident: b1075
  publication-title: J. Chem. Phys.
– volume: 256
  start-page: 86
  year: 2009
  ident: b0830
  publication-title: J. Mol. Spectrosc.
– reference: Nobel Prize for Chemistry: Prof. P. Debye, Nature 138, 873 (1936).
– volume: 6
  start-page: 445
  year: 1963
  ident: b0670
  publication-title: Mol. Phys.
– volume: 33
  start-page: 435
  year: 1971
  ident: b1105
  publication-title: J. Inorg. Nucl. Chem.
– volume: 245
  start-page: 126
  year: 2007
  ident: b0525
  publication-title: J. Mol. Spectrosc.
– volume: 233
  start-page: 611
  year: 2000
  ident: b0885
  publication-title: Chem. Phys. Lett.
– volume: 123
  year: 2005
  ident: b0520
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: D16305
  year: 2012
  ident: b1175
  publication-title: J. Geophys.
– volume: 241
  start-page: 75
  year: 2007
  ident: b1055
  publication-title: J. Mol. Spectrosc.
– volume: 564
  start-page: 99
  year: 2018
  ident: b0370
  publication-title: Nature
– volume: 100
  start-page: 867
  year: 2010
  ident: b1140
  publication-title: J. Therm. Anal. Calorim.
– volume: 133
  start-page: 345
  year: 1989
  ident: b0410
  publication-title: J. Mol. Spectrosc.
– reference: K.C. Patil, T.M. Rattan, Inorganic Hydrazine Derivatives, John Wiley & Sons, Ltd., 2014.
– volume: 112
  start-page: 1950
  year: 2011
  ident: b0430
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 48
  start-page: 5058
  year: 1968
  ident: b1150
  publication-title: J. Chem. Phys.
– volume: 550
  start-page: L95
  year: 2001
  ident: b0625
  publication-title: Astrophys. J.
– volume: 191
  start-page: L135
  year: 1974
  ident: b0635
  publication-title: Astrophys. J.
– volume: 6
  start-page: 897
  year: 2006
  ident: b1180
  publication-title: Atmos. Chem. Phys.
– volume: 83
  start-page: 6001
  year: 1985
  ident: b0935
  publication-title: J. Chem. Phys.
– volume: 697
  start-page: 428
  year: 2009
  ident: b0620
  publication-title: Astrophys. J.
– volume: 56
  start-page: 283
  year: 1996
  ident: b0490
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 43a
  start-page: 561
  year: 1988
  ident: b0315
  publication-title: Z. Naturforsch.
– volume: 186
  start-page: 271
  year: 2018
  ident: b0260
  publication-title: Appl. Biochem. Biotechnol.
– volume: 74
  start-page: 651
  year: 1973
  ident: b1120
  publication-title: Inorg. Chim. Acta
– volume: 127
  start-page: 16599
  year: 2005
  ident: b0220
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 10664
  year: 2015
  ident: b0805
  publication-title: J. Phys. Chem. A
– volume: 16
  start-page: 267
  year: 1997
  ident: b0215
  publication-title: Int. Rev. Phys. Chem.
– volume: 22
  start-page: 272
  year: 1967
  ident: b0685
  publication-title: J. Mol. Spectrosc.
– volume: 22
  start-page: 1613
  year: 1954
  ident: b0715
  publication-title: J. Chem. Phys.
– volume: 217
  start-page: 321
  year: 2018
  ident: b0795
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 427–428
  start-page: 282
  year: 1999
  end-page: 287
  ident: b0940
  publication-title: Surf. Sci.
– volume: 3
  start-page: 1812
  year: 2019
  ident: b1200
  publication-title: ACS Earth Space Chem.
– volume: 341
  start-page: 282
  year: 1995
  ident: b0950
  publication-title: Surf. Sci.
– volume: 220
  start-page: 248
  year: 2003
  ident: b0445
  publication-title: J. Mol. Spectrosc.
– volume: 108
  start-page: 974
  year: 2008
  ident: b0905
  publication-title: Int. J. Quantum Chem.
– volume: 249
  start-page: 73
  year: 2008
  ident: b1050
  publication-title: J. Mol. Spectrosc.
– volume: 6
  start-page: 906
  year: 2014
  ident: b0020
  publication-title: Nat. Chem.
– volume: 389
  start-page: 340
  year: 1997
  ident: b0085
  publication-title: Nature
– volume: 130
  start-page: 260
  year: 2013
  ident: b0460
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 59
  start-page: 853
  year: 1986
  ident: b0700
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 327
  start-page: 95
  year: 2016
  ident: b1195
  publication-title: J. Mol. Spectrosc.
– start-page: 29
  year: 1993
  end-page: 43
  ident: b0660
  publication-title: Structures and Conformations of Non-Rigid Molecules
– volume: 47
  start-page: 340
  year: 1973
  ident: b1155
  publication-title: J. Mol. Spectrosc.
– volume: 145
  start-page: 383
  year: 1991
  ident: b1010
  publication-title: J. Mol. Spectrosc.
– volume: 18
  start-page: 1587
  year: 2006
  ident: b0275
  publication-title: Chem. Mater.
– volume: 191
  start-page: 232
  year: 1998
  ident: b0920
  publication-title: J. Mol. Spectrosc.
– volume: 368
  year: 2020
  ident: b0810
  publication-title: J. Mol. Spectrosc.
– volume: 12
  start-page: 668
  year: 1957
  ident: b0730
  publication-title: J. Phys. Soc. Jpn.
– volume: 316
  start-page: L1025
  year: 1994
  ident: b0945
  publication-title: Surf. Sci.
– volume: 185
  start-page: 422
  year: 1960
  ident: b0080
  publication-title: Nature
– volume: 79
  start-page: 287
  year: 1979
  ident: b0230
  publication-title: Chem. Rev.
– volume: 16
  start-page: 147
  year: 1976
  ident: b1100
  publication-title: Inorg. Chim. Acta
– volume: 491
  start-page: 186
  year: 2012
  ident: b0060
  publication-title: Nature
– volume: 414
  start-page: 495
  year: 2005
  ident: b0895
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 137
  year: 2001
  ident: b0710
  publication-title: Struct. Chem.
– volume: 2
  start-page: 479
  year: 2009
  ident: b0365
  publication-title: Nat. Geosci.
– volume: 177
  start-page: 66
  year: 1996
  ident: b0915
  publication-title: J. Mol. Spectrosc.
– volume: 108
  start-page: 328
  year: 1984
  ident: b1030
  publication-title: J. Mol. Spectrosc.
– volume: 161
  start-page: 560
  year: 1993
  ident: b1035
  publication-title: J. Mol. Spectrosc.
– volume: 25
  start-page: 1389
  year: 1963
  ident: b1110
  publication-title: J. Inorg. Nucl. Chem.
– volume: 22
  start-page: 593
  year: 2003
  ident: b0210
  publication-title: Int. Rev. Phys. Chem.
– volume: 495
  start-page: 461
  year: 2013
  ident: b0055
  publication-title: Nature
– volume: 268
  start-page: 123
  year: 2011
  ident: b0515
  publication-title: J. Mol. Spectrosc.
– volume: 410–411
  start-page: 391
  year: 1997
  ident: b0820
  publication-title: J. Mol. Struct.
– volume: 220
  start-page: 132
  year: 2003
  ident: b1060
  publication-title: J. Mol. Spectrosc.
– volume: 3
  start-page: 324
  year: 2018
  ident: b0045
  publication-title: Nat. Rev. Mater.
– volume: 48
  start-page: 69
  year: 1997
  ident: b0200
  publication-title: Annu. Rev. Phys. Chem.
– volume: 153
  year: 2020
  ident: b1160
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 45
  year: 1966
  ident: b0235
  publication-title: Inorg. Chem.
– volume: 506
  start-page: 601
  year: 2009
  ident: b0615
  publication-title: Astronom. Astrophys.
– year: 2006
  ident: b0395
  article-title: Molecular Symmetry and Spectroscopy
– volume: 10
  start-page: 3052
  year: 2008
  ident: b0595
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 27245
  year: 2016
  ident: b0300
  publication-title: Phys. Chem. Chem. Phys.
– volume: 83
  start-page: 3768
  year: 1985
  ident: b0540
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 2605
  year: 1996
  ident: b0350
  publication-title: J. Chem. Phys.
– volume: 80
  start-page: 1423
  year: 1984
  ident: b0560
  publication-title: J. Chem. Phys.
– volume: 173
  start-page: 120
  year: 1995
  ident: b0400
  publication-title: J. Mol. Spectrosc.
– volume: 186
  start-page: 246
  year: 1997
  ident: b1040
  publication-title: J. Mol. Spectrosc.
– volume: 48
  start-page: 17
  year: 1973
  ident: b0680
  publication-title: J. Mol. Spectrosc.
– volume: 142
  start-page: 57
  year: 1990
  ident: b0705
  publication-title: J. Mol. Spectrosc.
– volume: 209
  start-page: 30
  year: 2001
  ident: b0420
  publication-title: J. Mol. Spectrosc.
– volume: 340
  start-page: 1
  year: 2017
  ident: b1215
  publication-title: J. Mol. Spectrosc.
– volume: 52
  start-page: 256
  year: 1974
  ident: b1020
  publication-title: J. Mol. Spectrosc.
– volume: 6
  start-page: 8169
  year: 2015
  ident: b0035
  publication-title: Nat. Commun.
– volume: 128
  start-page: 854
  year: 2006
  ident: b0110
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 9788
  year: 2020
  ident: b0955
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 159
  year: 1976
  ident: b0465
  publication-title: J. Mol. Spectrosc.
– volume: 89
  start-page: 296
  year: 1981
  ident: b0980
  publication-title: J. Mol. Spectrosc.
– volume: 52
  start-page: 346
  year: 2013
  ident: b0155
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 5078
  year: 2007
  ident: b0295
  publication-title: Chem. Commun.
– volume: 95
  start-page: 133
  year: 1982
  end-page: 152
  ident: b0995
  publication-title: J. Mol. Spectrosc.
– volume: 56
  start-page: 1
  year: 1962
  ident: b0145
  publication-title: Sci. Papers Inst. Phys. Chem. Res. Tokyo
– volume: 580
  start-page: 29
  year: 2020
  ident: b0005
  publication-title: Nature
– volume: 413
  start-page: 1828
  year: 2011
  ident: b0510
  publication-title: Mon. Not. R. Astr. Soc.
– volume: 147
  start-page: 71
  year: 2009
  ident: b0590
  publication-title: J. Mol. Liq.
– volume: 196
  start-page: 155
  year: 1992
  ident: b0755
  publication-title: Chem. Phys. Lett.
– volume: 51
  start-page: 591
  year: 1994
  ident: b0450
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 198
  start-page: 102
  year: 1999
  ident: b0435
  publication-title: J. Mol. Spectrosc.
– volume: 127
  year: 2007
  ident: b0255
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 5906
  year: 2018
  ident: b0125
  publication-title: J. Phys. Chem. Lett.
– volume: 145
  year: 2016
  ident: b0425
  publication-title: J. Chem. Phys.
– volume: 154
  start-page: 193
  year: 1996
  ident: b0285
  publication-title: Coord. Chem. Rev.
– volume: 72
  start-page: 1
  year: 1978
  ident: b0925
  publication-title: J. Mol. Spectrosc.
– volume: 32
  start-page: 812
  year: 1928
  ident: b0655
  publication-title: Phys. Rev.
– volume: 99
  start-page: 56
  year: 1993
  ident: b0330
  publication-title: J. Chem. Phys.
– volume: 343
  start-page: 28
  year: 2018
  ident: b0930
  publication-title: J. Mol. Spectrosc.
– volume: 55
  start-page: 3166
  year: 1977
  ident: b0240
  publication-title: Can. J. Chem.
– volume: 98
  start-page: 560
  year: 2020
  ident: b0875
  publication-title: Can. J. Phys.
– volume: 102
  start-page: 3977
  year: 1995
  ident: b0335
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 935
  year: 2001
  ident: b0190
  publication-title: Angew. Chem. Int. Ed.
– year: 1976
  ident: b0250
  article-title: Electrons in Liquid Ammonia
– volume: 30
  start-page: 1145
  year: 1971
  ident: b0690
  publication-title: J. Phys. Soc. Lpn.
– year: 1984
  ident: b0105
  article-title: Microwave Molecular Spectra
– volume: 36
  start-page: 890
  year: 1971
  ident: b0970
  publication-title: Collect. Czech. Chem. Commun.
– volume: 18
  start-page: 364
  year: 1963
  ident: b0965
  publication-title: J. Phys. Sec. Japan
– volume: 86
  start-page: 1768
  year: 1982
  ident: b0340
  publication-title: J. Phys. Chem.
– volume: 137
  start-page: 33
  year: 1989
  ident: b0775
  publication-title: J. Mol. Spectrosc.
– volume: 229
  start-page: 170
  year: 2005
  ident: b0750
  publication-title: J. Mol. Spectrosc.
– volume: 58
  start-page: 859
  year: 2019
  ident: b0170
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 499
  year: 1973
  ident: b0975
  publication-title: J. Mol. Spectrosc.
– volume: 337
  start-page: 59
  year: 2017
  ident: b0150
  publication-title: J. Mol. Spectrosc.
– volume: 112
  start-page: 1480
  year: 2008
  ident: b0325
  publication-title: J. Phys. Chem. A
– volume: 331
  start-page: 1426
  year: 2011
  ident: b1135
  publication-title: Science
– volume: 34
  start-page: 6067
  year: 1995
  ident: b1185
  publication-title: Appl. Opt.
– volume: 83
  start-page: 15284
  year: 2018
  ident: b0360
  publication-title: J. Org. Chem.
– volume: 112
  start-page: 2476
  year: 2014
  ident: b0495
  publication-title: Mol. Phys.
– volume: 95
  start-page: 133
  year: 1982
  ident: b0265
  publication-title: J. Mol. Spectrosc.
– volume: 49
  start-page: 221
  year: 1978
  ident: b0140
  publication-title: J. Mol. Struct.
– volume: 181
  start-page: L91
  year: 1973
  ident: b0735
  publication-title: Astrophys. J.
– volume: 129
  year: 2008
  ident: b0500
  publication-title: J. Chem. Phys.
– volume: 96
  start-page: 2496
  year: 1992
  ident: b0545
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 334
  year: 1956
  ident: b0725
  publication-title: J. Phys. Soc. Jpn.
– volume: 135
  year: 2011
  ident: b0840
  publication-title: J. Chem. Phys.
– volume: 156
  start-page: 383
  year: 1992
  ident: b0745
  publication-title: J. Mol. Spectrosc.
– volume: 20
  start-page: 136
  year: 1952
  ident: b0990
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 242
  year: 1988
  ident: b0770
  publication-title: J. Mol. Spectrosc.
– volume: 30
  start-page: 59
  year: 2002
  ident: b1095
  publication-title: Vib. Spectrosc.
– volume: 203
  start-page: 285
  year: 2000
  ident: b0415
  publication-title: J. Mol. Spectrosc.
– volume: 131
  start-page: 317
  year: 1998
  ident: b0375
  publication-title: Icarus
– volume: 84
  start-page: 5983
  year: 1986
  ident: b0565
  publication-title: J. Chem. Phys.
– volume: 270
  start-page: 70
  year: 2011
  ident: b0835
  publication-title: J. Mol. Spectrosc.
– volume: 152
  start-page: 298
  year: 1992
  ident: b0790
  publication-title: J. Mol. Spectrosc.
– volume: 252
  year: 2020
  ident: b0800
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 48
  start-page: 17
  year: 1973
  ident: b0480
  publication-title: J. Mol. Spectrosc.
– volume: 113
  start-page: 11845
  year: 2009
  ident: b0505
  publication-title: J. Phys. Chem. A
– volume: 94
  start-page: 217
  year: 1990
  ident: b0550
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 4477
  year: 2019
  ident: b0025
  publication-title: Nat. Commun.
– volume: 40
  start-page: 10316
  year: 2011
  ident: b0290
  publication-title: Dalton Trans.
– volume: 78
  start-page: 1039
  year: 1983
  ident: b1025
  publication-title: J. Chem. Phys.
– volume: QE-9
  start-page: 962
  year: 1973
  ident: b0850
  publication-title: IEEE J. Quantum Electron.
– volume: 5
  start-page: 3600
  year: 2003
  ident: b1205
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 317
  year: 1989
  ident: b0475
  publication-title: J. Mol. Spectrosc.
– volume: 228
  start-page: 298
  year: 2004
  ident: b1210
  publication-title: J. Mol. Spectrosc.
– volume: 95
  start-page: 4802
  year: 1991
  ident: b0320
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 511
  year: 2019
  ident: b0015
  publication-title: Nat. Rev. Chem.
– volume: 3
  start-page: 1224
  year: 2012
  ident: b0030
  publication-title: Nat. Commun.
– volume: 1465
  year: 2004
  ident: b0245
  publication-title: Eur. J. Inorg. Chem.
– volume: 4
  start-page: 891
  year: 2003
  ident: b0100
  publication-title: Nat. Rev. Mol. Cell. Biol.
– volume: 706
  start-page: 736
  year: 2018
  ident: b0585
  publication-title: Chem. Phys. Lett.
– volume: 342
  start-page: 25
  year: 2017
  ident: b0780
  publication-title: J. Mol. Spectrosc.
– volume: 133
  start-page: 10
  year: 1989
  ident: b0310
  publication-title: J. Mol. Spectrosc.
– volume: 44
  start-page: 603
  year: 2005
  ident: b0185
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 2211
  year: 1968
  ident: b1115
  publication-title: J. Inorg. Nucl. Chem.
– volume: 94
  start-page: 1184
  year: 1954
  ident: b0135
  publication-title: Phys. Rev.
– volume: 26
  start-page: 451
  year: 1985
  ident: b0225
  publication-title: J. Struct. Chem.
– volume: 169
  start-page: 458
  year: 1995
  ident: b0530
  publication-title: J. Mol. Spectrosc.
– volume: 29
  start-page: 1268
  year: 2008
  ident: b0900
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 31
  year: 1988
  ident: b0575
  publication-title: Chem. Phys.
– volume: 625
  start-page: 71
  year: 2003
  ident: b1080
  publication-title: J. Mol. Struct.
– volume: 110
  start-page: 533
  year: 2009
  ident: b0455
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 632
  start-page: 735
  year: 1993
  ident: b0555
  publication-title: Nature
– volume: 563
  start-page: A137
  year: 2014
  ident: b0765
  publication-title: Astronom. Astrophys.
– volume: 123
  start-page: 3497
  year: 2019
  ident: bib1217
  publication-title: J. Phys. Chem. A
– volume: 29
  start-page: 829
  year: 1958
  ident: b0485
  publication-title: J. Chem. Phys.
– volume: 427
  year: 2021
  ident: b0960
  publication-title: Coord. Chem. Rev.
– volume: 838
  year: 2017
  ident: b0580
  publication-title: Astrophys. J.
– volume: 121
  start-page: 474
  year: 1987
  ident: b0665
  publication-title: J. Mol. Spectrosc.
– volume: 52
  start-page: 5180
  year: 2013
  ident: b0165
  publication-title: Angew. Chem. Int. Ed.
– volume: 626
  start-page: 940
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0610
  publication-title: Astrophys. J.
  doi: 10.1086/430106
– volume: 198
  start-page: 102
  year: 1999
  ident: 10.1016/j.ccr.2021.213797_b0435
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1999.7937
– volume: 191
  start-page: L139
  year: 1974
  ident: 10.1016/j.ccr.2021.213797_b0630
  publication-title: Astrophys. J.
  doi: 10.1086/181570
– volume: 95
  start-page: 133
  year: 1982
  ident: 10.1016/j.ccr.2021.213797_b0995
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(82)90243-0
– volume: 48
  start-page: 69
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b0200
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.48.1.69
– volume: 83
  start-page: 6001
  year: 1985
  ident: 10.1016/j.ccr.2021.213797_b0935
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449634
– volume: 131
  start-page: 317
  year: 1998
  ident: 10.1016/j.ccr.2021.213797_b0375
  publication-title: Icarus
  doi: 10.1006/icar.1997.5868
– volume: 343
  start-page: 28
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0930
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2017.06.009
– volume: 3
  start-page: 1224
  year: 2012
  ident: 10.1016/j.ccr.2021.213797_b0030
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2225
– volume: 133
  start-page: 10
  year: 1989
  ident: 10.1016/j.ccr.2021.213797_b0310
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(89)90239-7
– volume: 86
  start-page: 1768
  year: 1982
  ident: 10.1016/j.ccr.2021.213797_b0340
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100207a007
– volume: 173
  start-page: 120
  year: 1995
  ident: 10.1016/j.ccr.2021.213797_b0400
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1995.1224
– volume: 92
  start-page: 91
  year: 1982
  ident: 10.1016/j.ccr.2021.213797_b0695
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(82)90085-6
– volume: 156
  start-page: 383
  year: 1992
  ident: 10.1016/j.ccr.2021.213797_b0745
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(92)90239-K
– volume: 410–411
  start-page: 391
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b0820
  publication-title: J. Mol. Struct.
– volume: 29
  start-page: 148
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0855
  publication-title: Int. J. Infrared Milli Waves
  doi: 10.1007/s10762-007-9309-6
– volume: 625
  start-page: 71
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b1080
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0166-1280(03)00020-4
– volume: 8
  start-page: 9788
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b0955
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02494E
– volume: 368
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b0810
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2020.111255
– volume: 220
  start-page: 132
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b1060
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/S0022-2852(03)00106-1
– year: 1976
  ident: 10.1016/j.ccr.2021.213797_b0250
– volume: 84
  start-page: 5983
  year: 1986
  ident: 10.1016/j.ccr.2021.213797_b0565
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.450788
– volume: 186
  start-page: 246
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b1040
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1997.7402
– volume: 209
  start-page: 30
  year: 2001
  ident: 10.1016/j.ccr.2021.213797_b0420
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.2001.8406
– volume: 32
  start-page: 812
  year: 1928
  ident: 10.1016/j.ccr.2021.213797_b0655
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.32.812
– volume: 10
  start-page: 4477
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b0025
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12453-6
– volume: 59
  start-page: 853
  year: 1986
  ident: 10.1016/j.ccr.2021.213797_b0700
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.59.853
– year: 2006
  ident: 10.1016/j.ccr.2021.213797_b0395
– volume: 4
  start-page: 891
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b0100
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm1243
– volume: 16
  start-page: 267
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b0215
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/014423597230208
– volume: 268
  start-page: 123
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0515
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2011.04.005
– volume: 45
  start-page: 3465
  year: 2006
  ident: 10.1016/j.ccr.2021.213797_b0115
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200600201
– volume: 3
  start-page: 1812
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b1200
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.9b00079
– volume: 108
  start-page: 974
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0905
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21564
– volume: 506
  start-page: 601
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0615
  publication-title: Astronom. Astrophys.
  doi: 10.1051/0004-6361/200912850
– volume: 9
  start-page: 5906
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0125
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02339
– volume: 452
  start-page: 30
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0065
  publication-title: Nature
  doi: 10.1038/452030a
– volume: 580
  start-page: 29
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b0005
  publication-title: Nature
  doi: 10.1038/d41586-020-00909-5
– volume: 550
  start-page: L95
  year: 2001
  ident: 10.1016/j.ccr.2021.213797_b0625
  publication-title: Astrophys. J.
  doi: 10.1086/319491
– ident: 10.1016/j.ccr.2021.213797_b0270
  doi: 10.1002/9781118693599
– volume: 196
  start-page: 155
  year: 1992
  ident: 10.1016/j.ccr.2021.213797_b0755
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85946-8
– volume: 48
  start-page: 5058
  year: 1968
  ident: 10.1016/j.ccr.2021.213797_b1150
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1668177
– volume: 110
  start-page: 431
  year: 1999
  ident: 10.1016/j.ccr.2021.213797_b0205
  publication-title: Adv. Chem. Phys.
– volume: 117
  start-page: 13356
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0870
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp406668w
– volume: 394
  start-page: 25
  year: 1998
  ident: 10.1016/j.ccr.2021.213797_b0010
  publication-title: Nature
  doi: 10.1038/27790
– volume: 495
  start-page: 461
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0055
  publication-title: Nature
  doi: 10.1038/nature11990
– volume: 145
  start-page: 383
  year: 1991
  ident: 10.1016/j.ccr.2021.213797_b1010
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(91)90125-T
– volume: 161
  start-page: 560
  year: 1993
  ident: 10.1016/j.ccr.2021.213797_b1035
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1993.1258
– volume: 18
  start-page: 27245
  year: 2016
  ident: 10.1016/j.ccr.2021.213797_b0300
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04580D
– volume: 94
  start-page: 1184
  year: 1954
  ident: 10.1016/j.ccr.2021.213797_b0135
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.1184
– volume: 29
  start-page: 829
  year: 1958
  ident: 10.1016/j.ccr.2021.213797_b0485
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744598
– volume: 113
  start-page: 11845
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0505
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9029425
– volume: 141
  start-page: 12212
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b1125
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05830
– volume: 340
  start-page: 1
  year: 2017
  ident: 10.1016/j.ccr.2021.213797_b1215
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2017.07.009
– volume: 5
  start-page: 3600
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b1205
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B304566H
– volume: 156
  start-page: 261
  year: 1992
  ident: 10.1016/j.ccr.2021.213797_b0815
  publication-title: J. Mol. spectrosc.
  doi: 10.1016/0022-2852(92)90231-C
– volume: 229
  start-page: 170
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0750
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2004.08.022
– volume: 183
  start-page: 374
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b1070
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1997.7271
– volume: 33
  start-page: 435
  year: 1971
  ident: 10.1016/j.ccr.2021.213797_b1105
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(71)80386-X
– ident: 10.1016/j.ccr.2021.213797_b0095
– volume: 52
  start-page: 5180
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0165
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300653
– volume: 181
  start-page: L91
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b0735
  publication-title: Astrophys. J.
  doi: 10.1086/181192
– volume: 22
  start-page: 272
  year: 1967
  ident: 10.1016/j.ccr.2021.213797_b0685
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(67)90173-7
– volume: 245
  start-page: 126
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b0525
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2007.07.009
– volume: 12
  start-page: 668
  year: 1957
  ident: 10.1016/j.ccr.2021.213797_b0730
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.12.668
– volume: 132
  start-page: 13417
  year: 2010
  ident: 10.1016/j.ccr.2021.213797_b0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104950w
– volume: 491
  start-page: 186
  year: 2012
  ident: 10.1016/j.ccr.2021.213797_b0060
  publication-title: Nature
  doi: 10.1038/491186a
– volume: 123
  start-page: 4929
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b0605
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b03196
– volume: 624
  start-page: A82
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b0650
  publication-title: Astronom. Astrophys.
  doi: 10.1051/0004-6361/201833676
– volume: 145
  year: 2016
  ident: 10.1016/j.ccr.2021.213797_b0425
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4961656
– volume: 74
  start-page: 651
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b1120
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)94903-X
– volume: 389
  start-page: 340
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b0085
  publication-title: Nature
  doi: 10.1038/38633
– volume: 131
  start-page: 133
  year: 1988
  ident: 10.1016/j.ccr.2021.213797_b0470
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(88)90113-0
– volume: 324
  start-page: 273
  year: 2000
  ident: 10.1016/j.ccr.2021.213797_b0890
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00603-5
– volume: 6
  start-page: 897
  year: 2006
  ident: 10.1016/j.ccr.2021.213797_b1180
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-6-897-2006
– volume: 4
  start-page: 175
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0280
  publication-title: J. Mater. Synth. Process.
– year: 1975
  ident: 10.1016/j.ccr.2021.213797_b0675
– volume: QE-9
  start-page: 962
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b0850
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1973.1077762
– volume: 38
  start-page: 2714
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b1130
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00053
– volume: 316
  start-page: L1025
  year: 1994
  ident: 10.1016/j.ccr.2021.213797_b0945
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)91116-9
– volume: 112
  start-page: 2476
  year: 2014
  ident: 10.1016/j.ccr.2021.213797_b0495
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.924653
– volume: 83
  start-page: 15284
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0360
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b02550
– volume: 102
  start-page: 3977
  year: 1995
  ident: 10.1016/j.ccr.2021.213797_b0335
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468526
– volume: 22
  start-page: 1613
  year: 1954
  ident: 10.1016/j.ccr.2021.213797_b0715
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740473
– volume: 6
  start-page: 445
  year: 1963
  ident: 10.1016/j.ccr.2021.213797_b0670
  publication-title: Mol. Phys.
  doi: 10.1080/00268976300100501
– volume: 128
  start-page: 854
  year: 2006
  ident: 10.1016/j.ccr.2021.213797_b0110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055333g
– volume: 47
  start-page: 340
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b1155
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(73)90017-9
– volume: 87
  start-page: 4401
  year: 1983
  ident: 10.1016/j.ccr.2021.213797_b0345
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100245a017
– volume: 203
  start-page: 285
  year: 2000
  ident: 10.1016/j.ccr.2021.213797_b0415
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.2000.8182
– volume: 30
  start-page: 1145
  year: 1971
  ident: 10.1016/j.ccr.2021.213797_b0690
  publication-title: J. Phys. Soc. Lpn.
  doi: 10.1143/JPSJ.30.1145
– volume: 632
  start-page: 735
  year: 1993
  ident: 10.1016/j.ccr.2021.213797_b0555
  publication-title: Nature
  doi: 10.1038/362735a0
– volume: 89
  start-page: 296
  year: 1981
  ident: 10.1016/j.ccr.2021.213797_b0980
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(81)90025-4
– volume: 427–428
  start-page: 282
  year: 1999
  ident: 10.1016/j.ccr.2021.213797_b0940
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)00280-0
– volume: 327
  start-page: 95
  year: 2016
  ident: 10.1016/j.ccr.2021.213797_b1195
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.03.005
– volume: 838
  year: 2017
  ident: 10.1016/j.ccr.2021.213797_b0580
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aa615a
– volume: 210
  start-page: 303
  year: 1993
  ident: 10.1016/j.ccr.2021.213797_b1065
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)89137-7
– volume: 1465
  year: 2004
  ident: 10.1016/j.ccr.2021.213797_b0245
  publication-title: Eur. J. Inorg. Chem.
– volume: 135
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b1165
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3624889
– volume: 217
  start-page: 321
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0795
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.06.008
– volume: 171
  start-page: 737
  year: 1953
  ident: 10.1016/j.ccr.2021.213797_b0075
  publication-title: Nature
  doi: 10.1038/171737a0
– year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0195
– volume: 6
  start-page: 8169
  year: 2015
  ident: 10.1016/j.ccr.2021.213797_b0035
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9169
– volume: 112
  start-page: 1480
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0325
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0757255
– volume: 427
  year: 2021
  ident: 10.1016/j.ccr.2021.213797_b0960
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213587
– volume: 535
  start-page: A103
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0640
  publication-title: Astronom. Astrophys.
  doi: 10.1051/0004-6361/201117096
– volume: 153
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b1160
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0025650
– start-page: 29
  year: 1993
  ident: 10.1016/j.ccr.2021.213797_b0660
– volume: 100
  start-page: 867
  year: 2010
  ident: 10.1016/j.ccr.2021.213797_b1140
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-010-0720-1
– volume: 95
  start-page: 133
  year: 1982
  ident: 10.1016/j.ccr.2021.213797_b0265
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(82)90243-0
– volume: 123
  start-page: 3497
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_bib1217
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b00029
– volume: 3
  start-page: 511
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b0015
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0127-x
– volume: 30
  start-page: 2211
  year: 1968
  ident: 10.1016/j.ccr.2021.213797_b1115
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(68)80219-2
– volume: 150
  start-page: 238
  year: 1991
  ident: 10.1016/j.ccr.2021.213797_b1045
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(91)90207-Q
– volume: 56
  start-page: 283
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0490
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/0022-4073(96)00041-6
– volume: 12
  start-page: 137
  year: 2001
  ident: 10.1016/j.ccr.2021.213797_b0710
  publication-title: Struct. Chem.
  doi: 10.1023/A:1016696526207
– volume: 47
  start-page: 5078
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b0295
  publication-title: Chem. Commun.
  doi: 10.1039/b712447c
– volume: 16
  start-page: 147
  year: 1976
  ident: 10.1016/j.ccr.2021.213797_b1100
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)91704-3
– volume: 241
  start-page: 75
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b1055
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2006.11.001
– ident: 10.1016/j.ccr.2021.213797_b1170
– volume: 110
  start-page: 533
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0455
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2009.02.013
– volume: 697
  start-page: 428
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0620
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/697/1/428
– volume: 563
  start-page: A137
  year: 2014
  ident: 10.1016/j.ccr.2021.213797_b0765
  publication-title: Astronom. Astrophys.
  doi: 10.1051/0004-6361/201323190
– volume: 252
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b0800
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2020.107097
– volume: 352
  start-page: 120
  year: 2002
  ident: 10.1016/j.ccr.2021.213797_b1090
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01434-8
– volume: 47
  start-page: 499
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b0975
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(73)90097-0
– volume: 2
  start-page: 479
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0365
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo551
– volume: 48
  start-page: 17
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b0680
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(73)90132-X
– volume: 564
  start-page: 99
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0370
  publication-title: Nature
  doi: 10.1038/s41586-018-0747-1
– volume: 137
  start-page: 33
  year: 1989
  ident: 10.1016/j.ccr.2021.213797_b0775
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(89)90266-X
– volume: 85
  start-page: 5512
  year: 1986
  ident: 10.1016/j.ccr.2021.213797_b0570
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451562
– volume: 169
  start-page: 458
  year: 1995
  ident: 10.1016/j.ccr.2021.213797_b0530
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1995.1038
– volume: 52
  start-page: 346
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0155
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205990
– volume: 233
  start-page: 611
  year: 2000
  ident: 10.1016/j.ccr.2021.213797_b0885
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)01504-O
– volume: 40
  start-page: 10316
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0290
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10585j
– volume: 96
  start-page: 2496
  year: 1992
  ident: 10.1016/j.ccr.2021.213797_b0545
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462054
– volume: 770
  start-page: L13
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b1190
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/770/1/L13
– volume: 44
  start-page: 603
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0185
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200461860
– volume: 108
  start-page: 328
  year: 1984
  ident: 10.1016/j.ccr.2021.213797_b1030
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(84)90189-9
– volume: 51
  start-page: 591
  year: 1994
  ident: 10.1016/j.ccr.2021.213797_b0450
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/0022-4073(94)90113-9
– volume: 36
  start-page: 890
  year: 1971
  ident: 10.1016/j.ccr.2021.213797_b0970
  publication-title: Collect. Czech. Chem. Commun.
  doi: 10.1135/cccc19710890
– volume: 138
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0865
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4794157
– volume: 99
  start-page: 209
  year: 1987
  ident: 10.1016/j.ccr.2021.213797_b1145
  publication-title: Proc. Indian Acad. Sci., Chem. Sci.
  doi: 10.1007/BF02881241
– volume: 127
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b0255
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2776334
– volume: 168
  start-page: 140
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b0385
  publication-title: Astrophys. J.
  doi: 10.1086/508708
– volume: 105
  start-page: 2605
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0350
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472125
– volume: 11
  start-page: 334
  year: 1956
  ident: 10.1016/j.ccr.2021.213797_b0725
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.11.334
– volume: 114
  start-page: 8763
  year: 2001
  ident: 10.1016/j.ccr.2021.213797_b1085
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1357439
– volume: 18
  start-page: 1587
  year: 2006
  ident: 10.1016/j.ccr.2021.213797_b0275
  publication-title: Chem. Mater.
  doi: 10.1021/cm0523891
– volume: 132
  start-page: 242
  year: 1988
  ident: 10.1016/j.ccr.2021.213797_b0770
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(88)90072-0
– volume: 98
  start-page: 560
  year: 2020
  ident: 10.1016/j.ccr.2021.213797_b0875
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2019-0469
– volume: 220
  start-page: 248
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b0445
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/S0022-2852(03)00124-3
– volume: 413
  start-page: 1828
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0510
  publication-title: Mon. Not. R. Astr. Soc.
  doi: 10.1111/j.1365-2966.2011.18261.x
– volume: 55
  start-page: 3166
  year: 1977
  ident: 10.1016/j.ccr.2021.213797_b0240
  publication-title: Can. J. Chem.
  doi: 10.1139/v77-444
– volume: 52
  start-page: 256
  year: 1974
  ident: 10.1016/j.ccr.2021.213797_b1020
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(74)90117-9
– volume: 105
  start-page: 2618
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0355
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472126
– volume: 133
  start-page: 345
  year: 1989
  ident: 10.1016/j.ccr.2021.213797_b0410
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(89)90197-5
– volume: 53
  start-page: 530
  year: 2014
  ident: 10.1016/j.ccr.2021.213797_b0175
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308459
– volume: 9
  start-page: 974
  year: 1954
  ident: 10.1016/j.ccr.2021.213797_b0720
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.9.974
– volume: 49
  start-page: 221
  year: 1978
  ident: 10.1016/j.ccr.2021.213797_b0140
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(78)87259-7
– volume: 5
  start-page: 45
  year: 1966
  ident: 10.1016/j.ccr.2021.213797_b0235
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50035a011
– volume: 112
  start-page: 384
  year: 1985
  ident: 10.1016/j.ccr.2021.213797_b0985
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(85)90170-5
– volume: 18
  start-page: 364
  year: 1963
  ident: 10.1016/j.ccr.2021.213797_b0965
  publication-title: J. Phys. Sec. Japan
  doi: 10.1143/JPSJ.18.364
– volume: 6
  start-page: 34270
  year: 2016
  ident: 10.1016/j.ccr.2021.213797_b0860
  publication-title: Sci. Rep.
  doi: 10.1038/srep34270
– volume: 126
  start-page: 443
  year: 1987
  ident: 10.1016/j.ccr.2021.213797_b0740
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(87)90249-9
– volume: 16
  start-page: 1471
  year: 1960
  ident: 10.1016/j.ccr.2021.213797_b1005
  publication-title: Spectrochim. Acta
  doi: 10.1016/S0371-1951(60)80022-7
– volume: 129
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0500
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 324
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0045
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0044-5
– volume: 706
  start-page: 736
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0585
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.06.048
– volume: 256
  start-page: 86
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0830
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2009.02.013
– volume: 135
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0840
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3633699
– year: 1984
  ident: 10.1016/j.ccr.2021.213797_b0105
– volume: 191
  start-page: 232
  year: 1998
  ident: 10.1016/j.ccr.2021.213797_b0920
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1998.7626
– volume: 26
  start-page: 451
  year: 1985
  ident: 10.1016/j.ccr.2021.213797_b0225
  publication-title: J. Struct. Chem.
  doi: 10.1007/BF00749387
– volume: 78
  start-page: 1039
  year: 1983
  ident: 10.1016/j.ccr.2021.213797_b1025
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444904
– volume: 147
  start-page: 71
  year: 2009
  ident: 10.1016/j.ccr.2021.213797_b0590
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2008.05.010
– volume: 43a
  start-page: 561
  year: 1988
  ident: 10.1016/j.ccr.2021.213797_b0315
  publication-title: Z. Naturforsch.
  doi: 10.1515/zna-1988-0607
– volume: 83
  start-page: 243
  year: 2004
  ident: 10.1016/j.ccr.2021.213797_b0440
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/S0022-4073(02)00354-0
– volume: 342
  start-page: 25
  year: 2017
  ident: 10.1016/j.ccr.2021.213797_b0780
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2016.12.007
– volume: 136
  year: 2012
  ident: 10.1016/j.ccr.2021.213797_b1075
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4705267
– volume: 83
  start-page: 3768
  year: 1985
  ident: 10.1016/j.ccr.2021.213797_b0540
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449139
– ident: 10.1016/j.ccr.2021.213797_b0070
– volume: 35
  start-page: 420
  year: 1970
  ident: 10.1016/j.ccr.2021.213797_b1015
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(70)90183-9
– volume: 177
  start-page: 66
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0915
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1996.0118
– volume: 237
  start-page: 174
  year: 2006
  ident: 10.1016/j.ccr.2021.213797_b0305
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2006.03.013
– volume: 43
  start-page: 399
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0645
  publication-title: Met. Planet. Sci.
  doi: 10.1111/j.1945-5100.2008.tb00629.x
– volume: 337
  start-page: 59
  year: 2017
  ident: 10.1016/j.ccr.2021.213797_b0150
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2017.04.017
– volume: 79
  start-page: 287
  year: 1979
  ident: 10.1016/j.ccr.2021.213797_b0230
  publication-title: Chem. Rev.
  doi: 10.1021/cr60320a001
– volume: 121
  start-page: 474
  year: 1987
  ident: 10.1016/j.ccr.2021.213797_b0665
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(87)90064-6
– volume: 186
  start-page: 271
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0260
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-018-2715-5
– volume: 48
  start-page: 17
  year: 1973
  ident: 10.1016/j.ccr.2021.213797_b0480
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(73)90132-X
– volume: 25
  start-page: 1389
  year: 1963
  ident: 10.1016/j.ccr.2021.213797_b1110
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(63)80408-X
– volume: 414
  start-page: 495
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0895
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.08.127
– volume: 12
  start-page: 31
  year: 1988
  ident: 10.1016/j.ccr.2021.213797_b0575
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(88)85004-3
– volume: 52
  start-page: 4402
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0120
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300707
– volume: 270
  start-page: 70
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0835
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2011.09.003
– volume: 29
  start-page: 1268
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0900
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20885
– volume: 36
  start-page: 1141
  year: 2007
  ident: 10.1016/j.ccr.2021.213797_b0760
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.2769382
– volume: 110
  start-page: 2006
  year: 2010
  ident: 10.1016/j.ccr.2021.213797_b0910
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.22585
– volume: 4
  start-page: 1554
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0040
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2574
– volume: 112
  start-page: 1950
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0430
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2011.03.015
– volume: 15
  start-page: 987
  year: 2016
  ident: 10.1016/j.ccr.2021.213797_b0050
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4661
– volume: 731
  start-page: 16
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0390
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/731/1/16
– volume: 60
  start-page: 159
  year: 1976
  ident: 10.1016/j.ccr.2021.213797_b0465
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(76)90123-5
– volume: 127
  start-page: 16599
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0220
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0542587
– volume: 228
  start-page: 298
  year: 2004
  ident: 10.1016/j.ccr.2021.213797_b1210
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2004.04.009
– volume: 57
  start-page: 1821
  year: 2018
  ident: 10.1016/j.ccr.2021.213797_b0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709966
– volume: 12
  start-page: 11647
  year: 2010
  ident: 10.1016/j.ccr.2021.213797_b0600
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c003974h
– volume: 99
  start-page: 56
  year: 1993
  ident: 10.1016/j.ccr.2021.213797_b0330
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465783
– volume: 185
  start-page: 422
  year: 1960
  ident: 10.1016/j.ccr.2021.213797_b0080
  publication-title: Nature
  doi: 10.1038/185416a0
– volume: 117
  start-page: 119
  year: 1986
  ident: 10.1016/j.ccr.2021.213797_b1000
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(86)90096-2
– volume: 341
  start-page: 282
  year: 1995
  ident: 10.1016/j.ccr.2021.213797_b0950
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(95)00727-X
– volume: 94
  start-page: 217
  year: 1990
  ident: 10.1016/j.ccr.2021.213797_b0550
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100364a035
– volume: 22
  start-page: 593
  year: 2003
  ident: 10.1016/j.ccr.2021.213797_b0210
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350310001616896
– volume: 40
  start-page: 935
  year: 2001
  ident: 10.1016/j.ccr.2021.213797_b0190
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010302)40:5<935::AID-ANIE935>3.0.CO;2-O
– volume: 130
  start-page: 260
  year: 2013
  ident: 10.1016/j.ccr.2021.213797_b0460
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2013.05.027
– volume: 98
  start-page: 1129
  year: 1994
  ident: 10.1016/j.ccr.2021.213797_b0880
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100055a014
– volume: 142
  start-page: 57
  year: 1990
  ident: 10.1016/j.ccr.2021.213797_b0705
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(90)90292-X
– volume: 6
  start-page: 3126
  year: 2015
  ident: 10.1016/j.ccr.2021.213797_b0180
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01220
– volume: 152
  start-page: 298
  year: 1992
  ident: 10.1016/j.ccr.2021.213797_b0790
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(92)90070-5
– volume: 3
  start-page: 146
  year: 2002
  ident: 10.1016/j.ccr.2021.213797_b0090
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm766
– volume: 491
  start-page: 856
  year: 1997
  ident: 10.1016/j.ccr.2021.213797_b0380
  publication-title: Astrophys. J.
  doi: 10.1086/305002
– volume: 16
  start-page: 418
  year: 1972
  ident: 10.1016/j.ccr.2021.213797_b0845
  publication-title: J. Exp. Theor. Phys. Lett.
– volume: 331
  start-page: 1426
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b1135
  publication-title: Science
  doi: 10.1126/science.1199003
– volume: 154
  start-page: 193
  year: 1996
  ident: 10.1016/j.ccr.2021.213797_b0285
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/0010-8545(96)01285-4
– volume: 117
  start-page: D16305
  year: 2012
  ident: 10.1016/j.ccr.2021.213797_b1175
  publication-title: J. Geophys.
  doi: 10.1029/2012JD017751
– volume: 138
  start-page: 246
  year: 1989
  ident: 10.1016/j.ccr.2021.213797_b0785
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(89)90114-8
– volume: 56
  start-page: 1
  year: 1962
  ident: 10.1016/j.ccr.2021.213797_b0145
  publication-title: Sci. Papers Inst. Phys. Chem. Res. Tokyo
– volume: 80
  start-page: 1423
  year: 1984
  ident: 10.1016/j.ccr.2021.213797_b0560
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.446878
– volume: 119
  start-page: 10664
  year: 2015
  ident: 10.1016/j.ccr.2021.213797_b0805
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b08437
– volume: 58
  start-page: 859
  year: 2019
  ident: 10.1016/j.ccr.2021.213797_b0170
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812754
– volume: 30
  start-page: 59
  year: 2002
  ident: 10.1016/j.ccr.2021.213797_b1095
  publication-title: Vib. Spectrosc.
  doi: 10.1016/S0924-2031(02)00039-5
– volume: 10
  start-page: 3052
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b0595
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b802050g
– volume: 193
  start-page: 46
  year: 1999
  ident: 10.1016/j.ccr.2021.213797_b0405
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1998.7728
– volume: 135
  year: 2011
  ident: 10.1016/j.ccr.2021.213797_b0535
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3604934
– volume: 108
  start-page: 2389
  year: 2010
  ident: 10.1016/j.ccr.2021.213797_b0825
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2010.499114
– volume: 20
  start-page: 136
  year: 1952
  ident: 10.1016/j.ccr.2021.213797_b0990
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700155
– volume: 123
  year: 2005
  ident: 10.1016/j.ccr.2021.213797_b0520
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2047572
– volume: 72
  start-page: 1
  year: 1978
  ident: 10.1016/j.ccr.2021.213797_b0925
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(78)90038-3
– volume: 249
  start-page: 73
  year: 2008
  ident: 10.1016/j.ccr.2021.213797_b1050
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2008.02.012
– volume: 191
  start-page: L135
  year: 1974
  ident: 10.1016/j.ccr.2021.213797_b0635
  publication-title: Astrophys. J.
  doi: 10.1086/181569
– volume: 34
  start-page: 6067
  year: 1995
  ident: 10.1016/j.ccr.2021.213797_b1185
  publication-title: Appl. Opt.
  doi: 10.1364/AO.34.006067
– volume: 95
  start-page: 4802
  year: 1991
  ident: 10.1016/j.ccr.2021.213797_b0320
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.461698
– volume: 136
  start-page: 317
  year: 1989
  ident: 10.1016/j.ccr.2021.213797_b0475
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(89)90338-X
– volume: 6
  start-page: 906
  year: 2014
  ident: 10.1016/j.ccr.2021.213797_b0020
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2045
SSID ssj0016992
Score 2.4632084
SecondaryResourceType review_article
Snippet [Display omitted] •Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination...
Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 213797
SubjectTerms Chemical Sciences
Coordination chemistry
Coordination complexes
High resolution spectroscopy
Inversion tunneling
Large amplitude motion
Molecular structures
or physical chemistry
Theoretical and
Title Large amplitude inversion tunneling motion in ammonia, methylamine, hydrazine, and secondary amines: From structure determination to coordination chemistry
URI https://dx.doi.org/10.1016/j.ccr.2021.213797
https://hal.u-pec.fr/hal-03182344
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5i59BeStIHTdMEUXoq3mYf2odyM6bGSUNODfi2aKURcUnXwXECvvSP5M92ZrUyBEoOOeqJ0Ih5SJ--AfjqSnISZOUi1PzMaNBFunBNlGiLllxmpZsO5XtZzK7k-Tyf78Ak_IVhWGWv-71O77R1X3PS7-bJ7WLBf3wZOS_J_rBjn8wHsJtmqsiHsDs--zm73D4mFEp50nBSOTwgPG52MC9jmBU0pVAxyUqmfvq_eRpch4vWzvBM9-BN7zGKsV_UPuxg-xZeTUKitnfweMFobqEZG85MlWLRPvhbMLG-ZxgLWSfhs_VQE_Wjk7fQI8HJozd0IMjPHInrjV11TNMjoVsr7jhOtnq1EV373amYrpZ_hGebvV-hsAFG0027XgqzpDA2lE1Y3Xu4mv74NZlFfc6FyGSlXEeo8gqNUlrmaCsOqGLMHD-2xdrEGMdNjqXTRmpXKWubJGli7QymFrHUSmcfYNguW_wIwuZVUri0oYiqkkaWNELHRqFEmWpjmwOIw1bXpick57wYN3VAnv2uSTo1S6f20jmAb9sht56N47nOMsivfnKkarIWzw37QrLeTs_027PxRc11rADTTMqH5NPL5j6E11zyULPPMCSh4RE5NevmGAbf_ybH_dH9ByMB-sw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZ5HNJLadOWpk8RcireZh9a76q3YGqcxMkpAd_ErDQiDu06OE7Al_6R_tnOrFaGQsmhx9WLRTPMQ_r0jRBHvqIgQdU-QeBrRos-gaFvkgwcOgqZNTQdyvdyOLlWZ7NytiVG8S0Mwyp72x9semet-5bjfjeP7-ZzfuPLyHlF_ocD-2y2LXZVWVSM6_v6a4PzyIZaB8pwMjg8PF5tdiAva5kTNKdEMSsqJn76t3PavonHrJ3bGb8Qz_t4UZ6EX3optrDdF3ujWKbtlfg9ZSy3BEaGM0-lnLeP4QxMrh4YxEK-SYZaPdRF40jv5jCQXDp6TepAUeZA3qzdsuOZHkhonbznLNnBci27_vtvcrxc_JSBa_ZhidJFEE237Goh7YKS2Pht49-9Ftfj71ejSdJXXEhsUalVgrqs0WoNqkRXczqVYuH5qi0Fm2KaNiVWHqwCX2vnmixrUvAWc4dYgYbijdhpFy2-FdKVdTb0eUP5VK2sqmgGpFajQpWDdc2BSONWG9vTkXNVjB8m4s5uDUnHsHRMkM6B-LKZche4OJ4arKL8zF8KZchXPDXtkGS9WZ7JtycnU8NtbP7yQqnH7N3_rf1Z7E2uLqZmenp5_l48454AOvsgdkiA-JHCm1XzqVPfP0j1-5c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+amplitude+inversion+tunneling+motion+in+ammonia%2C+methylamine%2C+hydrazine%2C+and+secondary+amines%3A+From+structure+determination+to+coordination+chemistry&rft.jtitle=Coordination+chemistry+reviews&rft.au=Nguyen%2C+Ha+Vinh+Lam&rft.au=Gulaczyk%2C+Iwona&rft.au=Kr%C4%99glewski%2C+Marek&rft.au=Kleiner%2C+Isabelle&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=436&rft_id=info:doi/10.1016%2Fj.ccr.2021.213797&rft.externalDocID=S001085452100031X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon