m6A methylation regulators and ncRNAs in osteosarcoma: Potential therapeutic strategies
Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%–15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rate...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 194; pp. 34 - 42 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0079-6107 1873-1732 1873-1732 |
DOI | 10.1016/j.pbiomolbio.2024.10.003 |
Cover
Loading…
Abstract | Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%–15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.
•m6A regulators' biological functions in Osteosarcoma.•Effect of m6A regulators on radiotherapy resistance in osteosarcoma.•NcRNA in osteosarcoma.•Interplay between m6A and ncRNAs in osteosarcoma.•m6A and miRNA, circRNA, lncRNA. |
---|---|
AbstractList | Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%–15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.
•m6A regulators' biological functions in Osteosarcoma.•Effect of m6A regulators on radiotherapy resistance in osteosarcoma.•NcRNA in osteosarcoma.•Interplay between m6A and ncRNAs in osteosarcoma.•m6A and miRNA, circRNA, lncRNA. Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma. Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma. |
Author | Huang, Kui Yang, Guanghui Shi, Ce Li, Jinshuang Chen, Lei Zheng, Hongbing Shi, Tingting |
Author_xml | – sequence: 1 givenname: Ce surname: Shi fullname: Shi, Ce organization: Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China – sequence: 2 givenname: Lei surname: Chen fullname: Chen, Lei organization: Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China – sequence: 3 givenname: Kui surname: Huang fullname: Huang, Kui organization: Department of Orthopedics, Feng Xian People's Hospital, Xuzhou, 221700, China – sequence: 4 givenname: Guanghui surname: Yang fullname: Yang, Guanghui organization: Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China – sequence: 5 givenname: Tingting surname: Shi fullname: Shi, Tingting organization: Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China – sequence: 6 givenname: Jinshuang surname: Li fullname: Li, Jinshuang email: 100002006005@xzhmu.edu.cn organization: Department of Cardiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China – sequence: 7 givenname: Hongbing surname: Zheng fullname: Zheng, Hongbing email: 100000801004@xzhmu.edu.cn organization: Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39461672$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMFOGzEQhi0UBEnKKyAfe9kw9m7sXQ6VUtTSSghQVcTR8noHcLRrp7YXibfHaYiQeimXmdHMP_9ovhmZOO-QEMpgwYCJs_Vi01o_-D7HBQde5fYCoDwgU1bLsmCy5BMyBZBNIRjIYzKLcQ0AnElxRI7LphJMSD4l94NY0QHT00uvk_WOBnwcc-lDpNp11Jlf16tIraM-JvRRB-MHfU5vfUKXrO5pesKgNzgma2hMQSd8tBg_kcMH3Uc8ectzcvf92--LH8XVzeXPi9VVYUpZpaKTspXG1LoS2CIKAcByB0xdNfXS8IppXJaaQ6sr6GDZoWhZC7AUHTO8aco5-bzz3QT_Z8SY1GCjwb7XDv0YVck447JpOM_S0zfp2A7YqU2wgw4vag8jC77sBCb4GAM-KGPTXyr5LdsrBmpLX63VO321pb-dZPrZoP7HYH_jA6tfd6uYYT1bDCoai85gZwOapDpv_2_yCoMzpkQ |
CitedBy_id | crossref_primary_10_3389_fgene_2025_1522622 |
Cites_doi | 10.18632/aging.102325 10.4103/jcrt.JCRT_577_17 10.1038/s41421-018-0019-0 10.1016/j.pharmthera.2017.12.011 10.1016/j.omtn.2021.12.008 10.1007/s10585-016-9783-0 10.1166/jbn.2022.3256 10.1186/s12943-019-1053-8 10.1002/jcp.31068 10.1186/s12943-020-01204-7 10.1038/s41419-020-03315-x 10.1186/s12935-020-1105-6 10.1038/cr.2017.15 10.1111/cpr.13294 10.1016/j.jbo.2023.100471 10.3390/ijms23073817 10.1038/s41556-018-0174-4 10.1038/cr.2014.151 10.1038/s41572-022-00409-y 10.1016/j.jbc.2021.100973 10.1111/cas.14787 10.1038/nature21671 10.1186/s12935-020-01679-w 10.1002/1878-0261.12468 10.1186/s12943-023-01912-w 10.1186/s12943-019-1109-9 10.1302/2046-3758.63.BJR-2016-0151.R2 10.1038/s41419-020-02847-6 10.1093/nar/gkx1030 10.1186/s12943-020-01281-8 10.1016/j.ebiom.2022.104019 10.1080/21655979.2022.2051785 10.1158/0008-5472.CAN-21-2106 10.15252/embr.201744940 10.2217/epi-2018-0135 10.1002/hep.29683 10.1186/s12943-022-01510-2 10.1186/s12943-020-01207-4 10.1016/j.biopha.2020.109964 10.1186/s12935-020-01342-4 10.1128/cmr.00027-21 10.1038/s41419-021-04140-6 10.1186/s40364-020-00203-6 10.1111/bph.15713 10.1186/s12943-018-0882-1 10.1016/j.ebiom.2022.104142 10.1186/s40364-020-00244-x 10.1186/s12943-024-02105-9 10.1038/s41556-018-0045-z 10.1016/j.bbrc.2019.06.128 10.1101/gad.309146.117 10.1016/j.molcel.2012.10.015 10.2147/JIR.S350109 10.1186/s13045-019-0805-7 10.1177/15330338221124696 10.1016/j.jbo.2022.100412 10.1007/s00432-022-04337-y 10.1186/s12943-021-01362-2 10.1186/s13045-019-0839-x 10.1038/s41576-022-00534-0 10.1080/09674845.2013.11669927 10.3390/ijms21082969 10.1093/nar/gky1012 10.2147/CMAR.S284273 10.1038/s41388-019-0755-0 10.1111/jcmm.14123 10.1038/s41388-019-0861-z 10.3892/ol.2020.11739 10.1016/j.tice.2022.101794 10.1038/s41586-019-1016-7 10.3390/ijms18030551 10.1016/j.pharmthera.2018.04.011 10.1080/09674845.2019.1675847 10.1007/s00335-021-09891-3 10.1186/s13018-021-02422-5 10.1038/nature15377 10.1083/jcb.201811147 10.1080/21655979.2021.2008218 10.1111/cpr.13344 10.1042/BSR20200282 10.1038/nrd.2016.117 10.1016/j.ebiom.2020.102955 10.1016/j.cell.2015.10.012 10.1186/s12943-023-01810-1 10.1038/s41467-018-04006-0 10.1038/s41388-022-02214-z 10.1002/mc.22782 10.2217/epi-2019-0262 10.1080/21655979.2022.2037381 10.1016/j.bioorg.2019.103214 10.1038/nature19342 10.1002/cbf.3452 10.1186/s12943-019-1066-3 10.1002/hep.28885 10.1002/jcp.28014 10.1111/jcmm.13518 10.1038/s41419-020-03289-w 10.1038/cr.2017.10 10.1186/s12967-022-03549-7 10.1111/jcmm.15215 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.pbiomolbio.2024.10.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 42 |
ExternalDocumentID | 39461672 10_1016_j_pbiomolbio_2024_10_003 S0079610724001007 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSH SSU SSZ T5K UNMZH UQL VQP WUQ ZGI ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c374t-d77b7cc8a46ebee660017b70c84985c241ae53a20ba40d05de6b1b0056d1c2993 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Thu Jul 10 21:59:05 EDT 2025 Thu Apr 03 07:03:51 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 00:42:42 EDT 2025 Sun Apr 06 06:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | m6A modification ncRNA Osteosarcoma Therapeutic target |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-d77b7cc8a46ebee660017b70c84985c241ae53a20ba40d05de6b1b0056d1c2993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 39461672 |
PQID | 3121279922 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3121279922 pubmed_primary_39461672 crossref_citationtrail_10_1016_j_pbiomolbio_2024_10_003 crossref_primary_10_1016_j_pbiomolbio_2024_10_003 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2024_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationTitleAlternate | Prog Biophys Mol Biol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen (bib8) 2018; 67 Deng (bib19) 2022; 21 Xie (bib82) 2020; 20 Zhao (bib101) 2014; 24 Fu (bib20) 2019; 11 He (bib23) 2019; 18 Yang (bib89) 2020; 20 Maugeri-Sacca, De Maria (bib52) 2018; 186 Wang (bib74) 2022; 15 Lee (bib33) 2019; 218 Jonas (bib31) 2020; 21 Yuan (bib94) 2021; 12 Hu (bib26) 2018; 16 Zhou (bib110) 2018; 57 Xu (bib83) 2020; 19 Wang (bib75) 2020; 19 Zhou (bib105) 2020; 59 Luo (bib47) 2023; 39 Zhou (bib111) 2021; 9 Verduci (bib70) 2019; 13 Wang (bib77) 2023; 22 Zhang (bib99) 2019; 92 Huang (bib28) 2019; 567 Chen (bib14) 2020; 19 Cheng (bib15) 2024; 239 Beird (bib2) 2022; 8 Matsui, Corey (bib51) 2017; 16 Zhang (bib96) 2018; 189 Li (bib34) 2017; 27 Zuo (bib112) 2020; 13 Ren (bib61) 2022; 13 Huang (bib29) 2022; 27 Yan (bib85) 2018; 22 Waller, Blann (bib71) 2019; 76 Warda (bib78) 2017; 18 Zhang (bib98) 2018; 17 Traxler (bib69) 2022; 35 Li (bib37) 2022; 82 Shi (bib67) 2017; 27 Xiang (bib80) 2017; 543 Shen (bib66) 2021; 20 Li (bib36) 2018; 41 Chen (bib11) 2019; 11 Li (bib39) 2018; 9 Shan (bib63) 2022; 13 Zhou (bib108) 2020; 125 Choi (bib18) 2017; 6 Shoaib (bib68) 2022; 179 Ling (bib40) 2020; 40 Bi (bib3) 2019; 234 Liu (bib41) 2023; 149 Batista (bib1) 2017; 15 Jiang (bib30) 2022; 21 Zhou (bib107) 2021; 12 Zhang (bib100) 2020; 11 Yang (bib87) 2019; 38 Muller (bib56) 2019; 47 Shan (bib64) 2022; 13 Li (bib38) 2019; 18 Yan (bib86) 2020; 24 Zhou (bib106) 2015; 526 Miao (bib55) 2019; 516 Wang (bib73) 2020; 38 Qian (bib60) 2019; 38 Pu (bib59) 2016; 33 Ma (bib50) 2019; 12 Chi (bib16) 2019; 8 Chen (bib12) 2019; 18 Chen (bib13) 2019; 23 He (bib25) 2022; 20 Lv (bib48) 2022; 41 Boulias, Greer (bib5) 2023; 24 Li (bib35) 2021 Zheng (bib104) 2024; 23 Ma (bib49) 2017; 65 Yadav (bib84) 2022; 82 Liu (bib42) 2021; 16 Harris, Hawkins (bib22) 2022; 23 Wan (bib72) 2021; 112 Liu (bib46) 2020; 12 Patil (bib58) 2016; 537 Meyer (bib54) 2015; 163 Liu (bib44) 2018; 20 Zheng (bib102) 2013; 49 Huang (bib27) 2018; 20 Cao (bib7) 2022; 33 Liu (bib43) 2022; 76 Otoukesh (bib57) 2020; 20 Zheng (bib103) 2022; 18 Zhang (bib97) 2021; 297 Xie (bib81) 2018; 14 Chen (bib10) 2020; 20 Yang (bib91) 2020; 8 Salehan, Morse (bib62) 2013; 70 Yang (bib88) 2023; 56 Yue (bib95) 2018; 4 Zhou (bib109) 2019; 41 Han (bib21) 2022; 55 Cacabelos (bib6) 2017; 18 Wei (bib79) 2022; 13 Yu, Yao (bib93) 2024; 23 Boccaletto (bib4) 2018; 46 Choi (bib17) 2017; 6 Shen (bib65) 2020; 8 Wang (bib76) 2019; 11 Meng (bib53) 2021; 32 Chen (bib9) 2020; 11 Knuckles (bib32) 2018; 32 Yang (bib92) 2022; 80 He (bib24) 2019; 18 Chen (10.1016/j.pbiomolbio.2024.10.003_bib14) 2020; 19 Chen (10.1016/j.pbiomolbio.2024.10.003_bib9) 2020; 11 Li (10.1016/j.pbiomolbio.2024.10.003_bib39) 2018; 9 Yang (10.1016/j.pbiomolbio.2024.10.003_bib92) 2022; 80 Meyer (10.1016/j.pbiomolbio.2024.10.003_bib54) 2015; 163 Boccaletto (10.1016/j.pbiomolbio.2024.10.003_bib4) 2018; 46 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib109) 2019; 41 Ma (10.1016/j.pbiomolbio.2024.10.003_bib50) 2019; 12 Wang (10.1016/j.pbiomolbio.2024.10.003_bib73) 2020; 38 Zhang (10.1016/j.pbiomolbio.2024.10.003_bib96) 2018; 189 Harris (10.1016/j.pbiomolbio.2024.10.003_bib22) 2022; 23 Shoaib (10.1016/j.pbiomolbio.2024.10.003_bib68) 2022; 179 Shen (10.1016/j.pbiomolbio.2024.10.003_bib66) 2021; 20 Cheng (10.1016/j.pbiomolbio.2024.10.003_bib15) 2024; 239 Jiang (10.1016/j.pbiomolbio.2024.10.003_bib30) 2022; 21 Wei (10.1016/j.pbiomolbio.2024.10.003_bib79) 2022; 13 Zhang (10.1016/j.pbiomolbio.2024.10.003_bib98) 2018; 17 Lee (10.1016/j.pbiomolbio.2024.10.003_bib33) 2019; 218 Li (10.1016/j.pbiomolbio.2024.10.003_bib36) 2018; 41 Warda (10.1016/j.pbiomolbio.2024.10.003_bib78) 2017; 18 Meng (10.1016/j.pbiomolbio.2024.10.003_bib53) 2021; 32 Zuo (10.1016/j.pbiomolbio.2024.10.003_bib112) 2020; 13 Salehan (10.1016/j.pbiomolbio.2024.10.003_bib62) 2013; 70 Yang (10.1016/j.pbiomolbio.2024.10.003_bib89) 2020; 20 Yan (10.1016/j.pbiomolbio.2024.10.003_bib85) 2018; 22 Deng (10.1016/j.pbiomolbio.2024.10.003_bib19) 2022; 21 Ren (10.1016/j.pbiomolbio.2024.10.003_bib61) 2022; 13 Cao (10.1016/j.pbiomolbio.2024.10.003_bib7) 2022; 33 Knuckles (10.1016/j.pbiomolbio.2024.10.003_bib32) 2018; 32 Li (10.1016/j.pbiomolbio.2024.10.003_bib38) 2019; 18 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib107) 2021; 12 He (10.1016/j.pbiomolbio.2024.10.003_bib24) 2019; 18 Liu (10.1016/j.pbiomolbio.2024.10.003_bib41) 2023; 149 Yue (10.1016/j.pbiomolbio.2024.10.003_bib95) 2018; 4 Ma (10.1016/j.pbiomolbio.2024.10.003_bib49) 2017; 65 Shen (10.1016/j.pbiomolbio.2024.10.003_bib65) 2020; 8 Luo (10.1016/j.pbiomolbio.2024.10.003_bib47) 2023; 39 Qian (10.1016/j.pbiomolbio.2024.10.003_bib60) 2019; 38 Chen (10.1016/j.pbiomolbio.2024.10.003_bib10) 2020; 20 Yadav (10.1016/j.pbiomolbio.2024.10.003_bib84) 2022; 82 Han (10.1016/j.pbiomolbio.2024.10.003_bib21) 2022; 55 Chi (10.1016/j.pbiomolbio.2024.10.003_bib16) 2019; 8 Waller (10.1016/j.pbiomolbio.2024.10.003_bib71) 2019; 76 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib108) 2020; 125 Beird (10.1016/j.pbiomolbio.2024.10.003_bib2) 2022; 8 Zhang (10.1016/j.pbiomolbio.2024.10.003_bib99) 2019; 92 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib111) 2021; 9 Matsui (10.1016/j.pbiomolbio.2024.10.003_bib51) 2017; 16 Boulias (10.1016/j.pbiomolbio.2024.10.003_bib5) 2023; 24 Traxler (10.1016/j.pbiomolbio.2024.10.003_bib69) 2022; 35 Yu (10.1016/j.pbiomolbio.2024.10.003_bib93) 2024; 23 Xie (10.1016/j.pbiomolbio.2024.10.003_bib82) 2020; 20 Maugeri-Sacca (10.1016/j.pbiomolbio.2024.10.003_bib52) 2018; 186 Chen (10.1016/j.pbiomolbio.2024.10.003_bib11) 2019; 11 Wang (10.1016/j.pbiomolbio.2024.10.003_bib76) 2019; 11 Li (10.1016/j.pbiomolbio.2024.10.003_bib37) 2022; 82 Wang (10.1016/j.pbiomolbio.2024.10.003_bib75) 2020; 19 Pu (10.1016/j.pbiomolbio.2024.10.003_bib59) 2016; 33 Fu (10.1016/j.pbiomolbio.2024.10.003_bib20) 2019; 11 Wang (10.1016/j.pbiomolbio.2024.10.003_bib74) 2022; 15 Shan (10.1016/j.pbiomolbio.2024.10.003_bib63) 2022; 13 Batista (10.1016/j.pbiomolbio.2024.10.003_bib1) 2017; 15 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib106) 2015; 526 Choi (10.1016/j.pbiomolbio.2024.10.003_bib17) 2017; 6 Huang (10.1016/j.pbiomolbio.2024.10.003_bib29) 2022; 27 Chen (10.1016/j.pbiomolbio.2024.10.003_bib8) 2018; 67 Zhao (10.1016/j.pbiomolbio.2024.10.003_bib101) 2014; 24 Zhang (10.1016/j.pbiomolbio.2024.10.003_bib97) 2021; 297 Jonas (10.1016/j.pbiomolbio.2024.10.003_bib31) 2020; 21 Xu (10.1016/j.pbiomolbio.2024.10.003_bib83) 2020; 19 Yuan (10.1016/j.pbiomolbio.2024.10.003_bib94) 2021; 12 Yang (10.1016/j.pbiomolbio.2024.10.003_bib88) 2023; 56 Chen (10.1016/j.pbiomolbio.2024.10.003_bib12) 2019; 18 Shi (10.1016/j.pbiomolbio.2024.10.003_bib67) 2017; 27 Wang (10.1016/j.pbiomolbio.2024.10.003_bib77) 2023; 22 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib110) 2018; 57 Yang (10.1016/j.pbiomolbio.2024.10.003_bib91) 2020; 8 Li (10.1016/j.pbiomolbio.2024.10.003_bib34) 2017; 27 Zheng (10.1016/j.pbiomolbio.2024.10.003_bib102) 2013; 49 Huang (10.1016/j.pbiomolbio.2024.10.003_bib27) 2018; 20 Zhou (10.1016/j.pbiomolbio.2024.10.003_bib105) 2020; 59 Zhang (10.1016/j.pbiomolbio.2024.10.003_bib100) 2020; 11 Zheng (10.1016/j.pbiomolbio.2024.10.003_bib103) 2022; 18 He (10.1016/j.pbiomolbio.2024.10.003_bib25) 2022; 20 Choi (10.1016/j.pbiomolbio.2024.10.003_bib18) 2017; 6 Liu (10.1016/j.pbiomolbio.2024.10.003_bib43) 2022; 76 Bi (10.1016/j.pbiomolbio.2024.10.003_bib3) 2019; 234 Liu (10.1016/j.pbiomolbio.2024.10.003_bib44) 2018; 20 Huang (10.1016/j.pbiomolbio.2024.10.003_bib28) 2019; 567 Liu (10.1016/j.pbiomolbio.2024.10.003_bib42) 2021; 16 Muller (10.1016/j.pbiomolbio.2024.10.003_bib56) 2019; 47 Hu (10.1016/j.pbiomolbio.2024.10.003_bib26) 2018; 16 Xie (10.1016/j.pbiomolbio.2024.10.003_bib81) 2018; 14 Zheng (10.1016/j.pbiomolbio.2024.10.003_bib104) 2024; 23 Otoukesh (10.1016/j.pbiomolbio.2024.10.003_bib57) 2020; 20 Patil (10.1016/j.pbiomolbio.2024.10.003_bib58) 2016; 537 Shan (10.1016/j.pbiomolbio.2024.10.003_bib64) 2022; 13 Xiang (10.1016/j.pbiomolbio.2024.10.003_bib80) 2017; 543 Chen (10.1016/j.pbiomolbio.2024.10.003_bib13) 2019; 23 Wan (10.1016/j.pbiomolbio.2024.10.003_bib72) 2021; 112 Li (10.1016/j.pbiomolbio.2024.10.003_bib35) 2021 He (10.1016/j.pbiomolbio.2024.10.003_bib23) 2019; 18 Liu (10.1016/j.pbiomolbio.2024.10.003_bib46) 2020; 12 Yang (10.1016/j.pbiomolbio.2024.10.003_bib87) 2019; 38 Verduci (10.1016/j.pbiomolbio.2024.10.003_bib70) 2019; 13 Yan (10.1016/j.pbiomolbio.2024.10.003_bib86) 2020; 24 Ling (10.1016/j.pbiomolbio.2024.10.003_bib40) 2020; 40 Lv (10.1016/j.pbiomolbio.2024.10.003_bib48) 2022; 41 Cacabelos (10.1016/j.pbiomolbio.2024.10.003_bib6) 2017; 18 Miao (10.1016/j.pbiomolbio.2024.10.003_bib55) 2019; 516 |
References_xml | – volume: 18 start-page: 453 year: 2022 end-page: 462 ident: bib103 article-title: Mechanism for bioactive nanomaterial circ0024831 regulation of staphylococcal nuclease domain containing 1 via RNA methylation recognition in osteosarcoma publication-title: J. Biomed. Nanotechnol. – volume: 41 start-page: 579 year: 2019 end-page: 589 ident: bib109 article-title: SND1 promotes the proliferation of osteosarcoma cells by upregulating COX-2/PGE2 expression via activation of NF-kappaB publication-title: Oncol. Rep. – volume: 92 year: 2019 ident: bib99 article-title: The role of long noncoding RNA in major human disease publication-title: Bioorg. Chem. – volume: 27 start-page: 315 year: 2017 end-page: 328 ident: bib67 article-title: YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA publication-title: Cell Res. – volume: 22 start-page: 2592 year: 2018 end-page: 2599 ident: bib85 article-title: LncRNA CCAT2 promoted osteosarcoma cell proliferation and invasion publication-title: J. Cell Mol. Med. – volume: 80 year: 2022 ident: bib92 article-title: ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner publication-title: EBioMedicine – volume: 297 year: 2021 ident: bib97 article-title: The detection and functions of RNA modification m(6)A based on m(6)A writers and erasers publication-title: J. Biol. Chem. – volume: 65 start-page: 529 year: 2017 end-page: 543 ident: bib49 article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing publication-title: Hepatology – volume: 11 start-page: 659 year: 2020 ident: bib9 article-title: WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m(6)A-dependent manner publication-title: Cell Death Dis. – volume: 17 start-page: 134 year: 2018 ident: bib98 article-title: The role of YAP/TAZ activity in cancer metabolic reprogramming publication-title: Mol. Cancer – volume: 19 start-page: 94 year: 2020 ident: bib14 article-title: Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer publication-title: Mol. Cancer – volume: 76 year: 2022 ident: bib43 article-title: Analysis of the function and mechanism of DIRAS1 in osteosarcoma publication-title: Tissue Cell – volume: 189 start-page: 173 year: 2018 end-page: 183 ident: bib96 article-title: Mechanism of N(6)-methyladenosine modification and its emerging role in cancer publication-title: Pharmacol. Therapeut. – volume: 57 start-page: 590 year: 2018 end-page: 597 ident: bib110 article-title: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation publication-title: Mol. Carcinog. – volume: 18 start-page: 176 year: 2019 ident: bib24 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer – volume: 82 year: 2022 ident: bib37 article-title: METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma publication-title: EBioMedicine – volume: 33 start-page: 359 year: 2016 end-page: 372 ident: bib59 article-title: MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR publication-title: respectively. Clin. Exp. Metastas. – volume: 38 start-page: 77 year: 2020 end-page: 86 ident: bib73 article-title: Circ_0001658 promotes the proliferation and metastasis of osteosarcoma cells via regulating miR-382-5p/YB-1 axis publication-title: Cell Biochem. Funct. – volume: 18 start-page: 2004 year: 2017 end-page: 2014 ident: bib78 article-title: Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs publication-title: EMBO Rep. – volume: 20 start-page: 585 year: 2020 ident: bib82 article-title: Emerging roles of RNA methylation in gastrointestinal cancers publication-title: Cancer Cell Int. – volume: 8 year: 2019 ident: bib16 article-title: Long non-coding RNA in the pathogenesis of cancers publication-title: Cells-Basel – volume: 234 start-page: 7948 year: 2019 end-page: 7956 ident: bib3 article-title: A dynamic reversible RNA N(6) -methyladenosine modification: current status and perspectives publication-title: J. Cell. Physiol. – volume: 125 year: 2020 ident: bib108 article-title: Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2 publication-title: Biomed. Pharmacother. – volume: 20 start-page: 285 year: 2018 end-page: 295 ident: bib27 article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation publication-title: Nat. Cell Biol. – volume: 16 start-page: 4337 year: 2018 end-page: 4342 ident: bib26 article-title: miRNA-21 inhibition inhibits osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-beta1 signaling pathway publication-title: Oncol. Lett. – volume: 20 start-page: 254 year: 2020 ident: bib57 article-title: MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma publication-title: Cancer Cell Int. – volume: 179 start-page: 201 year: 2022 end-page: 217 ident: bib68 article-title: Osteosarcoma mechanobiology and therapeutic targets publication-title: Br. J. Pharmacol. – volume: 23 year: 2022 ident: bib22 article-title: Recent and ongoing research into metastatic osteosarcoma treatments publication-title: Int. J. Mol. Sci. – volume: 20 start-page: 1074 year: 2018 end-page: 1083 ident: bib44 article-title: m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer publication-title: Nat. Cell Biol. – volume: 76 start-page: 157 year: 2019 end-page: 165 ident: bib71 article-title: Non-coding RNAs - a primer for the laboratory scientist publication-title: Br. J. Biomed. Sci. – volume: 38 start-page: 6123 year: 2019 end-page: 6141 ident: bib60 article-title: KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner publication-title: Oncogene – volume: 18 year: 2017 ident: bib6 article-title: Parkinson's disease: from pathogenesis to pharmacogenomics publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 821 year: 2019 end-page: 833 ident: bib11 article-title: The function of ncRNAs in rheumatic diseases publication-title: Epigenomics-Uk – volume: 20 start-page: 348 year: 2022 ident: bib25 article-title: IGF2BP1-regulated expression of ERRalpha is involved in metabolic reprogramming of chemotherapy resistant osteosarcoma cells publication-title: J. Transl. Med. – volume: 8 start-page: 77 year: 2022 ident: bib2 article-title: Osteosarcoma publication-title: Nat. Rev. Dis. Prim. – volume: 6 start-page: 186 year: 2017 end-page: 193 ident: bib17 article-title: Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells publication-title: Bone Joint Res – volume: 21 year: 2020 ident: bib31 article-title: RNA-binding proteins as important regulators of long non-coding RNAs in cancer publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 1572 year: 2018 ident: bib39 article-title: The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma publication-title: Nat. Commun. – volume: 40 year: 2020 ident: bib40 article-title: m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma publication-title: Biosci. Rep. – volume: 4 start-page: 10 year: 2018 ident: bib95 article-title: VIRMA mediates preferential m(6)A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation publication-title: Cell Discov – volume: 41 start-page: 523 year: 2018 end-page: 531 ident: bib36 article-title: MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1 publication-title: Mol. Cell. – volume: 67 start-page: 2254 year: 2018 end-page: 2270 ident: bib8 article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 publication-title: Hepatology – volume: 12 start-page: 12759 year: 2020 end-page: 12767 ident: bib46 article-title: METTL14 overexpression promotes osteosarcoma cell apoptosis and slows tumor progression via caspase 3 activation publication-title: Cancer Manag. Res. – volume: 516 start-page: 719 year: 2019 end-page: 725 ident: bib55 article-title: The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1 publication-title: Biochem. Bioph. Res. Co. – volume: 35 year: 2022 ident: bib69 article-title: Updated review on nocardia species: 2006-2021 publication-title: Clin. Microbiol. Rev. – volume: 27 start-page: 444 year: 2017 end-page: 447 ident: bib34 article-title: Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation publication-title: Cell Res. – volume: 14 start-page: 838 year: 2018 end-page: 843 ident: bib81 article-title: Post-transcriptional regulation DPC4 gene by miR-190 in colorectal cancer cells publication-title: J. Cancer Res. Therapeut. – volume: 6 start-page: 186 year: 2017 end-page: 193 ident: bib18 article-title: Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells publication-title: Bone Joint Res – volume: 27 start-page: 577 year: 2022 end-page: 592 ident: bib29 article-title: Analysis and identification of m(6)A RNA methylation regulators in metastatic osteosarcoma publication-title: Mol. Ther. Nucleic Acids – volume: 13 start-page: 8038 year: 2022 end-page: 8050 ident: bib63 article-title: Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Kruppel-like factor 3 (KLF3) promotes osteosarcoma progression publication-title: Bioengineered – volume: 16 start-page: 167 year: 2017 end-page: 179 ident: bib51 article-title: Non-coding RNAs as drug targets publication-title: Nat. Rev. Drug Discov. – volume: 9 year: 2021 ident: bib111 article-title: METTL3 contributes to osteosarcoma progression by increasing DANCR mRNA stability via m6A modification publication-title: Front. Cell Dev. Biol. – volume: 13 start-page: 8038 year: 2022 end-page: 8050 ident: bib64 article-title: Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Kruppel-like factor 3 (KLF3) promotes osteosarcoma progression publication-title: Bioengineered – volume: 239 year: 2024 ident: bib15 article-title: METTL16 promotes osteosarcoma progression by downregulating VPS33B in an m(6)A-dependent manner publication-title: J. Cell. Physiol. – volume: 56 year: 2023 ident: bib88 article-title: Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15 publication-title: Cell Prolif. – volume: 70 start-page: 31 year: 2013 end-page: 40 ident: bib62 article-title: DNA damage repair and tolerance: a role in chemotherapeutic drug resistance publication-title: Br. J. Biomed. Sci. – volume: 543 start-page: 573 year: 2017 end-page: 576 ident: bib80 article-title: RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response publication-title: Nature – volume: 24 start-page: 5593 year: 2020 end-page: 5604 ident: bib86 article-title: Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells publication-title: J. Cell Mol. Med. – volume: 13 start-page: 5 year: 2020 ident: bib112 article-title: M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma publication-title: J. Hematol. Oncol. – volume: 537 start-page: 369 year: 2016 end-page: 373 ident: bib58 article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression publication-title: Nature – volume: 23 start-page: 2115 year: 2019 end-page: 2124 ident: bib13 article-title: Oestrogen-related receptor alpha mediates chemotherapy resistance of osteosarcoma cells via regulation of ABCB1 publication-title: J. Cell Mol. Med. – year: 2021 ident: bib35 article-title: Circular RNA circPVT1 contributes to doxorubicin (DXR) resistance of osteosarcoma cells by regulating TRIAP1 via miR-137 publication-title: BioMed Res. Int. – volume: 186 start-page: 60 year: 2018 end-page: 72 ident: bib52 article-title: The Hippo pathway in normal development and cancer publication-title: Pharmacol. Therapeut. – volume: 20 start-page: 1504 year: 2020 end-page: 1512 ident: bib89 article-title: N6-methyladenine RNA modification and cancer publication-title: Oncol. Lett. – volume: 59 year: 2020 ident: bib105 article-title: N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1 publication-title: EBioMedicine – volume: 163 start-page: 999 year: 2015 end-page: 1010 ident: bib54 article-title: 5' UTR m(6)A promotes cap-independent translation publication-title: Cell – volume: 13 start-page: 7963 year: 2022 end-page: 7973 ident: bib61 article-title: N(6)-methyladenosine methyltransferase WTAP-stabilized FOXD2-AS1 promotes the osteosarcoma progression through m(6)A/FOXM1 axis publication-title: Bioengineered – volume: 8 start-page: 24 year: 2020 ident: bib65 article-title: The emerging roles of N6-methyladenosine RNA methylation in human cancers publication-title: Biomark. Res. – volume: 55 year: 2022 ident: bib21 article-title: Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders publication-title: Cell Prolif. – volume: 11 start-page: 1693 year: 2019 end-page: 1715 ident: bib76 article-title: Integrated analysis of transcriptome-wide m(6)A methylome of osteosarcoma stem cells enriched by chemotherapy publication-title: Epigenomics-Uk – volume: 15 start-page: 154 year: 2017 end-page: 163 ident: bib1 article-title: The RNA modification N(6)-methyladenosine and its implications in human disease publication-title: Dev. Reprod. Biol. – volume: 22 start-page: 102 year: 2023 ident: bib77 article-title: Epigenetic modification of m(6)A regulator proteins in cancer publication-title: Mol. Cancer – volume: 11 start-page: 8374 year: 2019 end-page: 8385 ident: bib20 article-title: LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis publication-title: Aging (Albany NY) – volume: 567 start-page: 414 year: 2019 end-page: 419 ident: bib28 article-title: Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally publication-title: Nature – volume: 21 year: 2022 ident: bib30 article-title: Current status and prospects of clinical treatment of osteosarcoma publication-title: Technol. Cancer Res. Treat. – volume: 39 year: 2023 ident: bib47 article-title: The role and mechanism of JAK2/STAT3 signaling pathway regulated by m6A methyltransferase KIAA1429 in osteosarcoma publication-title: J. Bone Oncol – volume: 8 start-page: 61 year: 2020 ident: bib91 article-title: N6-methyladenine modification in noncoding RNAs and its function in cancer publication-title: Biomark. Res. – volume: 46 start-page: D303 year: 2018 end-page: D307 ident: bib4 article-title: MODOMICS: a database of RNA modification pathways. 2017 update publication-title: Nucleic Acids Res. – volume: 19 start-page: 163 year: 2020 ident: bib83 article-title: N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating beta-catenin signaling publication-title: Mol. Cancer – volume: 218 start-page: 2659 year: 2019 end-page: 2676 ident: bib33 article-title: Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled publication-title: J. Cell Biol. – volume: 32 start-page: 448 year: 2021 end-page: 456 ident: bib53 article-title: Circular RNA circNRIP1 plays oncogenic roles in the progression of osteosarcoma publication-title: Mamm. Genome – volume: 23 start-page: 192 year: 2024 ident: bib93 article-title: Advances on immunotherapy for osteosarcoma publication-title: Mol. Cancer – volume: 11 start-page: 1075 year: 2020 ident: bib100 article-title: Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6 publication-title: Cell Death Dis. – volume: 112 start-page: 1707 year: 2021 end-page: 1722 ident: bib72 article-title: circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling publication-title: Cancer Sci. – volume: 19 start-page: 88 year: 2020 ident: bib75 article-title: The potential role of RNA N6-methyladenosine in Cancer progression publication-title: Mol. Cancer – volume: 18 start-page: 176 year: 2019 ident: bib23 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer – volume: 15 start-page: 3083 year: 2022 end-page: 3094 ident: bib74 article-title: Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases publication-title: J. Inflamm. Res. – volume: 21 start-page: 52 year: 2022 ident: bib19 article-title: m6A modification: recent advances, anticancer targeted drug discovery and beyond publication-title: Mol. Cancer – volume: 12 start-page: 121 year: 2019 ident: bib50 article-title: The interplay between m6A RNA methylation and noncoding RNA in cancer publication-title: J. Hematol. Oncol. – volume: 13 start-page: 5236 year: 2022 end-page: 5250 ident: bib79 article-title: Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7) publication-title: Bioengineered – volume: 12 start-page: 60 year: 2021 ident: bib94 article-title: ALKBH5 suppresses tumor progression via an m(6)A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma publication-title: Cell Death Dis. – volume: 12 start-page: 844 year: 2021 ident: bib107 article-title: EMP3 negatively modulates breast cancer cell DNA replication, DNA damage repair, and stem-like properties publication-title: Cell Death Dis. – volume: 18 start-page: 127 year: 2019 ident: bib12 article-title: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1 publication-title: Mol. Cancer – volume: 82 start-page: 1872 year: 2022 end-page: 1889 ident: bib84 article-title: M6A RNA methylation regulates histone ubiquitination to support cancer growth and progression publication-title: Cancer Res. – volume: 20 start-page: 67 year: 2021 ident: bib66 article-title: Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types publication-title: Mol. Cancer – volume: 13 start-page: 669 year: 2019 end-page: 680 ident: bib70 article-title: The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment publication-title: Mol. Oncol. – volume: 18 start-page: 137 year: 2019 ident: bib38 article-title: Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types publication-title: Mol. Cancer – volume: 526 start-page: 591 year: 2015 end-page: 594 ident: bib106 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature – volume: 47 start-page: 375 year: 2019 end-page: 390 ident: bib56 article-title: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner publication-title: Nucleic Acids Res. – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: bib102 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell. – volume: 38 start-page: 4755 year: 2019 end-page: 4772 ident: bib87 article-title: Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis publication-title: Oncogene – volume: 149 start-page: 4601 year: 2023 end-page: 4610 ident: bib41 article-title: N(6)-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability publication-title: J. Cancer Res. Clin. – volume: 24 start-page: 143 year: 2023 end-page: 160 ident: bib5 article-title: Biological roles of adenine methylation in RNA publication-title: Nat. Rev. Genet. – volume: 33 year: 2022 ident: bib7 article-title: MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway publication-title: J. Bone Oncol – volume: 20 start-page: 34 year: 2020 ident: bib10 article-title: ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma publication-title: Cancer Cell Int. – volume: 24 start-page: 1403 year: 2014 end-page: 1419 ident: bib101 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. – volume: 41 start-page: 1727 year: 2022 end-page: 1741 ident: bib48 article-title: M(6)A demethylase FTO-mediated downregulation of DACT1 mRNA stability promotes Wnt signaling to facilitate osteosarcoma progression publication-title: Oncogene – volume: 23 start-page: 4 year: 2024 ident: bib104 article-title: CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis publication-title: Mol. Cancer – volume: 32 start-page: 415 year: 2018 end-page: 429 ident: bib32 article-title: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d publication-title: Gene Dev. – volume: 16 start-page: 294 year: 2021 ident: bib42 article-title: Potential role of m6A RNA methylation regulators in osteosarcoma and its clinical prognostic value publication-title: J. Orthop. Surg. Res. – volume: 11 start-page: 8374 issue: 19 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib20 article-title: LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis publication-title: Aging (Albany NY) doi: 10.18632/aging.102325 – volume: 14 start-page: 838 issue: 4 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib81 article-title: Post-transcriptional regulation DPC4 gene by miR-190 in colorectal cancer cells publication-title: J. Cancer Res. Therapeut. doi: 10.4103/jcrt.JCRT_577_17 – volume: 4 start-page: 10 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib95 article-title: VIRMA mediates preferential m(6)A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation publication-title: Cell Discov doi: 10.1038/s41421-018-0019-0 – volume: 186 start-page: 60 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib52 article-title: The Hippo pathway in normal development and cancer publication-title: Pharmacol. Therapeut. doi: 10.1016/j.pharmthera.2017.12.011 – volume: 27 start-page: 577 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib29 article-title: Analysis and identification of m(6)A RNA methylation regulators in metastatic osteosarcoma publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.12.008 – volume: 33 start-page: 359 issue: 4 year: 2016 ident: 10.1016/j.pbiomolbio.2024.10.003_bib59 article-title: MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR publication-title: respectively. Clin. Exp. Metastas. doi: 10.1007/s10585-016-9783-0 – volume: 18 start-page: 453 issue: 2 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib103 article-title: Mechanism for bioactive nanomaterial circ0024831 regulation of staphylococcal nuclease domain containing 1 via RNA methylation recognition in osteosarcoma publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2022.3256 – volume: 18 start-page: 127 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib12 article-title: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1 publication-title: Mol. Cancer doi: 10.1186/s12943-019-1053-8 – volume: 239 issue: 3 year: 2024 ident: 10.1016/j.pbiomolbio.2024.10.003_bib15 article-title: METTL16 promotes osteosarcoma progression by downregulating VPS33B in an m(6)A-dependent manner publication-title: J. Cell. Physiol. doi: 10.1002/jcp.31068 – volume: 19 start-page: 88 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib75 article-title: The potential role of RNA N6-methyladenosine in Cancer progression publication-title: Mol. Cancer doi: 10.1186/s12943-020-01204-7 – volume: 12 start-page: 60 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib94 article-title: ALKBH5 suppresses tumor progression via an m(6)A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03315-x – volume: 20 start-page: 34 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib10 article-title: ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-1105-6 – volume: 27 start-page: 315 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib67 article-title: YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 55 issue: 10 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib21 article-title: Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders publication-title: Cell Prolif. doi: 10.1111/cpr.13294 – volume: 39 year: 2023 ident: 10.1016/j.pbiomolbio.2024.10.003_bib47 article-title: The role and mechanism of JAK2/STAT3 signaling pathway regulated by m6A methyltransferase KIAA1429 in osteosarcoma publication-title: J. Bone Oncol doi: 10.1016/j.jbo.2023.100471 – volume: 23 issue: 7 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib22 article-title: Recent and ongoing research into metastatic osteosarcoma treatments publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23073817 – volume: 20 start-page: 1074 issue: 9 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib44 article-title: m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0174-4 – volume: 24 start-page: 1403 issue: 12 year: 2014 ident: 10.1016/j.pbiomolbio.2024.10.003_bib101 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. doi: 10.1038/cr.2014.151 – volume: 8 start-page: 77 issue: 1 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib2 article-title: Osteosarcoma publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-022-00409-y – volume: 297 issue: 2 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib97 article-title: The detection and functions of RNA modification m(6)A based on m(6)A writers and erasers publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100973 – volume: 112 start-page: 1707 issue: 5 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib72 article-title: circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling publication-title: Cancer Sci. doi: 10.1111/cas.14787 – volume: 41 start-page: 579 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib109 article-title: SND1 promotes the proliferation of osteosarcoma cells by upregulating COX-2/PGE2 expression via activation of NF-kappaB publication-title: Oncol. Rep. – volume: 543 start-page: 573 issue: 7646 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib80 article-title: RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response publication-title: Nature doi: 10.1038/nature21671 – volume: 20 start-page: 585 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib82 article-title: Emerging roles of RNA methylation in gastrointestinal cancers publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01679-w – volume: 13 start-page: 669 issue: 4 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib70 article-title: The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12468 – volume: 23 start-page: 4 issue: 1 year: 2024 ident: 10.1016/j.pbiomolbio.2024.10.003_bib104 article-title: CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis publication-title: Mol. Cancer doi: 10.1186/s12943-023-01912-w – volume: 18 start-page: 176 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib23 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1109-9 – volume: 6 start-page: 186 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib18 article-title: Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells publication-title: Bone Joint Res doi: 10.1302/2046-3758.63.BJR-2016-0151.R2 – volume: 11 start-page: 659 issue: 8 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib9 article-title: WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m(6)A-dependent manner publication-title: Cell Death Dis. doi: 10.1038/s41419-020-02847-6 – volume: 46 start-page: D303 issue: D1 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib4 article-title: MODOMICS: a database of RNA modification pathways. 2017 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1030 – volume: 19 start-page: 163 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib83 article-title: N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating beta-catenin signaling publication-title: Mol. Cancer doi: 10.1186/s12943-020-01281-8 – volume: 80 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib92 article-title: ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104019 – volume: 13 start-page: 8038 issue: 4 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib64 article-title: Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Kruppel-like factor 3 (KLF3) promotes osteosarcoma progression publication-title: Bioengineered doi: 10.1080/21655979.2022.2051785 – volume: 82 start-page: 1872 issue: 10 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib84 article-title: M6A RNA methylation regulates histone ubiquitination to support cancer growth and progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-2106 – volume: 18 start-page: 2004 issue: 11 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib78 article-title: Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs publication-title: EMBO Rep. doi: 10.15252/embr.201744940 – volume: 11 start-page: 821 issue: 7 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib11 article-title: The function of ncRNAs in rheumatic diseases publication-title: Epigenomics-Uk doi: 10.2217/epi-2018-0135 – volume: 67 start-page: 2254 issue: 6 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib8 article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 publication-title: Hepatology doi: 10.1002/hep.29683 – volume: 21 start-page: 52 issue: 1 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib19 article-title: m6A modification: recent advances, anticancer targeted drug discovery and beyond publication-title: Mol. Cancer doi: 10.1186/s12943-022-01510-2 – volume: 19 start-page: 94 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib14 article-title: Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-020-01207-4 – volume: 125 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib108 article-title: Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.109964 – volume: 13 start-page: 8038 issue: 4 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib63 article-title: Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Kruppel-like factor 3 (KLF3) promotes osteosarcoma progression publication-title: Bioengineered doi: 10.1080/21655979.2022.2051785 – volume: 18 start-page: 176 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib24 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1109-9 – volume: 20 start-page: 254 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib57 article-title: MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01342-4 – volume: 35 issue: 4 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib69 article-title: Updated review on nocardia species: 2006-2021 publication-title: Clin. Microbiol. Rev. doi: 10.1128/cmr.00027-21 – volume: 12 start-page: 844 issue: 9 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib107 article-title: EMP3 negatively modulates breast cancer cell DNA replication, DNA damage repair, and stem-like properties publication-title: Cell Death Dis. doi: 10.1038/s41419-021-04140-6 – volume: 8 start-page: 24 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib65 article-title: The emerging roles of N6-methyladenosine RNA methylation in human cancers publication-title: Biomark. Res. doi: 10.1186/s40364-020-00203-6 – volume: 179 start-page: 201 issue: 2 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib68 article-title: Osteosarcoma mechanobiology and therapeutic targets publication-title: Br. J. Pharmacol. doi: 10.1111/bph.15713 – volume: 17 start-page: 134 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib98 article-title: The role of YAP/TAZ activity in cancer metabolic reprogramming publication-title: Mol. Cancer doi: 10.1186/s12943-018-0882-1 – volume: 82 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib37 article-title: METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104142 – volume: 8 start-page: 61 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib91 article-title: N6-methyladenine modification in noncoding RNAs and its function in cancer publication-title: Biomark. Res. doi: 10.1186/s40364-020-00244-x – volume: 23 start-page: 192 issue: 1 year: 2024 ident: 10.1016/j.pbiomolbio.2024.10.003_bib93 article-title: Advances on immunotherapy for osteosarcoma publication-title: Mol. Cancer doi: 10.1186/s12943-024-02105-9 – volume: 20 start-page: 285 issue: 3 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib27 article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 516 start-page: 719 issue: 3 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib55 article-title: The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1 publication-title: Biochem. Bioph. Res. Co. doi: 10.1016/j.bbrc.2019.06.128 – volume: 32 start-page: 415 issue: 5–6 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib32 article-title: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d publication-title: Gene Dev. doi: 10.1101/gad.309146.117 – volume: 49 start-page: 18 issue: 1 year: 2013 ident: 10.1016/j.pbiomolbio.2024.10.003_bib102 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell. doi: 10.1016/j.molcel.2012.10.015 – volume: 6 start-page: 186 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib17 article-title: Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells publication-title: Bone Joint Res doi: 10.1302/2046-3758.63.BJR-2016-0151.R2 – volume: 15 start-page: 3083 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib74 article-title: Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S350109 – volume: 12 start-page: 121 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib50 article-title: The interplay between m6A RNA methylation and noncoding RNA in cancer publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0805-7 – volume: 21 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib30 article-title: Current status and prospects of clinical treatment of osteosarcoma publication-title: Technol. Cancer Res. Treat. doi: 10.1177/15330338221124696 – volume: 33 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib7 article-title: MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway publication-title: J. Bone Oncol doi: 10.1016/j.jbo.2022.100412 – volume: 149 start-page: 4601 issue: 8 year: 2023 ident: 10.1016/j.pbiomolbio.2024.10.003_bib41 article-title: N(6)-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability publication-title: J. Cancer Res. Clin. doi: 10.1007/s00432-022-04337-y – volume: 20 start-page: 67 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib66 article-title: Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types publication-title: Mol. Cancer doi: 10.1186/s12943-021-01362-2 – volume: 13 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib112 article-title: M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0839-x – volume: 24 start-page: 143 issue: 3 year: 2023 ident: 10.1016/j.pbiomolbio.2024.10.003_bib5 article-title: Biological roles of adenine methylation in RNA publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-022-00534-0 – volume: 70 start-page: 31 issue: 1 year: 2013 ident: 10.1016/j.pbiomolbio.2024.10.003_bib62 article-title: DNA damage repair and tolerance: a role in chemotherapeutic drug resistance publication-title: Br. J. Biomed. Sci. doi: 10.1080/09674845.2013.11669927 – volume: 21 issue: 8 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib31 article-title: RNA-binding proteins as important regulators of long non-coding RNAs in cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082969 – volume: 47 start-page: 375 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib56 article-title: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1012 – volume: 12 start-page: 12759 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib46 article-title: METTL14 overexpression promotes osteosarcoma cell apoptosis and slows tumor progression via caspase 3 activation publication-title: Cancer Manag. Res. doi: 10.2147/CMAR.S284273 – volume: 16 start-page: 4337 issue: 4 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib26 article-title: miRNA-21 inhibition inhibits osteosarcoma cell proliferation by targeting PTEN and regulating the TGF-beta1 signaling pathway publication-title: Oncol. Lett. – volume: 38 start-page: 4755 issue: 24 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib87 article-title: Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis publication-title: Oncogene doi: 10.1038/s41388-019-0755-0 – volume: 23 start-page: 2115 issue: 3 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib13 article-title: Oestrogen-related receptor alpha mediates chemotherapy resistance of osteosarcoma cells via regulation of ABCB1 publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.14123 – volume: 38 start-page: 6123 issue: 33 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib60 article-title: KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner publication-title: Oncogene doi: 10.1038/s41388-019-0861-z – volume: 20 start-page: 1504 issue: 2 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib89 article-title: N6-methyladenine RNA modification and cancer publication-title: Oncol. Lett. doi: 10.3892/ol.2020.11739 – volume: 76 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib43 article-title: Analysis of the function and mechanism of DIRAS1 in osteosarcoma publication-title: Tissue Cell doi: 10.1016/j.tice.2022.101794 – volume: 567 start-page: 414 issue: 7748 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib28 article-title: Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally publication-title: Nature doi: 10.1038/s41586-019-1016-7 – volume: 18 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib6 article-title: Parkinson's disease: from pathogenesis to pharmacogenomics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18030551 – volume: 189 start-page: 173 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib96 article-title: Mechanism of N(6)-methyladenosine modification and its emerging role in cancer publication-title: Pharmacol. Therapeut. doi: 10.1016/j.pharmthera.2018.04.011 – year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib35 article-title: Circular RNA circPVT1 contributes to doxorubicin (DXR) resistance of osteosarcoma cells by regulating TRIAP1 via miR-137 publication-title: BioMed Res. Int. – volume: 76 start-page: 157 issue: 4 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib71 article-title: Non-coding RNAs - a primer for the laboratory scientist publication-title: Br. J. Biomed. Sci. doi: 10.1080/09674845.2019.1675847 – volume: 32 start-page: 448 issue: 6 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib53 article-title: Circular RNA circNRIP1 plays oncogenic roles in the progression of osteosarcoma publication-title: Mamm. Genome doi: 10.1007/s00335-021-09891-3 – volume: 16 start-page: 294 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib42 article-title: Potential role of m6A RNA methylation regulators in osteosarcoma and its clinical prognostic value publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-021-02422-5 – volume: 526 start-page: 591 issue: 7574 year: 2015 ident: 10.1016/j.pbiomolbio.2024.10.003_bib106 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature doi: 10.1038/nature15377 – volume: 41 start-page: 523 issue: 6 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib36 article-title: MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1 publication-title: Mol. Cell. – volume: 218 start-page: 2659 issue: 8 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib33 article-title: Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled publication-title: J. Cell Biol. doi: 10.1083/jcb.201811147 – volume: 13 start-page: 7963 issue: 4 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib61 article-title: N(6)-methyladenosine methyltransferase WTAP-stabilized FOXD2-AS1 promotes the osteosarcoma progression through m(6)A/FOXM1 axis publication-title: Bioengineered doi: 10.1080/21655979.2021.2008218 – volume: 56 issue: 1 year: 2023 ident: 10.1016/j.pbiomolbio.2024.10.003_bib88 article-title: Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15 publication-title: Cell Prolif. doi: 10.1111/cpr.13344 – volume: 40 issue: 4 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib40 article-title: m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma publication-title: Biosci. Rep. doi: 10.1042/BSR20200282 – volume: 9 year: 2021 ident: 10.1016/j.pbiomolbio.2024.10.003_bib111 article-title: METTL3 contributes to osteosarcoma progression by increasing DANCR mRNA stability via m6A modification publication-title: Front. Cell Dev. Biol. – volume: 16 start-page: 167 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib51 article-title: Non-coding RNAs as drug targets publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.117 – volume: 59 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib105 article-title: N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102955 – volume: 163 start-page: 999 issue: 4 year: 2015 ident: 10.1016/j.pbiomolbio.2024.10.003_bib54 article-title: 5' UTR m(6)A promotes cap-independent translation publication-title: Cell doi: 10.1016/j.cell.2015.10.012 – volume: 22 start-page: 102 issue: 1 year: 2023 ident: 10.1016/j.pbiomolbio.2024.10.003_bib77 article-title: Epigenetic modification of m(6)A regulator proteins in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-023-01810-1 – volume: 9 start-page: 1572 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib39 article-title: The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma publication-title: Nat. Commun. doi: 10.1038/s41467-018-04006-0 – volume: 41 start-page: 1727 issue: 12 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib48 article-title: M(6)A demethylase FTO-mediated downregulation of DACT1 mRNA stability promotes Wnt signaling to facilitate osteosarcoma progression publication-title: Oncogene doi: 10.1038/s41388-022-02214-z – volume: 57 start-page: 590 issue: 5 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib110 article-title: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation publication-title: Mol. Carcinog. doi: 10.1002/mc.22782 – volume: 11 start-page: 1693 issue: 15 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib76 article-title: Integrated analysis of transcriptome-wide m(6)A methylome of osteosarcoma stem cells enriched by chemotherapy publication-title: Epigenomics-Uk doi: 10.2217/epi-2019-0262 – volume: 13 start-page: 5236 issue: 3 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib79 article-title: Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7) publication-title: Bioengineered doi: 10.1080/21655979.2022.2037381 – volume: 8 issue: 9 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib16 article-title: Long non-coding RNA in the pathogenesis of cancers publication-title: Cells-Basel – volume: 92 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib99 article-title: The role of long noncoding RNA in major human disease publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103214 – volume: 537 start-page: 369 issue: 7620 year: 2016 ident: 10.1016/j.pbiomolbio.2024.10.003_bib58 article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression publication-title: Nature doi: 10.1038/nature19342 – volume: 38 start-page: 77 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib73 article-title: Circ_0001658 promotes the proliferation and metastasis of osteosarcoma cells via regulating miR-382-5p/YB-1 axis publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.3452 – volume: 18 start-page: 137 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib38 article-title: Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types publication-title: Mol. Cancer doi: 10.1186/s12943-019-1066-3 – volume: 65 start-page: 529 issue: 2 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib49 article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing publication-title: Hepatology doi: 10.1002/hep.28885 – volume: 15 start-page: 154 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib1 article-title: The RNA modification N(6)-methyladenosine and its implications in human disease publication-title: Dev. Reprod. Biol. – volume: 234 start-page: 7948 issue: 6 year: 2019 ident: 10.1016/j.pbiomolbio.2024.10.003_bib3 article-title: A dynamic reversible RNA N(6) -methyladenosine modification: current status and perspectives publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28014 – volume: 22 start-page: 2592 issue: 5 year: 2018 ident: 10.1016/j.pbiomolbio.2024.10.003_bib85 article-title: LncRNA CCAT2 promoted osteosarcoma cell proliferation and invasion publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.13518 – volume: 11 start-page: 1075 issue: 12 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib100 article-title: Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6 publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03289-w – volume: 27 start-page: 444 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2024.10.003_bib34 article-title: Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation publication-title: Cell Res. doi: 10.1038/cr.2017.10 – volume: 20 start-page: 348 issue: 1 year: 2022 ident: 10.1016/j.pbiomolbio.2024.10.003_bib25 article-title: IGF2BP1-regulated expression of ERRalpha is involved in metabolic reprogramming of chemotherapy resistant osteosarcoma cells publication-title: J. Transl. Med. doi: 10.1186/s12967-022-03549-7 – volume: 24 start-page: 5593 issue: 10 year: 2020 ident: 10.1016/j.pbiomolbio.2024.10.003_bib86 article-title: Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.15215 |
SSID | ssj0002176 |
Score | 2.4313133 |
SecondaryResourceType | review_article |
Snippet | Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%–15% of patients have metastases at... Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | Adenosine - analogs & derivatives Adenosine - metabolism Animals Bone Neoplasms - drug therapy Bone Neoplasms - genetics Bone Neoplasms - metabolism Bone Neoplasms - pathology Bone Neoplasms - therapy Gene Expression Regulation, Neoplastic Humans m6A modification Methylation ncRNA Osteosarcoma Osteosarcoma - drug therapy Osteosarcoma - genetics Osteosarcoma - metabolism Osteosarcoma - pathology RNA, Untranslated - genetics RNA, Untranslated - metabolism Therapeutic target |
Title | m6A methylation regulators and ncRNAs in osteosarcoma: Potential therapeutic strategies |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2024.10.003 https://www.ncbi.nlm.nih.gov/pubmed/39461672 https://www.proquest.com/docview/3121279922 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCF7Et-tjieC1ax9p0uqpLC6r4iLioreSpimsaLtsu4e9-NudaVofhwXBS6Ft0oaZSb4J-WaGkHPY-SeSZ9ySSaYtpj1pBaErrTpxikhcO3ExGvl-xIdjdvviv6yQfhsLg7TKZu03a3q9WjdPLhppXkwnE4zxFSGAv0AWpGMiyhkTaOW9j2-aB7jc9XklNLawdcPmMRyvKca4F29whZ2iy3o1z8tbBlHLXNAaigZbZLPxIWlkhrlNVnS-Q9ZNVcnFLnl-5xHFytALw3OjM1NvvpiVVOYpzdXjKCrpJKcY4FGUYOrFu7ykD0WF1CH48o-gLFpWbTKJPTIeXD_1h1ZTP8FSnmCVlQqRCKUCyTioSnP0beCJrQIWBr4C7Jba9yToQzI7tf1U88TBaclTRwFMeftkNS9yfUgowHjoqYzpjAmY8omUQWaHgfJtCS6QcDtEtCKLVZNcHGtcvMUti-w1_hZ2jMLGNyDsDnG-ek5Ngo0_9LlqtRL_MpYYcOAPvc9aRcYwl_CAROa6mJex52C-e8zU2yEHRsNfY_JCxh0u3KN__fuYbOCd4cOckNVqNten4NVUSbc22y5Zi27uhqNPp_b4GA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLfQnSZ4mcb4usG2IO210I80acfTCYHuBpymCQRvUZqm0iFoT9fywH-P3bS38YCEtJc-JHUb2Y7tKD_bAD_w5J9pUQhPZ4X1uI20l6Sh9trCKTIL_SykbOSrmZjc8F938d0anPa5MASr7Gy_s-mtte5GjjtuHi_mc8rxlSk6f0koyKDNKB9Sdap4AMPx9GIyWxlkjLrbK0t83yOCDtDjYF4LSnOvHvCJh8WQH7VQr-gtL_VWFNp6o_NP8LELI9nYrXQT1mz5GT64xpLPW3D7KMaMmkM_O6gbW7qW89WyZrrMWWn-zMY1m5eMcjyqGrW9etQ_2e-qIfQQfvmfvCxWN309iW24OT-7Pp14XQsFz0SSN14uZSaNSTQXKC0rKLzBEd8kPE1ig-5b2zjSKBLN_dyPcyuygHamyAODniragUFZlXYPGHryNDIFtwWXuOszrZPCTxMT-xqjIBmOQPYsU6arL05tLh5UDyS7V3-ZrYjZNIPMHkGwoly4GhvvoDnppaJe6YtCV_AO6sNekAq3E92R6NJWT7WKAip5T8V6R7DrJLxaU5RyEQgZfvmvf3-H9cn11aW6nM4u9mGDZhw85gAGzfLJfsUgp8m-dUr8AiR3-sk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m6A+methylation+regulators+and+ncRNAs+in+osteosarcoma%3A+Potential+therapeutic+strategies&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Shi%2C+Ce&rft.au=Chen%2C+Lei&rft.au=Huang%2C+Kui&rft.au=Yang%2C+Guanghui&rft.date=2024-12-01&rft.issn=0079-6107&rft.volume=194&rft.spage=34&rft.epage=42&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2024.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2024_10_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |