Rational design and crystal structure prediction of ring-fused double-PDI compounds as n-channel organic semiconductors: a DFT study

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 23; no. 21; pp. 12329 - 12339
Main Authors Debata, Suryakanti, Sahoo, Smruti R, Khatua, Rudranarayan, Sahu, Sridhar
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 02.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility ( μ e = 5.31 × 10 −2 cm 2 V −1 s −1 ), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.
AbstractList In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility ( μ e = 5.31 × 10 −2 cm 2 V −1 s −1 ), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility ( μ e = 5.31 × 10 −2 cm 2 V −1 s −1 ), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10−2 cm2 V−1 s−1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.
Author Sahu, Sridhar
Khatua, Rudranarayan
Debata, Suryakanti
Sahoo, Smruti R
AuthorAffiliation High Performance Computing lab
Indian Institute of Technology (Indian School of Mines)
Department of Physics
AuthorAffiliation_xml – name: High Performance Computing lab
– name: Department of Physics
– name: Indian Institute of Technology (Indian School of Mines)
Author_xml – sequence: 1
  givenname: Suryakanti
  surname: Debata
  fullname: Debata, Suryakanti
– sequence: 2
  givenname: Smruti R
  surname: Sahoo
  fullname: Sahoo, Smruti R
– sequence: 3
  givenname: Rudranarayan
  surname: Khatua
  fullname: Khatua, Rudranarayan
– sequence: 4
  givenname: Sridhar
  surname: Sahu
  fullname: Sahu, Sridhar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34019042$$D View this record in MEDLINE/PubMed
BookMark eNpt0s9LHDEUB_AgFn_Vi3cl0IsUxubHzCTTW9nVqgiVouchm7xZs8wk02Ry2Hv_8MZdf4A0l4TweS_wfTlEu847QOiEkgtKePPNUD2SvORqBx3QsuZFQ2S5-3YW9T46jHGVCa0o30P7vCS0ISU7QH9_q8l6p3psINqlw8oZrMM6TvkqTiHpKQXAYwBj9bPEvsPBumXRpQgGG58WPRT38xus_TD65EzEKmJX6CflHPTYh6VyVuMIg9XemdzRh_gdKzy_eshPJLP-jD51qo9w_LIfocery4fZdXH36-fN7Mddobkop0LTUrOaS1mqhQSxAKKI4NSwSghgDDrgsiFVzTh0XaasaliTlS4NEbIBfoTOt33H4P8kiFM72Kih75UDn2LLKk4ZY5LyTL98oCufQs5poypR15KJrM5eVFoMYNox2EGFdfuabwZkC3TwMQboWm2nTeJTULZvKWmfR9jO6ex-M8LbXPL1Q8lr1__i0y0OUb-59__A_wEfcKVW
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e16740
crossref_primary_10_1021_acs_jpca_2c03906
crossref_primary_10_1002_smll_202401307
crossref_primary_10_1039_D1CP05784G
crossref_primary_10_1002_slct_202304156
Cites_doi 10.1039/D0SC02862B
10.1021/acs.jpclett.7b00681
10.1021/jp310362c
10.1021/acs.jpca.0c04506
10.1021/acs.jpclett.0c01199
10.1002/jcc.21904
10.1038/s41570-019-0152-9
10.1021/acs.jpcc.8b07018
10.1039/c3cp44673e
10.1021/ja960582d
10.1021/jp303235x
10.1021/ar200006r
10.1039/C7CP01114H
10.1002/chem.201902302
10.1021/jp900512s
10.1016/j.orgel.2019.105524
10.1021/acscentsci.0c00251
10.1039/C9TC02150G
10.1039/D0TC02499F
10.1021/jp1025625
10.1039/C7CC03682E
10.1039/C4TC02655A
10.1021/acs.jpca.9b10241
10.1039/C8CP06871B
10.1021/acs.accounts.0c00157
10.1002/poc.3905
10.1016/j.molstruc.2018.09.025
10.1021/jp1099464
10.1021/acs.chemmater.8b01047
10.1021/acs.jpca.6b08040
10.1016/j.jphotochem.2018.07.048
10.1039/D0TA00047G
10.1002/qua.25536
10.1021/ja908173x
10.1016/j.orgel.2012.03.026
10.1039/c0cc00947d
10.1039/C8CC07640E
10.1039/C6CP00127K
10.1038/s41467-020-17361-8
10.1021/acs.orglett.9b01454
10.1016/j.comptc.2015.03.022
10.1039/D0QM00202J
10.1016/j.synthmet.2019.02.010
10.1039/C8NJ02566E
10.1016/j.dyepig.2019.107970
10.1039/C5SC04956C
10.1016/j.dyepig.2020.108736
10.1021/jacs.6b04368
10.1039/c3cp51496j
10.1039/C9NJ02918D
10.1021/acs.jpcc.8b08126
10.1016/j.orgel.2016.10.044
10.1103/PhysRevB.97.115203
10.1039/C9QI01264H
10.1002/adma.201504120
10.1021/cr030088+
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cp00008j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 12339
ExternalDocumentID 34019042
10_1039_D1CP00008J
d1cp00008j
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c374t-c14c263884ab8e7be0a0731d2577e22efe38905623eff4c225929be0c4d0789e3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 16:35:30 EDT 2025
Sun Jun 29 15:33:21 EDT 2025
Wed Feb 19 02:28:45 EST 2025
Tue Jul 01 00:53:57 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Sat Apr 09 14:23:24 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-c14c263884ab8e7be0a0731d2577e22efe38905623eff4c225929be0c4d0789e3
Notes 10.1039/d1cp00008j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7945-5187
PMID 34019042
PQID 2535766827
PQPubID 2047499
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_D1CP00008J
pubmed_primary_34019042
proquest_journals_2535766827
proquest_miscellaneous_2531222813
rsc_primary_d1cp00008j
crossref_primary_10_1039_D1CP00008J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210602
PublicationDateYYYYMMDD 2021-06-02
PublicationDate_xml – month: 6
  year: 2021
  text: 20210602
  day: 2
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D1CP00008J-(cit2)/*[position()=1]) 2017; 53
Usta (D1CP00008J-(cit10)/*[position()=1]) 2011; 44
Purushotham (D1CP00008J-(cit30)/*[position()=1]) 2013; 15
Nowak-Krol (D1CP00008J-(cit14)/*[position()=1]) 2018; 54
Siddiqui (D1CP00008J-(cit32)/*[position()=1]) 2019; 32
Nguyen (D1CP00008J-(cit28)/*[position()=1]) 2016; 18
Salunke (D1CP00008J-(cit4)/*[position()=1]) 2020; 77
Liu (D1CP00008J-(cit54)/*[position()=1]) 2010; 114
Hu (D1CP00008J-(cit25)/*[position()=1]) 2018; 118
You (D1CP00008J-(cit22)/*[position()=1]) 2018; 42
Yin (D1CP00008J-(cit18)/*[position()=1]) 2020; 8
Smith (D1CP00008J-(cit21)/*[position()=1]) 2018; 367
Yin (D1CP00008J-(cit27)/*[position()=1]) 2015; 1062
Chang (D1CP00008J-(cit52)/*[position()=1]) 2010; 114
D1CP00008J-(cit55)/*[position()=1]
Li (D1CP00008J-(cit9)/*[position()=1]) 2019; 21
Chai (D1CP00008J-(cit59)/*[position()=1]) 2011; 32
Sanyal (D1CP00008J-(cit40)/*[position()=1]) 2013; 117
Cheng (D1CP00008J-(cit49)/*[position()=1]) 2020; 53
Perevedentsev (D1CP00008J-(cit5)/*[position()=1]) 2020; 11
Wang (D1CP00008J-(cit6)/*[position()=1]) 2020; 4
Wen (D1CP00008J-(cit34)/*[position()=1]) 2009; 113
Louis (D1CP00008J-(cit53)/*[position()=1]) 2017; 8
Leonard (D1CP00008J-(cit23)/*[position()=1]) 2020; 11
Ji (D1CP00008J-(cit29)/*[position()=1]) 2018; 122
Ji (D1CP00008J-(cit51)/*[position()=1]) 2017; 19
Schleyer (D1CP00008J-(cit45)/*[position()=1]) 1996; 118
Carlotti (D1CP00008J-(cit42)/*[position()=1]) 2018; 30
Dong (D1CP00008J-(cit47)/*[position()=1]) 2010; 46
Meng (D1CP00008J-(cit57)/*[position()=1]) 2016; 138
Delgado (D1CP00008J-(cit43)/*[position()=1]) 2010; 132
Luo (D1CP00008J-(cit41)/*[position()=1]) 2017; 41
Li (D1CP00008J-(cit44)/*[position()=1]) 2020; 7
Vidya (D1CP00008J-(cit33)/*[position()=1]) 2019; 1176
Zhong (D1CP00008J-(cit15)/*[position()=1]) 2016; 28
You (D1CP00008J-(cit16)/*[position()=1]) 2019; 25
Hartnett (D1CP00008J-(cit19)/*[position()=1]) 2016; 7
Wang (D1CP00008J-(cit56)/*[position()=1]) 2020; 183
Lin (D1CP00008J-(cit8)/*[position()=1]) 2019; 21
Li (D1CP00008J-(cit50)/*[position()=1]) 2019; 43
Lee (D1CP00008J-(cit7)/*[position()=1]) 2018; 97
Yin (D1CP00008J-(cit1)/*[position()=1]) 2015; 3
Wu (D1CP00008J-(cit11)/*[position()=1]) 2019; 7
Alparone (D1CP00008J-(cit37)/*[position()=1]) 2013; 15
Laventure (D1CP00008J-(cit20)/*[position()=1]) 2019; 250
Landi (D1CP00008J-(cit35)/*[position()=1]) 2018; 122
Deb (D1CP00008J-(cit60)/*[position()=1]) 2020; 124
Duan (D1CP00008J-(cit48)/*[position()=1]) 2012; 13
Zhang (D1CP00008J-(cit26)/*[position()=1]) 2012; 116
Chen (D1CP00008J-(cit46)/*[position()=1]) 2005; 105
Bronstein (D1CP00008J-(cit12)/*[position()=1]) 2020; 4
Zouaoui-Rabah (D1CP00008J-(cit24)/*[position()=1]) 2016; 120
Gorelsky (D1CP00008J-(cit39)/*[position()=1])
Yu (D1CP00008J-(cit17)/*[position()=1]) 2020; 8
Qureshi (D1CP00008J-(cit58)/*[position()=1]) 2020; 173
Huang (D1CP00008J-(cit31)/*[position()=1]) 2020; 11
Belic (D1CP00008J-(cit36)/*[position()=1]) 2020; 124
Wang (D1CP00008J-(cit3)/*[position()=1]) 2020; 6
References_xml – issn: 1913
  publication-title: German Pat.
  doi: Kardos
– issn: 2013
  publication-title: Gaussian 09, Revision E.01
  doi: Frisch
– doi: Gorelsky
– ident: D1CP00008J-(cit55)/*[position()=1]
– volume: 11
  start-page: 7133
  year: 2020
  ident: D1CP00008J-(cit23)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02862B
– volume: 8
  start-page: 2445
  year: 2017
  ident: D1CP00008J-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00681
– volume: 117
  start-page: 825
  year: 2013
  ident: D1CP00008J-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310362c
– volume: 124
  start-page: 6380
  year: 2020
  ident: D1CP00008J-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c04506
– volume: 11
  start-page: 4548
  year: 2020
  ident: D1CP00008J-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01199
– volume: 32
  start-page: 3218
  year: 2011
  ident: D1CP00008J-(cit59)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21904
– volume: 4
  start-page: 66
  year: 2020
  ident: D1CP00008J-(cit12)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0152-9
– volume: 122
  start-page: 21226
  year: 2018
  ident: D1CP00008J-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b07018
– volume: 15
  start-page: 5039
  year: 2013
  ident: D1CP00008J-(cit30)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44673e
– volume: 118
  start-page: 6317
  year: 1996
  ident: D1CP00008J-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960582d
– volume: 116
  start-page: 13858
  year: 2012
  ident: D1CP00008J-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp303235x
– volume: 44
  start-page: 501
  year: 2011
  ident: D1CP00008J-(cit10)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200006r
– volume: 19
  start-page: 13978
  year: 2017
  ident: D1CP00008J-(cit51)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01114H
– volume: 25
  start-page: 12137
  year: 2019
  ident: D1CP00008J-(cit16)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201902302
– volume: 113
  start-page: 8813
  year: 2009
  ident: D1CP00008J-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp900512s
– volume: 77
  start-page: 105524
  year: 2020
  ident: D1CP00008J-(cit4)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2019.105524
– volume: 6
  start-page: 636
  year: 2020
  ident: D1CP00008J-(cit3)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00251
– volume: 7
  start-page: 9564
  year: 2019
  ident: D1CP00008J-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02150G
– volume: 8
  start-page: 12516
  year: 2020
  ident: D1CP00008J-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC02499F
– volume: 114
  start-page: 11595
  year: 2010
  ident: D1CP00008J-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1025625
– volume: 53
  start-page: 6918
  year: 2017
  ident: D1CP00008J-(cit2)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03682E
– volume: 3
  start-page: 3472
  year: 2015
  ident: D1CP00008J-(cit1)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02655A
– volume: 124
  start-page: 1312
  year: 2020
  ident: D1CP00008J-(cit60)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b10241
– volume: 21
  start-page: 3044
  year: 2019
  ident: D1CP00008J-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06871B
– volume: 53
  start-page: 1218
  year: 2020
  ident: D1CP00008J-(cit49)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00157
– volume: 32
  start-page: e3905
  year: 2019
  ident: D1CP00008J-(cit32)/*[position()=1]
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.3905
– volume: 1176
  start-page: 855
  year: 2019
  ident: D1CP00008J-(cit33)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2018.09.025
– ident: D1CP00008J-(cit39)/*[position()=1]
– volume: 114
  start-page: 22316
  year: 2010
  ident: D1CP00008J-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1099464
– volume: 30
  start-page: 4263
  year: 2018
  ident: D1CP00008J-(cit42)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01047
– volume: 120
  start-page: 8843
  year: 2016
  ident: D1CP00008J-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b08040
– volume: 367
  start-page: 115
  year: 2018
  ident: D1CP00008J-(cit21)/*[position()=1]
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2018.07.048
– volume: 8
  start-page: 6501
  year: 2020
  ident: D1CP00008J-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00047G
– volume: 118
  start-page: e25536
  year: 2018
  ident: D1CP00008J-(cit25)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25536
– volume: 132
  start-page: 3375
  year: 2010
  ident: D1CP00008J-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908173x
– volume: 13
  start-page: 1213
  year: 2012
  ident: D1CP00008J-(cit48)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2012.03.026
– volume: 46
  start-page: 5211
  year: 2010
  ident: D1CP00008J-(cit47)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00947d
– volume: 54
  start-page: 13763
  year: 2018
  ident: D1CP00008J-(cit14)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07640E
– volume: 18
  start-page: 13888
  year: 2016
  ident: D1CP00008J-(cit28)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00127K
– volume: 11
  start-page: 3610
  year: 2020
  ident: D1CP00008J-(cit5)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17361-8
– volume: 21
  start-page: 5397
  year: 2019
  ident: D1CP00008J-(cit9)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01454
– volume: 1062
  start-page: 56
  year: 2015
  ident: D1CP00008J-(cit27)/*[position()=1]
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2015.03.022
– volume: 4
  start-page: 3505
  year: 2020
  ident: D1CP00008J-(cit6)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00202J
– volume: 250
  start-page: 55
  year: 2019
  ident: D1CP00008J-(cit20)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2019.02.010
– volume: 42
  start-page: 15079
  year: 2018
  ident: D1CP00008J-(cit22)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ02566E
– volume: 173
  start-page: 107970
  year: 2020
  ident: D1CP00008J-(cit58)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2019.107970
– volume: 7
  start-page: 3543
  year: 2016
  ident: D1CP00008J-(cit19)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04956C
– volume: 183
  start-page: 108736
  year: 2020
  ident: D1CP00008J-(cit56)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2020.108736
– volume: 138
  start-page: 10184
  year: 2016
  ident: D1CP00008J-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04368
– volume: 15
  start-page: 12958
  year: 2013
  ident: D1CP00008J-(cit37)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51496j
– volume: 43
  start-page: 13775
  year: 2019
  ident: D1CP00008J-(cit50)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ02918D
– volume: 122
  start-page: 25849
  year: 2018
  ident: D1CP00008J-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b08126
– volume: 41
  start-page: 166
  year: 2017
  ident: D1CP00008J-(cit41)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.10.044
– volume: 97
  start-page: 115203
  year: 2018
  ident: D1CP00008J-(cit7)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.115203
– volume: 7
  start-page: 157
  year: 2020
  ident: D1CP00008J-(cit44)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01264H
– volume: 28
  start-page: 951
  year: 2016
  ident: D1CP00008J-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504120
– volume: 105
  start-page: 3842
  year: 2005
  ident: D1CP00008J-(cit46)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030088+
SSID ssj0001513
Score 2.3828282
Snippet In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12329
SubjectTerms Charge efficiency
Charge transport
Chemical reactions
Coupling (molecular)
Crystal structure
Diimide
Electron mobility
Electronic structure
Electrons
Molecular structure
Organic semiconductors
Photovoltaic cells
Semiconductors
Transport properties
Title Rational design and crystal structure prediction of ring-fused double-PDI compounds as n-channel organic semiconductors: a DFT study
URI https://www.ncbi.nlm.nih.gov/pubmed/34019042
https://www.proquest.com/docview/2535766827
https://www.proquest.com/docview/2531222813
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwGLWG9gAXxFYaKMgILggFJoknC7cq06oti0Z0KvUWOY6jKQzJKMuhnPk__EU-r0nVIgGXKOPYM6O8F_v5y7cg9KoEEQ66O3Zn1BclzEjhJky8LoxCVpAkLEuZt-DT5_DojJycz84nk18jr6W-y9-yHzfGlfwPqtAGuIoo2X9A1n4pNMA54AtHQBiOf4XxF2PJK6QfhopRay7bTgWB9Or1wKYRL2OMMhR2PLfsWxCaRd3na-4u5sfSs1wUWGpF3ZnKFeHAFV_rmk_sTStc6OtK5Iatm1YFSM8Pl6PktFrfLgzszBSSU2eiSRlRWmmEWKSpDSyDKY8qDXsKANNvgPWFNfzQVS2NuaffG7iRg3vjhxXteiV8-wLWW9rQy4HoMKyXo5qLYkWbsWnDVy5YI2snzOKBC7t3nSt73KbqypkpXIUsa6qqiGs9IQvFmIxWd_iskiddWzqmgci8WnhsI3X012GBtG6Lw8VbaNuHfQlMrNv7B8vjj3bxBwEVqIA29c9NRtwgeTeMvqqBrm1sQOY0pvyMlDnLe-iu3p_gfUW2-2jCqwfodmrQfIh-GtJhRToMpMOadNiSDg-kw3WJB9LhgXTYkg7TFlvSYU06fJV07zHFQDksKfcInR0eLNMjV5fycFkQkc5lHmE-TPUxoXnMo5xPKawtXgELRsR9n5cchLPU4rwsoStsyv0EejFSiHoIPNhBW1Vd8V2ESTxl5XTGwoIQUvII9HQMY2A8F9UQPAe9Njc3YzrPvSi3ss6kv0WQZHMvXUggThz00vbdqOwuN_baMxhl-ulvM38WwFY9jP3IQS_sZcBCvHCjFa972ccTFlYvcNBjha39mYCILA7Ed9AOgG2bB5I8-dOFp-jO8LDsoS1Alj8DZdzlzzUbfwOUl7xC
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+and+crystal+structure+prediction+of+ring-fused+double-PDI+compounds+as+n-channel+organic+semiconductors%3A+a+DFT+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Debata%2C+Suryakanti&rft.au=Sahoo%2C+Smruti+R&rft.au=Khatua%2C+Rudranarayan&rft.au=Sahu%2C+Sridhar&rft.date=2021-06-02&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=21&rft.spage=12329&rft.epage=12339&rft_id=info:doi/10.1039%2Fd1cp00008j&rft.externalDocID=d1cp00008j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon