Rational design and crystal structure prediction of ring-fused double-PDI compounds as n-channel organic semiconductors: a DFT study
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 23; no. 21; pp. 12329 - 12339 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (
μ
e
= 5.31 × 10
−2
cm
2
V
−1
s
−1
), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.
In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. |
---|---|
AbstractList | In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications.In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility ( μ e = 5.31 × 10 −2 cm 2 V −1 s −1 ), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10-2 cm2 V-1 s-1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility ( μ e = 5.31 × 10 −2 cm 2 V −1 s −1 ), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds. These dimeric-PDIs are formed by joining two separate PDI-units along their bay positions through ring fusion with pyrene, coronene and their N-doped counterparts. The bridging type has a significant steric effect at the annulation positions and controls the molecular geometry, mostly imposing buckling in the structure. The crystal structures of the designed compounds are also theoretically predicted. Thereafter, electronic structure parameters, molecular packing motifs, charge coupling strength and anisotropic mobilities were investigated to understand the charge transport efficiency of these systems. Among all the studied molecules, the 4N-coronene-fused DPDI (DPDI-6) is found to possess a lower LUMO level and a high EA, suggesting air-stable electron injection. Besides, DPDI-6 shows strong intermolecular electron coupling and possesses high electron mobility (μe = 5.31 × 10−2 cm2 V−1 s−1), which is better as compared with the other DPDI-compounds reported here. The DPDIs also possess optical absorption in the UV-visible region, opening up possible applications in organic photovoltaics. Besides, from the non-linear optical (NLO) analysis, DPDI-3 is found to possess the highest first-order hyperpolarizability, which is even better as compared with the reference compound urea, making it a promising candidate for NLO applications. |
Author | Sahu, Sridhar Khatua, Rudranarayan Debata, Suryakanti Sahoo, Smruti R |
AuthorAffiliation | High Performance Computing lab Indian Institute of Technology (Indian School of Mines) Department of Physics |
AuthorAffiliation_xml | – name: High Performance Computing lab – name: Department of Physics – name: Indian Institute of Technology (Indian School of Mines) |
Author_xml | – sequence: 1 givenname: Suryakanti surname: Debata fullname: Debata, Suryakanti – sequence: 2 givenname: Smruti R surname: Sahoo fullname: Sahoo, Smruti R – sequence: 3 givenname: Rudranarayan surname: Khatua fullname: Khatua, Rudranarayan – sequence: 4 givenname: Sridhar surname: Sahu fullname: Sahu, Sridhar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34019042$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0s9LHDEUB_AgFn_Vi3cl0IsUxubHzCTTW9nVqgiVouchm7xZs8wk02Ry2Hv_8MZdf4A0l4TweS_wfTlEu847QOiEkgtKePPNUD2SvORqBx3QsuZFQ2S5-3YW9T46jHGVCa0o30P7vCS0ISU7QH9_q8l6p3psINqlw8oZrMM6TvkqTiHpKQXAYwBj9bPEvsPBumXRpQgGG58WPRT38xus_TD65EzEKmJX6CflHPTYh6VyVuMIg9XemdzRh_gdKzy_eshPJLP-jD51qo9w_LIfocery4fZdXH36-fN7Mddobkop0LTUrOaS1mqhQSxAKKI4NSwSghgDDrgsiFVzTh0XaasaliTlS4NEbIBfoTOt33H4P8kiFM72Kih75UDn2LLKk4ZY5LyTL98oCufQs5poypR15KJrM5eVFoMYNox2EGFdfuabwZkC3TwMQboWm2nTeJTULZvKWmfR9jO6ex-M8LbXPL1Q8lr1__i0y0OUb-59__A_wEfcKVW |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e16740 crossref_primary_10_1021_acs_jpca_2c03906 crossref_primary_10_1002_smll_202401307 crossref_primary_10_1039_D1CP05784G crossref_primary_10_1002_slct_202304156 |
Cites_doi | 10.1039/D0SC02862B 10.1021/acs.jpclett.7b00681 10.1021/jp310362c 10.1021/acs.jpca.0c04506 10.1021/acs.jpclett.0c01199 10.1002/jcc.21904 10.1038/s41570-019-0152-9 10.1021/acs.jpcc.8b07018 10.1039/c3cp44673e 10.1021/ja960582d 10.1021/jp303235x 10.1021/ar200006r 10.1039/C7CP01114H 10.1002/chem.201902302 10.1021/jp900512s 10.1016/j.orgel.2019.105524 10.1021/acscentsci.0c00251 10.1039/C9TC02150G 10.1039/D0TC02499F 10.1021/jp1025625 10.1039/C7CC03682E 10.1039/C4TC02655A 10.1021/acs.jpca.9b10241 10.1039/C8CP06871B 10.1021/acs.accounts.0c00157 10.1002/poc.3905 10.1016/j.molstruc.2018.09.025 10.1021/jp1099464 10.1021/acs.chemmater.8b01047 10.1021/acs.jpca.6b08040 10.1016/j.jphotochem.2018.07.048 10.1039/D0TA00047G 10.1002/qua.25536 10.1021/ja908173x 10.1016/j.orgel.2012.03.026 10.1039/c0cc00947d 10.1039/C8CC07640E 10.1039/C6CP00127K 10.1038/s41467-020-17361-8 10.1021/acs.orglett.9b01454 10.1016/j.comptc.2015.03.022 10.1039/D0QM00202J 10.1016/j.synthmet.2019.02.010 10.1039/C8NJ02566E 10.1016/j.dyepig.2019.107970 10.1039/C5SC04956C 10.1016/j.dyepig.2020.108736 10.1021/jacs.6b04368 10.1039/c3cp51496j 10.1039/C9NJ02918D 10.1021/acs.jpcc.8b08126 10.1016/j.orgel.2016.10.044 10.1103/PhysRevB.97.115203 10.1039/C9QI01264H 10.1002/adma.201504120 10.1021/cr030088+ |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d1cp00008j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 12339 |
ExternalDocumentID | 34019042 10_1039_D1CP00008J d1cp00008j |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c374t-c14c263884ab8e7be0a0731d2577e22efe38905623eff4c225929be0c4d0789e3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 16:35:30 EDT 2025 Sun Jun 29 15:33:21 EDT 2025 Wed Feb 19 02:28:45 EST 2025 Tue Jul 01 00:53:57 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Sat Apr 09 14:23:24 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c374t-c14c263884ab8e7be0a0731d2577e22efe38905623eff4c225929be0c4d0789e3 |
Notes | 10.1039/d1cp00008j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7945-5187 |
PMID | 34019042 |
PQID | 2535766827 |
PQPubID | 2047499 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_D1CP00008J pubmed_primary_34019042 proquest_journals_2535766827 proquest_miscellaneous_2531222813 rsc_primary_d1cp00008j crossref_primary_10_1039_D1CP00008J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210602 |
PublicationDateYYYYMMDD | 2021-06-02 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210602 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D1CP00008J-(cit2)/*[position()=1]) 2017; 53 Usta (D1CP00008J-(cit10)/*[position()=1]) 2011; 44 Purushotham (D1CP00008J-(cit30)/*[position()=1]) 2013; 15 Nowak-Krol (D1CP00008J-(cit14)/*[position()=1]) 2018; 54 Siddiqui (D1CP00008J-(cit32)/*[position()=1]) 2019; 32 Nguyen (D1CP00008J-(cit28)/*[position()=1]) 2016; 18 Salunke (D1CP00008J-(cit4)/*[position()=1]) 2020; 77 Liu (D1CP00008J-(cit54)/*[position()=1]) 2010; 114 Hu (D1CP00008J-(cit25)/*[position()=1]) 2018; 118 You (D1CP00008J-(cit22)/*[position()=1]) 2018; 42 Yin (D1CP00008J-(cit18)/*[position()=1]) 2020; 8 Smith (D1CP00008J-(cit21)/*[position()=1]) 2018; 367 Yin (D1CP00008J-(cit27)/*[position()=1]) 2015; 1062 Chang (D1CP00008J-(cit52)/*[position()=1]) 2010; 114 D1CP00008J-(cit55)/*[position()=1] Li (D1CP00008J-(cit9)/*[position()=1]) 2019; 21 Chai (D1CP00008J-(cit59)/*[position()=1]) 2011; 32 Sanyal (D1CP00008J-(cit40)/*[position()=1]) 2013; 117 Cheng (D1CP00008J-(cit49)/*[position()=1]) 2020; 53 Perevedentsev (D1CP00008J-(cit5)/*[position()=1]) 2020; 11 Wang (D1CP00008J-(cit6)/*[position()=1]) 2020; 4 Wen (D1CP00008J-(cit34)/*[position()=1]) 2009; 113 Louis (D1CP00008J-(cit53)/*[position()=1]) 2017; 8 Leonard (D1CP00008J-(cit23)/*[position()=1]) 2020; 11 Ji (D1CP00008J-(cit29)/*[position()=1]) 2018; 122 Ji (D1CP00008J-(cit51)/*[position()=1]) 2017; 19 Schleyer (D1CP00008J-(cit45)/*[position()=1]) 1996; 118 Carlotti (D1CP00008J-(cit42)/*[position()=1]) 2018; 30 Dong (D1CP00008J-(cit47)/*[position()=1]) 2010; 46 Meng (D1CP00008J-(cit57)/*[position()=1]) 2016; 138 Delgado (D1CP00008J-(cit43)/*[position()=1]) 2010; 132 Luo (D1CP00008J-(cit41)/*[position()=1]) 2017; 41 Li (D1CP00008J-(cit44)/*[position()=1]) 2020; 7 Vidya (D1CP00008J-(cit33)/*[position()=1]) 2019; 1176 Zhong (D1CP00008J-(cit15)/*[position()=1]) 2016; 28 You (D1CP00008J-(cit16)/*[position()=1]) 2019; 25 Hartnett (D1CP00008J-(cit19)/*[position()=1]) 2016; 7 Wang (D1CP00008J-(cit56)/*[position()=1]) 2020; 183 Lin (D1CP00008J-(cit8)/*[position()=1]) 2019; 21 Li (D1CP00008J-(cit50)/*[position()=1]) 2019; 43 Lee (D1CP00008J-(cit7)/*[position()=1]) 2018; 97 Yin (D1CP00008J-(cit1)/*[position()=1]) 2015; 3 Wu (D1CP00008J-(cit11)/*[position()=1]) 2019; 7 Alparone (D1CP00008J-(cit37)/*[position()=1]) 2013; 15 Laventure (D1CP00008J-(cit20)/*[position()=1]) 2019; 250 Landi (D1CP00008J-(cit35)/*[position()=1]) 2018; 122 Deb (D1CP00008J-(cit60)/*[position()=1]) 2020; 124 Duan (D1CP00008J-(cit48)/*[position()=1]) 2012; 13 Zhang (D1CP00008J-(cit26)/*[position()=1]) 2012; 116 Chen (D1CP00008J-(cit46)/*[position()=1]) 2005; 105 Bronstein (D1CP00008J-(cit12)/*[position()=1]) 2020; 4 Zouaoui-Rabah (D1CP00008J-(cit24)/*[position()=1]) 2016; 120 Gorelsky (D1CP00008J-(cit39)/*[position()=1]) Yu (D1CP00008J-(cit17)/*[position()=1]) 2020; 8 Qureshi (D1CP00008J-(cit58)/*[position()=1]) 2020; 173 Huang (D1CP00008J-(cit31)/*[position()=1]) 2020; 11 Belic (D1CP00008J-(cit36)/*[position()=1]) 2020; 124 Wang (D1CP00008J-(cit3)/*[position()=1]) 2020; 6 |
References_xml | – issn: 1913 publication-title: German Pat. doi: Kardos – issn: 2013 publication-title: Gaussian 09, Revision E.01 doi: Frisch – doi: Gorelsky – ident: D1CP00008J-(cit55)/*[position()=1] – volume: 11 start-page: 7133 year: 2020 ident: D1CP00008J-(cit23)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC02862B – volume: 8 start-page: 2445 year: 2017 ident: D1CP00008J-(cit53)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00681 – volume: 117 start-page: 825 year: 2013 ident: D1CP00008J-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp310362c – volume: 124 start-page: 6380 year: 2020 ident: D1CP00008J-(cit36)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c04506 – volume: 11 start-page: 4548 year: 2020 ident: D1CP00008J-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01199 – volume: 32 start-page: 3218 year: 2011 ident: D1CP00008J-(cit59)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21904 – volume: 4 start-page: 66 year: 2020 ident: D1CP00008J-(cit12)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0152-9 – volume: 122 start-page: 21226 year: 2018 ident: D1CP00008J-(cit29)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b07018 – volume: 15 start-page: 5039 year: 2013 ident: D1CP00008J-(cit30)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44673e – volume: 118 start-page: 6317 year: 1996 ident: D1CP00008J-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960582d – volume: 116 start-page: 13858 year: 2012 ident: D1CP00008J-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp303235x – volume: 44 start-page: 501 year: 2011 ident: D1CP00008J-(cit10)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200006r – volume: 19 start-page: 13978 year: 2017 ident: D1CP00008J-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01114H – volume: 25 start-page: 12137 year: 2019 ident: D1CP00008J-(cit16)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201902302 – volume: 113 start-page: 8813 year: 2009 ident: D1CP00008J-(cit34)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp900512s – volume: 77 start-page: 105524 year: 2020 ident: D1CP00008J-(cit4)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.105524 – volume: 6 start-page: 636 year: 2020 ident: D1CP00008J-(cit3)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00251 – volume: 7 start-page: 9564 year: 2019 ident: D1CP00008J-(cit11)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02150G – volume: 8 start-page: 12516 year: 2020 ident: D1CP00008J-(cit18)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC02499F – volume: 114 start-page: 11595 year: 2010 ident: D1CP00008J-(cit52)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1025625 – volume: 53 start-page: 6918 year: 2017 ident: D1CP00008J-(cit2)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC03682E – volume: 3 start-page: 3472 year: 2015 ident: D1CP00008J-(cit1)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02655A – volume: 124 start-page: 1312 year: 2020 ident: D1CP00008J-(cit60)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b10241 – volume: 21 start-page: 3044 year: 2019 ident: D1CP00008J-(cit8)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP06871B – volume: 53 start-page: 1218 year: 2020 ident: D1CP00008J-(cit49)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00157 – volume: 32 start-page: e3905 year: 2019 ident: D1CP00008J-(cit32)/*[position()=1] publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.3905 – volume: 1176 start-page: 855 year: 2019 ident: D1CP00008J-(cit33)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.09.025 – ident: D1CP00008J-(cit39)/*[position()=1] – volume: 114 start-page: 22316 year: 2010 ident: D1CP00008J-(cit54)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1099464 – volume: 30 start-page: 4263 year: 2018 ident: D1CP00008J-(cit42)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01047 – volume: 120 start-page: 8843 year: 2016 ident: D1CP00008J-(cit24)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b08040 – volume: 367 start-page: 115 year: 2018 ident: D1CP00008J-(cit21)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2018.07.048 – volume: 8 start-page: 6501 year: 2020 ident: D1CP00008J-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00047G – volume: 118 start-page: e25536 year: 2018 ident: D1CP00008J-(cit25)/*[position()=1] publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25536 – volume: 132 start-page: 3375 year: 2010 ident: D1CP00008J-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908173x – volume: 13 start-page: 1213 year: 2012 ident: D1CP00008J-(cit48)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.03.026 – volume: 46 start-page: 5211 year: 2010 ident: D1CP00008J-(cit47)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc00947d – volume: 54 start-page: 13763 year: 2018 ident: D1CP00008J-(cit14)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC07640E – volume: 18 start-page: 13888 year: 2016 ident: D1CP00008J-(cit28)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00127K – volume: 11 start-page: 3610 year: 2020 ident: D1CP00008J-(cit5)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-17361-8 – volume: 21 start-page: 5397 year: 2019 ident: D1CP00008J-(cit9)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01454 – volume: 1062 start-page: 56 year: 2015 ident: D1CP00008J-(cit27)/*[position()=1] publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2015.03.022 – volume: 4 start-page: 3505 year: 2020 ident: D1CP00008J-(cit6)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00202J – volume: 250 start-page: 55 year: 2019 ident: D1CP00008J-(cit20)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/j.synthmet.2019.02.010 – volume: 42 start-page: 15079 year: 2018 ident: D1CP00008J-(cit22)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C8NJ02566E – volume: 173 start-page: 107970 year: 2020 ident: D1CP00008J-(cit58)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2019.107970 – volume: 7 start-page: 3543 year: 2016 ident: D1CP00008J-(cit19)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC04956C – volume: 183 start-page: 108736 year: 2020 ident: D1CP00008J-(cit56)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2020.108736 – volume: 138 start-page: 10184 year: 2016 ident: D1CP00008J-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04368 – volume: 15 start-page: 12958 year: 2013 ident: D1CP00008J-(cit37)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51496j – volume: 43 start-page: 13775 year: 2019 ident: D1CP00008J-(cit50)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C9NJ02918D – volume: 122 start-page: 25849 year: 2018 ident: D1CP00008J-(cit35)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b08126 – volume: 41 start-page: 166 year: 2017 ident: D1CP00008J-(cit41)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.10.044 – volume: 97 start-page: 115203 year: 2018 ident: D1CP00008J-(cit7)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.115203 – volume: 7 start-page: 157 year: 2020 ident: D1CP00008J-(cit44)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01264H – volume: 28 start-page: 951 year: 2016 ident: D1CP00008J-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504120 – volume: 105 start-page: 3842 year: 2005 ident: D1CP00008J-(cit46)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030088+ |
SSID | ssj0001513 |
Score | 2.3828282 |
Snippet | In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12329 |
SubjectTerms | Charge efficiency Charge transport Chemical reactions Coupling (molecular) Crystal structure Diimide Electron mobility Electronic structure Electrons Molecular structure Organic semiconductors Photovoltaic cells Semiconductors Transport properties |
Title | Rational design and crystal structure prediction of ring-fused double-PDI compounds as n-channel organic semiconductors: a DFT study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34019042 https://www.proquest.com/docview/2535766827 https://www.proquest.com/docview/2531222813 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwGLWG9gAXxFYaKMgILggFJoknC7cq06oti0Z0KvUWOY6jKQzJKMuhnPk__EU-r0nVIgGXKOPYM6O8F_v5y7cg9KoEEQ66O3Zn1BclzEjhJky8LoxCVpAkLEuZt-DT5_DojJycz84nk18jr6W-y9-yHzfGlfwPqtAGuIoo2X9A1n4pNMA54AtHQBiOf4XxF2PJK6QfhopRay7bTgWB9Or1wKYRL2OMMhR2PLfsWxCaRd3na-4u5sfSs1wUWGpF3ZnKFeHAFV_rmk_sTStc6OtK5Iatm1YFSM8Pl6PktFrfLgzszBSSU2eiSRlRWmmEWKSpDSyDKY8qDXsKANNvgPWFNfzQVS2NuaffG7iRg3vjhxXteiV8-wLWW9rQy4HoMKyXo5qLYkWbsWnDVy5YI2snzOKBC7t3nSt73KbqypkpXIUsa6qqiGs9IQvFmIxWd_iskiddWzqmgci8WnhsI3X012GBtG6Lw8VbaNuHfQlMrNv7B8vjj3bxBwEVqIA29c9NRtwgeTeMvqqBrm1sQOY0pvyMlDnLe-iu3p_gfUW2-2jCqwfodmrQfIh-GtJhRToMpMOadNiSDg-kw3WJB9LhgXTYkg7TFlvSYU06fJV07zHFQDksKfcInR0eLNMjV5fycFkQkc5lHmE-TPUxoXnMo5xPKawtXgELRsR9n5cchLPU4rwsoStsyv0EejFSiHoIPNhBW1Vd8V2ESTxl5XTGwoIQUvII9HQMY2A8F9UQPAe9Njc3YzrPvSi3ss6kv0WQZHMvXUggThz00vbdqOwuN_baMxhl-ulvM38WwFY9jP3IQS_sZcBCvHCjFa972ccTFlYvcNBjha39mYCILA7Ed9AOgG2bB5I8-dOFp-jO8LDsoS1Alj8DZdzlzzUbfwOUl7xC |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+and+crystal+structure+prediction+of+ring-fused+double-PDI+compounds+as+n-channel+organic+semiconductors%3A+a+DFT+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Debata%2C+Suryakanti&rft.au=Sahoo%2C+Smruti+R&rft.au=Khatua%2C+Rudranarayan&rft.au=Sahu%2C+Sridhar&rft.date=2021-06-02&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=23&rft.issue=21&rft.spage=12329&rft.epage=12339&rft_id=info:doi/10.1039%2Fd1cp00008j&rft.externalDocID=d1cp00008j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |