Large amplitude inversion tunneling motion in ammonia, methylamine, hydrazine, and secondary amines: From structure determination to coordination chemistry
[Display omitted] •Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to deter...
Saved in:
Published in | Coordination chemistry reviews Vol. 436; p. 213797 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0010-8545 1873-3840 0010-8545 |
DOI | 10.1016/j.ccr.2021.213797 |
Cover
Abstract | [Display omitted]
•Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to determine the structure of complexes.
Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered. |
---|---|
AbstractList | [Display omitted]
•Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination complexes.•Structures and internal dynamics from experimental and theoretical points of view.•Using the structures of isolated ligand to determine the structure of complexes.
Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered. Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split into a symmetric and an antisymmetric level. Not like other types of large amplitude motion such as internal rotation, inversion tunneling appears much rarer, but the fundamental knowledge gained from this motion is essential to understand the complex structures in coordination chemistry. A double minimum potential needed for inversion tunneling requires the symmetry of the frame to which the inversion object is attached to be Cs or higher, while there is no restriction on the symmetry of the frame for internal rotation. This review summarizes four most classic examples of molecules featuring inversion tunneling motion and their coordination complexes. The textbook example, ammonia, with its umbrella motion during which the nitrogen atom passes from one side of the plane formed by the three hydrogens to the other, will be presented with information on its group theoretical considerations, theoretical studies, electronic ground state spectra in the infrared range, and its coordination complexes, especially those formed with calcium and copper. In the second classic example, methylamine, CH3NH2, the inversion motion of the amino group –NH2 is coupled with a methyl internal rotation –CH3. The spectrum of methylamine can be treated using a tunneling formalism applying the G12 permutation-inversion symmetry group. Extensive studies on the ground state, the first and second excited torsional states ν15, the inversion wagging state ν9, and the C-N stretching band ν8 exist along with their combinations. Pertubations and blends have made the analysis of methylamine very challenging. The third subject is on hydrazine with complex internal dynamics governed by three large amplitude motions: two –NH2 tunneling motions and an internal rotation (torsion) of the two amino groups around the N-N bond. Regarding the spectrum of hydrazine, the vibrational ground state lies in the microwave region. The first, second, and third excited torsional band ν7, symmetric wagging ν6, and asymmetric wagging ν12 are found in the infrared range. Group theoretical treatment and tunneling formalism can only be used to fit sub-bands individually, while global fits still remain a difficult task. Metal complexes with hydrazine and methylamine are introduced, proving the importance of spectroscopic understanding of molecular structures for the knowledge of coordination chemistry. Finally, secondary amines feature inversion tunneling of the hydrogen atom attached to the nitrogen, which is accompanied by two methyl internal rotations but not coupled with them so that they can be treated separately. For this class of molecules, only spectra of the vibrational ground state in the microwave domain will be considered. |
ArticleNumber | 213797 |
Author | Gulaczyk, Iwona Kręglewski, Marek Kleiner, Isabelle Nguyen, Ha Vinh Lam |
Author_xml | – sequence: 1 givenname: Ha Vinh Lam surname: Nguyen fullname: Nguyen, Ha Vinh Lam email: lam.nguyen@lisa.ipsl.fr organization: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 avenue du Général de Gaulle, 94010 Créteil, France – sequence: 2 givenname: Iwona surname: Gulaczyk fullname: Gulaczyk, Iwona organization: Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland – sequence: 3 givenname: Marek surname: Kręglewski fullname: Kręglewski, Marek organization: Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland – sequence: 4 givenname: Isabelle orcidid: 0000-0002-8715-9764 surname: Kleiner fullname: Kleiner, Isabelle organization: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 avenue du Général de Gaulle, 94010 Créteil, France |
BackLink | https://hal.u-pec.fr/hal-03182344$$DView record in HAL |
BookMark | eNp9kctKAzEUhoMoWC8P4C5bwanJXJxEVyJqhYIbXYfT5IxNmUkkSQv1VXxZ09ZuXLg6t_87OeE_IYfOOyTkgrMxZ_zmejHWOoxLVvJxyatWtgdkxEVbFZWo2SEZMcZZIZq6OSYnMS5yeSNlOSLfUwgfSGH47G1aGqTWrTBE6x1NS-ewt-6DDj5tGtZl3eCdhSs6YJqvexiswys6X5sAX9sUnKERtXcGwppu5_GWPgU_0JjCUqdlQGowYcgj2K5Nnmrvg9nXeo6DzeL1GTnqoI94_htPyfvT49vDpJi-Pr883E8LXbV1KlA2ArWUUDdoBKtLwbDqBJcNA82QsVmDbQe6hk5IY2aczxh0GkuD2IKE6pRc7vbOoVefwQ75dOXBqsn9VG16rOKirOp6xbO23Wl18DEG7JS2aXt3CmB7xZna-KEWKvuhNn6onR-Z5H_I_VP_MXc7BvP3VxaDitqi02hsQJ2U8fYf-gcgL6pX |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c02914 crossref_primary_10_3390_molecules27165275 crossref_primary_10_1103_PhysRevLett_130_083001 crossref_primary_10_1063_5_0166657 crossref_primary_10_1021_acs_jpca_1c05093 crossref_primary_10_1021_acs_jpca_3c00811 crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1016_j_molstruc_2021_131337 crossref_primary_10_1021_acs_jpclett_2c02081 crossref_primary_10_3390_molecules27123948 crossref_primary_10_1088_1361_6595_acca46 crossref_primary_10_1039_D4CP03338H crossref_primary_10_1002_cphc_202100514 crossref_primary_10_1016_j_saa_2022_121505 crossref_primary_10_1063_5_0049418 crossref_primary_10_3390_molecules27092730 crossref_primary_10_1063_5_0185005 crossref_primary_10_3389_fchem_2021_751203 crossref_primary_10_1016_j_cplett_2022_139488 |
Cites_doi | 10.1086/430106 10.1006/jmsp.1999.7937 10.1086/181570 10.1016/0022-2852(82)90243-0 10.1146/annurev.physchem.48.1.69 10.1063/1.449634 10.1006/icar.1997.5868 10.1016/j.jms.2017.06.009 10.1038/ncomms2225 10.1016/0022-2852(89)90239-7 10.1021/j100207a007 10.1006/jmsp.1995.1224 10.1016/0022-2852(82)90085-6 10.1016/0022-2852(92)90239-K 10.1007/s10762-007-9309-6 10.1016/S0166-1280(03)00020-4 10.1039/D0TA02494E 10.1016/j.jms.2020.111255 10.1016/S0022-2852(03)00106-1 10.1063/1.450788 10.1006/jmsp.1997.7402 10.1006/jmsp.2001.8406 10.1103/PhysRev.32.812 10.1038/s41467-019-12453-6 10.1246/bcsj.59.853 10.1038/nrm1243 10.1080/014423597230208 10.1016/j.jms.2011.04.005 10.1002/anie.200600201 10.1021/acsearthspacechem.9b00079 10.1002/qua.21564 10.1051/0004-6361/200912850 10.1021/acs.jpclett.8b02339 10.1038/452030a 10.1038/d41586-020-00909-5 10.1086/319491 10.1002/9781118693599 10.1016/0009-2614(92)85946-8 10.1063/1.1668177 10.1021/jp406668w 10.1038/27790 10.1038/nature11990 10.1016/0022-2852(91)90125-T 10.1006/jmsp.1993.1258 10.1039/C6CP04580D 10.1103/PhysRev.94.1184 10.1063/1.1744598 10.1021/jp9029425 10.1021/jacs.9b05830 10.1016/j.jms.2017.07.009 10.1039/B304566H 10.1016/0022-2852(92)90231-C 10.1016/j.jms.2004.08.022 10.1006/jmsp.1997.7271 10.1016/0022-1902(71)80386-X 10.1002/anie.201300653 10.1086/181192 10.1016/0022-2852(67)90173-7 10.1016/j.jms.2007.07.009 10.1143/JPSJ.12.668 10.1021/ja104950w 10.1038/491186a 10.1021/acs.jpca.9b03196 10.1051/0004-6361/201833676 10.1063/1.4961656 10.1016/S0020-1693(00)94903-X 10.1038/38633 10.1016/0022-2852(88)90113-0 10.1016/S0009-2614(00)00603-5 10.5194/acp-6-897-2006 10.1109/JQE.1973.1077762 10.1021/acs.organomet.9b00053 10.1016/0039-6028(94)91116-9 10.1080/00268976.2014.924653 10.1021/acs.joc.8b02550 10.1063/1.468526 10.1063/1.1740473 10.1080/00268976300100501 10.1021/ja055333g 10.1016/0022-2852(73)90017-9 10.1021/j100245a017 10.1006/jmsp.2000.8182 10.1143/JPSJ.30.1145 10.1038/362735a0 10.1016/0022-2852(81)90025-4 10.1016/S0039-6028(99)00280-0 10.1016/j.jms.2016.03.005 10.3847/1538-4357/aa615a 10.1016/0009-2614(93)89137-7 10.1063/1.3624889 10.1016/j.jqsrt.2018.06.008 10.1038/171737a0 10.1038/ncomms9169 10.1021/jp0757255 10.1016/j.ccr.2020.213587 10.1051/0004-6361/201117096 10.1063/5.0025650 10.1007/s10973-010-0720-1 10.1021/acs.jpca.9b00029 10.1038/s41570-019-0127-x 10.1016/0022-1902(68)80219-2 10.1016/0022-2852(91)90207-Q 10.1016/0022-4073(96)00041-6 10.1023/A:1016696526207 10.1039/b712447c 10.1016/S0020-1693(00)91704-3 10.1016/j.jms.2006.11.001 10.1016/j.jqsrt.2009.02.013 10.1088/0004-637X/697/1/428 10.1051/0004-6361/201323190 10.1016/j.jqsrt.2020.107097 10.1016/S0009-2614(01)01434-8 10.1016/0022-2852(73)90097-0 10.1038/ngeo551 10.1016/0022-2852(73)90132-X 10.1038/s41586-018-0747-1 10.1016/0022-2852(89)90266-X 10.1063/1.451562 10.1006/jmsp.1995.1038 10.1002/anie.201205990 10.1016/0009-2614(94)01504-O 10.1039/c1dt10585j 10.1063/1.462054 10.1088/2041-8205/770/1/L13 10.1002/anie.200461860 10.1016/0022-2852(84)90189-9 10.1016/0022-4073(94)90113-9 10.1135/cccc19710890 10.1063/1.4794157 10.1007/BF02881241 10.1063/1.2776334 10.1086/508708 10.1063/1.472125 10.1143/JPSJ.11.334 10.1063/1.1357439 10.1021/cm0523891 10.1016/0022-2852(88)90072-0 10.1139/cjp-2019-0469 10.1016/S0022-2852(03)00124-3 10.1111/j.1365-2966.2011.18261.x 10.1139/v77-444 10.1016/0022-2852(74)90117-9 10.1063/1.472126 10.1016/0022-2852(89)90197-5 10.1002/anie.201308459 10.1143/JPSJ.9.974 10.1016/0022-2860(78)87259-7 10.1021/ic50035a011 10.1016/0022-2852(85)90170-5 10.1143/JPSJ.18.364 10.1038/srep34270 10.1016/0022-2852(87)90249-9 10.1016/S0371-1951(60)80022-7 10.1038/s41578-018-0044-5 10.1016/j.cplett.2018.06.048 10.1016/j.jms.2009.02.013 10.1063/1.3633699 10.1006/jmsp.1998.7626 10.1007/BF00749387 10.1063/1.444904 10.1016/j.molliq.2008.05.010 10.1515/zna-1988-0607 10.1016/S0022-4073(02)00354-0 10.1016/j.jms.2016.12.007 10.1063/1.4705267 10.1063/1.449139 10.1016/0022-2852(70)90183-9 10.1006/jmsp.1996.0118 10.1016/j.jms.2006.03.013 10.1111/j.1945-5100.2008.tb00629.x 10.1016/j.jms.2017.04.017 10.1021/cr60320a001 10.1016/0022-2852(87)90064-6 10.1007/s12010-018-2715-5 10.1016/0022-1902(63)80408-X 10.1016/j.cplett.2005.08.127 10.1016/0301-0104(88)85004-3 10.1002/anie.201300707 10.1016/j.jms.2011.09.003 10.1002/jcc.20885 10.1063/1.2769382 10.1002/qua.22585 10.1038/ncomms2574 10.1016/j.jqsrt.2011.03.015 10.1038/nmat4661 10.1088/0004-637X/731/1/16 10.1016/0022-2852(76)90123-5 10.1021/ja0542587 10.1016/j.jms.2004.04.009 10.1002/anie.201709966 10.1039/c003974h 10.1063/1.465783 10.1038/185416a0 10.1016/0022-2852(86)90096-2 10.1016/0039-6028(95)00727-X 10.1021/j100364a035 10.1080/01442350310001616896 10.1002/1521-3773(20010302)40:5<935::AID-ANIE935>3.0.CO;2-O 10.1016/j.jqsrt.2013.05.027 10.1021/j100055a014 10.1016/0022-2852(90)90292-X 10.1021/acs.jpclett.5b01220 10.1016/0022-2852(92)90070-5 10.1038/nrm766 10.1086/305002 10.1126/science.1199003 10.1016/0010-8545(96)01285-4 10.1029/2012JD017751 10.1016/0022-2852(89)90114-8 10.1063/1.446878 10.1021/acs.jpca.5b08437 10.1002/anie.201812754 10.1016/S0924-2031(02)00039-5 10.1039/b802050g 10.1006/jmsp.1998.7728 10.1063/1.3604934 10.1080/00268976.2010.499114 10.1063/1.1700155 10.1063/1.2047572 10.1016/0022-2852(78)90038-3 10.1016/j.jms.2008.02.012 10.1086/181569 10.1364/AO.34.006067 10.1063/1.461698 10.1016/0022-2852(89)90338-X 10.1038/nchem.2045 |
ContentType | Journal Article |
Copyright | 2021 The Authors Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.ccr.2021.213797 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 0010-8545 |
ExternalDocumentID | oai_HAL_hal_03182344v1 10_1016_j_ccr_2021_213797 S001085452100031X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c374t-e958ec99a45ed804280e3f81950ac0e00b5e7fac4af89ddb11b0afce2dee7a9a3 |
IEDL.DBID | AIKHN |
ISSN | 0010-8545 |
IngestDate | Thu Aug 21 07:04:35 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 02:43:49 EDT 2025 Fri Feb 23 02:47:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inversion tunneling High resolution spectroscopy Large amplitude motion Coordination complexes Molecular structures |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-e958ec99a45ed804280e3f81950ac0e00b5e7fac4af89ddb11b0afce2dee7a9a3 |
ORCID | 0000-0002-8715-9764 0000-0002-5493-8905 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S001085452100031X |
ParticipantIDs | hal_primary_oai_HAL_hal_03182344v1 crossref_citationtrail_10_1016_j_ccr_2021_213797 crossref_primary_10_1016_j_ccr_2021_213797 elsevier_sciencedirect_doi_10_1016_j_ccr_2021_213797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 2021-06-00 2021-06 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Duncan (b0200) 1997; 48 Plant, Coleman, de Temple (b0850) 1973; QE-9 Kleiner, Hougen (b0810) 2020; 368 Senent (b0930) 2018; 343 Brown, Margolis (b0490) 1996; 56 Ciampolini, Sparoni (b0235) 1966; 5 Davies, Clarke, Clarkson, Shipman, Tucker (b0295) 2007; 47 Penn, Boggs (b1155) 1973; 47 Ohashi, Olson (b1010) 1991; 145 Longuet-Higgins (b0670) 1963; 6 Kasuja (b0145) 1962; 56 Gulaczyk, Kręglewski (b0800) 2020; 252 Tsunekawa, Kojima, Hougen (b0995) 1982; 95 Gulaczyk, Pyka, Kręglewski (b1055) 2007; 241 Gulaczyk, Kręglewski, Valentin (b1040) 1997; 186 Bogachuk, Wagner, Mastroianni, Daub (b0955) 2020; 8 Kim, Zeroka (b0905) 2008; 108 Cottaz, Kleiner, Tarrago, Brown (b0415) 2000; 203 Guinet, Jeseck, Mondelain, Pepin (b0430) 2011; 112 Gulaczyk, Łodyga, Kręglewski, Horneman (b0825) 2010; 108 Kleiner (b1200) 2019; 3 Frantz (b0090) 2002; 3 Nicolls, Swindells (b1115) 1968; 30 Ozeki, Takahashi, Okuyama, Kimura (b0330) 1993; 99 Lees, Sun, Xu (b0855) 2008; 29 Papoušek, Sarka, Špirko, Jordanov (b0970) 1971; 36 Schilter (b0015) 2019; 3 Dawadi, Bhatta, Perry (b0870) 2013; 117 Ohashi, Takagi, Hougen, Olson, Lafferty (b0770) 1988; 132 Rodham, Suzuki, Suenram, Lovas (b0555) 1993; 632 Gulaczyk, Kręglewski, Horneman (b0795) 2018; 217 Giuliano, Caminati (b0185) 2005; 44 Kleibömer, Sutter (b0315) 1988; 43a Nishikawa (b0730) 1957; 12 Ohashi, Inoue, Iino, Sasaki (b0590) 2009; 147 Giguere, Liu (b0990) 1952; 20 Ohashi, Henry, Chazelas, Valentin (b1035) 1993; 161 A. Weber, Academic Press, Inc., 1st edition, 2 (1992). Łodyga, Makarewicz (b1075) 2012; 136 Fraser, Leopold, Klemperer (b0560) 1984; 80 Tomioka, Ito, Mikami (b0345) 1983; 87 Csonka, Sztraka (b0885) 2000; 233 Benedict, Plyler, Tidwell (b0485) 1958; 29 Fuke, Hashimoto, Iwata (b0205) 1999; 110 Imamura, Ohashi, Sasaki, Inoue (b0600) 2010; 12 Merer, Watson (b0975) 1973; 47 Inokuma, Yoshioka, Ariyoshi, Arai (b0055) 2013; 495 Perutz, Rossmann, Cullis, Muirhead (b0080) 1960; 185 Meirer, Weckhuysen (b0045) 2018; 3 Burrows, Marley, Hubbard, Lunine (b0380) 1997; 491 Müller, Christen (b1210) 2004; 228 Holtom, Bennett, Osamura, Mason, Kaiser (b0610) 2005; 626 Takagi, Kojima (b0690) 1971; 30 Surin, Tarabukin, Schlemmer, Breier (b0580) 2017; 838 Albert, Lerch, Prentner, Quack (b0155) 2013; 52 Thompson (b0250) 1976 Kasuya, Kojima (b0965) 1963; 18 Rothman, Gordon, Barbe, Benner (b0455) 2009; 110 Ferres, Mouhib, Stahl, Schwell, Nguyen (b0150) 2017; 337 Herbine, Dyke (b0540) 1985; 83 Swaddle (b0240) 1977; 55 Gunther-Mohr, White, Schawlow, Good, Coles (b0135) 1954; 94 Gawas, Mojumdar, Verenkar (b1140) 2010; 100 Ducati, Custodito, Rittner (b0910) 2010; 110 Knitsch, Han, Anke, Ibing, Jiao, Hansen (b1130) 2019; 38 Gulaczyk, Kręglewski, Horneman (b0835) 2011; 270 Kleiner, Hougen (b0805) 2015; 119 Stockman, Bumgarner, Suzuki, Blake (b0545) 1992; 96 Chu, Chen, Cheo (b0450) 1994; 51 Bertolotti, Dirin, Ibáñez, Krumeich (b0050) 2016; 15 Sharp, Burrows (b0385) 2007; 168 Holmes (b0085) 1997; 389 Yurchenko, Barber, Tennyson (b0510) 2011; 413 Abe, Mikami, Ito (b0340) 1982; 86 Jones, Takami (b1025) 1983; 78 Oda, Ohashi (b0785) 1989; 138 Tomić, Kovačević, Tomić (b0300) 2016; 18 Tsuboi, Overend (b1020) 1974; 52 Thomas, Sukhorukov, Jäger, Xu (b0120) 2013; 52 Otte (b0005) 2020; 580 Aroui, Nouri, Bouanich (b0445) 2003; 220 Kowal (b1080) 2003; 625 Hamada, Hirakawa, Tamagake, Tsuboi (b1015) 1970; 35 Bloch, Burgun, Coghlan, Lee (b0020) 2014; 6 Hess, Sasaki, Villevieille, Novák (b0035) 2015; 6 Dyubko, Svich, Fesenko (b0845) 1972; 16 Farrar (b0210) 2003; 22 Sacconi, Sabatini (b1110) 1963; 25 Thomas (b0060) 2012; 491 Marstokk, Møllendal (b0140) 1978; 49 Lisy (b0215) 1997; 16 Durig, Zheng (b1095) 2002; 30 Machado, Roberto-Neto (b1090) 2002; 352 Sandmeier, Goetzke, Krautwald, Carreira (b1125) 2019; 141 Zhu, Kong, Okamura, Fan, Sun, Ueyama (b0245) 2004; 1465 Bunker, Jensen (b0395) 2006 Ohashi, Hougen (b0665) 1987; 121 Pelegrini, Roberto-Neto, Machado (b0895) 2005; 414 Tey, Reddy, Rao, Chowdari (b0275) 2006; 18 Kręglewski (b0310) 1989; 133 The 1964 Nobel Prize for Chemistry: Prof. Dorothy Crowfoot Hodgkin, F.R.S., Nature 204, 922 (1964). Merke, Coudert (b0305) 2006; 237 Ohashi, Masue (b1045) 1991; 150 Koziol, Stahl, Nguyen (b1160) 2020; 153 Ohashi, Shimada, Olson, Kawaguchi (b0790) 1992; 152 Kręglewski, Winther (b0815) 1992; 156 Ghosh, Thomas, Huang, Xu, Jäger (b0180) 2015; 6 Omae (b0230) 1979; 79 Aruna, Patil (b0280) 1996; 4 Papoušek, Stone, Spirko (b0480) 1973; 48 Ferres, Cheung, Stahl, Nguyen (bib1217) 2019; 123 Cacciani, Čermák, Cosléou, El Romh (b0495) 2014; 112 Salter, Ellis (b0255) 2007; 127 Abyaneh, Moghadam, Divsalar, Ajloo, Sadr (b0260) 2018; 186 Kręglewski, Stahl, Grabow, Wlodarczak (b0755) 1992; 196 Schnell, Erlekam, Bunker, von Helden (b0165) 2013; 52 Durig, Zheng (b0710) 2001; 12 Urban (b0470) 1988; 131 Ijima (b0700) 1986; 59 Shimoda, Nishikawa, Itoh (b0720) 1954; 9 Wollrab, Laurie (b1150) 1968; 48 Heaton, Jacob, Page (b0285) 1996; 154 Riese, Ploeger, Rap, Vogel (b1175) 2012; 117 Boldyrev, Charkin (b0225) 1985; 26 Lodi, Tennyson, Polyansky (b0535) 2011; 135 Wright, Gerber (b1085) 2001; 114 Tsunekawa, Kojima, Hougen (b0265) 1982; 95 Mimani, Ravindranthan, Patil (b1145) 1987; 99 Lide (b0715) 1954; 22 Gulaczyk, Kręglewski, Horneman (b0780) 2017; 342 Kaifu, Morimoto, Nagane, Akabane (b0635) 1974; 191 Ohashi, Takagi, Hougen, Olson, Lafferty (b0740) 1987; 126 Ohashi, Lafferty, Olson (b1000) 1986; 117 Caminati (b0195) 2011 Pearson, Yu, Pirali (b0425) 2016; 145 Łodyga, Kręglewski, Makarewicz (b1070) 1997; 183 Fraser, Suenram, Lovas, Stevens (b0575) 1988; 12 Kleiner, Tarrago, Brown (b0400) 1995; 173 Fourikis, Takagi, Morimoto (b0630) 1974; 191 Iskander, El Sayed, Lasheen (b1100) 1976; 16 Yurchenko, Barber, Yachmenev, Thiel (b0505) 2009; 113 Christen, Müller (b1205) 2003; 5 Yamaguchi, Ichishima, Simanouchi, Mizushima (b1005) 1960; 16 Podolsky (b0655) 1928; 32 Kreglewski (b0925) 1978; 72 Cruz-Navarro, Hernández-Romero, Flores-Parra, Rivera (b0960) 2021; 427 Li, Evangelisti, Gou, Caminati, Meyer (b0170) 2019; 58 Gulaczyk, Kręglewski, Asselin, Pirali, Kleiner (b0875) 2020; 98 Smeyers, Villa, Senent (b0915) 1996; 177 Levi, Martin, Bar (b0900) 2008; 29 Aggarwal, Narang (b1120) 1973; 74 Drouin (b1215) 2017; 340 Mitsuzuka, Fujii, Ebata, Mikamia (b0355) 1996; 105 Sun, Qi, Lee, Xu (b0860) 2016; 6 Clarisse, Clerbaux, Dentener, Hurtmans, Coheur (b0365) 2009; 2 Takagi, Kojima (b0735) 1973; 181 Papoušek, Stone, Špirko (b0680) 1973; 48 Nguyen, Stahl (b1165) 2011; 135 Tercero, Kleiner, Cernicharo, Nguyen (b1190) 2013; 770 Kozubal, Heck, Metz (b0605) 2019; 123 Kręglewski (b0660) 1993 Sutton, Burrell, Dixon, Garner (b1135) 2011; 331 Suggit, Higginbotham, Hawreliak, Mogni (b0030) 2012; 3 Gulaczyk, Kręglewski (b1050) 2008; 249 Lees, Sun, Billinghurst (b0840) 2011; 135 Dawadi, Lindsay, Chirokolava, Perry, Xu (b0865) 2013; 138 Ehrenfreund, Bernstein, Dworkin, Sandford, Allamandola (b0625) 2001; 550 Erley, Hemminger (b0945) 1994; 316 Brandi-Blanco, Sanz Miguel, Lippert (b0290) 2011; 40 Takada, Nakamura (b0335) 1995; 102 Ohashi, Hougen (b0985) 1985; 112 Fraser, Lovas, Suenram, Nelson, Klemperer (b0565) 1986; 84 Fabian, Yamada (b0435) 1999; 198 Taniguchi, Tsubouchi, Imai, Yuasa, Oguri (b0360) 2018; 83 Albaqami, Ellis (b0585) 2018; 706 Nelson, Fraser, Peterson, Zhao, Klemperer (b0570) 1986; 85 Inoue, Ohashi, Iino, Sasaki (b0595) 2008; 10 Baraban, Martin-Drumel, Changala, Eibenberger (b0160) 2018; 57 Lee, Kim, Moon, Minth, Kang (b0620) 2009; 697 Smeyers, Villa (b0890) 2000; 324 Geulachvili, Abdullah, Tu, Rao (b0410) 1989; 133 Li, Tang, Yusov, Rose (b0025) 2019; 10 Lynas-Gray, Miller, Tennyson (b0530) 1995; 169 Belorgeot, Stern, Goff, Kachamrsky, Möller (b0695) 1982; 92 Caminati, Grabow (b0110) 2006; 128 Łodyga, Kręglewski (b1065) 1993; 210 Huang, Schwenke, Lee (b0500) 2008; 129 Tsuboi, Hamada, Henry, Chazelas, Valentin (b1030) 1984; 108 Feng, Gou, Evangelisti, Caminati (b0175) 2014; 53 Yurchenko, Thiel, Jensen (b0525) 2007; 245 Kroto (b0675) 1975 Frost, Hagemeister, Arrington, Schleppenbach, Zwier, Jordan (b0350) 1996; 105 Gulaczyk, Kręglewski (b0830) 2009; 256 Tsuji, Sekiya, Nishimura, Mori, Takeshita (b0320) 1991; 95 Sztraka, Alanko, Koivusaari (b0820) 1997; 410–411 Smeyers, Villa, Senent (b0920) 1998; 191 Watson, Crick (b0075) 1953; 171 Hougen (b0980) 1981; 89 Endres, Schlemmer, Schilke, Stutzki (b1195) 2016; 327 Lesarri, Shipman, Neill, Brown (b0130) 2010; 132 Down, Hill, Yurchenko, Tennyson (b0460) 2013; 130 Tsuboi, Hirakawa, Tamagake (b0685) 1967; 22 Yurchenko, Zheng, Lin, Jensen, Thiel (b0520) 2005; 123 Glavin, Dworkin, Sandford (b0645) 2008; 43 Baca, Schulz, Shirley (b0935) 1985; 83 Gordy, Cook (b0105) 1984 Blumestock (b1180) 2006; 6 Lara, Bézard, Griffith, Lacy, Owen (b0375) 1998; 131 Kemp (b0010) 1998; 394 Beaulieu, Tinetti, Kipping, Ribas (b0390) 2011; 731 Nobel Prize for Chemistry: Prof. P. Debye, Nature 138, 873 (1936). Walters, Pillai, Duncan (b0220) 2005; 127 Ohashi, Tsunekawa, Takagi, Hougen (b0775) 1989; 137 Bossa, Duvernay, Theulé (b0615) 2009; 506 Latajka, Scheiner (b0550) 1990; 94 Ilyushin, Lovas (b0760) 2007; 36 K.C. Patil, T.M. Rattan, Inorganic Hydrazine Derivatives, John Wiley & Sons, Ltd., 2014. Nemtchinov, Sung, Varanasi (b0440) 2004; 83 Muller, Beelen, Guelin, Aalto (b0640) 2011; 535 Motiyenko, Ilyushin, Drouin, Yu, Margulès (b0765) 2014; 563 Hughes (b0065) 2008; 452 Nunney, Birtill, Raval (b0940) 1999; 427–428 Van Damme, Clarisse, Whitburn, Hadji-Lazaro (b0370) 2018; 564 Kręglewski, Wlodarczak (b0745) 1992; 156 Morinaka, Sato, Wakamiya, Nikawa (b0040) 2013; 4 Bogelund, McGuire, Hogerheijde, Dishoeck, Ligterink (b0650) 2019; 624 Oda, Ohashi, Hougen (b0705) 1990; 142 Ilyushin, Alekseev, Dyubko, Motiyenko, Hougen (b0750) 2005; 229 Cottaz, Tarrago, Kleiner, Brown (b0420) 2001; 209 Spirko, Stone, Papoušek (b0465) 1976; 60 Jentz, Trenary, Peng, Stair (b0950) 1995; 341 Schnell, Grabow (b0115) 2006; 45 Kleiner, Brown, Tarrago, Kou (b0405) 1999; 193 Lee, Mhin, Cho, Lee, Kim (b0880) 1994; 98 Hirakawa, Miyahara, Shimoda (b0725) 1956; 11 Gulaczyk, Kręglewski, Valentin (b1060) 2003; 220 El, Sayed (b1105) 1971; 33 Uriarte, Insausti, Cocinero, Jabri (b0125) 2018; 9 Howard (b0100) 2003; 4 Pracna, Spirko, Kraemer (b0475) 1989; 136 Muhleman, Clancy (b1185) 1995; 34 Redington, Redi Plant (10.1016/j.ccr.2021.213797_b0850) 1973; QE-9 Yurchenko (10.1016/j.ccr.2021.213797_b0510) 2011; 413 Cottaz (10.1016/j.ccr.2021.213797_b0420) 2001; 209 Hughes (10.1016/j.ccr.2021.213797_b0065) 2008; 452 Frost (10.1016/j.ccr.2021.213797_b0350) 1996; 105 Ohashi (10.1016/j.ccr.2021.213797_b0665) 1987; 121 Duncan (10.1016/j.ccr.2021.213797_b0200) 1997; 48 Burrows (10.1016/j.ccr.2021.213797_b0380) 1997; 491 Oda (10.1016/j.ccr.2021.213797_b0705) 1990; 142 Kasuya (10.1016/j.ccr.2021.213797_b0965) 1963; 18 Van Damme (10.1016/j.ccr.2021.213797_b0370) 2018; 564 Yurchenko (10.1016/j.ccr.2021.213797_b0505) 2009; 113 Gulaczyk (10.1016/j.ccr.2021.213797_b0830) 2009; 256 Nicolls (10.1016/j.ccr.2021.213797_b1115) 1968; 30 Muhleman (10.1016/j.ccr.2021.213797_b1185) 1995; 34 Takagi (10.1016/j.ccr.2021.213797_b0735) 1973; 181 Beaulieu (10.1016/j.ccr.2021.213797_b0390) 2011; 731 Surin (10.1016/j.ccr.2021.213797_b0580) 2017; 838 Brown (10.1016/j.ccr.2021.213797_b0490) 1996; 56 Durig (10.1016/j.ccr.2021.213797_b0710) 2001; 12 Gulaczyk (10.1016/j.ccr.2021.213797_b0825) 2010; 108 Inokuma (10.1016/j.ccr.2021.213797_b0055) 2013; 495 Albert (10.1016/j.ccr.2021.213797_b0155) 2013; 52 Papoušek (10.1016/j.ccr.2021.213797_b0480) 1973; 48 Tsunekawa (10.1016/j.ccr.2021.213797_b0995) 1982; 95 Iskander (10.1016/j.ccr.2021.213797_b1100) 1976; 16 Kleiner (10.1016/j.ccr.2021.213797_b0400) 1995; 173 Christen (10.1016/j.ccr.2021.213797_b1205) 2003; 5 Lara (10.1016/j.ccr.2021.213797_b0375) 1998; 131 Tomić (10.1016/j.ccr.2021.213797_b0300) 2016; 18 Lodi (10.1016/j.ccr.2021.213797_b0535) 2011; 135 Tsuboi (10.1016/j.ccr.2021.213797_b0685) 1967; 22 Lide (10.1016/j.ccr.2021.213797_b0715) 1954; 22 Nguyen (10.1016/j.ccr.2021.213797_b1165) 2011; 135 Gulaczyk (10.1016/j.ccr.2021.213797_b0780) 2017; 342 Stockman (10.1016/j.ccr.2021.213797_b0545) 1992; 96 Li (10.1016/j.ccr.2021.213797_b0025) 2019; 10 Fraser (10.1016/j.ccr.2021.213797_b0565) 1986; 84 Riese (10.1016/j.ccr.2021.213797_b1175) 2012; 117 Farrar (10.1016/j.ccr.2021.213797_b0210) 2003; 22 Belorgeot (10.1016/j.ccr.2021.213797_b0695) 1982; 92 Yurchenko (10.1016/j.ccr.2021.213797_b0520) 2005; 123 Clarisse (10.1016/j.ccr.2021.213797_b0365) 2009; 2 Smeyers (10.1016/j.ccr.2021.213797_b0920) 1998; 191 Gulaczyk (10.1016/j.ccr.2021.213797_b1060) 2003; 220 Tsuboi (10.1016/j.ccr.2021.213797_b1020) 1974; 52 Sacconi (10.1016/j.ccr.2021.213797_b1110) 1963; 25 Ciampolini (10.1016/j.ccr.2021.213797_b0235) 1966; 5 Lees (10.1016/j.ccr.2021.213797_b0840) 2011; 135 Dawadi (10.1016/j.ccr.2021.213797_b0865) 2013; 138 Gordy (10.1016/j.ccr.2021.213797_b0105) 1984 Rodham (10.1016/j.ccr.2021.213797_b0555) 1993; 632 Fraser (10.1016/j.ccr.2021.213797_b0560) 1984; 80 Ohashi (10.1016/j.ccr.2021.213797_b0790) 1992; 152 Muller (10.1016/j.ccr.2021.213797_b0640) 2011; 535 Gulaczyk (10.1016/j.ccr.2021.213797_b0795) 2018; 217 Smeyers (10.1016/j.ccr.2021.213797_b0915) 1996; 177 Tercero (10.1016/j.ccr.2021.213797_b1190) 2013; 770 Ferres (10.1016/j.ccr.2021.213797_bib1217) 2019; 123 Cottaz (10.1016/j.ccr.2021.213797_b0415) 2000; 203 Yurchenko (10.1016/j.ccr.2021.213797_b0525) 2007; 245 Abyaneh (10.1016/j.ccr.2021.213797_b0260) 2018; 186 Lynas-Gray (10.1016/j.ccr.2021.213797_b0530) 1995; 169 Caminati (10.1016/j.ccr.2021.213797_b0110) 2006; 128 Kleiner (10.1016/j.ccr.2021.213797_b0405) 1999; 193 Pearson (10.1016/j.ccr.2021.213797_b0425) 2016; 145 Ghosh (10.1016/j.ccr.2021.213797_b0180) 2015; 6 Fuke (10.1016/j.ccr.2021.213797_b0205) 1999; 110 Ilyushin (10.1016/j.ccr.2021.213797_b0760) 2007; 36 Benedict (10.1016/j.ccr.2021.213797_b0485) 1958; 29 Oda (10.1016/j.ccr.2021.213797_b0785) 1989; 138 Gulaczyk (10.1016/j.ccr.2021.213797_b0835) 2011; 270 Boldyrev (10.1016/j.ccr.2021.213797_b0225) 1985; 26 Kleiner (10.1016/j.ccr.2021.213797_b1200) 2019; 3 Tey (10.1016/j.ccr.2021.213797_b0275) 2006; 18 Heaton (10.1016/j.ccr.2021.213797_b0285) 1996; 154 Ohashi (10.1016/j.ccr.2021.213797_b0740) 1987; 126 Schnell (10.1016/j.ccr.2021.213797_b0115) 2006; 45 Glavin (10.1016/j.ccr.2021.213797_b0645) 2008; 43 Shimoda (10.1016/j.ccr.2021.213797_b0720) 1954; 9 Blumestock (10.1016/j.ccr.2021.213797_b1180) 2006; 6 Csonka (10.1016/j.ccr.2021.213797_b0885) 2000; 233 Sutton (10.1016/j.ccr.2021.213797_b1135) 2011; 331 Ehrenfreund (10.1016/j.ccr.2021.213797_b0625) 2001; 550 Nelson (10.1016/j.ccr.2021.213797_b0570) 1986; 85 Hougen (10.1016/j.ccr.2021.213797_b0980) 1981; 89 Hamada (10.1016/j.ccr.2021.213797_b1015) 1970; 35 Howard (10.1016/j.ccr.2021.213797_b0100) 2003; 4 Ohashi (10.1016/j.ccr.2021.213797_b0590) 2009; 147 Li (10.1016/j.ccr.2021.213797_b0170) 2019; 58 Sanz (10.1016/j.ccr.2021.213797_b0190) 2001; 40 Uriarte (10.1016/j.ccr.2021.213797_b0125) 2018; 9 Bossa (10.1016/j.ccr.2021.213797_b0615) 2009; 506 Lee (10.1016/j.ccr.2021.213797_b0880) 1994; 98 Bloch (10.1016/j.ccr.2021.213797_b0020) 2014; 6 Nemtchinov (10.1016/j.ccr.2021.213797_b0440) 2004; 83 Lee (10.1016/j.ccr.2021.213797_b0620) 2009; 697 Baraban (10.1016/j.ccr.2021.213797_b0160) 2018; 57 Tsuji (10.1016/j.ccr.2021.213797_b0320) 1991; 95 Pracna (10.1016/j.ccr.2021.213797_b0475) 1989; 136 Senent (10.1016/j.ccr.2021.213797_b0930) 2018; 343 Caminati (10.1016/j.ccr.2021.213797_b0195) 2011 Kręglewski (10.1016/j.ccr.2021.213797_b0745) 1992; 156 Kręglewski (10.1016/j.ccr.2021.213797_b0660) 1993 Lees (10.1016/j.ccr.2021.213797_b0855) 2008; 29 Ijima (10.1016/j.ccr.2021.213797_b0700) 1986; 59 Ohashi (10.1016/j.ccr.2021.213797_b1035) 1993; 161 Kozubal (10.1016/j.ccr.2021.213797_b0605) 2019; 123 Albaqami (10.1016/j.ccr.2021.213797_b0585) 2018; 706 Müller (10.1016/j.ccr.2021.213797_b1210) 2004; 228 Hirakawa (10.1016/j.ccr.2021.213797_b0725) 1956; 11 Gawas (10.1016/j.ccr.2021.213797_b1140) 2010; 100 Jentz (10.1016/j.ccr.2021.213797_b0950) 1995; 341 Latajka (10.1016/j.ccr.2021.213797_b0550) 1990; 94 Walters (10.1016/j.ccr.2021.213797_b0220) 2005; 127 Inoue (10.1016/j.ccr.2021.213797_b0595) 2008; 10 Merer (10.1016/j.ccr.2021.213797_b0975) 1973; 47 Schilter (10.1016/j.ccr.2021.213797_b0015) 2019; 3 Abe (10.1016/j.ccr.2021.213797_b0340) 1982; 86 Jones (10.1016/j.ccr.2021.213797_b1025) 1983; 78 Guinet (10.1016/j.ccr.2021.213797_b0430) 2011; 112 Thompson (10.1016/j.ccr.2021.213797_b0250) 1976 Brandi-Blanco (10.1016/j.ccr.2021.213797_b0290) 2011; 40 Thomas (10.1016/j.ccr.2021.213797_b0120) 2013; 52 Rothman (10.1016/j.ccr.2021.213797_b0455) 2009; 110 Fourikis (10.1016/j.ccr.2021.213797_b0630) 1974; 191 Ferres (10.1016/j.ccr.2021.213797_b0150) 2017; 337 Kręglewski (10.1016/j.ccr.2021.213797_b0815) 1992; 156 Kim (10.1016/j.ccr.2021.213797_b0905) 2008; 108 Ohashi (10.1016/j.ccr.2021.213797_b1045) 1991; 150 Ozeki (10.1016/j.ccr.2021.213797_b0330) 1993; 99 Ilyushin (10.1016/j.ccr.2021.213797_b0750) 2005; 229 Imamura (10.1016/j.ccr.2021.213797_b0600) 2010; 12 Erley (10.1016/j.ccr.2021.213797_b0945) 1994; 316 Bogelund (10.1016/j.ccr.2021.213797_b0650) 2019; 624 Sun (10.1016/j.ccr.2021.213797_b0860) 2016; 6 Machado (10.1016/j.ccr.2021.213797_b1090) 2002; 352 10.1016/j.ccr.2021.213797_b0270 Gulaczyk (10.1016/j.ccr.2021.213797_b1050) 2008; 249 Kleiner (10.1016/j.ccr.2021.213797_b0810) 2020; 368 Davies (10.1016/j.ccr.2021.213797_b0295) 2007; 47 Zhu (10.1016/j.ccr.2021.213797_b0245) 2004; 1465 Sztraka (10.1016/j.ccr.2021.213797_b0820) 1997; 410–411 Kemp (10.1016/j.ccr.2021.213797_b0010) 1998; 394 Feng (10.1016/j.ccr.2021.213797_b0175) 2014; 53 Ducati (10.1016/j.ccr.2021.213797_b0910) 2010; 110 Ohashi (10.1016/j.ccr.2021.213797_b0985) 1985; 112 Baca (10.1016/j.ccr.2021.213797_b0935) 1985; 83 Gulaczyk (10.1016/j.ccr.2021.213797_b1055) 2007; 241 Tsunekawa (10.1016/j.ccr.2021.213797_b0265) 1982; 95 Sandmeier (10.1016/j.ccr.2021.213797_b1125) 2019; 141 Omae (10.1016/j.ccr.2021.213797_b0230) 1979; 79 Dyubko (10.1016/j.ccr.2021.213797_b0845) 1972; 16 Knitsch (10.1016/j.ccr.2021.213797_b1130) 2019; 38 Gulaczyk (10.1016/j.ccr.2021.213797_b0875) 2020; 98 Tsuboi (10.1016/j.ccr.2021.213797_b1030) 1984; 108 Huang (10.1016/j.ccr.2021.213797_b0500) 2008; 129 Wollrab (10.1016/j.ccr.2021.213797_b1150) 1968; 48 Papoušek (10.1016/j.ccr.2021.213797_b0970) 1971; 36 Łodyga (10.1016/j.ccr.2021.213797_b1075) 2012; 136 Tomioka (10.1016/j.ccr.2021.213797_b0345) 1983; 87 Koziol (10.1016/j.ccr.2021.213797_b1160) 2020; 153 Chu (10.1016/j.ccr.2021.213797_b0450) 1994; 51 Nishikawa (10.1016/j.ccr.2021.213797_b0730) 1957; 12 Takada (10.1016/j.ccr.2021.213797_b0335) 1995; 102 Giuliano (10.1016/j.ccr.2021.213797_b0185) 2005; 44 Kreglewski (10.1016/j.ccr.2021.213797_b0925) 1978; 72 Levi (10.1016/j.ccr.2021.213797_b0900) 2008; 29 Suggit (10.1016/j.ccr.2021.213797_b0030) 2012; 3 10.1016/j.ccr.2021.213797_b0095 Kasuja (10.1016/j.ccr.2021.213797_b0145) 1962; 56 Redington (10.1016/j.ccr.2021.213797_b0325) 2008; 112 Kręglewski (10.1016/j.ccr.2021.213797_b0755) 1992; 196 Geulachvili (10.1016/j.ccr.2021.213797_b0410) 1989; 133 Spirko (10.1016/j.ccr.2021.213797_b0465) 1976; 60 Dawadi (10.1016/j.ccr.2021.213797_b0870) 2013; 117 Bertolotti (10.1016/j.ccr.2021.213797_b0050) 2016; 15 Wright (10.1016/j.ccr.2021.213797_b1085) 2001; 114 Kleibömer (10.1016/j.ccr.2021.213797_b0315) 1988; 43a Yurchenko (10.1016/j.ccr.2021.213797_b0515) 2011; 268 Ohashi (10.1016/j.ccr.2021.213797_b1000) 1986; 117 Endres (10.1016/j.ccr.2021.213797_b1195) 2016; 327 Kręglewski (10.1016/j.ccr.2021.213797_b0310) 1989; 133 Urban (10.1016/j.ccr.2021.213797_b0470) 1988; 131 Bunker (10.1016/j.ccr.2021.213797_b0395) 2006 Gulaczyk (10.1016/j.ccr.2021.213797_b1040) 1997; 186 Nunney (10.1016/j.ccr.2021.213797_b0940) 1999; 427–428 Kowal (10.1016/j.ccr.2021.213797_b1080) 2003; 625 Hess (10.1016/j.ccr.2021.213797_b0035) 2015; 6 Fraser (10.1016/j.ccr.2021.213797_b0575) 1988; 12 Holmes (10.1016/j.ccr.2021.213797_b0085) 1997; 389 Frantz (10.1016/j.ccr.2021.213797_b0090) 2002; 3 Motiyenko (10.1016/j.ccr.2021.213797_b0765) 2014; 563 Yamaguchi (10.1016/j.ccr.2021.213797_b1005) 1960; 16 Schnell (10.1016/j.ccr.2021.213797_b0165) 2013; 52 Down (10.1016/j.ccr.2021.213797_b0460) 2013; 130 Perutz (10.1016/j.ccr.2021.213797_b0080) 1960; 185 Meirer (10.1016/j.ccr.2021.213797_b0045) 2018; 3 Herbine (10.1016/j.ccr.2021.213797_b0540) 1985; 83 Longuet-Higgins (10.1016/j.ccr.2021.213797_b0670) 1963; 6 Ohashi (10.1016/j.ccr.2021.213797_b1010 |
References_xml | – volume: 141 start-page: 12212 year: 2019 ident: b1125 publication-title: J. Am. Chem. Soc. – volume: 624 start-page: A82 year: 2019 ident: b0650 publication-title: Astronom. Astrophys. – volume: 12 start-page: 11647 year: 2010 ident: b0600 publication-title: Phys. Chem. Chem. Phys. – volume: 171 start-page: 737 year: 1953 ident: b0075 publication-title: Nature – volume: 168 start-page: 140 year: 2007 ident: b0385 publication-title: Astrophys. J. – volume: 135 year: 2011 ident: b1165 publication-title: J. Chem. Phys. – volume: 117 start-page: 13356 year: 2013 ident: b0870 publication-title: J. Phys. Chem. A – volume: 108 start-page: 2389 year: 2010 ident: b0825 publication-title: Mol. Phys. – volume: 150 start-page: 238 year: 1991 ident: b1045 publication-title: J. Mol. Spectrosc. – reference: A. Weber, Academic Press, Inc., 1st edition, 2 (1992). – reference: The 1964 Nobel Prize for Chemistry: Prof. Dorothy Crowfoot Hodgkin, F.R.S., Nature 204, 922 (1964). – volume: 6 start-page: 3126 year: 2015 ident: b0180 publication-title: J. Phys. Chem. Lett. – volume: 131 start-page: 133 year: 1988 ident: b0470 publication-title: J. Mol. Spectrosc. – volume: 53 start-page: 530 year: 2014 ident: b0175 publication-title: Angew. Chem. Int. Ed. – volume: 191 start-page: L139 year: 1974 ident: b0630 publication-title: Astrophys. J. – volume: 87 start-page: 4401 year: 1983 ident: b0345 publication-title: J. Phys. Chem. – volume: 352 start-page: 120 year: 2002 ident: b1090 publication-title: Chem. Phys. Lett. – volume: 138 year: 2013 ident: b0865 publication-title: J. Chem. Phys. – volume: 626 start-page: 940 year: 2005 ident: b0610 publication-title: Astrophys. J. – volume: 92 start-page: 91 year: 1982 ident: b0695 publication-title: J. Mol. Spectrosc. – volume: 132 start-page: 13417 year: 2010 ident: b0130 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 431 year: 1999 ident: b0205 publication-title: Adv. Chem. Phys. – volume: 237 start-page: 174 year: 2006 ident: b0305 publication-title: J. Mol. Spectrosc. – volume: 6 start-page: 34270 year: 2016 ident: b0860 publication-title: Sci. Rep. – volume: 135 year: 2011 ident: b0535 publication-title: J. Chem. Phys. – volume: 112 start-page: 384 year: 1985 ident: b0985 publication-title: J. Mol. Spectrosc. – volume: 99 start-page: 209 year: 1987 ident: b1145 publication-title: Proc. Indian Acad. Sci., Chem. Sci. – volume: 15 start-page: 987 year: 2016 ident: b0050 publication-title: Nat. Mater. – volume: 156 start-page: 261 year: 1992 ident: b0815 publication-title: J. Mol. spectrosc. – volume: 123 start-page: 4929 year: 2019 ident: b0605 publication-title: J. Phys. Chem. A – volume: 394 start-page: 25 year: 1998 ident: b0010 publication-title: Nature – volume: 43 start-page: 399 year: 2008 ident: b0645 publication-title: Met. Planet. Sci. – year: 1975 ident: b0675 article-title: Molecular Rotation Spectra – volume: 38 start-page: 2714 year: 2019 ident: b1130 publication-title: Organometallics – volume: 52 start-page: 4402 year: 2013 ident: b0120 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 1821 year: 2018 ident: b0160 publication-title: Angew. Chem. Int. Ed. – volume: 193 start-page: 46 year: 1999 ident: b0405 publication-title: J. Mol. Spectrosc. – volume: 9 start-page: 974 year: 1954 ident: b0720 publication-title: J. Phys. Soc. Jpn. – volume: 110 start-page: 2006 year: 2010 ident: b0910 publication-title: Int. J. Quantum Chem. – volume: 85 start-page: 5512 year: 1986 ident: b0570 publication-title: J. Chem. Phys. – volume: 535 start-page: A103 year: 2011 ident: b0640 publication-title: Astronom. Astrophys. – volume: 98 start-page: 1129 year: 1994 ident: b0880 publication-title: J. Phys. Chem. – volume: 3 start-page: 146 year: 2002 ident: b0090 publication-title: Nat. Rev. Mol. Cell. Biol. – volume: 731 start-page: 16 year: 2011 ident: b0390 publication-title: Astrophys. J. – volume: 105 start-page: 2618 year: 1996 ident: b0355 publication-title: J. Chem. Phys. – volume: 16 start-page: 1471 year: 1960 ident: b1005 publication-title: Spectrochim. Acta – volume: 35 start-page: 420 year: 1970 ident: b1015 publication-title: J. Mol. Spectrosc. – year: 2011 ident: b0195 article-title: Microwave Spectroscopy of Large Molecules and Molecular Complexes, Chapter in book: Handbook of High-resolution Spectroscopy – volume: 324 start-page: 273 year: 2000 ident: b0890 publication-title: Chem. Phys. Lett. – volume: 117 start-page: 119 year: 1986 ident: b1000 publication-title: J. Mol. Spectrosc. – volume: 491 start-page: 856 year: 1997 ident: b0380 publication-title: Astrophys. J. – volume: 36 start-page: 1141 year: 2007 ident: b0760 publication-title: J. Phys. Chem. Ref. Data – volume: 45 start-page: 3465 year: 2006 ident: b0115 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 148 year: 2008 ident: b0855 publication-title: Int. J. Infrared Milli Waves – volume: 452 start-page: 30 year: 2008 ident: b0065 publication-title: Nature – volume: 210 start-page: 303 year: 1993 ident: b1065 publication-title: Chem. Phys. Lett. – volume: 4 start-page: 175 year: 1996 ident: b0280 publication-title: J. Mater. Synth. Process. – volume: 770 start-page: L13 year: 2013 ident: b1190 publication-title: Astrophys. J. Lett. – volume: 114 start-page: 8763 year: 2001 ident: b1085 publication-title: J. Chem. Phys. – volume: 183 start-page: 374 year: 1997 ident: b1070 publication-title: J. Mol. Spectrosc. – volume: 16 start-page: 418 year: 1972 ident: b0845 publication-title: J. Exp. Theor. Phys. Lett. – volume: 126 start-page: 443 year: 1987 ident: b0740 publication-title: J. Mol. Spectrosc. – volume: 4 start-page: 1554 year: 2013 ident: b0040 publication-title: Nat. Commun. – volume: 83 start-page: 243 year: 2004 ident: b0440 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 138 start-page: 246 year: 1989 ident: b0785 publication-title: J. Mol. Spectrosc. – volume: 136 year: 2012 ident: b1075 publication-title: J. Chem. Phys. – volume: 256 start-page: 86 year: 2009 ident: b0830 publication-title: J. Mol. Spectrosc. – reference: Nobel Prize for Chemistry: Prof. P. Debye, Nature 138, 873 (1936). – volume: 6 start-page: 445 year: 1963 ident: b0670 publication-title: Mol. Phys. – volume: 33 start-page: 435 year: 1971 ident: b1105 publication-title: J. Inorg. Nucl. Chem. – volume: 245 start-page: 126 year: 2007 ident: b0525 publication-title: J. Mol. Spectrosc. – volume: 233 start-page: 611 year: 2000 ident: b0885 publication-title: Chem. Phys. Lett. – volume: 123 year: 2005 ident: b0520 publication-title: J. Chem. Phys. – volume: 117 start-page: D16305 year: 2012 ident: b1175 publication-title: J. Geophys. – volume: 241 start-page: 75 year: 2007 ident: b1055 publication-title: J. Mol. Spectrosc. – volume: 564 start-page: 99 year: 2018 ident: b0370 publication-title: Nature – volume: 100 start-page: 867 year: 2010 ident: b1140 publication-title: J. Therm. Anal. Calorim. – volume: 133 start-page: 345 year: 1989 ident: b0410 publication-title: J. Mol. Spectrosc. – reference: K.C. Patil, T.M. Rattan, Inorganic Hydrazine Derivatives, John Wiley & Sons, Ltd., 2014. – volume: 112 start-page: 1950 year: 2011 ident: b0430 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 48 start-page: 5058 year: 1968 ident: b1150 publication-title: J. Chem. Phys. – volume: 550 start-page: L95 year: 2001 ident: b0625 publication-title: Astrophys. J. – volume: 191 start-page: L135 year: 1974 ident: b0635 publication-title: Astrophys. J. – volume: 6 start-page: 897 year: 2006 ident: b1180 publication-title: Atmos. Chem. Phys. – volume: 83 start-page: 6001 year: 1985 ident: b0935 publication-title: J. Chem. Phys. – volume: 697 start-page: 428 year: 2009 ident: b0620 publication-title: Astrophys. J. – volume: 56 start-page: 283 year: 1996 ident: b0490 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 43a start-page: 561 year: 1988 ident: b0315 publication-title: Z. Naturforsch. – volume: 186 start-page: 271 year: 2018 ident: b0260 publication-title: Appl. Biochem. Biotechnol. – volume: 74 start-page: 651 year: 1973 ident: b1120 publication-title: Inorg. Chim. Acta – volume: 127 start-page: 16599 year: 2005 ident: b0220 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 10664 year: 2015 ident: b0805 publication-title: J. Phys. Chem. A – volume: 16 start-page: 267 year: 1997 ident: b0215 publication-title: Int. Rev. Phys. Chem. – volume: 22 start-page: 272 year: 1967 ident: b0685 publication-title: J. Mol. Spectrosc. – volume: 22 start-page: 1613 year: 1954 ident: b0715 publication-title: J. Chem. Phys. – volume: 217 start-page: 321 year: 2018 ident: b0795 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 427–428 start-page: 282 year: 1999 end-page: 287 ident: b0940 publication-title: Surf. Sci. – volume: 3 start-page: 1812 year: 2019 ident: b1200 publication-title: ACS Earth Space Chem. – volume: 341 start-page: 282 year: 1995 ident: b0950 publication-title: Surf. Sci. – volume: 220 start-page: 248 year: 2003 ident: b0445 publication-title: J. Mol. Spectrosc. – volume: 108 start-page: 974 year: 2008 ident: b0905 publication-title: Int. J. Quantum Chem. – volume: 249 start-page: 73 year: 2008 ident: b1050 publication-title: J. Mol. Spectrosc. – volume: 6 start-page: 906 year: 2014 ident: b0020 publication-title: Nat. Chem. – volume: 389 start-page: 340 year: 1997 ident: b0085 publication-title: Nature – volume: 130 start-page: 260 year: 2013 ident: b0460 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 59 start-page: 853 year: 1986 ident: b0700 publication-title: Bull. Chem. Soc. Jpn. – volume: 327 start-page: 95 year: 2016 ident: b1195 publication-title: J. Mol. Spectrosc. – start-page: 29 year: 1993 end-page: 43 ident: b0660 publication-title: Structures and Conformations of Non-Rigid Molecules – volume: 47 start-page: 340 year: 1973 ident: b1155 publication-title: J. Mol. Spectrosc. – volume: 145 start-page: 383 year: 1991 ident: b1010 publication-title: J. Mol. Spectrosc. – volume: 18 start-page: 1587 year: 2006 ident: b0275 publication-title: Chem. Mater. – volume: 191 start-page: 232 year: 1998 ident: b0920 publication-title: J. Mol. Spectrosc. – volume: 368 year: 2020 ident: b0810 publication-title: J. Mol. Spectrosc. – volume: 12 start-page: 668 year: 1957 ident: b0730 publication-title: J. Phys. Soc. Jpn. – volume: 316 start-page: L1025 year: 1994 ident: b0945 publication-title: Surf. Sci. – volume: 185 start-page: 422 year: 1960 ident: b0080 publication-title: Nature – volume: 79 start-page: 287 year: 1979 ident: b0230 publication-title: Chem. Rev. – volume: 16 start-page: 147 year: 1976 ident: b1100 publication-title: Inorg. Chim. Acta – volume: 491 start-page: 186 year: 2012 ident: b0060 publication-title: Nature – volume: 414 start-page: 495 year: 2005 ident: b0895 publication-title: Chem. Phys. Lett. – volume: 12 start-page: 137 year: 2001 ident: b0710 publication-title: Struct. Chem. – volume: 2 start-page: 479 year: 2009 ident: b0365 publication-title: Nat. Geosci. – volume: 177 start-page: 66 year: 1996 ident: b0915 publication-title: J. Mol. Spectrosc. – volume: 108 start-page: 328 year: 1984 ident: b1030 publication-title: J. Mol. Spectrosc. – volume: 161 start-page: 560 year: 1993 ident: b1035 publication-title: J. Mol. Spectrosc. – volume: 25 start-page: 1389 year: 1963 ident: b1110 publication-title: J. Inorg. Nucl. Chem. – volume: 22 start-page: 593 year: 2003 ident: b0210 publication-title: Int. Rev. Phys. Chem. – volume: 495 start-page: 461 year: 2013 ident: b0055 publication-title: Nature – volume: 268 start-page: 123 year: 2011 ident: b0515 publication-title: J. Mol. Spectrosc. – volume: 410–411 start-page: 391 year: 1997 ident: b0820 publication-title: J. Mol. Struct. – volume: 220 start-page: 132 year: 2003 ident: b1060 publication-title: J. Mol. Spectrosc. – volume: 3 start-page: 324 year: 2018 ident: b0045 publication-title: Nat. Rev. Mater. – volume: 48 start-page: 69 year: 1997 ident: b0200 publication-title: Annu. Rev. Phys. Chem. – volume: 153 year: 2020 ident: b1160 publication-title: J. Chem. Phys. – volume: 5 start-page: 45 year: 1966 ident: b0235 publication-title: Inorg. Chem. – volume: 506 start-page: 601 year: 2009 ident: b0615 publication-title: Astronom. Astrophys. – year: 2006 ident: b0395 article-title: Molecular Symmetry and Spectroscopy – volume: 10 start-page: 3052 year: 2008 ident: b0595 publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 27245 year: 2016 ident: b0300 publication-title: Phys. Chem. Chem. Phys. – volume: 83 start-page: 3768 year: 1985 ident: b0540 publication-title: J. Chem. Phys. – volume: 105 start-page: 2605 year: 1996 ident: b0350 publication-title: J. Chem. Phys. – volume: 80 start-page: 1423 year: 1984 ident: b0560 publication-title: J. Chem. Phys. – volume: 173 start-page: 120 year: 1995 ident: b0400 publication-title: J. Mol. Spectrosc. – volume: 186 start-page: 246 year: 1997 ident: b1040 publication-title: J. Mol. Spectrosc. – volume: 48 start-page: 17 year: 1973 ident: b0680 publication-title: J. Mol. Spectrosc. – volume: 142 start-page: 57 year: 1990 ident: b0705 publication-title: J. Mol. Spectrosc. – volume: 209 start-page: 30 year: 2001 ident: b0420 publication-title: J. Mol. Spectrosc. – volume: 340 start-page: 1 year: 2017 ident: b1215 publication-title: J. Mol. Spectrosc. – volume: 52 start-page: 256 year: 1974 ident: b1020 publication-title: J. Mol. Spectrosc. – volume: 6 start-page: 8169 year: 2015 ident: b0035 publication-title: Nat. Commun. – volume: 128 start-page: 854 year: 2006 ident: b0110 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 9788 year: 2020 ident: b0955 publication-title: J. Mater. Chem. A – volume: 60 start-page: 159 year: 1976 ident: b0465 publication-title: J. Mol. Spectrosc. – volume: 89 start-page: 296 year: 1981 ident: b0980 publication-title: J. Mol. Spectrosc. – volume: 52 start-page: 346 year: 2013 ident: b0155 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 5078 year: 2007 ident: b0295 publication-title: Chem. Commun. – volume: 95 start-page: 133 year: 1982 end-page: 152 ident: b0995 publication-title: J. Mol. Spectrosc. – volume: 56 start-page: 1 year: 1962 ident: b0145 publication-title: Sci. Papers Inst. Phys. Chem. Res. Tokyo – volume: 580 start-page: 29 year: 2020 ident: b0005 publication-title: Nature – volume: 413 start-page: 1828 year: 2011 ident: b0510 publication-title: Mon. Not. R. Astr. Soc. – volume: 147 start-page: 71 year: 2009 ident: b0590 publication-title: J. Mol. Liq. – volume: 196 start-page: 155 year: 1992 ident: b0755 publication-title: Chem. Phys. Lett. – volume: 51 start-page: 591 year: 1994 ident: b0450 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 198 start-page: 102 year: 1999 ident: b0435 publication-title: J. Mol. Spectrosc. – volume: 127 year: 2007 ident: b0255 publication-title: J. Chem. Phys. – volume: 9 start-page: 5906 year: 2018 ident: b0125 publication-title: J. Phys. Chem. Lett. – volume: 145 year: 2016 ident: b0425 publication-title: J. Chem. Phys. – volume: 154 start-page: 193 year: 1996 ident: b0285 publication-title: Coord. Chem. Rev. – volume: 72 start-page: 1 year: 1978 ident: b0925 publication-title: J. Mol. Spectrosc. – volume: 32 start-page: 812 year: 1928 ident: b0655 publication-title: Phys. Rev. – volume: 99 start-page: 56 year: 1993 ident: b0330 publication-title: J. Chem. Phys. – volume: 343 start-page: 28 year: 2018 ident: b0930 publication-title: J. Mol. Spectrosc. – volume: 55 start-page: 3166 year: 1977 ident: b0240 publication-title: Can. J. Chem. – volume: 98 start-page: 560 year: 2020 ident: b0875 publication-title: Can. J. Phys. – volume: 102 start-page: 3977 year: 1995 ident: b0335 publication-title: J. Chem. Phys. – volume: 40 start-page: 935 year: 2001 ident: b0190 publication-title: Angew. Chem. Int. Ed. – year: 1976 ident: b0250 article-title: Electrons in Liquid Ammonia – volume: 30 start-page: 1145 year: 1971 ident: b0690 publication-title: J. Phys. Soc. Lpn. – year: 1984 ident: b0105 article-title: Microwave Molecular Spectra – volume: 36 start-page: 890 year: 1971 ident: b0970 publication-title: Collect. Czech. Chem. Commun. – volume: 18 start-page: 364 year: 1963 ident: b0965 publication-title: J. Phys. Sec. Japan – volume: 86 start-page: 1768 year: 1982 ident: b0340 publication-title: J. Phys. Chem. – volume: 137 start-page: 33 year: 1989 ident: b0775 publication-title: J. Mol. Spectrosc. – volume: 229 start-page: 170 year: 2005 ident: b0750 publication-title: J. Mol. Spectrosc. – volume: 58 start-page: 859 year: 2019 ident: b0170 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 499 year: 1973 ident: b0975 publication-title: J. Mol. Spectrosc. – volume: 337 start-page: 59 year: 2017 ident: b0150 publication-title: J. Mol. Spectrosc. – volume: 112 start-page: 1480 year: 2008 ident: b0325 publication-title: J. Phys. Chem. A – volume: 331 start-page: 1426 year: 2011 ident: b1135 publication-title: Science – volume: 34 start-page: 6067 year: 1995 ident: b1185 publication-title: Appl. Opt. – volume: 83 start-page: 15284 year: 2018 ident: b0360 publication-title: J. Org. Chem. – volume: 112 start-page: 2476 year: 2014 ident: b0495 publication-title: Mol. Phys. – volume: 95 start-page: 133 year: 1982 ident: b0265 publication-title: J. Mol. Spectrosc. – volume: 49 start-page: 221 year: 1978 ident: b0140 publication-title: J. Mol. Struct. – volume: 181 start-page: L91 year: 1973 ident: b0735 publication-title: Astrophys. J. – volume: 129 year: 2008 ident: b0500 publication-title: J. Chem. Phys. – volume: 96 start-page: 2496 year: 1992 ident: b0545 publication-title: J. Chem. Phys. – volume: 11 start-page: 334 year: 1956 ident: b0725 publication-title: J. Phys. Soc. Jpn. – volume: 135 year: 2011 ident: b0840 publication-title: J. Chem. Phys. – volume: 156 start-page: 383 year: 1992 ident: b0745 publication-title: J. Mol. Spectrosc. – volume: 20 start-page: 136 year: 1952 ident: b0990 publication-title: J. Chem. Phys. – volume: 132 start-page: 242 year: 1988 ident: b0770 publication-title: J. Mol. Spectrosc. – volume: 30 start-page: 59 year: 2002 ident: b1095 publication-title: Vib. Spectrosc. – volume: 203 start-page: 285 year: 2000 ident: b0415 publication-title: J. Mol. Spectrosc. – volume: 131 start-page: 317 year: 1998 ident: b0375 publication-title: Icarus – volume: 84 start-page: 5983 year: 1986 ident: b0565 publication-title: J. Chem. Phys. – volume: 270 start-page: 70 year: 2011 ident: b0835 publication-title: J. Mol. Spectrosc. – volume: 152 start-page: 298 year: 1992 ident: b0790 publication-title: J. Mol. Spectrosc. – volume: 252 year: 2020 ident: b0800 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 48 start-page: 17 year: 1973 ident: b0480 publication-title: J. Mol. Spectrosc. – volume: 113 start-page: 11845 year: 2009 ident: b0505 publication-title: J. Phys. Chem. A – volume: 94 start-page: 217 year: 1990 ident: b0550 publication-title: J. Phys. Chem. – volume: 10 start-page: 4477 year: 2019 ident: b0025 publication-title: Nat. Commun. – volume: 40 start-page: 10316 year: 2011 ident: b0290 publication-title: Dalton Trans. – volume: 78 start-page: 1039 year: 1983 ident: b1025 publication-title: J. Chem. Phys. – volume: QE-9 start-page: 962 year: 1973 ident: b0850 publication-title: IEEE J. Quantum Electron. – volume: 5 start-page: 3600 year: 2003 ident: b1205 publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 317 year: 1989 ident: b0475 publication-title: J. Mol. Spectrosc. – volume: 228 start-page: 298 year: 2004 ident: b1210 publication-title: J. Mol. Spectrosc. – volume: 95 start-page: 4802 year: 1991 ident: b0320 publication-title: J. Chem. Phys. – volume: 3 start-page: 511 year: 2019 ident: b0015 publication-title: Nat. Rev. Chem. – volume: 3 start-page: 1224 year: 2012 ident: b0030 publication-title: Nat. Commun. – volume: 1465 year: 2004 ident: b0245 publication-title: Eur. J. Inorg. Chem. – volume: 4 start-page: 891 year: 2003 ident: b0100 publication-title: Nat. Rev. Mol. Cell. Biol. – volume: 706 start-page: 736 year: 2018 ident: b0585 publication-title: Chem. Phys. Lett. – volume: 342 start-page: 25 year: 2017 ident: b0780 publication-title: J. Mol. Spectrosc. – volume: 133 start-page: 10 year: 1989 ident: b0310 publication-title: J. Mol. Spectrosc. – volume: 44 start-page: 603 year: 2005 ident: b0185 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 2211 year: 1968 ident: b1115 publication-title: J. Inorg. Nucl. Chem. – volume: 94 start-page: 1184 year: 1954 ident: b0135 publication-title: Phys. Rev. – volume: 26 start-page: 451 year: 1985 ident: b0225 publication-title: J. Struct. Chem. – volume: 169 start-page: 458 year: 1995 ident: b0530 publication-title: J. Mol. Spectrosc. – volume: 29 start-page: 1268 year: 2008 ident: b0900 publication-title: J. Comput. Chem. – volume: 12 start-page: 31 year: 1988 ident: b0575 publication-title: Chem. Phys. – volume: 625 start-page: 71 year: 2003 ident: b1080 publication-title: J. Mol. Struct. – volume: 110 start-page: 533 year: 2009 ident: b0455 publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 632 start-page: 735 year: 1993 ident: b0555 publication-title: Nature – volume: 563 start-page: A137 year: 2014 ident: b0765 publication-title: Astronom. Astrophys. – volume: 123 start-page: 3497 year: 2019 ident: bib1217 publication-title: J. Phys. Chem. A – volume: 29 start-page: 829 year: 1958 ident: b0485 publication-title: J. Chem. Phys. – volume: 427 year: 2021 ident: b0960 publication-title: Coord. Chem. Rev. – volume: 838 year: 2017 ident: b0580 publication-title: Astrophys. J. – volume: 121 start-page: 474 year: 1987 ident: b0665 publication-title: J. Mol. Spectrosc. – volume: 52 start-page: 5180 year: 2013 ident: b0165 publication-title: Angew. Chem. Int. Ed. – volume: 626 start-page: 940 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0610 publication-title: Astrophys. J. doi: 10.1086/430106 – volume: 198 start-page: 102 year: 1999 ident: 10.1016/j.ccr.2021.213797_b0435 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1999.7937 – volume: 191 start-page: L139 year: 1974 ident: 10.1016/j.ccr.2021.213797_b0630 publication-title: Astrophys. J. doi: 10.1086/181570 – volume: 95 start-page: 133 year: 1982 ident: 10.1016/j.ccr.2021.213797_b0995 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(82)90243-0 – volume: 48 start-page: 69 year: 1997 ident: 10.1016/j.ccr.2021.213797_b0200 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.48.1.69 – volume: 83 start-page: 6001 year: 1985 ident: 10.1016/j.ccr.2021.213797_b0935 publication-title: J. Chem. Phys. doi: 10.1063/1.449634 – volume: 131 start-page: 317 year: 1998 ident: 10.1016/j.ccr.2021.213797_b0375 publication-title: Icarus doi: 10.1006/icar.1997.5868 – volume: 343 start-page: 28 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0930 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2017.06.009 – volume: 3 start-page: 1224 year: 2012 ident: 10.1016/j.ccr.2021.213797_b0030 publication-title: Nat. Commun. doi: 10.1038/ncomms2225 – volume: 133 start-page: 10 year: 1989 ident: 10.1016/j.ccr.2021.213797_b0310 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(89)90239-7 – volume: 86 start-page: 1768 year: 1982 ident: 10.1016/j.ccr.2021.213797_b0340 publication-title: J. Phys. Chem. doi: 10.1021/j100207a007 – volume: 173 start-page: 120 year: 1995 ident: 10.1016/j.ccr.2021.213797_b0400 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1995.1224 – volume: 92 start-page: 91 year: 1982 ident: 10.1016/j.ccr.2021.213797_b0695 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(82)90085-6 – volume: 156 start-page: 383 year: 1992 ident: 10.1016/j.ccr.2021.213797_b0745 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(92)90239-K – volume: 410–411 start-page: 391 year: 1997 ident: 10.1016/j.ccr.2021.213797_b0820 publication-title: J. Mol. Struct. – volume: 29 start-page: 148 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0855 publication-title: Int. J. Infrared Milli Waves doi: 10.1007/s10762-007-9309-6 – volume: 625 start-page: 71 year: 2003 ident: 10.1016/j.ccr.2021.213797_b1080 publication-title: J. Mol. Struct. doi: 10.1016/S0166-1280(03)00020-4 – volume: 8 start-page: 9788 year: 2020 ident: 10.1016/j.ccr.2021.213797_b0955 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02494E – volume: 368 year: 2020 ident: 10.1016/j.ccr.2021.213797_b0810 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2020.111255 – volume: 220 start-page: 132 year: 2003 ident: 10.1016/j.ccr.2021.213797_b1060 publication-title: J. Mol. Spectrosc. doi: 10.1016/S0022-2852(03)00106-1 – year: 1976 ident: 10.1016/j.ccr.2021.213797_b0250 – volume: 84 start-page: 5983 year: 1986 ident: 10.1016/j.ccr.2021.213797_b0565 publication-title: J. Chem. Phys. doi: 10.1063/1.450788 – volume: 186 start-page: 246 year: 1997 ident: 10.1016/j.ccr.2021.213797_b1040 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1997.7402 – volume: 209 start-page: 30 year: 2001 ident: 10.1016/j.ccr.2021.213797_b0420 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.2001.8406 – volume: 32 start-page: 812 year: 1928 ident: 10.1016/j.ccr.2021.213797_b0655 publication-title: Phys. Rev. doi: 10.1103/PhysRev.32.812 – volume: 10 start-page: 4477 year: 2019 ident: 10.1016/j.ccr.2021.213797_b0025 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12453-6 – volume: 59 start-page: 853 year: 1986 ident: 10.1016/j.ccr.2021.213797_b0700 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.59.853 – year: 2006 ident: 10.1016/j.ccr.2021.213797_b0395 – volume: 4 start-page: 891 year: 2003 ident: 10.1016/j.ccr.2021.213797_b0100 publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm1243 – volume: 16 start-page: 267 year: 1997 ident: 10.1016/j.ccr.2021.213797_b0215 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/014423597230208 – volume: 268 start-page: 123 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0515 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2011.04.005 – volume: 45 start-page: 3465 year: 2006 ident: 10.1016/j.ccr.2021.213797_b0115 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200600201 – volume: 3 start-page: 1812 year: 2019 ident: 10.1016/j.ccr.2021.213797_b1200 publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.9b00079 – volume: 108 start-page: 974 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0905 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.21564 – volume: 506 start-page: 601 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0615 publication-title: Astronom. Astrophys. doi: 10.1051/0004-6361/200912850 – volume: 9 start-page: 5906 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0125 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02339 – volume: 452 start-page: 30 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0065 publication-title: Nature doi: 10.1038/452030a – volume: 580 start-page: 29 year: 2020 ident: 10.1016/j.ccr.2021.213797_b0005 publication-title: Nature doi: 10.1038/d41586-020-00909-5 – volume: 550 start-page: L95 year: 2001 ident: 10.1016/j.ccr.2021.213797_b0625 publication-title: Astrophys. J. doi: 10.1086/319491 – ident: 10.1016/j.ccr.2021.213797_b0270 doi: 10.1002/9781118693599 – volume: 196 start-page: 155 year: 1992 ident: 10.1016/j.ccr.2021.213797_b0755 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85946-8 – volume: 48 start-page: 5058 year: 1968 ident: 10.1016/j.ccr.2021.213797_b1150 publication-title: J. Chem. Phys. doi: 10.1063/1.1668177 – volume: 110 start-page: 431 year: 1999 ident: 10.1016/j.ccr.2021.213797_b0205 publication-title: Adv. Chem. Phys. – volume: 117 start-page: 13356 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0870 publication-title: J. Phys. Chem. A doi: 10.1021/jp406668w – volume: 394 start-page: 25 year: 1998 ident: 10.1016/j.ccr.2021.213797_b0010 publication-title: Nature doi: 10.1038/27790 – volume: 495 start-page: 461 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0055 publication-title: Nature doi: 10.1038/nature11990 – volume: 145 start-page: 383 year: 1991 ident: 10.1016/j.ccr.2021.213797_b1010 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(91)90125-T – volume: 161 start-page: 560 year: 1993 ident: 10.1016/j.ccr.2021.213797_b1035 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1993.1258 – volume: 18 start-page: 27245 year: 2016 ident: 10.1016/j.ccr.2021.213797_b0300 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04580D – volume: 94 start-page: 1184 year: 1954 ident: 10.1016/j.ccr.2021.213797_b0135 publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.1184 – volume: 29 start-page: 829 year: 1958 ident: 10.1016/j.ccr.2021.213797_b0485 publication-title: J. Chem. Phys. doi: 10.1063/1.1744598 – volume: 113 start-page: 11845 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0505 publication-title: J. Phys. Chem. A doi: 10.1021/jp9029425 – volume: 141 start-page: 12212 year: 2019 ident: 10.1016/j.ccr.2021.213797_b1125 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05830 – volume: 340 start-page: 1 year: 2017 ident: 10.1016/j.ccr.2021.213797_b1215 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2017.07.009 – volume: 5 start-page: 3600 year: 2003 ident: 10.1016/j.ccr.2021.213797_b1205 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B304566H – volume: 156 start-page: 261 year: 1992 ident: 10.1016/j.ccr.2021.213797_b0815 publication-title: J. Mol. spectrosc. doi: 10.1016/0022-2852(92)90231-C – volume: 229 start-page: 170 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0750 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2004.08.022 – volume: 183 start-page: 374 year: 1997 ident: 10.1016/j.ccr.2021.213797_b1070 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1997.7271 – volume: 33 start-page: 435 year: 1971 ident: 10.1016/j.ccr.2021.213797_b1105 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(71)80386-X – ident: 10.1016/j.ccr.2021.213797_b0095 – volume: 52 start-page: 5180 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0165 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300653 – volume: 181 start-page: L91 year: 1973 ident: 10.1016/j.ccr.2021.213797_b0735 publication-title: Astrophys. J. doi: 10.1086/181192 – volume: 22 start-page: 272 year: 1967 ident: 10.1016/j.ccr.2021.213797_b0685 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(67)90173-7 – volume: 245 start-page: 126 year: 2007 ident: 10.1016/j.ccr.2021.213797_b0525 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2007.07.009 – volume: 12 start-page: 668 year: 1957 ident: 10.1016/j.ccr.2021.213797_b0730 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.12.668 – volume: 132 start-page: 13417 year: 2010 ident: 10.1016/j.ccr.2021.213797_b0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104950w – volume: 491 start-page: 186 year: 2012 ident: 10.1016/j.ccr.2021.213797_b0060 publication-title: Nature doi: 10.1038/491186a – volume: 123 start-page: 4929 year: 2019 ident: 10.1016/j.ccr.2021.213797_b0605 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b03196 – volume: 624 start-page: A82 year: 2019 ident: 10.1016/j.ccr.2021.213797_b0650 publication-title: Astronom. Astrophys. doi: 10.1051/0004-6361/201833676 – volume: 145 year: 2016 ident: 10.1016/j.ccr.2021.213797_b0425 publication-title: J. Chem. Phys. doi: 10.1063/1.4961656 – volume: 74 start-page: 651 year: 1973 ident: 10.1016/j.ccr.2021.213797_b1120 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)94903-X – volume: 389 start-page: 340 year: 1997 ident: 10.1016/j.ccr.2021.213797_b0085 publication-title: Nature doi: 10.1038/38633 – volume: 131 start-page: 133 year: 1988 ident: 10.1016/j.ccr.2021.213797_b0470 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(88)90113-0 – volume: 324 start-page: 273 year: 2000 ident: 10.1016/j.ccr.2021.213797_b0890 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00603-5 – volume: 6 start-page: 897 year: 2006 ident: 10.1016/j.ccr.2021.213797_b1180 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-897-2006 – volume: 4 start-page: 175 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0280 publication-title: J. Mater. Synth. Process. – year: 1975 ident: 10.1016/j.ccr.2021.213797_b0675 – volume: QE-9 start-page: 962 year: 1973 ident: 10.1016/j.ccr.2021.213797_b0850 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1973.1077762 – volume: 38 start-page: 2714 year: 2019 ident: 10.1016/j.ccr.2021.213797_b1130 publication-title: Organometallics doi: 10.1021/acs.organomet.9b00053 – volume: 316 start-page: L1025 year: 1994 ident: 10.1016/j.ccr.2021.213797_b0945 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)91116-9 – volume: 112 start-page: 2476 year: 2014 ident: 10.1016/j.ccr.2021.213797_b0495 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.924653 – volume: 83 start-page: 15284 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0360 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b02550 – volume: 102 start-page: 3977 year: 1995 ident: 10.1016/j.ccr.2021.213797_b0335 publication-title: J. Chem. Phys. doi: 10.1063/1.468526 – volume: 22 start-page: 1613 year: 1954 ident: 10.1016/j.ccr.2021.213797_b0715 publication-title: J. Chem. Phys. doi: 10.1063/1.1740473 – volume: 6 start-page: 445 year: 1963 ident: 10.1016/j.ccr.2021.213797_b0670 publication-title: Mol. Phys. doi: 10.1080/00268976300100501 – volume: 128 start-page: 854 year: 2006 ident: 10.1016/j.ccr.2021.213797_b0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055333g – volume: 47 start-page: 340 year: 1973 ident: 10.1016/j.ccr.2021.213797_b1155 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(73)90017-9 – volume: 87 start-page: 4401 year: 1983 ident: 10.1016/j.ccr.2021.213797_b0345 publication-title: J. Phys. Chem. doi: 10.1021/j100245a017 – volume: 203 start-page: 285 year: 2000 ident: 10.1016/j.ccr.2021.213797_b0415 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.2000.8182 – volume: 30 start-page: 1145 year: 1971 ident: 10.1016/j.ccr.2021.213797_b0690 publication-title: J. Phys. Soc. Lpn. doi: 10.1143/JPSJ.30.1145 – volume: 632 start-page: 735 year: 1993 ident: 10.1016/j.ccr.2021.213797_b0555 publication-title: Nature doi: 10.1038/362735a0 – volume: 89 start-page: 296 year: 1981 ident: 10.1016/j.ccr.2021.213797_b0980 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(81)90025-4 – volume: 427–428 start-page: 282 year: 1999 ident: 10.1016/j.ccr.2021.213797_b0940 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)00280-0 – volume: 327 start-page: 95 year: 2016 ident: 10.1016/j.ccr.2021.213797_b1195 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2016.03.005 – volume: 838 year: 2017 ident: 10.1016/j.ccr.2021.213797_b0580 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aa615a – volume: 210 start-page: 303 year: 1993 ident: 10.1016/j.ccr.2021.213797_b1065 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)89137-7 – volume: 1465 year: 2004 ident: 10.1016/j.ccr.2021.213797_b0245 publication-title: Eur. J. Inorg. Chem. – volume: 135 year: 2011 ident: 10.1016/j.ccr.2021.213797_b1165 publication-title: J. Chem. Phys. doi: 10.1063/1.3624889 – volume: 217 start-page: 321 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0795 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.06.008 – volume: 171 start-page: 737 year: 1953 ident: 10.1016/j.ccr.2021.213797_b0075 publication-title: Nature doi: 10.1038/171737a0 – year: 2011 ident: 10.1016/j.ccr.2021.213797_b0195 – volume: 6 start-page: 8169 year: 2015 ident: 10.1016/j.ccr.2021.213797_b0035 publication-title: Nat. Commun. doi: 10.1038/ncomms9169 – volume: 112 start-page: 1480 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0325 publication-title: J. Phys. Chem. A doi: 10.1021/jp0757255 – volume: 427 year: 2021 ident: 10.1016/j.ccr.2021.213797_b0960 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213587 – volume: 535 start-page: A103 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0640 publication-title: Astronom. Astrophys. doi: 10.1051/0004-6361/201117096 – volume: 153 year: 2020 ident: 10.1016/j.ccr.2021.213797_b1160 publication-title: J. Chem. Phys. doi: 10.1063/5.0025650 – start-page: 29 year: 1993 ident: 10.1016/j.ccr.2021.213797_b0660 – volume: 100 start-page: 867 year: 2010 ident: 10.1016/j.ccr.2021.213797_b1140 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-010-0720-1 – volume: 95 start-page: 133 year: 1982 ident: 10.1016/j.ccr.2021.213797_b0265 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(82)90243-0 – volume: 123 start-page: 3497 year: 2019 ident: 10.1016/j.ccr.2021.213797_bib1217 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b00029 – volume: 3 start-page: 511 year: 2019 ident: 10.1016/j.ccr.2021.213797_b0015 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0127-x – volume: 30 start-page: 2211 year: 1968 ident: 10.1016/j.ccr.2021.213797_b1115 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(68)80219-2 – volume: 150 start-page: 238 year: 1991 ident: 10.1016/j.ccr.2021.213797_b1045 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(91)90207-Q – volume: 56 start-page: 283 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0490 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/0022-4073(96)00041-6 – volume: 12 start-page: 137 year: 2001 ident: 10.1016/j.ccr.2021.213797_b0710 publication-title: Struct. Chem. doi: 10.1023/A:1016696526207 – volume: 47 start-page: 5078 year: 2007 ident: 10.1016/j.ccr.2021.213797_b0295 publication-title: Chem. Commun. doi: 10.1039/b712447c – volume: 16 start-page: 147 year: 1976 ident: 10.1016/j.ccr.2021.213797_b1100 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)91704-3 – volume: 241 start-page: 75 year: 2007 ident: 10.1016/j.ccr.2021.213797_b1055 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2006.11.001 – ident: 10.1016/j.ccr.2021.213797_b1170 – volume: 110 start-page: 533 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0455 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2009.02.013 – volume: 697 start-page: 428 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0620 publication-title: Astrophys. J. doi: 10.1088/0004-637X/697/1/428 – volume: 563 start-page: A137 year: 2014 ident: 10.1016/j.ccr.2021.213797_b0765 publication-title: Astronom. Astrophys. doi: 10.1051/0004-6361/201323190 – volume: 252 year: 2020 ident: 10.1016/j.ccr.2021.213797_b0800 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2020.107097 – volume: 352 start-page: 120 year: 2002 ident: 10.1016/j.ccr.2021.213797_b1090 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)01434-8 – volume: 47 start-page: 499 year: 1973 ident: 10.1016/j.ccr.2021.213797_b0975 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(73)90097-0 – volume: 2 start-page: 479 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0365 publication-title: Nat. Geosci. doi: 10.1038/ngeo551 – volume: 48 start-page: 17 year: 1973 ident: 10.1016/j.ccr.2021.213797_b0680 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(73)90132-X – volume: 564 start-page: 99 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0370 publication-title: Nature doi: 10.1038/s41586-018-0747-1 – volume: 137 start-page: 33 year: 1989 ident: 10.1016/j.ccr.2021.213797_b0775 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(89)90266-X – volume: 85 start-page: 5512 year: 1986 ident: 10.1016/j.ccr.2021.213797_b0570 publication-title: J. Chem. Phys. doi: 10.1063/1.451562 – volume: 169 start-page: 458 year: 1995 ident: 10.1016/j.ccr.2021.213797_b0530 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1995.1038 – volume: 52 start-page: 346 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0155 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205990 – volume: 233 start-page: 611 year: 2000 ident: 10.1016/j.ccr.2021.213797_b0885 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)01504-O – volume: 40 start-page: 10316 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0290 publication-title: Dalton Trans. doi: 10.1039/c1dt10585j – volume: 96 start-page: 2496 year: 1992 ident: 10.1016/j.ccr.2021.213797_b0545 publication-title: J. Chem. Phys. doi: 10.1063/1.462054 – volume: 770 start-page: L13 year: 2013 ident: 10.1016/j.ccr.2021.213797_b1190 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/770/1/L13 – volume: 44 start-page: 603 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0185 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200461860 – volume: 108 start-page: 328 year: 1984 ident: 10.1016/j.ccr.2021.213797_b1030 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(84)90189-9 – volume: 51 start-page: 591 year: 1994 ident: 10.1016/j.ccr.2021.213797_b0450 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/0022-4073(94)90113-9 – volume: 36 start-page: 890 year: 1971 ident: 10.1016/j.ccr.2021.213797_b0970 publication-title: Collect. Czech. Chem. Commun. doi: 10.1135/cccc19710890 – volume: 138 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0865 publication-title: J. Chem. Phys. doi: 10.1063/1.4794157 – volume: 99 start-page: 209 year: 1987 ident: 10.1016/j.ccr.2021.213797_b1145 publication-title: Proc. Indian Acad. Sci., Chem. Sci. doi: 10.1007/BF02881241 – volume: 127 year: 2007 ident: 10.1016/j.ccr.2021.213797_b0255 publication-title: J. Chem. Phys. doi: 10.1063/1.2776334 – volume: 168 start-page: 140 year: 2007 ident: 10.1016/j.ccr.2021.213797_b0385 publication-title: Astrophys. J. doi: 10.1086/508708 – volume: 105 start-page: 2605 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0350 publication-title: J. Chem. Phys. doi: 10.1063/1.472125 – volume: 11 start-page: 334 year: 1956 ident: 10.1016/j.ccr.2021.213797_b0725 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.11.334 – volume: 114 start-page: 8763 year: 2001 ident: 10.1016/j.ccr.2021.213797_b1085 publication-title: J. Chem. Phys. doi: 10.1063/1.1357439 – volume: 18 start-page: 1587 year: 2006 ident: 10.1016/j.ccr.2021.213797_b0275 publication-title: Chem. Mater. doi: 10.1021/cm0523891 – volume: 132 start-page: 242 year: 1988 ident: 10.1016/j.ccr.2021.213797_b0770 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(88)90072-0 – volume: 98 start-page: 560 year: 2020 ident: 10.1016/j.ccr.2021.213797_b0875 publication-title: Can. J. Phys. doi: 10.1139/cjp-2019-0469 – volume: 220 start-page: 248 year: 2003 ident: 10.1016/j.ccr.2021.213797_b0445 publication-title: J. Mol. Spectrosc. doi: 10.1016/S0022-2852(03)00124-3 – volume: 413 start-page: 1828 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0510 publication-title: Mon. Not. R. Astr. Soc. doi: 10.1111/j.1365-2966.2011.18261.x – volume: 55 start-page: 3166 year: 1977 ident: 10.1016/j.ccr.2021.213797_b0240 publication-title: Can. J. Chem. doi: 10.1139/v77-444 – volume: 52 start-page: 256 year: 1974 ident: 10.1016/j.ccr.2021.213797_b1020 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(74)90117-9 – volume: 105 start-page: 2618 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0355 publication-title: J. Chem. Phys. doi: 10.1063/1.472126 – volume: 133 start-page: 345 year: 1989 ident: 10.1016/j.ccr.2021.213797_b0410 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(89)90197-5 – volume: 53 start-page: 530 year: 2014 ident: 10.1016/j.ccr.2021.213797_b0175 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308459 – volume: 9 start-page: 974 year: 1954 ident: 10.1016/j.ccr.2021.213797_b0720 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.9.974 – volume: 49 start-page: 221 year: 1978 ident: 10.1016/j.ccr.2021.213797_b0140 publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(78)87259-7 – volume: 5 start-page: 45 year: 1966 ident: 10.1016/j.ccr.2021.213797_b0235 publication-title: Inorg. Chem. doi: 10.1021/ic50035a011 – volume: 112 start-page: 384 year: 1985 ident: 10.1016/j.ccr.2021.213797_b0985 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(85)90170-5 – volume: 18 start-page: 364 year: 1963 ident: 10.1016/j.ccr.2021.213797_b0965 publication-title: J. Phys. Sec. Japan doi: 10.1143/JPSJ.18.364 – volume: 6 start-page: 34270 year: 2016 ident: 10.1016/j.ccr.2021.213797_b0860 publication-title: Sci. Rep. doi: 10.1038/srep34270 – volume: 126 start-page: 443 year: 1987 ident: 10.1016/j.ccr.2021.213797_b0740 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(87)90249-9 – volume: 16 start-page: 1471 year: 1960 ident: 10.1016/j.ccr.2021.213797_b1005 publication-title: Spectrochim. Acta doi: 10.1016/S0371-1951(60)80022-7 – volume: 129 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0500 publication-title: J. Chem. Phys. – volume: 3 start-page: 324 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0045 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0044-5 – volume: 706 start-page: 736 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0585 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.06.048 – volume: 256 start-page: 86 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0830 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2009.02.013 – volume: 135 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0840 publication-title: J. Chem. Phys. doi: 10.1063/1.3633699 – year: 1984 ident: 10.1016/j.ccr.2021.213797_b0105 – volume: 191 start-page: 232 year: 1998 ident: 10.1016/j.ccr.2021.213797_b0920 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1998.7626 – volume: 26 start-page: 451 year: 1985 ident: 10.1016/j.ccr.2021.213797_b0225 publication-title: J. Struct. Chem. doi: 10.1007/BF00749387 – volume: 78 start-page: 1039 year: 1983 ident: 10.1016/j.ccr.2021.213797_b1025 publication-title: J. Chem. Phys. doi: 10.1063/1.444904 – volume: 147 start-page: 71 year: 2009 ident: 10.1016/j.ccr.2021.213797_b0590 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2008.05.010 – volume: 43a start-page: 561 year: 1988 ident: 10.1016/j.ccr.2021.213797_b0315 publication-title: Z. Naturforsch. doi: 10.1515/zna-1988-0607 – volume: 83 start-page: 243 year: 2004 ident: 10.1016/j.ccr.2021.213797_b0440 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/S0022-4073(02)00354-0 – volume: 342 start-page: 25 year: 2017 ident: 10.1016/j.ccr.2021.213797_b0780 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2016.12.007 – volume: 136 year: 2012 ident: 10.1016/j.ccr.2021.213797_b1075 publication-title: J. Chem. Phys. doi: 10.1063/1.4705267 – volume: 83 start-page: 3768 year: 1985 ident: 10.1016/j.ccr.2021.213797_b0540 publication-title: J. Chem. Phys. doi: 10.1063/1.449139 – ident: 10.1016/j.ccr.2021.213797_b0070 – volume: 35 start-page: 420 year: 1970 ident: 10.1016/j.ccr.2021.213797_b1015 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(70)90183-9 – volume: 177 start-page: 66 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0915 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1996.0118 – volume: 237 start-page: 174 year: 2006 ident: 10.1016/j.ccr.2021.213797_b0305 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2006.03.013 – volume: 43 start-page: 399 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0645 publication-title: Met. Planet. Sci. doi: 10.1111/j.1945-5100.2008.tb00629.x – volume: 337 start-page: 59 year: 2017 ident: 10.1016/j.ccr.2021.213797_b0150 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2017.04.017 – volume: 79 start-page: 287 year: 1979 ident: 10.1016/j.ccr.2021.213797_b0230 publication-title: Chem. Rev. doi: 10.1021/cr60320a001 – volume: 121 start-page: 474 year: 1987 ident: 10.1016/j.ccr.2021.213797_b0665 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(87)90064-6 – volume: 186 start-page: 271 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0260 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-018-2715-5 – volume: 48 start-page: 17 year: 1973 ident: 10.1016/j.ccr.2021.213797_b0480 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(73)90132-X – volume: 25 start-page: 1389 year: 1963 ident: 10.1016/j.ccr.2021.213797_b1110 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(63)80408-X – volume: 414 start-page: 495 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0895 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.08.127 – volume: 12 start-page: 31 year: 1988 ident: 10.1016/j.ccr.2021.213797_b0575 publication-title: Chem. Phys. doi: 10.1016/0301-0104(88)85004-3 – volume: 52 start-page: 4402 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0120 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300707 – volume: 270 start-page: 70 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0835 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2011.09.003 – volume: 29 start-page: 1268 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0900 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20885 – volume: 36 start-page: 1141 year: 2007 ident: 10.1016/j.ccr.2021.213797_b0760 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.2769382 – volume: 110 start-page: 2006 year: 2010 ident: 10.1016/j.ccr.2021.213797_b0910 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.22585 – volume: 4 start-page: 1554 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0040 publication-title: Nat. Commun. doi: 10.1038/ncomms2574 – volume: 112 start-page: 1950 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0430 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2011.03.015 – volume: 15 start-page: 987 year: 2016 ident: 10.1016/j.ccr.2021.213797_b0050 publication-title: Nat. Mater. doi: 10.1038/nmat4661 – volume: 731 start-page: 16 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0390 publication-title: Astrophys. J. doi: 10.1088/0004-637X/731/1/16 – volume: 60 start-page: 159 year: 1976 ident: 10.1016/j.ccr.2021.213797_b0465 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(76)90123-5 – volume: 127 start-page: 16599 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0220 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0542587 – volume: 228 start-page: 298 year: 2004 ident: 10.1016/j.ccr.2021.213797_b1210 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2004.04.009 – volume: 57 start-page: 1821 year: 2018 ident: 10.1016/j.ccr.2021.213797_b0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709966 – volume: 12 start-page: 11647 year: 2010 ident: 10.1016/j.ccr.2021.213797_b0600 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c003974h – volume: 99 start-page: 56 year: 1993 ident: 10.1016/j.ccr.2021.213797_b0330 publication-title: J. Chem. Phys. doi: 10.1063/1.465783 – volume: 185 start-page: 422 year: 1960 ident: 10.1016/j.ccr.2021.213797_b0080 publication-title: Nature doi: 10.1038/185416a0 – volume: 117 start-page: 119 year: 1986 ident: 10.1016/j.ccr.2021.213797_b1000 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(86)90096-2 – volume: 341 start-page: 282 year: 1995 ident: 10.1016/j.ccr.2021.213797_b0950 publication-title: Surf. Sci. doi: 10.1016/0039-6028(95)00727-X – volume: 94 start-page: 217 year: 1990 ident: 10.1016/j.ccr.2021.213797_b0550 publication-title: J. Phys. Chem. doi: 10.1021/j100364a035 – volume: 22 start-page: 593 year: 2003 ident: 10.1016/j.ccr.2021.213797_b0210 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442350310001616896 – volume: 40 start-page: 935 year: 2001 ident: 10.1016/j.ccr.2021.213797_b0190 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010302)40:5<935::AID-ANIE935>3.0.CO;2-O – volume: 130 start-page: 260 year: 2013 ident: 10.1016/j.ccr.2021.213797_b0460 publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2013.05.027 – volume: 98 start-page: 1129 year: 1994 ident: 10.1016/j.ccr.2021.213797_b0880 publication-title: J. Phys. Chem. doi: 10.1021/j100055a014 – volume: 142 start-page: 57 year: 1990 ident: 10.1016/j.ccr.2021.213797_b0705 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(90)90292-X – volume: 6 start-page: 3126 year: 2015 ident: 10.1016/j.ccr.2021.213797_b0180 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01220 – volume: 152 start-page: 298 year: 1992 ident: 10.1016/j.ccr.2021.213797_b0790 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(92)90070-5 – volume: 3 start-page: 146 year: 2002 ident: 10.1016/j.ccr.2021.213797_b0090 publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm766 – volume: 491 start-page: 856 year: 1997 ident: 10.1016/j.ccr.2021.213797_b0380 publication-title: Astrophys. J. doi: 10.1086/305002 – volume: 16 start-page: 418 year: 1972 ident: 10.1016/j.ccr.2021.213797_b0845 publication-title: J. Exp. Theor. Phys. Lett. – volume: 331 start-page: 1426 year: 2011 ident: 10.1016/j.ccr.2021.213797_b1135 publication-title: Science doi: 10.1126/science.1199003 – volume: 154 start-page: 193 year: 1996 ident: 10.1016/j.ccr.2021.213797_b0285 publication-title: Coord. Chem. Rev. doi: 10.1016/0010-8545(96)01285-4 – volume: 117 start-page: D16305 year: 2012 ident: 10.1016/j.ccr.2021.213797_b1175 publication-title: J. Geophys. doi: 10.1029/2012JD017751 – volume: 138 start-page: 246 year: 1989 ident: 10.1016/j.ccr.2021.213797_b0785 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(89)90114-8 – volume: 56 start-page: 1 year: 1962 ident: 10.1016/j.ccr.2021.213797_b0145 publication-title: Sci. Papers Inst. Phys. Chem. Res. Tokyo – volume: 80 start-page: 1423 year: 1984 ident: 10.1016/j.ccr.2021.213797_b0560 publication-title: J. Chem. Phys. doi: 10.1063/1.446878 – volume: 119 start-page: 10664 year: 2015 ident: 10.1016/j.ccr.2021.213797_b0805 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b08437 – volume: 58 start-page: 859 year: 2019 ident: 10.1016/j.ccr.2021.213797_b0170 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812754 – volume: 30 start-page: 59 year: 2002 ident: 10.1016/j.ccr.2021.213797_b1095 publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(02)00039-5 – volume: 10 start-page: 3052 year: 2008 ident: 10.1016/j.ccr.2021.213797_b0595 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b802050g – volume: 193 start-page: 46 year: 1999 ident: 10.1016/j.ccr.2021.213797_b0405 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1998.7728 – volume: 135 year: 2011 ident: 10.1016/j.ccr.2021.213797_b0535 publication-title: J. Chem. Phys. doi: 10.1063/1.3604934 – volume: 108 start-page: 2389 year: 2010 ident: 10.1016/j.ccr.2021.213797_b0825 publication-title: Mol. Phys. doi: 10.1080/00268976.2010.499114 – volume: 20 start-page: 136 year: 1952 ident: 10.1016/j.ccr.2021.213797_b0990 publication-title: J. Chem. Phys. doi: 10.1063/1.1700155 – volume: 123 year: 2005 ident: 10.1016/j.ccr.2021.213797_b0520 publication-title: J. Chem. Phys. doi: 10.1063/1.2047572 – volume: 72 start-page: 1 year: 1978 ident: 10.1016/j.ccr.2021.213797_b0925 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(78)90038-3 – volume: 249 start-page: 73 year: 2008 ident: 10.1016/j.ccr.2021.213797_b1050 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2008.02.012 – volume: 191 start-page: L135 year: 1974 ident: 10.1016/j.ccr.2021.213797_b0635 publication-title: Astrophys. J. doi: 10.1086/181569 – volume: 34 start-page: 6067 year: 1995 ident: 10.1016/j.ccr.2021.213797_b1185 publication-title: Appl. Opt. doi: 10.1364/AO.34.006067 – volume: 95 start-page: 4802 year: 1991 ident: 10.1016/j.ccr.2021.213797_b0320 publication-title: J. Chem. Phys. doi: 10.1063/1.461698 – volume: 136 start-page: 317 year: 1989 ident: 10.1016/j.ccr.2021.213797_b0475 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(89)90338-X – volume: 6 start-page: 906 year: 2014 ident: 10.1016/j.ccr.2021.213797_b0020 publication-title: Nat. Chem. doi: 10.1038/nchem.2045 |
SSID | ssj0016992 |
Score | 2.4632084 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Molecular structures of ammonia derivatives captured by spectroscopy.•Tunneling motion as essential information to understand coordination... Inversion tunneling in a symmetric double minimum potential is a challenging large amplitude motion problem which causes all rotational energy levels to split... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 213797 |
SubjectTerms | Chemical Sciences Coordination chemistry Coordination complexes High resolution spectroscopy Inversion tunneling Large amplitude motion Molecular structures or physical chemistry Theoretical and |
Title | Large amplitude inversion tunneling motion in ammonia, methylamine, hydrazine, and secondary amines: From structure determination to coordination chemistry |
URI | https://dx.doi.org/10.1016/j.ccr.2021.213797 https://hal.u-pec.fr/hal-03182344 |
Volume | 436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5i59BeStIHTdMEUXoq3mYf2odyM6bGSUNODfi2aKURcUnXwXECvvSP5M92ZrUyBEoOOeqJ0Ih5SJ--AfjqSnISZOUi1PzMaNBFunBNlGiLllxmpZsO5XtZzK7k-Tyf78Ak_IVhWGWv-71O77R1X3PS7-bJ7WLBf3wZOS_J_rBjn8wHsJtmqsiHsDs--zm73D4mFEp50nBSOTwgPG52MC9jmBU0pVAxyUqmfvq_eRpch4vWzvBM9-BN7zGKsV_UPuxg-xZeTUKitnfweMFobqEZG85MlWLRPvhbMLG-ZxgLWSfhs_VQE_Wjk7fQI8HJozd0IMjPHInrjV11TNMjoVsr7jhOtnq1EV373amYrpZ_hGebvV-hsAFG0027XgqzpDA2lE1Y3Xu4mv74NZlFfc6FyGSlXEeo8gqNUlrmaCsOqGLMHD-2xdrEGMdNjqXTRmpXKWubJGli7QymFrHUSmcfYNguW_wIwuZVUri0oYiqkkaWNELHRqFEmWpjmwOIw1bXpick57wYN3VAnv2uSTo1S6f20jmAb9sht56N47nOMsivfnKkarIWzw37QrLeTs_027PxRc11rADTTMqH5NPL5j6E11zyULPPMCSh4RE5NevmGAbf_ybH_dH9ByMB-sw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZ5HNJLadOWpk8RcireZh9a76q3YGqcxMkpAd_ErDQiDu06OE7Al_6R_tnOrFaGQsmhx9WLRTPMQ_r0jRBHvqIgQdU-QeBrRos-gaFvkgwcOgqZNTQdyvdyOLlWZ7NytiVG8S0Mwyp72x9semet-5bjfjeP7-ZzfuPLyHlF_ocD-2y2LXZVWVSM6_v6a4PzyIZaB8pwMjg8PF5tdiAva5kTNKdEMSsqJn76t3PavonHrJ3bGb8Qz_t4UZ6EX3optrDdF3ujWKbtlfg9ZSy3BEaGM0-lnLeP4QxMrh4YxEK-SYZaPdRF40jv5jCQXDp6TepAUeZA3qzdsuOZHkhonbznLNnBci27_vtvcrxc_JSBa_ZhidJFEE237Goh7YKS2Pht49-9Ftfj71ejSdJXXEhsUalVgrqs0WoNqkRXczqVYuH5qi0Fm2KaNiVWHqwCX2vnmixrUvAWc4dYgYbijdhpFy2-FdKVdTb0eUP5VK2sqmgGpFajQpWDdc2BSONWG9vTkXNVjB8m4s5uDUnHsHRMkM6B-LKZche4OJ4arKL8zF8KZchXPDXtkGS9WZ7JtycnU8NtbP7yQqnH7N3_rf1Z7E2uLqZmenp5_l48454AOvsgdkiA-JHCm1XzqVPfP0j1-5c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+amplitude+inversion+tunneling+motion+in+ammonia%2C+methylamine%2C+hydrazine%2C+and+secondary+amines%3A+From+structure+determination+to+coordination+chemistry&rft.jtitle=Coordination+chemistry+reviews&rft.au=Nguyen%2C+Ha+Vinh+Lam&rft.au=Gulaczyk%2C+Iwona&rft.au=Kr%C4%99glewski%2C+Marek&rft.au=Kleiner%2C+Isabelle&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=436&rft_id=info:doi/10.1016%2Fj.ccr.2021.213797&rft.externalDocID=S001085452100031X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |